mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-11-04 17:16:26 +00:00
Better VOLK usage. Memory alignment, calling dispatchers instead of
aligned/unaligned versions. Code cleaning.
This commit is contained in:
parent
47f9929aa8
commit
fd6a8e3cff
@ -124,29 +124,21 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
|
|||||||
|
|
||||||
// Initialization of local code replica
|
// Initialization of local code replica
|
||||||
// Get space for a vector with the sinboc(1,1) replica sampled 2x/chip
|
// Get space for a vector with the sinboc(1,1) replica sampled 2x/chip
|
||||||
d_ca_code = new gr_complex[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 4)];
|
d_ca_code = (gr_complex*)volk_malloc((2 * Galileo_E1_B_CODE_LENGTH_CHIPS + 4) * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
/* If an array is partitioned for more than one thread to operate on,
|
d_very_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
* having the sub-array boundaries unaligned to cache lines could lead
|
d_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
* to performance degradation. Here we allocate memory
|
d_prompt_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
* (gr_comlex array of size 2*d_vector_length) aligned to cache of 16 bytes
|
d_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
*/
|
d_very_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
d_carr_sign = (gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
d_very_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
|
||||||
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
|
||||||
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
|
||||||
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
|
||||||
d_very_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
|
||||||
|
|
||||||
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
|
||||||
|
|
||||||
// correlator outputs (scalar)
|
// correlator outputs (scalar)
|
||||||
|
d_Very_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Very_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Prompt = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Very_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Very_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
|
||||||
|
|
||||||
//--- Initializations ------------------------------
|
//--- Initializations ------------------------------
|
||||||
// Initial code frequency basis of NCO
|
// Initial code frequency basis of NCO
|
||||||
@ -176,11 +168,11 @@ galileo_e1_dll_pll_veml_tracking_cc::galileo_e1_dll_pll_veml_tracking_cc(
|
|||||||
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
|
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
|
||||||
|
|
||||||
systemName["E"] = std::string("Galileo");
|
systemName["E"] = std::string("Galileo");
|
||||||
*d_Very_Early=gr_complex(0,0);
|
*d_Very_Early = gr_complex(0,0);
|
||||||
*d_Early=gr_complex(0,0);
|
*d_Early = gr_complex(0,0);
|
||||||
*d_Prompt=gr_complex(0,0);
|
*d_Prompt = gr_complex(0,0);
|
||||||
*d_Late=gr_complex(0,0);
|
*d_Late = gr_complex(0,0);
|
||||||
*d_Very_Late=gr_complex(0,0);
|
*d_Very_Late = gr_complex(0,0);
|
||||||
}
|
}
|
||||||
|
|
||||||
void galileo_e1_dll_pll_veml_tracking_cc::start_tracking()
|
void galileo_e1_dll_pll_veml_tracking_cc::start_tracking()
|
||||||
@ -296,8 +288,8 @@ galileo_e1_dll_pll_veml_tracking_cc::~galileo_e1_dll_pll_veml_tracking_cc()
|
|||||||
volk_free(d_Prompt);
|
volk_free(d_Prompt);
|
||||||
volk_free(d_Late);
|
volk_free(d_Late);
|
||||||
volk_free(d_Very_Late);
|
volk_free(d_Very_Late);
|
||||||
|
volk_free(d_ca_code);
|
||||||
|
|
||||||
delete[] d_ca_code;
|
|
||||||
delete[] d_Prompt_buffer;
|
delete[] d_Prompt_buffer;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -356,8 +348,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
|
|||||||
d_Early,
|
d_Early,
|
||||||
d_Prompt,
|
d_Prompt,
|
||||||
d_Late,
|
d_Late,
|
||||||
d_Very_Late,
|
d_Very_Late);
|
