mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-01-18 21:23:02 +00:00
[TAS-156] debug verify_tesla_key various bugfixes plus refactor recursive hash computation
This commit is contained in:
parent
a17b04cb22
commit
ff5118db54
@ -128,9 +128,10 @@ void osnma_msg_receiver::process_osnma_message(const std::shared_ptr<OSNMA_msg>&
|
||||
read_nma_header(osnma_msg->hkroot[0]);
|
||||
read_dsm_header(osnma_msg->hkroot[1]);
|
||||
read_dsm_block(osnma_msg);
|
||||
local_time_verification(osnma_msg);
|
||||
process_dsm_block(osnma_msg); // will process dsm block if received a complete one, then will call mack processing upon re-setting the dsm block to 0
|
||||
read_and_process_mack_block(osnma_msg); // only process them if a least 3 available.
|
||||
if(d_osnma_data.d_dsm_kroot_message.towh_k != 0)
|
||||
local_time_verification(osnma_msg);
|
||||
read_and_process_mack_block(osnma_msg); // only process them if at least 3 available.
|
||||
}
|
||||
|
||||
|
||||
@ -260,7 +261,7 @@ void osnma_msg_receiver::local_time_verification(const std::shared_ptr<OSNMA_msg
|
||||
d_GST_SIS = (osnma_msg->WN_sf0 & 0x00000FFF) << 20 | (osnma_msg->TOW_sf0 & 0x000FFFFF);
|
||||
//std::cout << "Galileo OSNMA: d_GST_SIS: " << d_GST_SIS << std::endl;
|
||||
//d_GST_0 = d_osnma_data.d_dsm_kroot_message.towh_k + 604800 * d_osnma_data.d_dsm_kroot_message.wn_k + 30;
|
||||
d_GST_0 = ((d_osnma_data.d_dsm_kroot_message.wn_k & 0x00000FFF) << 20 | (d_osnma_data.d_dsm_kroot_message.towh_k & 0x000FFFFF)) + 30;
|
||||
d_GST_0 = ((d_osnma_data.d_dsm_kroot_message.wn_k & 0x00000FFF) << 20 | (d_osnma_data.d_dsm_kroot_message.towh_k & 0x000FFFFF)) + 30; // applicable time (GST_Kroot + 30)
|
||||
//d_GST_0 = d_osnma_data.d_dsm_kroot_message.towh_k + 604800 * d_osnma_data.d_dsm_kroot_message.wn_k + 30;
|
||||
// TODO store list of SVs sending OSNMA and if received ID matches one stored, then just increment time 30s for that ID.
|
||||
if(d_receiver_time != 0)
|
||||
@ -350,6 +351,7 @@ void osnma_msg_receiver::process_dsm_message(const std::vector<uint8_t>& dsm_msg
|
||||
// DSM-KROOT message
|
||||
if (d_osnma_data.d_dsm_header.dsm_id < 12)
|
||||
{
|
||||
// Parse Kroot message
|
||||
LOG(WARNING) << "OSNMA: DSM-KROOT message received.";
|
||||
d_osnma_data.d_dsm_kroot_message.nb_dk = d_dsm_reader->get_number_blocks_index(dsm_msg[0]);
|
||||
d_osnma_data.d_dsm_kroot_message.pkid = d_dsm_reader->get_pkid(dsm_msg);
|
||||
@ -364,10 +366,10 @@ void osnma_msg_receiver::process_dsm_message(const std::vector<uint8_t>& dsm_msg
|
||||
d_osnma_data.d_dsm_kroot_message.wn_k = d_dsm_reader->get_wn_k(dsm_msg);
|
||||
d_osnma_data.d_dsm_kroot_message.towh_k = d_dsm_reader->get_towh_k(dsm_msg);
|
||||
d_osnma_data.d_dsm_kroot_message.alpha = d_dsm_reader->get_alpha(dsm_msg);
|
||||
|
||||
// Kroot field
|
||||
const uint16_t l_lk_bytes = d_dsm_reader->get_lk_bits(d_osnma_data.d_dsm_kroot_message.ks) / 8;
|
||||
d_osnma_data.d_dsm_kroot_message.kroot = d_dsm_reader->get_kroot(dsm_msg, l_lk_bytes);
|
||||
|
||||
// DS field
|
||||
std::string hash_function = d_dsm_reader->get_hash_function(d_osnma_data.d_dsm_kroot_message.hf);
|
||||
uint16_t l_ds_bits = 0;
|
||||
const auto it = OSNMA_TABLE_15.find(hash_function);
|
||||
@ -381,6 +383,7 @@ void osnma_msg_receiver::process_dsm_message(const std::vector<uint8_t>& dsm_msg
