1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-04 17:16:26 +00:00

Better VOLK usage. Memory alignment, calling dispatchers instead of

aligned/unaligned versions. Code cleaning.
This commit is contained in:
Carles Fernandez 2014-09-10 00:23:18 +02:00
parent 47f9929aa8
commit fd6a8e3cff
9 changed files with 174 additions and 401 deletions

View File

@ -124,29 +124,21 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
// Initialization of local code replica // Initialization of local code replica
// Get space for a vector with the sinboc(1,1) replica sampled 2x/chip // Get space for a vector with the sinboc(1,1) replica sampled 2x/chip
d_ca_code = new gr_complex[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 4)]; d_ca_code = (gr_complex*)volk_malloc((2 * Galileo_E1_B_CODE_LENGTH_CHIPS + 4) * sizeof(gr_complex), volk_get_alignment());
/* If an array is partitioned for more than one thread to operate on, d_very_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
* having the sub-array boundaries unaligned to cache lines could lead d_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
* to performance degradation. Here we allocate memory d_prompt_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
* (gr_comlex array of size 2*d_vector_length) aligned to cache of 16 bytes d_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
*/ d_very_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
d_carr_sign = (gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment());
d_very_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_very_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
// correlator outputs (scalar) // correlator outputs (scalar)
d_Very_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Very_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Prompt = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Very_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Very_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
//--- Initializations ------------------------------ //--- Initializations ------------------------------
// Initial code frequency basis of NCO // Initial code frequency basis of NCO
@ -176,11 +168,11 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD; d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
systemName["E"] = std::string("Galileo"); systemName["E"] = std::string("Galileo");
*d_Very_Early=gr_complex(0,0); *d_Very_Early = gr_complex(0,0);
*d_Early=gr_complex(0,0); *d_Early = gr_complex(0,0);
*d_Prompt=gr_complex(0,0); *d_Prompt = gr_complex(0,0);
*d_Late=gr_complex(0,0); *d_Late = gr_complex(0,0);
*d_Very_Late=gr_complex(0,0); *d_Very_Late = gr_complex(0,0);
} }
void galileo_e1_dll_pll_veml_tracking_cc::start_tracking() void galileo_e1_dll_pll_veml_tracking_cc::start_tracking()
@ -296,8 +288,8 @@ galileo_e1_dll_pll_veml_tracking_cc::~galileo_e1_dll_pll_veml_tracking_cc()
volk_free(d_Prompt); volk_free(d_Prompt);
volk_free(d_Late); volk_free(d_Late);
volk_free(d_Very_Late); volk_free(d_Very_Late);
volk_free(d_ca_code);
delete[] d_ca_code;
delete[] d_Prompt_buffer; delete[] d_Prompt_buffer;
} }
@ -356,8 +348,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
d_Early, d_Early,
d_Prompt, d_Prompt,
d_Late, d_Late,
d_Very_Late, d_Very_Late);
is_unaligned());
// ################## PLL ########################################################## // ################## PLL ##########################################################
// PLL discriminator // PLL discriminator

View File

@ -127,29 +127,22 @@ Galileo_E1_Tcp_Connector_Tracking_cc::Galileo_E1_Tcp_Connector_Tracking_cc(
// Initialization of local code replica // Initialization of local code replica
// Get space for a vector with the sinboc(1,1) replica sampled 2x/chip // Get space for a vector with the sinboc(1,1) replica sampled 2x/chip
d_ca_code = new gr_complex[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 4)]; d_ca_code = (gr_complex*)volk_malloc(((2 * Galileo_E1_B_CODE_LENGTH_CHIPS + 4)) * sizeof(gr_complex), volk_get_alignment());
/* If an array is partitioned for more than one thread to operate on, d_very_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
* having the sub-array boundaries unaligned to cache lines could lead d_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
* to performance degradation. Here we allocate memory d_prompt_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
* (gr_comlex array of size 2*d_vector_length) aligned to cache of 16 bytes d_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
*/ d_very_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
d_carr_sign = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
d_very_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_very_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
// correlator outputs (scalar) // correlator outputs (scalar)
d_Very_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Very_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Prompt = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Very_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Very_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
//--- Perform initializations ------------------------------ //--- Perform initializations ------------------------------
// define initial code frequency basis of NCO // define initial code frequency basis of NCO
@ -291,8 +284,8 @@ Galileo_E1_Tcp_Connector_Tracking_cc::~Galileo_E1_Tcp_Connector_Tracking_cc()
volk_free(d_Prompt); volk_free(d_Prompt);
volk_free(d_Late); volk_free(d_Late);
volk_free(d_Very_Late); volk_free(d_Very_Late);
volk_free(d_ca_code);
delete[] d_ca_code;
delete[] d_Prompt_buffer; delete[] d_Prompt_buffer;
d_tcp_com.close_tcp_connection(d_port); d_tcp_com.close_tcp_connection(d_port);
@ -352,8 +345,7 @@ int Galileo_E1_Tcp_Connector_Tracking_cc::general_work (int noutput_items, gr_ve
d_Early, d_Early,
d_Prompt, d_Prompt,
d_Late, d_Late,
d_Very_Late, d_Very_Late);
is_unaligned());
// ################## TCP CONNECTOR ########################################################## // ################## TCP CONNECTOR ##########################################################
//! Variable used for control //! Variable used for control