||||||
is_unaligned());
|
|
||||||
|
|
||||||
// ################## PLL ##########################################################
|
// ################## PLL ##########################################################
|
||||||
// PLL discriminator
|
// PLL discriminator
|
||||||
|
@ -127,29 +127,22 @@ Galileo_E1_Tcp_Connector_Tracking_cc::Galileo_E1_Tcp_Connector_Tracking_cc(
|
|||||||
|
|
||||||
// Initialization of local code replica
|
// Initialization of local code replica
|
||||||
// Get space for a vector with the sinboc(1,1) replica sampled 2x/chip
|
// Get space for a vector with the sinboc(1,1) replica sampled 2x/chip
|
||||||
d_ca_code = new gr_complex[(int)(2*Galileo_E1_B_CODE_LENGTH_CHIPS + 4)];
|
d_ca_code = (gr_complex*)volk_malloc(((2 * Galileo_E1_B_CODE_LENGTH_CHIPS + 4)) * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
/* If an array is partitioned for more than one thread to operate on,
|
d_very_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
* having the sub-array boundaries unaligned to cache lines could lead
|
d_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
* to performance degradation. Here we allocate memory
|
d_prompt_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
* (gr_comlex array of size 2*d_vector_length) aligned to cache of 16 bytes
|
d_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
*/
|
d_very_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
d_carr_sign = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
d_very_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
|
||||||
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
|
||||||
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
|
||||||
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
|
||||||
d_very_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
|
||||||
|
|
||||||
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
|
||||||
|
|
||||||
// correlator outputs (scalar)
|
// correlator outputs (scalar)
|
||||||
|
|
||||||
d_Very_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Very_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Prompt = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Very_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Very_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
//--- Perform initializations ------------------------------
|
//--- Perform initializations ------------------------------
|
||||||
// define initial code frequency basis of NCO
|
// define initial code frequency basis of NCO
|
||||||
@ -291,8 +284,8 @@ Galileo_E1_Tcp_Connector_Tracking_cc::~Galileo_E1_Tcp_Connector_Tracking_cc()
|
|||||||
volk_free(d_Prompt);
|
volk_free(d_Prompt);
|
||||||
volk_free(d_Late);
|
volk_free(d_Late);
|
||||||
volk_free(d_Very_Late);
|
volk_free(d_Very_Late);
|
||||||
|
volk_free(d_ca_code);
|
||||||
|
|
||||||
delete[] d_ca_code;
|
|
||||||
delete[] d_Prompt_buffer;
|
delete[] d_Prompt_buffer;
|
||||||
|
|
||||||
d_tcp_com.close_tcp_connection(d_port);
|
d_tcp_com.close_tcp_connection(d_port);
|
||||||
@ -352,8 +345,7 @@ int Galileo_E1_Tcp_Connector_Tracking_cc::general_work (int noutput_items, gr_ve
|
|||||||
d_Early,
|
d_Early,
|
||||||
d_Prompt,
|
d_Prompt,
|
||||||
d_Late,
|
d_Late,
|
||||||
d_Very_Late,
|
d_Very_Late);
|
||||||
is_unaligned());
|
|
||||||
|
|
||||||
// ################## TCP CONNECTOR ##########################################################
|
// ################## TCP CONNECTOR ##########################################################
|
||||||
//! Variable used for control
|
//! Variable used for control
|
||||||
|
@ -130,29 +130,20 @@ Galileo_E5a_Dll_Pll_Tracking_cc::Galileo_E5a_Dll_Pll_Tracking_cc(
|
|||||||
|
|
||||||
// Initialization of local code replica
|
// Initialization of local code replica
|
||||||
// Get space for a vector with the E5a primary code replicas sampled 1x/chip
|
// Get space for a vector with the E5a primary code replicas sampled 1x/chip
|