|
||||
{
|
||||
d_osnma_data.d_dsm_kroot_message.ds[k] = dsm_msg[13 + l_lk_bytes + k];
|
||||
}
|
||||
// Padding
|
||||
const uint16_t l_dk_bits = d_dsm_reader->get_l_dk_bits(d_osnma_data.d_dsm_kroot_message.nb_dk);
|
||||
const uint16_t l_dk_bytes = l_dk_bits / 8;
|
||||
const uint16_t l_pdk_bytes = (l_dk_bytes - 13 - l_lk_bytes - l_ds_bytes);
|
||||
@ -406,7 +409,7 @@ void osnma_msg_receiver::process_dsm_message(const std::vector<uint8_t>& dsm_msg
|
||||
{
|
||||
MSG.push_back(dsm_msg[i]);
|
||||
}
|
||||
std::vector<uint8_t> message = MSG; // C: MSG == M || DS from ICD. Eq. 7
|
||||
std::vector<uint8_t> message = MSG; // MSG = (M | DS) from ICD. Eq. 7
|
||||
for (uint16_t k = 0; k < l_ds_bytes; k++)
|
||||
{
|
||||
MSG.push_back(d_osnma_data.d_dsm_kroot_message.ds[k]);
|
||||
@ -435,12 +438,12 @@ void osnma_msg_receiver::process_dsm_message(const std::vector<uint8_t>& dsm_msg
|
||||
// Check that the padding bits received match the computed values
|
||||
if (d_osnma_data.d_dsm_kroot_message.p_dk == p_dk_truncated)
|
||||
{
|
||||
|
||||
LOG(WARNING) << "OSNMA: DSM-KROOT message received ok.";
|
||||
std::cout << "Galileo OSNMA: KROOT with CID=" << static_cast<uint32_t>(d_osnma_data.d_nma_header.cid)
|
||||
<< ", PKID=" << static_cast<uint32_t>(d_osnma_data.d_dsm_kroot_message.pkid)
|
||||
<< ", WN=" << static_cast<uint32_t>(d_osnma_data.d_dsm_kroot_message.wn_k)
|
||||
<< ", TOW=" << static_cast<uint32_t>(d_osnma_data.d_dsm_kroot_message.towh_k) * 3600;
|
||||
<< ", TOW=" << static_cast<uint32_t>(d_osnma_data.d_dsm_kroot_message.towh_k) * 3600 << std::endl;
|
||||
local_time_verification(osnma_msg);
|
||||
d_kroot_verified = d_crypto->verify_signature(message, d_osnma_data.d_dsm_kroot_message.ds);
|
||||
if (d_kroot_verified)
|
||||
{
|
||||
@ -1091,179 +1094,51 @@ void osnma_msg_receiver::display_data()
|
||||
}
|
||||
bool osnma_msg_receiver::verify_tesla_key(std::vector<uint8_t>& key, uint32_t TOW)
|
||||
{
|
||||
if(d_tesla_key_verified)
|
||||
uint32_t num_of_hashes_needed;
|
||||
uint32_t GST_SFi = d_receiver_time - 30;
|
||||
std::vector<uint8_t> hash;
|
||||
const uint8_t lk_bytes = d_dsm_reader->get_lk_bits(d_osnma_data.d_dsm_kroot_message.ks)/8;
|
||||
std::vector<uint8_t> validated_key;
|
||||
if(d_tesla_key_verified){ // have to go up to last verified key
|
||||
validated_key = d_tesla_keys.rbegin()->second;
|
||||
num_of_hashes_needed = (d_receiver_time - d_last_verified_key_GST) / 30; // Eq. 19 ICD modified
|
||||
std::cout << "Galileo OSNMA: TESLA verification ("<< num_of_hashes_needed << " hashes) need to be performed up to closest verified TESLA key " << std::endl;
|
||||
|
||||
hash = hash_chain(num_of_hashes_needed, key, GST_SFi, lk_bytes);
|
||||
}
|
||||
else{// have to go until Kroot
|
||||
validated_key = d_osnma_data.d_dsm_kroot_message.kroot;
|
||||
num_of_hashes_needed = (d_receiver_time - d_GST_0) / 30 + 1; // Eq. 19 ICD
|
||||
std::cout << "Galileo OSNMA: TESLA verification ("<< num_of_hashes_needed << " hashes) need to be performed up to Kroot " << std::endl;
|
||||
|
||||
hash = hash_chain(num_of_hashes_needed, key, GST_SFi, lk_bytes);
|
||||
}
|
||||
|
||||
if(hash.size() != key.size())
|
||||
{
|
||||
// TODO - find out I bt. both tesla keys, then hash until then, then compare.