View File

@ -130,29 +130,20 @@ Galileo_E5a_Dll_Pll_Tracking_cc::Galileo_E5a_Dll_Pll_Tracking_cc(
// Initialization of local code replica // Initialization of local code replica
// Get space for a vector with the E5a primary code replicas sampled 1x/chip // Get space for a vector with the E5a primary code replicas sampled 1x/chip
d_codeQ = new gr_complex[(int)Galileo_E5a_CODE_LENGTH_CHIPS + 2]; d_codeQ = (gr_complex*)volk_malloc((Galileo_E5a_CODE_LENGTH_CHIPS + 2)* sizeof(gr_complex), volk_get_alignment());
d_codeI = new gr_complex[(int)Galileo_E5a_CODE_LENGTH_CHIPS + 2]; d_codeI = (gr_complex*)volk_malloc((Galileo_E5a_CODE_LENGTH_CHIPS + 2)* sizeof(gr_complex), volk_get_alignment());
/* If an array is partitioned for more than one thread to operate on, d_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
* having the sub-array boundaries unaligned to cache lines could lead d_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
* to performance degradation. Here we allocate memory d_prompt_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
* (gr_comlex array of size 2*d_vector_length) aligned to cache of 16 bytes d_prompt_data_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
*/ d_carr_sign = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); // correlator outputs (complex number)
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_Prompt = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_prompt_data_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_Prompt_data = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
// correlator outputs (scalar)
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
d_Prompt_data=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
//--- Perform initializations ------------------------------ //--- Perform initializations ------------------------------
// define initial code frequency basis of NCO // define initial code frequency basis of NCO
@ -161,20 +152,16 @@ Galileo_E5a_Dll_Pll_Tracking_cc::Galileo_E5a_Dll_Pll_Tracking_cc(
d_rem_code_phase_samples = 0.0; d_rem_code_phase_samples = 0.0;
// define residual carrier phase // define residual carrier phase
d_rem_carr_phase_rad = 0.0; d_rem_carr_phase_rad = 0.0;
//Filter error vars //Filter error vars
d_code_error_filt_secs = 0.0; d_code_error_filt_secs = 0.0;
// sample synchronization // sample synchronization
d_sample_counter = 0; d_sample_counter = 0;
d_acq_sample_stamp = 0; d_acq_sample_stamp = 0;
d_last_seg = 0; d_last_seg = 0;
d_first_transition = false; d_first_transition = false;
d_secondary_lock=false; d_secondary_lock = false;
d_secondary_delay=0; d_secondary_delay = 0;
d_integration_counter = 0; d_integration_counter = 0;
d_current_prn_length_samples = (int)d_vector_length; d_current_prn_length_samples = (int)d_vector_length;
@ -187,29 +174,27 @@ Galileo_E5a_Dll_Pll_Tracking_cc::Galileo_E5a_Dll_Pll_Tracking_cc(
d_carrier_lock_fail_counter = 0; d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD; d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
systemName["G"] = std::string("GPS");
systemName["R"] = std::string("GLONASS");
systemName["S"] = std::string("SBAS");
systemName["E"] = std::string("Galileo"); systemName["E"] = std::string("Galileo");
systemName["C"] = std::string("Compass");
} }
Galileo_E5a_Dll_Pll_Tracking_cc::~Galileo_E5a_Dll_Pll_Tracking_cc () Galileo_E5a_Dll_Pll_Tracking_cc::~Galileo_E5a_Dll_Pll_Tracking_cc ()
{ {
d_dump_file.close(); d_dump_file.close();
volk_free(d_prompt_code); volk_free(d_prompt_code);
volk_free(d_late_code); volk_free(d_late_code);
volk_free(d_early_code); volk_free(d_early_code);
volk_free(d_carr_sign); volk_free(d_carr_sign);
volk_free(d_prompt_data_code); volk_free(d_prompt_data_code);
volk_free(d_Prompt_data); volk_free(d_Prompt_data);
volk_free(d_Early);
volk_free(d_Prompt);
volk_free(d_Late);
volk_free(d_Prompt_data);
volk_free(d_codeQ);
volk_free(d_codeI);
delete[] d_codeQ;
delete[] d_codeI;
delete[] d_Prompt_buffer; delete[] d_Prompt_buffer;
} }
@ -304,51 +289,51 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::acquire_secondary()
{ {
// 1. Transform replica to 1 and -1 // 1. Transform replica to 1 and -1
int sec_code_signed[Galileo_E5a_Q_SECONDARY_CODE_LENGTH]; int sec_code_signed[Galileo_E5a_Q_SECONDARY_CODE_LENGTH];
for (unsigned int i=0; i<Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++) for (unsigned int i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++)
{ {
if (Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN-1].at(i) == '0') if (Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN-1].at(i) == '0')
{ {
sec_code_signed[i]=1; sec_code_signed[i] = 1;
} }
else else
{ {
sec_code_signed[i]=-1; sec_code_signed[i] = -1;
} }
} }
// 2. Transform buffer to 1 and -1 // 2. Transform buffer to 1 and -1
int in_corr[CN0_ESTIMATION_SAMPLES]; int in_corr[CN0_ESTIMATION_SAMPLES];
for (unsigned int i=0; i<CN0_ESTIMATION_SAMPLES; i++) for (unsigned int i = 0; i < CN0_ESTIMATION_SAMPLES; i++)
{ {
if (d_Prompt_buffer[i].real() >0) if (d_Prompt_buffer[i].real() >0)
{ {
in_corr[i]=1; in_corr[i] = 1;
} }
else else
{ {
in_corr[i]=-1; in_corr[i] = -1;
} }
} }
// 3. Serial search // 3. Serial search
int out_corr; int out_corr;
int current_best_=0; int current_best_ = 0;
for (unsigned int i=0; i<Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++) for (unsigned int i=0; i<Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++)
{ {
out_corr=0; out_corr=0;
for (unsigned int j=0; j<CN0_ESTIMATION_SAMPLES; j++) for (unsigned int j = 0; j < CN0_ESTIMATION_SAMPLES; j++)
{ {
//reverse replica sign since i*i=-1 (conjugated complex) //reverse replica sign since i*i=-1 (conjugated complex)
out_corr += in_corr[j] * -sec_code_signed[(j+i)%Galileo_E5a_Q_SECONDARY_CODE_LENGTH]; out_corr += in_corr[j] * -sec_code_signed[(j+i) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH];
} }
if (abs(out_corr) > current_best_) if (abs(out_corr) > current_best_)
{ {
current_best_ = abs(out_corr); current_best_ = abs(out_corr);
d_secondary_delay=i; d_secondary_delay = i;
} }
} }
if (current_best_ == CN0_ESTIMATION_SAMPLES) // all bits correlate if (current_best_ == CN0_ESTIMATION_SAMPLES) // all bits correlate
{ {
d_secondary_lock = true; d_secondary_lock = true;
d_secondary_delay = (d_secondary_delay+CN0_ESTIMATION_SAMPLES-1)%Galileo_E5a_Q_SECONDARY_CODE_LENGTH; d_secondary_delay = (d_secondary_delay + CN0_ESTIMATION_SAMPLES - 1) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH;
} }
} }
@ -370,7 +355,7 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::update_local_code()
// Alternative EPL code generation (40% of speed improvement!) // Alternative EPL code generation (40% of speed improvement!)
early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips); early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips);
epl_loop_length_samples = d_current_prn_length_samples + early_late_spc_samples*2; epl_loop_length_samples = d_current_prn_length_samples + early_late_spc_samples * 2;