||||||
d_codeQ = new gr_complex[(int)Galileo_E5a_CODE_LENGTH_CHIPS + 2];
|
d_codeQ = (gr_complex*)volk_malloc((Galileo_E5a_CODE_LENGTH_CHIPS + 2)* sizeof(gr_complex), volk_get_alignment());
|
||||||
d_codeI = new gr_complex[(int)Galileo_E5a_CODE_LENGTH_CHIPS + 2];
|
d_codeI = (gr_complex*)volk_malloc((Galileo_E5a_CODE_LENGTH_CHIPS + 2)* sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
/* If an array is partitioned for more than one thread to operate on,
|
d_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
* having the sub-array boundaries unaligned to cache lines could lead
|
d_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
* to performance degradation. Here we allocate memory
|
d_prompt_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
* (gr_comlex array of size 2*d_vector_length) aligned to cache of 16 bytes
|
d_prompt_data_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
*/
|
d_carr_sign = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
// correlator outputs (complex number)
|
||||||
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_Prompt = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
|
d_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_prompt_data_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_Prompt_data = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
|
||||||
|
|
||||||
// correlator outputs (scalar)
|
|
||||||
|
|
||||||
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
|
||||||
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
|
||||||
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
|
||||||
d_Prompt_data=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
|
||||||
|
|
||||||
//--- Perform initializations ------------------------------
|
//--- Perform initializations ------------------------------
|
||||||
// define initial code frequency basis of NCO
|
// define initial code frequency basis of NCO
|
||||||
@ -161,20 +152,16 @@ Galileo_E5a_Dll_Pll_Tracking_cc::Galileo_E5a_Dll_Pll_Tracking_cc(
|
|||||||
d_rem_code_phase_samples = 0.0;
|
d_rem_code_phase_samples = 0.0;
|
||||||
// define residual carrier phase
|
// define residual carrier phase
|
||||||
d_rem_carr_phase_rad = 0.0;
|
d_rem_carr_phase_rad = 0.0;
|
||||||
|
|
||||||
//Filter error vars
|
//Filter error vars
|
||||||
d_code_error_filt_secs = 0.0;
|
d_code_error_filt_secs = 0.0;
|
||||||
|
|
||||||
|
|
||||||
// sample synchronization
|
// sample synchronization
|
||||||
d_sample_counter = 0;
|
d_sample_counter = 0;
|
||||||
d_acq_sample_stamp = 0;
|
d_acq_sample_stamp = 0;
|
||||||
|
|
||||||
d_last_seg = 0;
|
d_last_seg = 0;
|
||||||
d_first_transition = false;
|
d_first_transition = false;
|
||||||
|
|
||||||
d_secondary_lock=false;
|
d_secondary_lock = false;
|
||||||
d_secondary_delay=0;
|
d_secondary_delay = 0;
|
||||||
d_integration_counter = 0;
|
d_integration_counter = 0;
|
||||||
|
|
||||||
d_current_prn_length_samples = (int)d_vector_length;
|
d_current_prn_length_samples = (int)d_vector_length;
|
||||||
@ -187,29 +174,27 @@ Galileo_E5a_Dll_Pll_Tracking_cc::Galileo_E5a_Dll_Pll_Tracking_cc(
|
|||||||
d_carrier_lock_fail_counter = 0;
|
d_carrier_lock_fail_counter = 0;
|
||||||
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
|
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD;
|
||||||
|
|
||||||
systemName["G"] = std::string("GPS");
|
|
||||||
systemName["R"] = std::string("GLONASS");
|
|
||||||
systemName["S"] = std::string("SBAS");
|
|
||||||
systemName["E"] = std::string("Galileo");
|
systemName["E"] = std::string("Galileo");
|
||||||
systemName["C"] = std::string("Compass");
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
Galileo_E5a_Dll_Pll_Tracking_cc::~Galileo_E5a_Dll_Pll_Tracking_cc ()
|
Galileo_E5a_Dll_Pll_Tracking_cc::~Galileo_E5a_Dll_Pll_Tracking_cc ()
|
||||||
{
|
{
|
||||||
d_dump_file.close();
|
d_dump_file.close();
|
||||||
|
|
||||||
|
|
||||||
volk_free(d_prompt_code);
|