|
||||
// retrieve latest tesla key from d_tesla_keys
|
||||
std::vector<uint8_t> validated_key = d_tesla_keys.rbegin()->second;
|
||||
// compute hashes needed
|
||||
uint32_t num_of_hashes_needed = (d_GST_SIS - d_last_verified_key_GST) / 30; // Eq. 19 ICD modified
|
||||
std::cout << "Galileo OSNMA: TESLA verification ("<< num_of_hashes_needed << " hashes) need to be performed. " << std::endl;
|
||||
// hash current key until num_hashes and compare
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
uint32_t GST_SFi = d_GST_SIS; // TODO
|
||||
std::vector<uint8_t> K_II = key;
|
||||
std::vector<uint8_t> K_I; // result of the recursive hash operations
|
||||
const uint8_t lk_bytes = d_dsm_reader->get_lk_bits(d_osnma_data.d_dsm_kroot_message.ks)/8;
|
||||
// compute the tesla key for current SF (GST_SFi and K_II change in each iteration)
|
||||
for (uint32_t i = 1; i < num_of_hashes_needed ; i++)
|
||||
{
|
||||
// build message digest m = (K_I+1 || GST_SFi || alpha)
|
||||
std::vector<uint8_t> msg(K_II.size() + sizeof(GST_SFi) + sizeof(d_osnma_data.d_dsm_kroot_message.alpha));
|
||||
std::copy(K_II.begin(),K_II.end(),msg.begin());
|
||||
|
||||
msg.push_back((d_GST_Sf & 0xFF000000) >> 24);
|
||||
msg.push_back((d_GST_Sf & 0x00FF0000) >> 16);
|
||||
msg.push_back((d_GST_Sf & 0x0000FF00) >> 8);
|
||||
msg.push_back(d_GST_Sf & 0x000000FF);
|
||||
// extract alpha
|
||||
for (int k = 5; k >= 0;k--)
|
||||
{
|
||||
// TODO: static extracts the MSB in case from larger to shorter int?
|
||||
msg.push_back(static_cast<uint8_t>((d_osnma_data.d_dsm_kroot_message.alpha >> (i * 8)) & 0xFF)); // extract first 6 bytes of alpha.
|
||||
}
|
||||
// compute hash
|
||||
std::vector<uint8_t> hash;
|
||||
if (d_osnma_data.d_dsm_kroot_message.hf == 0) // Table 8.
|
||||
{
|
||||
hash = d_crypto->computeSHA256(msg);
|
||||
}
|
||||
else if (d_osnma_data.d_dsm_kroot_message.hf == 2)
|
||||
{
|
||||
hash = d_crypto->computeSHA3_256(msg);
|
||||
}
|
||||
else
|
||||
{
|
||||
hash = std::vector<uint8_t>(32);
|
||||
}
|
||||
// truncate hash
|
||||
K_I.reserve(lk_bytes); // TODO - case hash function has 512 bits
|
||||
for (uint16_t i = 0; i < lk_bytes; i++)
|
||||
{
|
||||
K_I.push_back(hash[i]);
|
||||
}
|
||||
|
||||
// set parameters for next iteration
|
||||
GST_SFi -= 30; // next SF time is the actual minus 30 seconds
|
||||
K_II = K_I; // next key is the actual one
|
||||
K_I.clear(); // empty the actual one for a new computation
|
||||
}
|
||||
// compare computed current key against received key
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
std::chrono::duration<double> elapsed = end - start;
|
||||
std::cout << "Galileo OSNMA: TESLA verification ("<< num_of_hashes_needed << " hashes) took " << elapsed.count() << " seconds.\n";
|
||||
|
||||
if(K_II.size() != key.size())
|
||||
{
|
||||
std::cout << "Galileo OSNMA: Error during tesla key verification. " << std::endl;
|
||||
return false;
|
||||
}
|
||||
if (K_II == validated_key)
|
||||
{
|
||||
std::cout << "Galileo OSNMA: tesla key verified successfully " << std::endl;
|
||||
d_tesla_keys.insert(std::pair(TOW,key));
|
||||
d_last_verified_key_GST = d_GST_SIS;
|
||||
d_tesla_key_verified = true; // TODO this boolean only shows that a tesla key is verified, re-setting it all the time is not beautiful
|
||||
// case one verified and after a time another one not, what would happen in the next MAck processed is that because false
|
||||
// it would try to verifiy against kroot, but it could as well try against last validated key. This needs to be adressed in the future.