for (int i = 0; i < epl_loop_length_samples; i++) for (int i = 0; i < epl_loop_length_samples; i++)
{ {
@ -380,8 +365,8 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::update_local_code()
d_prompt_data_code[i] = d_codeI[associated_chip_index_data]; d_prompt_data_code[i] = d_codeI[associated_chip_index_data];
tcode_chips = tcode_chips + code_phase_step_chips; tcode_chips = tcode_chips + code_phase_step_chips;
} }
memcpy(d_prompt_code,&d_early_code[early_late_spc_samples],d_current_prn_length_samples* sizeof(gr_complex)); memcpy(d_prompt_code, &d_early_code[early_late_spc_samples], d_current_prn_length_samples * sizeof(gr_complex));
memcpy(d_late_code,&d_early_code[early_late_spc_samples*2],d_current_prn_length_samples* sizeof(gr_complex)); memcpy(d_late_code, &d_early_code[early_late_spc_samples * 2], d_current_prn_length_samples * sizeof(gr_complex));
} }
@ -458,7 +443,7 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod((float)acq_to_trk_delay_samples, (float)d_current_prn_length_samples); acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod((float)acq_to_trk_delay_samples, (float)d_current_prn_length_samples);
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
std::cout<<" samples_offset="<<samples_offset<<"\r\n"; DLOG(INFO) << " samples_offset=" << samples_offset;
d_state = 2; // start in Ti = 1 code, until secondary code lock. d_state = 2; // start in Ti = 1 code, until secondary code lock.
// make an output to not stop the rest of the processing blocks // make an output to not stop the rest of the processing blocks
@ -485,13 +470,13 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
{ {
// sec_sign_Q = gr_complex((Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN-1].at(d_secondary_delay)=='0' ? 1 : -1),0); // sec_sign_Q = gr_complex((Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN-1].at(d_secondary_delay)=='0' ? 1 : -1),0);
// sec_sign_I = gr_complex((Galileo_E5a_I_SECONDARY_CODE.at(d_secondary_delay%Galileo_E5a_I_SECONDARY_CODE_LENGTH)=='0' ? 1 : -1),0); // sec_sign_I = gr_complex((Galileo_E5a_I_SECONDARY_CODE.at(d_secondary_delay%Galileo_E5a_I_SECONDARY_CODE_LENGTH)=='0' ? 1 : -1),0);
sec_sign_Q = gr_complex((Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN-1].at(d_secondary_delay)=='0' ? -1 : 1),0); sec_sign_Q = gr_complex((Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN-1].at(d_secondary_delay) == '0' ? -1 : 1), 0);
sec_sign_I = gr_complex((Galileo_E5a_I_SECONDARY_CODE.at(d_secondary_delay%Galileo_E5a_I_SECONDARY_CODE_LENGTH)=='0' ? -1 : 1),0); sec_sign_I = gr_complex((Galileo_E5a_I_SECONDARY_CODE.at(d_secondary_delay % Galileo_E5a_I_SECONDARY_CODE_LENGTH) == '0' ? -1 : 1), 0);
} }
else else
{ {
sec_sign_Q = gr_complex(1.0,0.0); sec_sign_Q = gr_complex(1.0, 0.0);
sec_sign_I = gr_complex(1.0,0.0); sec_sign_I = gr_complex(1.0, 0.0);
} }
// Reset integration counter // Reset integration counter
if (d_integration_counter == d_current_ti_ms) if (d_integration_counter == d_current_ti_ms)
@ -524,8 +509,7 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
&single_early, &single_early,
&single_prompt, &single_prompt,
&single_late, &single_late,
d_Prompt_data, d_Prompt_data);
is_unaligned());
// Accumulate results (coherent integration since there are no bit transitions in pilot signal) // Accumulate results (coherent integration since there are no bit transitions in pilot signal)
*d_Early += single_early * sec_sign_Q; *d_Early += single_early * sec_sign_Q;
@ -576,9 +560,9 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E5a_CODE_CHIP_RATE_HZ) / Galileo_E5a_FREQ_HZ); d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E5a_CODE_CHIP_RATE_HZ) / Galileo_E5a_FREQ_HZ);
} }
//carrier phase accumulator for (K) doppler estimation //carrier phase accumulator for (K) doppler estimation
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + 2*GALILEO_PI*d_carrier_doppler_hz*GALILEO_E5a_CODE_PERIOD; d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + 2*GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
//remanent carrier phase to prevent overflow in the code NCO //remanent carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad+2*GALILEO_PI*d_carrier_doppler_hz*GALILEO_E5a_CODE_PERIOD; d_rem_carr_phase_rad = d_rem_carr_phase_rad + 2*GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, 2*GALILEO_PI); d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, 2*GALILEO_PI);
// ################## DLL ########################################################## // ################## DLL ##########################################################
@ -589,7 +573,7 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
// Code discriminator filter // Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second] code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
//Code phase accumulator //Code phase accumulator
d_code_error_filt_secs = (GALILEO_E5a_CODE_PERIOD*code_error_filt_chips)/Galileo_E5a_CODE_CHIP_RATE_HZ; //[seconds] d_code_error_filt_secs = (GALILEO_E5a_CODE_PERIOD * code_error_filt_chips) / Galileo_E5a_CODE_CHIP_RATE_HZ; //[seconds]
} }
d_acc_code_phase_secs = d_acc_code_phase_secs + d_code_error_filt_secs; d_acc_code_phase_secs = d_acc_code_phase_secs + d_code_error_filt_secs;
@ -597,10 +581,6 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
// keep alignment parameters for the next input buffer // keep alignment parameters for the next input buffer
double T_chip_seconds; double T_chip_seconds;
double T_prn_seconds; double T_prn_seconds;
// float T_prn_samples;
// float K_blk_samples;
//double T_chip_seconds;
// double T_prn_seconds;
double T_prn_samples; double T_prn_samples;
double K_blk_samples; double K_blk_samples;
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
@ -632,8 +612,6 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
// Change loop parameters ========================================== // Change loop parameters ==========================================
d_code_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD); d_code_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD);
d_carrier_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD); d_carrier_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD);
// d_code_loop_filter.initialize();
// d_carrier_loop_filter.initialize();
d_code_loop_filter.set_DLL_BW(d_dll_bw_hz); d_code_loop_filter.set_DLL_BW(d_dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(d_pll_bw_hz); d_carrier_loop_filter.set_PLL_BW(d_pll_bw_hz);
} }
@ -708,7 +686,6 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
} }
else else
{ {
// make an output to not stop the rest of the processing blocks // make an output to not stop the rest of the processing blocks
current_synchro_data.Prompt_I = 0.0; current_synchro_data.Prompt_I = 0.0;
current_synchro_data.Prompt_Q = 0.0; current_synchro_data.Prompt_Q = 0.0;