volk_free(d_prompt_code);
|
||||||
volk_free(d_late_code);
|
volk_free(d_late_code);
|
||||||
volk_free(d_early_code);
|
volk_free(d_early_code);
|
||||||
volk_free(d_carr_sign);
|
volk_free(d_carr_sign);
|
||||||
|
|
||||||
volk_free(d_prompt_data_code);
|
volk_free(d_prompt_data_code);
|
||||||
volk_free(d_Prompt_data);
|
volk_free(d_Prompt_data);
|
||||||
|
volk_free(d_Early);
|
||||||
|
volk_free(d_Prompt);
|
||||||
|
volk_free(d_Late);
|
||||||
|
volk_free(d_Prompt_data);
|
||||||
|
volk_free(d_codeQ);
|
||||||
|
volk_free(d_codeI);
|
||||||
|
|
||||||
delete[] d_codeQ;
|
|
||||||
delete[] d_codeI;
|
|
||||||
delete[] d_Prompt_buffer;
|
delete[] d_Prompt_buffer;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -304,51 +289,51 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::acquire_secondary()
|
|||||||
{
|
{
|
||||||
// 1. Transform replica to 1 and -1
|
// 1. Transform replica to 1 and -1
|
||||||
int sec_code_signed[Galileo_E5a_Q_SECONDARY_CODE_LENGTH];
|
int sec_code_signed[Galileo_E5a_Q_SECONDARY_CODE_LENGTH];
|
||||||
for (unsigned int i=0; i<Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++)
|
for (unsigned int i = 0; i < Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++)
|
||||||
{
|
{
|
||||||
if (Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN-1].at(i) == '0')
|
if (Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN-1].at(i) == '0')
|
||||||
{
|
{
|
||||||
sec_code_signed[i]=1;
|
sec_code_signed[i] = 1;
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
sec_code_signed[i]=-1;
|
sec_code_signed[i] = -1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// 2. Transform buffer to 1 and -1
|
// 2. Transform buffer to 1 and -1
|
||||||
int in_corr[CN0_ESTIMATION_SAMPLES];
|
int in_corr[CN0_ESTIMATION_SAMPLES];
|
||||||
for (unsigned int i=0; i<CN0_ESTIMATION_SAMPLES; i++)
|
for (unsigned int i = 0; i < CN0_ESTIMATION_SAMPLES; i++)
|
||||||
{
|
{
|
||||||
if (d_Prompt_buffer[i].real() >0)
|
if (d_Prompt_buffer[i].real() >0)
|
||||||
{
|
{
|
||||||
in_corr[i]=1;
|
in_corr[i] = 1;
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
in_corr[i]=-1;
|
in_corr[i] = -1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// 3. Serial search
|
// 3. Serial search
|
||||||
int out_corr;
|
int out_corr;
|
||||||
int current_best_=0;
|
int current_best_ = 0;
|
||||||
for (unsigned int i=0; i<Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++)
|
for (unsigned int i=0; i<Galileo_E5a_Q_SECONDARY_CODE_LENGTH; i++)
|
||||||
{
|
{
|
||||||
out_corr=0;
|
out_corr=0;
|
||||||
for (unsigned int j=0; j<CN0_ESTIMATION_SAMPLES; j++)
|
for (unsigned int j = 0; j < CN0_ESTIMATION_SAMPLES; j++)
|
||||||
{
|
{
|
||||||
//reverse replica sign since i*i=-1 (conjugated complex)
|
//reverse replica sign since i*i=-1 (conjugated complex)
|
||||||
out_corr += in_corr[j] * -sec_code_signed[(j+i)%Galileo_E5a_Q_SECONDARY_CODE_LENGTH];
|
out_corr += in_corr[j] * -sec_code_signed[(j+i) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH];
|
||||||
}
|
}
|
||||||
if (abs(out_corr) > current_best_)
|
if (abs(out_corr) > current_best_)
|
||||||
{
|
{
|
||||||
current_best_ = abs(out_corr);
|
current_best_ = abs(out_corr);
|
||||||
d_secondary_delay=i;
|
d_secondary_delay = i;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (current_best_ == CN0_ESTIMATION_SAMPLES) // all bits correlate
|
if (current_best_ == CN0_ESTIMATION_SAMPLES) // all bits correlate
|
||||||
{
|
{
|
||||||
d_secondary_lock = true;
|
d_secondary_lock = true;
|
||||||
d_secondary_delay = (d_secondary_delay+CN0_ESTIMATION_SAMPLES-1)%Galileo_E5a_Q_SECONDARY_CODE_LENGTH;
|
d_secondary_delay = (d_secondary_delay + CN0_ESTIMATION_SAMPLES - 1) % Galileo_E5a_Q_SECONDARY_CODE_LENGTH;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -370,7 +355,7 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::update_local_code()
|
|||||||
|
|
||||||
// Alternative EPL code generation (40% of speed improvement!)