|
||||
}
|
||||
else
|
||||
|
||||
{
|
||||
std::cerr << "Galileo OSNMA: Error during tesla key verification. " << std::endl;
|
||||
if(d_flag_debug){
|
||||
d_last_verified_key_GST = d_GST_SIS;
|
||||
d_tesla_key_verified = true;
|
||||
}
|
||||
|
||||
else
|
||||
d_tesla_key_verified = false;
|
||||
}
|
||||
return d_tesla_key_verified;
|
||||
std::cout << "Galileo OSNMA: Error during tesla key verification. " << std::endl;
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{// have to go until Kroot
|
||||
uint32_t num_of_hashes_needed = (d_GST_SIS - d_GST_0) / 30 + 1; // Eq. 19 ICD
|
||||
std::cout << "Galileo OSNMA: TESLA verification ("<< num_of_hashes_needed << " hashes) need to be performed. " << std::endl;
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
uint32_t GST_SFi = d_GST_SIS;
|
||||
std::vector<uint8_t> K_II = key;
|
||||
std::vector<uint8_t> K_I; // result of the recursive hash operations
|
||||
const uint8_t lk_bytes = d_dsm_reader->get_lk_bits(d_osnma_data.d_dsm_kroot_message.ks)/8;
|
||||
// compute the tesla key for current SF (GST_SFi and K_II change in each iteration)
|
||||
for (uint32_t i = 1; i < num_of_hashes_needed ; i++)
|
||||
{
|
||||
// build message digest m = (K_I+1 || GST_SFi || alpha)
|
||||
std::vector<uint8_t> msg(K_II.size() + sizeof(GST_SFi) + sizeof(d_osnma_data.d_dsm_kroot_message.alpha));
|
||||
std::copy(K_II.begin(),K_II.end(),msg.begin());
|
||||
|
||||
msg.push_back((d_GST_Sf & 0xFF000000) >> 24);
|
||||
msg.push_back((d_GST_Sf & 0x00FF0000) >> 16);
|
||||
msg.push_back((d_GST_Sf & 0x0000FF00) >> 8);
|
||||
msg.push_back(d_GST_Sf & 0x000000FF);
|
||||
// extract alpha
|
||||
for (int k = 5; k >= 0;k--)
|
||||
{
|
||||
// TODO: static extracts the MSB in case from larger to shorter int?
|
||||
msg.push_back(static_cast<uint8_t>((d_osnma_data.d_dsm_kroot_message.alpha >> (i * 8)) & 0xFF)); // extract first 6 bytes of alpha.
|
||||
}
|
||||
// compute hash
|
||||
std::vector<uint8_t> hash;
|
||||
if (d_osnma_data.d_dsm_kroot_message.hf == 0) // Table 8.