View File

@ -122,25 +122,20 @@ Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc(
d_code_loop_filter.set_DLL_BW(dll_bw_hz); d_code_loop_filter.set_DLL_BW(dll_bw_hz);
// Get space for a vector with the C/A code replica sampled 1x/chip // Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = new gr_complex[(int)GPS_L1_CA_CODE_LENGTH_CHIPS + 2]; d_ca_code = (gr_complex*)volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment());
/* If an array is partitioned for more than one thread to operate on,
* having the sub-array boundaries unaligned to cache lines could lead
* to performance degradation. Here we allocate memory
* (gr_complex array of size 2*d_vector_length) aligned to cache of N bytes (machine dependent!)
*/
// Get space for the resampled early / prompt / late local replicas // Get space for the resampled early / prompt / late local replicas
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_early_code = (gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment());
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_prompt_code = (gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment());
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_late_code = (gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment());
// space for carrier wipeoff and signal baseband vectors // space for carrier wipeoff and signal baseband vectors
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_carr_sign = (gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment());
// correlator outputs (scalar) // correlator outputs (scalar)
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Prompt = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
// sample synchronization // sample synchronization
d_sample_counter = 0; d_sample_counter = 0;
@ -312,8 +307,8 @@ void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::update_local_carrier()
Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::~Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc() Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::~Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc()
{ {
d_dump_file.close(); d_dump_file.close();
delete[] d_ca_code;
volk_free(d_ca_code);
volk_free(d_prompt_code); volk_free(d_prompt_code);
volk_free(d_late_code); volk_free(d_late_code);
volk_free(d_early_code); volk_free(d_early_code);
@ -321,6 +316,7 @@ Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::~Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc()
volk_free(d_Early); volk_free(d_Early);
volk_free(d_Prompt); volk_free(d_Prompt);
volk_free(d_Late); volk_free(d_Late);
delete[] d_Prompt_buffer; delete[] d_Prompt_buffer;
} }
@ -389,8 +385,7 @@ int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vecto
d_late_code, d_late_code,
d_Early, d_Early,
d_Prompt, d_Prompt,
d_Late, d_Late);
is_unaligned());
// check for samples consistency (this should be done before in the receiver / here only if the source is a file) // check for samples consistency (this should be done before in the receiver / here only if the source is a file)
if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true )// or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true) if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true )// or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true)
{ {