|
// Alternative EPL code generation (40% of speed improvement!)
|
||||||
early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips);
|
early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips);
|
||||||
epl_loop_length_samples = d_current_prn_length_samples + early_late_spc_samples*2;
|
epl_loop_length_samples = d_current_prn_length_samples + early_late_spc_samples * 2;
|
||||||
|
|
||||||
for (int i = 0; i < epl_loop_length_samples; i++)
|
for (int i = 0; i < epl_loop_length_samples; i++)
|
||||||
{
|
{
|
||||||
@ -380,8 +365,8 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::update_local_code()
|
|||||||
d_prompt_data_code[i] = d_codeI[associated_chip_index_data];
|
d_prompt_data_code[i] = d_codeI[associated_chip_index_data];
|
||||||
tcode_chips = tcode_chips + code_phase_step_chips;
|
tcode_chips = tcode_chips + code_phase_step_chips;
|
||||||
}
|
}
|
||||||
memcpy(d_prompt_code,&d_early_code[early_late_spc_samples],d_current_prn_length_samples* sizeof(gr_complex));
|
memcpy(d_prompt_code, &d_early_code[early_late_spc_samples], d_current_prn_length_samples * sizeof(gr_complex));
|
||||||
memcpy(d_late_code,&d_early_code[early_late_spc_samples*2],d_current_prn_length_samples* sizeof(gr_complex));
|
memcpy(d_late_code, &d_early_code[early_late_spc_samples * 2], d_current_prn_length_samples * sizeof(gr_complex));
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -458,7 +443,7 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
|||||||
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod((float)acq_to_trk_delay_samples, (float)d_current_prn_length_samples);
|
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod((float)acq_to_trk_delay_samples, (float)d_current_prn_length_samples);
|
||||||
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
||||||
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
|
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
|
||||||
std::cout<<" samples_offset="<<samples_offset<<"\r\n";
|
DLOG(INFO) << " samples_offset=" << samples_offset;
|
||||||
d_state = 2; // start in Ti = 1 code, until secondary code lock.
|
d_state = 2; // start in Ti = 1 code, until secondary code lock.
|
||||||
|
|
||||||
// make an output to not stop the rest of the processing blocks
|
// make an output to not stop the rest of the processing blocks
|
||||||
@ -485,13 +470,13 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
|||||||
{
|
{
|
||||||
// sec_sign_Q = gr_complex((Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN-1].at(d_secondary_delay)=='0' ? 1 : -1),0);
|
// sec_sign_Q = gr_complex((Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN-1].at(d_secondary_delay)=='0' ? 1 : -1),0);
|
||||||
// sec_sign_I = gr_complex((Galileo_E5a_I_SECONDARY_CODE.at(d_secondary_delay%Galileo_E5a_I_SECONDARY_CODE_LENGTH)=='0' ? 1 : -1),0);
|
// sec_sign_I = gr_complex((Galileo_E5a_I_SECONDARY_CODE.at(d_secondary_delay%Galileo_E5a_I_SECONDARY_CODE_LENGTH)=='0' ? 1 : -1),0);
|
||||||
sec_sign_Q = gr_complex((Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN-1].at(d_secondary_delay)=='0' ? -1 : 1),0);
|
sec_sign_Q = gr_complex((Galileo_E5a_Q_SECONDARY_CODE[d_acquisition_gnss_synchro->PRN-1].at(d_secondary_delay) == '0' ? -1 : 1), 0);
|
||||||
sec_sign_I = gr_complex((Galileo_E5a_I_SECONDARY_CODE.at(d_secondary_delay%Galileo_E5a_I_SECONDARY_CODE_LENGTH)=='0' ? -1 : 1),0);
|