|
||||
{
|
||||
hash = d_crypto->computeSHA256(msg);
|
||||
}
|
||||
else if (d_osnma_data.d_dsm_kroot_message.hf == 2)
|
||||
{
|
||||
hash = d_crypto->computeSHA3_256(msg);
|
||||
}
|
||||
else
|
||||
{
|
||||
hash = std::vector<uint8_t>(32);
|
||||
}
|
||||
// truncate hash
|
||||
K_I.reserve(lk_bytes); // TODO - case hash function has 512 bits
|
||||
for (uint16_t i = 0; i < lk_bytes; i++)
|
||||
{
|
||||
K_I.push_back(hash[i]);
|
||||
}
|
||||
|
||||
// set parameters for next iteration
|
||||
GST_SFi -= 30; // next SF time is the actual minus 30 seconds
|
||||
K_II = K_I; // next key is the actual one
|
||||
K_I.clear(); // empty the actual one for a new computation
|
||||
}
|
||||
// compare computed current key against received key
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
std::chrono::duration<double> elapsed = end - start;
|
||||
std::cout << "Galileo OSNMA: TESLA verification ("<< num_of_hashes_needed << " hashes) took " << elapsed.count() << " seconds.\n";
|
||||
|
||||
if(K_II.size() != key.size())
|
||||
{
|
||||
std::cout << "Galileo OSNMA: Error during tesla key verification. " << std::endl;
|
||||
return false;
|
||||
}
|
||||
if (K_II == d_osnma_data.d_dsm_kroot_message.kroot)
|
||||
{
|
||||
std::cout << "Galileo OSNMA: tesla key verified successfully " << std::endl;
|
||||
if (hash == validated_key)
|
||||
{
|
||||
std::cout << "Galileo OSNMA: tesla key verified successfully " << std::endl;
|
||||
d_tesla_keys.insert(std::pair(TOW,key));
|
||||
d_tesla_key_verified = true;
|
||||
d_last_verified_key_GST = d_receiver_time;
|
||||
// TODO - propagate result
|
||||
// TODO - save current tesla key as latest one? propose a map with <GST_Sf, TeslaKey>
|
||||
// TODO - Tags Sequence Verification: check ADKD[i] follows MACLT sequence
|
||||
}
|
||||
else{
|
||||
std::cerr << "Galileo OSNMA: Error during tesla key verification. " << std::endl;
|
||||
if(d_flag_debug){
|
||||
d_tesla_keys.insert(std::pair(TOW,key));
|
||||
d_last_verified_key_GST = d_receiver_time;
|
||||
d_tesla_key_verified = true;
|
||||
d_last_verified_key_GST = d_GST_SIS;
|
||||
// TODO - propagate result
|
||||
// TODO - save current tesla key as latest one? propose a map with <GST_Sf, TeslaKey>
|
||||
// TODO - Tags Sequence Verification: check ADKD[i] follows MACLT sequence
|
||||
// TODO - if intermediate verification fails, can one still use the former verified tesla key or should go to Kroot or even retrieve new Kroot?
|
||||
}
|
||||
else
|
||||
|
||||
{
|
||||
std::cerr << "Galileo OSNMA: Error during tesla key verification. " << std::endl;
|
||||
if(d_flag_debug){
|
||||
d_last_verified_key_GST = d_GST_SIS;
|
||||
d_tesla_key_verified = true;
|
||||
}
|
||||
}
|
||||
return d_tesla_key_verified;
|
||||
}
|
||||
return d_tesla_key_verified;
|
||||
|
||||
}
|
||||
/**
|
||||
@ -1449,3 +1324,62 @@ bool osnma_msg_receiver::tag_has_key_available(Tag& t){
|
||||
std::cout << "Galileo OSNMA: hasKey = false " << std::endl;
|
||||
return false;
|
||||
}
|
||||
std::vector<uint8_t> osnma_msg_receiver::hash_chain(uint32_t num_of_hashes_needed, std::vector<uint8_t> key, uint32_t GST_SFi, const uint8_t lk_bytes)
|
||||
{
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
std::vector<uint8_t> K_II = {0x2D,0xC3,0xA3,0xCD,0xB1,0x17,0xFA,0xAD,0xB8,0x3B,0x5F,0x0B,0x6F,0xEA,0x88,0xEB};//key;
|
||||
std::vector<uint8_t> K_I; // result of the recursive hash operations
|
||||
GST_SFi = 0x4E054600;
|
||||
std::vector<uint8_t> msg;
|
||||
// compute the tesla key for current SF (GST_SFi and K_II change in each iteration)
|
||||
for (uint32_t i = 1; i <= num_of_hashes_needed ; i++)
|
||||
{
|
||||
// build message digest m = (K_I+1 || GST_SFi || alpha)
|
||||
msg.reserve(K_II.size() + sizeof(GST_SFi) + sizeof(d_osnma_data.d_dsm_kroot_message.alpha));
|
||||
std::copy(K_II.begin(),K_II.end(),std::back_inserter(msg));
|
||||
|
||||
msg.push_back((GST_SFi & 0xFF000000) >> 24);
|
||||
msg.push_back((GST_SFi & 0x00FF0000) >> 16);
|
||||
msg.push_back((GST_SFi & 0x0000FF00) >> 8);
|
||||
msg.push_back(GST_SFi & 0x000000FF);
|
||||
// extract alpha
|
||||
d_osnma_data.d_dsm_kroot_message.alpha = 0x610BDF26D77B;
|
||||
for (int k = 5; k >= 0;k--)
|
||||
{
|
||||
// TODO: static extracts the MSB in case from larger to shorter int?