View File

@ -119,25 +119,20 @@ Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc(
// Initialization of local code replica // Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip // Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = new gr_complex[(int)GPS_L1_CA_CODE_LENGTH_CHIPS + 2]; d_ca_code = (gr_complex*)volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment());
/* If an array is partitioned for more than one thread to operate on,
* having the sub-array boundaries unaligned to cache lines could lead
* to performance degradation. Here we allocate memory
* (gr_complex array of size 2*d_vector_length) aligned to cache of N bytes (machine dependent!)
*/
// Get space for the resampled early / prompt / late local replicas // Get space for the resampled early / prompt / late local replicas
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_prompt_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
// space for carrier wipeoff and signal baseband vectors // space for carrier wipeoff and signal baseband vectors
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_carr_sign = (gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment());
// correlator outputs (scalar) // correlator outputs (scalar)
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Prompt = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
//--- Perform initializations ------------------------------ //--- Perform initializations ------------------------------
// define initial code frequency basis of NCO // define initial code frequency basis of NCO
@ -385,8 +380,7 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
d_late_code, d_late_code,
d_Early, d_Early,
d_Prompt, d_Prompt,
d_Late, d_Late);
is_unaligned());
#else #else
d_correlator.Carrier_wipeoff_and_EPL_volk(d_current_prn_length_samples, d_correlator.Carrier_wipeoff_and_EPL_volk(d_current_prn_length_samples,
in, in,
@ -396,8 +390,7 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
d_late_code, d_late_code,
d_Early, d_Early,
d_Prompt, d_Prompt,
d_Late, d_Late);
is_unaligned());
#endif #endif
// ################## PLL ########################################################## // ################## PLL ##########################################################
// PLL discriminator // PLL discriminator

View File

@ -117,25 +117,20 @@ Gps_L1_Ca_Dll_Pll_Tracking_cc::Gps_L1_Ca_Dll_Pll_Tracking_cc(
// Initialization of local code replica // Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip // Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = new gr_complex[(int)GPS_L1_CA_CODE_LENGTH_CHIPS + 2]; d_ca_code = (gr_complex*)volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment());
/* If an array is partitioned for more than one thread to operate on,
* having the sub-array boundaries unaligned to cache lines could lead
* to performance degradation. Here we allocate memory
* (gr_complex array of size 2*d_vector_length) aligned to cache of N bytes (machine dependent!)
*/
// Get space for the resampled early / prompt / late local replicas // Get space for the resampled early / prompt / late local replicas
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_prompt_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
// space for carrier wipeoff and signal baseband vectors // space for carrier wipeoff and signal baseband vectors
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_carr_sign = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
// correlator outputs (scalar) // correlator outputs (scalar)
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Prompt = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
//--- Perform initializations ------------------------------ //--- Perform initializations ------------------------------
@ -319,8 +314,8 @@ Gps_L1_Ca_Dll_Pll_Tracking_cc::~Gps_L1_Ca_Dll_Pll_Tracking_cc()
volk_free(d_Early); volk_free(d_Early);
volk_free(d_Prompt); volk_free(d_Prompt);
volk_free(d_Late); volk_free(d_Late);
volk_free(d_ca_code);
delete[] d_ca_code;
delete[] d_Prompt_buffer; delete[] d_Prompt_buffer;
} }
@ -377,8 +372,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
d_late_code, d_late_code,
d_Early, d_Early,
d_Prompt, d_Prompt,
d_Late, d_Late);
is_unaligned());
// check for samples consistency (this should be done before in the receiver / here only if the source is a file) // check for samples consistency (this should be done before in the receiver / here only if the source is a file)
if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true ) // or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true) if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true ) // or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true)

View File

@ -126,26 +126,21 @@ Gps_L1_Ca_Tcp_Connector_Tracking_cc::Gps_L1_Ca_Tcp_Connector_Tracking_cc(
// Initialization of local code replica // Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip // Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = new gr_complex[(int)GPS_L1_CA_CODE_LENGTH_CHIPS + 2]; d_ca_code = (gr_complex*)volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment());
d_carr_sign = new gr_complex[d_vector_length*2]; d_carr_sign = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
/* If an array is partitioned for more than one thread to operate on,
* having the sub-array boundaries unaligned to cache lines could lead
* to performance degradation. Here we allocate memory
* (gr_comlex array of size 2*d_vector_length) aligned to cache of 16 bytes
*/
// Get space for the resampled early / prompt / late local replicas // Get space for the resampled early / prompt / late local replicas
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_prompt_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
// space for carrier wipeoff and signal baseband vectors // space for carrier wipeoff and signal baseband vectors
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment()); d_carr_sign = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
// correlator outputs (scalar) // correlator outputs (scalar)
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Prompt = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment()); d_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
//--- Perform initializations ------------------------------ //--- Perform initializations ------------------------------
// define initial code frequency basis of NCO // define initial code frequency basis of NCO
@ -336,8 +331,8 @@ Gps_L1_Ca_Tcp_Connector_Tracking_cc::~Gps_L1_Ca_Tcp_Connector_Tracking_cc()
volk_free(d_Early); volk_free(d_Early);
volk_free(d_Prompt); volk_free(d_Prompt);
volk_free(d_Late); volk_free(d_Late);
volk_free(d_ca_code);
delete[] d_ca_code;
delete[] d_Prompt_buffer; delete[] d_Prompt_buffer;
d_tcp_com.close_tcp_connection(d_port); d_tcp_com.close_tcp_connection(d_port);
@ -405,8 +400,7 @@ int Gps_L1_Ca_Tcp_Connector_Tracking_cc::general_work (int noutput_items, gr_vec
d_late_code, d_late_code,
d_Early, d_Early,
d_Prompt, d_Prompt,
d_Late, d_Late);
is_unaligned());
// check for samples consistency (this should be done before in the receiver / here only if the source is a file) // check for samples consistency (this should be done before in the receiver / here only if the source is a file)
if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true )// or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true) if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true )// or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true)