|
||||
msg.push_back(static_cast<uint8_t>((d_osnma_data.d_dsm_kroot_message.alpha >> (k * 8)) & 0xFF)); // extract first 6 bytes of alpha.
|
||||
}
|
||||
// compute hash
|
||||
std::vector<uint8_t> hash;
|
||||
if (d_osnma_data.d_dsm_kroot_message.hf == 0) // Table 8.
|
||||
{
|
||||
hash = d_crypto->computeSHA256(msg);
|
||||
}
|
||||
else if (d_osnma_data.d_dsm_kroot_message.hf == 2)
|
||||
{
|
||||
hash = d_crypto->computeSHA3_256(msg);
|
||||
}
|
||||
else
|
||||
{
|
||||
hash = std::vector<uint8_t>(32);
|
||||
}
|
||||
// truncate hash
|
||||
K_I.reserve(lk_bytes); // TODO - case hash function has 512 bits
|
||||
for (int k = 0; k < lk_bytes; k++)
|
||||
{
|
||||
K_I.push_back(hash[k]);
|
||||
}
|
||||
// set parameters for next iteration
|
||||
GST_SFi -= 30; // next SF time is the actual minus 30 seconds
|
||||
K_II = K_I; // next key is the actual one
|
||||
K_I.clear(); // empty the actual one for a new computation
|
||||
msg.clear();
|
||||
}
|
||||
if(GST_SFi + 30 != d_GST_0 - 30 && d_tesla_key_verified == false)
|
||||
std::cout << "Galileo OSNMA: TESLA verification error. Kroot time mismatch! \n"; // ICD. Eq. 18
|
||||
// compare computed current key against received key
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
std::chrono::duration<double> elapsed = end - start;
|
||||
std::cout << "Galileo OSNMA: TESLA verification ("<< num_of_hashes_needed << " hashes) took " << elapsed.count() << " seconds.\n";
|
||||
return K_II;
|
||||
}
|
||||
|
@ -74,6 +74,7 @@ private:
|
||||
void process_mack_message();
|
||||
void add_satellite_data(uint32_t SV_ID, uint32_t TOW, const NavData &data);
|
||||
bool verify_tesla_key(std::vector<uint8_t>& key, uint32_t TOW);
|
||||
std::vector<uint8_t> hash_chain(uint32_t num_of_hashes_needed, std::vector<uint8_t> key, uint32_t GST_SFi, const uint8_t lk_bytes);
|
||||
void display_data();bool verify_tag(MACK_tag_and_info tag_and_info, OSNMA_data applicable_OSNMA, uint8_t tag_position, const std::vector<uint8_t>& applicable_key, NavData applicable_NavData);
|
||||
bool verify_tag(Tag& tag);
|
||||
bool is_next_subframe();
|
||||
@ -98,7 +99,7 @@ private:
|
||||
bool d_kroot_verified{false};
|
||||
bool d_tesla_key_verified{false};
|
||||
bool d_flag_debug{false};
|
||||
uint32_t d_GST_Sf {}; // C: used for MACSEQ and Tesla Key verification
|
||||
uint32_t d_GST_Sf {}; // C: used for MACSEQ and Tesla Key verification TODO need really to be global var?