View File

@ -79,234 +79,75 @@ void Correlator::Carrier_wipeoff_and_EPL_generic(int signal_length_samples, cons
void Correlator::Carrier_wipeoff_and_EPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, bool input_vector_unaligned) void Correlator::Carrier_wipeoff_and_EPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out)
{ {
gr_complex* bb_signal; gr_complex* bb_signal = (gr_complex*)volk_malloc(signal_length_samples * sizeof(gr_complex), volk_get_alignment());
//gr_complex* input_aligned;
//todo: do something if posix_memalign fails volk_32fc_x2_multiply_32fc(bb_signal, input, carrier, signal_length_samples);
if (posix_memalign((void**)&bb_signal, 16, signal_length_samples * sizeof(gr_complex)) == 0) {}; volk_32fc_x2_dot_prod_32fc(E_out, bb_signal, E_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(P_out, bb_signal, P_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(L_out, bb_signal, L_code, signal_length_samples);
if (input_vector_unaligned == true) volk_free(bb_signal);
{
//todo: do something if posix_memalign fails
//if (posix_memalign((void**)&input_aligned, 16, signal_length_samples * sizeof(gr_complex)) == 0){};
//memcpy(input_aligned,input,signal_length_samples * sizeof(gr_complex));
volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, signal_length_samples);
}
else
{
/*
* todo: There is a problem with the aligned version of volk_32fc_x2_multiply_32fc_a.
* It crashes even if the is_aligned() work function returns true. Im keeping the unaligned version in both cases..
*/
//use directly the input vector
volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, signal_length_samples);
}
volk_32fc_x2_dot_prod_32fc_a(E_out, bb_signal, E_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc_a(P_out, bb_signal, P_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc_a(L_out, bb_signal, L_code, signal_length_samples);
free(bb_signal);
//if (input_vector_unaligned==false)
//{
// free(input_aligned);
//}
} }
//void Correlator::Carrier_wipeoff_and_EPL_volk_IQ(int prn_length_samples,int integration_time ,const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out, bool input_vector_unaligned) //void Correlator::Carrier_wipeoff_and_EPL_volk_IQ(int prn_length_samples,int integration_time ,const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out)
//{ //{
// gr_complex* bb_signal; // gr_complex* bb_signal = (gr_complex*)volk_malloc(signal_length_samples * sizeof(gr_complex), volk_get_alignment());
// //gr_complex* input_aligned; // volk_32fc_x2_multiply_32fc(bb_signal, input, carrier, integration_time * prn_length_samples);
// // volk_32fc_x2_dot_prod_32fc(E_out, bb_signal, E_code, integration_time * prn_length_samples);
// //todo: do something if posix_memalign fails // volk_32fc_x2_dot_prod_32fc(P_out, bb_signal, P_code, integration_time * prn_length_samples);
// if (posix_memalign((void**)&bb_signal, 16, integration_time * prn_length_samples * sizeof(gr_complex)) == 0) {}; // volk_32fc_x2_dot_prod_32fc(L_out, bb_signal, L_code, integration_time * prn_length_samples);
//
// if (input_vector_unaligned == true)
// {
// //todo: do something if posix_memalign fails
// //if (posix_memalign((void**)&input_aligned, 16, signal_length_samples * sizeof(gr_complex)) == 0){};
// //memcpy(input_aligned,input,signal_length_samples * sizeof(gr_complex));
//
// volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, integration_time * prn_length_samples);
// }
// else
// {
// /*
// * todo: There is a problem with the aligned version of volk_32fc_x2_multiply_32fc_a.
// * It crashes even if the is_aligned() work function returns true. Im keeping the unaligned version in both cases..
// */
// //use directly the input vector
// volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, integration_time * prn_length_samples);
// }
//
// volk_32fc_x2_dot_prod_32fc_a(E_out, bb_signal, E_code, integration_time * prn_length_samples);
// volk_32fc_x2_dot_prod_32fc_a(P_out, bb_signal, P_code, integration_time * prn_length_samples);
// volk_32fc_x2_dot_prod_32fc_a(L_out, bb_signal, L_code, integration_time * prn_length_samples);
// // Vector of Prompts of I code // // Vector of Prompts of I code
// for (int i = 0; i < integration_time; i++) // for (int i = 0; i < integration_time; i++)
// { // {
// volk_32fc_x2_dot_prod_32fc_a(&P_data_out[i], &bb_signal[i*prn_length_samples], P_data_code, prn_length_samples); // volk_32fc_x2_dot_prod_32fc(&P_data_out[i], &bb_signal[i*prn_length_samples], P_data_code, prn_length_samples);
// } // }
// //
// free(bb_signal); // volk_free(bb_signal);
//
//} //}
void Correlator::Carrier_wipeoff_and_EPL_volk_IQ(int signal_length_samples ,const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out, bool input_vector_unaligned)
void Correlator::Carrier_wipeoff_and_EPL_volk_IQ(int signal_length_samples ,const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out)
{ {
gr_complex* bb_signal; gr_complex* bb_signal = (gr_complex*)volk_malloc(signal_length_samples * sizeof(gr_complex), volk_get_alignment());
//gr_complex* input_aligned;
bb_signal=(gr_complex*)volk_malloc(signal_length_samples * sizeof(gr_complex),volk_get_alignment()); volk_32fc_x2_multiply_32fc(bb_signal, input, carrier, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(E_out, bb_signal, E_code, signal_length_samples);
if (input_vector_unaligned == true) volk_32fc_x2_dot_prod_32fc(P_out, bb_signal, P_code, signal_length_samples);
{ volk_32fc_x2_dot_prod_32fc(L_out, bb_signal, L_code, signal_length_samples);
//todo: do something if posix_memalign fails volk_32fc_x2_dot_prod_32fc(P_data_out, bb_signal, P_data_code, signal_length_samples);
//if (posix_memalign((void**)&input_aligned, 16, signal_length_samples * sizeof(gr_complex)) == 0){};
//memcpy(input_aligned,input,signal_length_samples * sizeof(gr_complex));
volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, signal_length_samples);
}
else
{
/*
* todo: There is a problem with the aligned version of volk_32fc_x2_multiply_32fc_a.
* It crashes even if the is_aligned() work function returns true. Im keeping the unaligned version in both cases..
*/
//use directly the input vector
volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, signal_length_samples);
}
volk_32fc_x2_dot_prod_32fc_a(E_out, bb_signal, E_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc_a(P_out, bb_signal, P_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc_a(L_out, bb_signal, L_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc_a(P_data_out, bb_signal, P_data_code, signal_length_samples);
free(bb_signal);
volk_free(bb_signal);
} }
void Correlator::Carrier_wipeoff_and_VEPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* VE_code, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* VL_code, gr_complex* VE_out, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* VL_out)
{
gr_complex* bb_signal = (gr_complex*)volk_malloc(signal_length_samples * sizeof(gr_complex), volk_get_alignment());
volk_32fc_x2_multiply_32fc(bb_signal, input, carrier, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(VE_out, bb_signal, VE_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(E_out, bb_signal, E_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(P_out, bb_signal, P_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(L_out, bb_signal, L_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc(VL_out, bb_signal, VL_code, signal_length_samples);
volk_free(bb_signal);
}
Correlator::Correlator ()
{}
Correlator::~Correlator ()
{}
#ifndef GENERIC_ARCH #ifndef GENERIC_ARCH
void Correlator::Carrier_wipeoff_and_EPL_volk_custom(int signal_length_samples, const gr_complex* input, gr_complex* carrier,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, bool input_vector_unaligned) void Correlator::Carrier_wipeoff_and_EPL_volk_custom(int signal_length_samples, const gr_complex* input, gr_complex* carrier,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out)
{ {
volk_cw_epl_corr_u(input, carrier, E_code, P_code, L_code, E_out, P_out, L_out, signal_length_samples); volk_cw_epl_corr_u(input, carrier, E_code, P_code, L_code, E_out, P_out, L_out, signal_length_samples);
} }
#endif #endif
void Correlator::Carrier_wipeoff_and_VEPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* VE_code, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* VL_code, gr_complex* VE_out, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* VL_out, bool input_vector_unaligned)
{
gr_complex* bb_signal;
//gr_complex* input_aligned;
bb_signal=(gr_complex*)volk_malloc(signal_length_samples * sizeof(gr_complex),volk_get_alignment());
if (input_vector_unaligned == false)
{
//todo: do something if posix_memalign fails
//if (posix_memalign((void**)&input_aligned, 16, signal_length_samples * sizeof(gr_complex)) == 0){};
//memcpy(input_aligned,input,signal_length_samples * sizeof(gr_complex));
volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, signal_length_samples);
}
else
{
//use directly the input vector
volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, signal_length_samples);
}
volk_32fc_x2_dot_prod_32fc_a(VE_out, bb_signal, VE_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc_a(E_out, bb_signal, E_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc_a(P_out, bb_signal, P_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc_a(L_out, bb_signal, L_code, signal_length_samples);
volk_32fc_x2_dot_prod_32fc_a(VL_out, bb_signal, VL_code, signal_length_samples);
free(bb_signal);
//if (input_vector_unaligned == false)
//{
//free(input_aligned);
//}
}
/*
void Correlator::cpu_arch_test_volk_32fc_x2_dot_prod_32fc_a()
{
//
//struct volk_func_desc desc=volk_32fc_x2_dot_prod_32fc_a_get_func_desc();
volk_func_desc_t desc = volk_32fc_x2_dot_prod_32fc_get_func_desc();
std::vector<std::string> arch_list;
for(int i = 0; i < desc.n_archs; ++i)
{
//if(!(archs[i+1] & volk_get_lvarch())) continue; //this arch isn't available on this pc
arch_list.push_back(std::string(desc.indices[i]));
}
//first let's get a list of available architectures for the test
if(arch_list.size() < 2)
{
std::cout << "no architectures to test" << std::endl;
this->volk_32fc_x2_dot_prod_32fc_a_best_arch = "generic";
}
else
{
std::cout << "Detected architectures in this machine for volk_32fc_x2_dot_prod_32fc_a:" << std::endl;
for (unsigned int i=0; i < arch_list.size(); ++i)
{
std::cout << "Arch " << i << ":" << arch_list.at(i) << std::endl;
}
// TODO: Make a test to find the best architecture
this->volk_32fc_x2_dot_prod_32fc_a_best_arch = arch_list.at(arch_list.size() - 1);
}
std::cout << "Selected architecture for volk_32fc_x2_dot_prod_32fc_a is " << this->volk_32fc_x2_dot_prod_32fc_a_best_arch << std::endl;
}
void Correlator::cpu_arch_test_volk_32fc_x2_multiply_32fc_a()
{
//
volk_func_desc_t desc = volk_32fc_x2_multiply_32fc_a_get_func_desc();
std::vector<std::string> arch_list;
for(int i = 0; i < desc.n_archs; ++i)
{
//if(!(archs[i+1] & volk_get_lvarch())) continue; //this arch isn't available on this pc
arch_list.push_back(std::string(desc.indices[i]));
}
this->volk_32fc_x2_multiply_32fc_a_best_arch = "generic";
//first let's get a list of available architectures for the test
if(arch_list.size() < 2)
{
std::cout << "no architectures to test" << std::endl;
}
else
{
std::cout << "Detected architectures in this machine for volk_32fc_x2_multiply_32fc_a:" << std::endl;
for (unsigned int i=0; i < arch_list.size(); ++i)
{
std::cout << "Arch " << i << ":" << arch_list.at(i) << std::endl;
if (arch_list.at(i).find("sse") != std::string::npos)
{
// TODO: Make a test to find the best architecture
this->volk_32fc_x2_multiply_32fc_a_best_arch = arch_list.at(i);
}
}
}
std::cout << "Selected architecture for volk_32fc_x2_multiply_32fc_a_best_arch is " << this->volk_32fc_x2_multiply_32fc_a_best_arch << std::endl;
}
*/
Correlator::Correlator ()
{
//cpu_arch_test_volk_32fc_x2_dot_prod_32fc_a();
//cpu_arch_test_volk_32fc_x2_multiply_32fc_a();
}
Correlator::~Correlator ()
{}