|
||||
uint32_t d_last_verified_key_GST{0};
|
||||
uint8_t d_Lt_min {}; // minimum equivalent tag length
|
||||
uint8_t d_Lt_verified_eph {0}; // verified tag bits - ephemeris
|
||||
|
@ -468,6 +468,7 @@ void Gnss_Crypto::readPublicKeyFromPEM(const std::string& pemFilePath)
|
||||
std::cerr << "OpenSSL: error reading the Public Key from file " << pemFilePath << ". Aborting import" << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
#else
|
||||
// Import the PEM data
|
||||
gnutls_datum_t pemDatum = {const_cast<unsigned char*>(reinterpret_cast<unsigned char*>(pemContent.data())), static_cast<unsigned int>(pemContent.size())};
|
||||
@ -489,6 +490,7 @@ void Gnss_Crypto::readPublicKeyFromPEM(const std::string& pemFilePath)
|
||||
gnutls_pubkey_deinit(pubkey);
|
||||
#endif
|
||||
std::cout << "Public key successfully read from file " << pemFilePath << std::endl;
|
||||
print_pubkey_hex(d_PublicKey);
|
||||
}
|
||||
|
||||
|
||||
@ -497,48 +499,48 @@ bool Gnss_Crypto::verify_signature(const std::vector<uint8_t>& message, const st
|
||||
std::vector<uint8_t> digest = this->computeSHA256(message);
|
||||
if (!have_public_key())
|
||||
{
|
||||
std::cerr << "GnuTLS error: public key not available"<< std::endl;
|
||||
std::cerr << "Galileo OSNMA::Kroot verification error::Public key not available"<< std::endl;
|
||||
return false;
|
||||
}
|
||||
bool success = false;
|
||||
#if USE_OPENSSL_FALLBACK
|
||||
|
||||
EVP_MD_CTX *mdctx = NULL; // verification context; a struct that wraps the message to be verified.
|
||||
int ret = 0; // error
|
||||
|
||||
/* Create the Message Digest Context */
|
||||
if(!(mdctx = EVP_MD_CTX_new())) goto err; // Allocates and returns a digest context.
|
||||
|
||||
/* Initialize `key` with a public key */
|
||||
// hashes cnt bytes of data at d into the verification context ctx
|
||||
if(1 != EVP_DigestVerifyInit(mdctx, NULL /*TODO null?*/, EVP_sha256(), NULL, d_PublicKey)) goto err;
|
||||
|
||||
/* Initialize `key` with a public key */
|
||||
if(1 != EVP_DigestVerifyUpdate(mdctx, message.data(), message.size())) goto err;
|
||||
|
||||
|
||||
if( 1== EVP_DigestVerifyFinal(mdctx, signature.data(), signature.size()))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
unsigned long errCode = ERR_get_error();
|
||||
int lib_code = ERR_GET_LIB(errCode);
|
||||
char* err = ERR_error_string(errCode, NULL);
|
||||
const char* error_string = ERR_error_string(errCode, NULL);
|
||||
std::cerr << "OpenSSL: message authentication failed: " << err /*<<
|
||||
"from library with code " << lib_code <<
|
||||
" error string: " << error_string */<< std::endl;
|
||||
}
|
||||
err:
|
||||
if(ret != 1)
|
||||
{
|
||||
/* Do some error handling */
|
||||
// notify other blocks
|
||||
std::cout << "ECDSA_Verify_OSSL()::error " << ret << std::endl;
|
||||
|
||||
}
|
||||
// using low-level API to test function -- it works in unit tests, not in real bytes.
|
||||
// EVP_MD_CTX *mdctx = NULL; // verification context; a struct that wraps the message to be verified.
|
||||
// int ret = 0; // error
|
||||
//
|
||||
// /* Create the Message Digest Context */
|
||||
// if(!(mdctx = EVP_MD_CTX_new())) goto err; // Allocates and returns a digest context.