View File

@ -54,22 +54,18 @@ class Correlator
{ {
public: public:
void Carrier_wipeoff_and_EPL_generic(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out); void Carrier_wipeoff_and_EPL_generic(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out);
void Carrier_wipeoff_and_EPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, bool input_vector_unaligned); void Carrier_wipeoff_and_EPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out);
void Carrier_wipeoff_and_VEPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* VE_code, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* VL_code, gr_complex* VE_out, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* VL_out, bool input_vector_unaligned); void Carrier_wipeoff_and_VEPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* VE_code, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* VL_code, gr_complex* VE_out, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* VL_out);
// void Carrier_wipeoff_and_EPL_volk_IQ(int prn_length_samples,int integration_time ,const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out, bool input_vector_unaligned); // void Carrier_wipeoff_and_EPL_volk_IQ(int prn_length_samples,int integration_time ,const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out);
void Carrier_wipeoff_and_EPL_volk_IQ(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out, bool input_vector_unaligned); void Carrier_wipeoff_and_EPL_volk_IQ(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out);
Correlator(); Correlator();
~Correlator(); ~Correlator();
#ifndef GENERIC_ARCH #ifndef GENERIC_ARCH
void Carrier_wipeoff_and_EPL_volk_custom(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, bool input_vector_unaligned); void Carrier_wipeoff_and_EPL_volk_custom(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out);
#endif #endif
private: private:
std::string volk_32fc_x2_multiply_32fc_a_best_arch;
std::string volk_32fc_x2_dot_prod_32fc_a_best_arch;
unsigned long next_power_2(unsigned long v); unsigned long next_power_2(unsigned long v);
void cpu_arch_test_volk_32fc_x2_dot_prod_32fc_a();
void cpu_arch_test_volk_32fc_x2_multiply_32fc_a();
}; };
#endif #endif