|
||||
//
|
||||
// /* Initialize `key` with a public key */
|
||||
// // hashes cnt bytes of data at d into the verification context ctx
|
||||
// if(1 != EVP_DigestVerifyInit(mdctx, NULL /*TODO null?*/, EVP_sha256(), NULL, d_PublicKey)) goto err;
|
||||
//
|
||||
// /* Initialize `key` with a public key */
|
||||
// if(1 != EVP_DigestVerifyUpdate(mdctx, message.data(), message.size())) goto err;
|
||||
//
|
||||
//
|
||||
// if( 1 == EVP_DigestVerifyFinal(mdctx, signature.data(), signature.size()))
|
||||
// {
|
||||
// return true;
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// unsigned long errCode = ERR_get_error();
|
||||
// int lib_code = ERR_GET_LIB(errCode);
|
||||
// char* err = ERR_error_string(errCode, NULL);
|
||||
// const char* error_string = ERR_error_string(errCode, NULL);
|
||||
// std::cerr << "OpenSSL: message authentication failed: " << err /*<<
|
||||
// "from library with code " << lib_code <<
|
||||
// " error string: " << error_string */<< std::endl;
|
||||
// }
|
||||
//err:
|
||||
// if(ret != 1)
|
||||
// {
|
||||
// /* Do some error handling */
|
||||
// // notify other blocks
|
||||
// std::cout << "ECDSA_Verify_OSSL()::error " << ret << std::endl;
|
||||
//
|
||||
// }
|
||||
|
||||
|
||||
#if USE_OPENSSL_3
|
||||
|
@ -22,11 +22,16 @@ TEST(GnssCryptoTest, VerifySignature) {
|
||||
// 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x45, 0x4E, 0x44, 0x20, 0x50, 0x55, 0x42, 0x4C, 0x49, 0x43, 0x20, 0x4B, 0x45, 0x59, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0A } ;
|
||||
|
||||
// own ECDSA-P256 key and message generated and signed and verified successfully with openssl
|
||||
std::vector<uint8_t> message{0x48, 0x65, 0x6C, 0x6C, 0x6F, 0x20, 0x77, 0x6F, 0x72, 0x6C, 0x64, 0x0A }; // Hello world con 0x0A al final
|
||||
std::vector<uint8_t> message{0x48, 0x65, 0x6C, 0x6C, 0x6F, 0x20, 0x77, 0x6F, 0x72, 0x6C, 0x64, 0x0A }; // Hello world con 0x0A al final. Raw message
|
||||
std::vector<uint8_t> signature{0x30, 0x45, 0x02, 0x21, 0x00, 0xFB, 0xE6, 0x09, 0x74, 0x5C, 0x12, 0xE8, 0x2C, 0x0C, 0xC9, 0x7A, 0x8E, 0x13, 0x88, 0x87, 0xDA, 0xBF, 0x08, 0x43, 0xF8, 0xC8, 0x93, 0x16, 0x5A,
|
||||
0x0F, 0x7A, 0xA4, 0xBF, 0x4A, 0xE1, 0xE1, 0xDB, 0x02, 0x20, 0x6B, 0xCB, 0x2F, 0x80, 0x69, 0xBB, 0xDE, 0xC9, 0x11, 0x1D, 0x51, 0x2B, 0x9F, 0x61, 0xA0, 0xC1, 0x29, 0xD1, 0x0B,
|
||||
0x58, 0x09, 0x82, 0x58, 0xFC, 0x9E, 0x00, 0xC7, 0xEE, 0xA5, 0xB9, 0xB2, 0x56}; // Hello world hashed and then encrypted with PrK
|
||||
std::vector<uint8_t> publicKey{ // PK associated to the PrK
|
||||
// std::vector<uint8_t> publicKey{// PK associated to the PrK, in der format ---test
|
||||
// 0x30, 0x59, 0x30, 0x13, 0x06, 0x07, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x02, 0x01, 0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x07, 0x03, 0x42, 0x00, 0x04, 0x4A, 0xF3,
|
||||
// 0xEE, 0x3A, 0x94, 0x25, 0x25, 0x3D, 0x55, 0xC2, 0x5A, 0xC2, 0x2D, 0xCF, 0x14, 0x4D, 0x39, 0x0D, 0xB1, 0xFC, 0x7F, 0x31, 0x5A, 0x2A, 0x19, 0xAE, 0x4E, 0xD6, 0xCB, 0xA6, 0x59,
|
||||
// 0xD6, 0x99, 0x7C, 0xE8, 0xBD, 0x1F, 0x43, 0x34, 0x1C, 0x59, 0xD9, 0xD9, 0xCA, 0xC3, 0xEE, 0x58, 0xE5, 0xEA, 0xD3, 0x55, 0x44, 0xEA, 0x89, 0x71, 0x65, 0xD0, 0x92, 0x72, 0xA2,
|
||||
// 0xC8, 0x3C, 0x87, 0x5D };
|
||||
std::vector<uint8_t> publicKey{ // PK associated to the PrK, in pem format
|
||||
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x42, 0x45, 0x47, 0x49, 0x4E, 0x20, 0x50, 0x55, 0x42, 0x4C, 0x49, 0x43, 0x20, 0x4B, 0x45, 0x59, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x0A,
|
||||
|
||||
0x4D, 0x46,
|
||||
|
Loading…
Reference in New Issue
Block a user