sec_sign_I = gr_complex((Galileo_E5a_I_SECONDARY_CODE.at(d_secondary_delay % Galileo_E5a_I_SECONDARY_CODE_LENGTH) == '0' ? -1 : 1), 0);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
sec_sign_Q = gr_complex(1.0,0.0);
|
sec_sign_Q = gr_complex(1.0, 0.0);
|
||||||
sec_sign_I = gr_complex(1.0,0.0);
|
sec_sign_I = gr_complex(1.0, 0.0);
|
||||||
}
|
}
|
||||||
// Reset integration counter
|
// Reset integration counter
|
||||||
if (d_integration_counter == d_current_ti_ms)
|
if (d_integration_counter == d_current_ti_ms)
|
||||||
@ -524,8 +509,7 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
|||||||
&single_early,
|
&single_early,
|
||||||
&single_prompt,
|
&single_prompt,
|
||||||
&single_late,
|
&single_late,
|
||||||
d_Prompt_data,
|
d_Prompt_data);
|
||||||
is_unaligned());
|
|
||||||
|
|
||||||
// Accumulate results (coherent integration since there are no bit transitions in pilot signal)
|
// Accumulate results (coherent integration since there are no bit transitions in pilot signal)
|
||||||
*d_Early += single_early * sec_sign_Q;
|
*d_Early += single_early * sec_sign_Q;
|
||||||
@ -576,9 +560,9 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
|||||||
d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E5a_CODE_CHIP_RATE_HZ) / Galileo_E5a_FREQ_HZ);
|
d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E5a_CODE_CHIP_RATE_HZ) / Galileo_E5a_FREQ_HZ);
|
||||||
}
|
}
|
||||||
//carrier phase accumulator for (K) doppler estimation
|
//carrier phase accumulator for (K) doppler estimation
|
||||||
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + 2*GALILEO_PI*d_carrier_doppler_hz*GALILEO_E5a_CODE_PERIOD;
|
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + 2*GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
|
||||||
//remanent carrier phase to prevent overflow in the code NCO
|
//remanent carrier phase to prevent overflow in the code NCO
|
||||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad+2*GALILEO_PI*d_carrier_doppler_hz*GALILEO_E5a_CODE_PERIOD;
|
d_rem_carr_phase_rad = d_rem_carr_phase_rad + 2*GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
|
||||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, 2*GALILEO_PI);
|
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, 2*GALILEO_PI);
|
||||||
|
|
||||||
// ################## DLL ##########################################################
|
// ################## DLL ##########################################################
|
||||||
@ -589,7 +573,7 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
|||||||
// Code discriminator filter
|
// Code discriminator filter
|
||||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
|
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
|
||||||
//Code phase accumulator
|
//Code phase accumulator
|
||||||
d_code_error_filt_secs = (GALILEO_E5a_CODE_PERIOD*code_error_filt_chips)/Galileo_E5a_CODE_CHIP_RATE_HZ; //[seconds]
|
d_code_error_filt_secs = (GALILEO_E5a_CODE_PERIOD * code_error_filt_chips) / Galileo_E5a_CODE_CHIP_RATE_HZ; //[seconds]
|
||||||
}
|
}
|
||||||
d_acc_code_phase_secs = d_acc_code_phase_secs + d_code_error_filt_secs;
|
d_acc_code_phase_secs = d_acc_code_phase_secs + d_code_error_filt_secs;
|
||||||
|
|
||||||
@ -597,10 +581,6 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
|||||||
// keep alignment parameters for the next input buffer
|
// keep alignment parameters for the next input buffer
|
||||||
double T_chip_seconds;
|
double T_chip_seconds;
|
||||||
double T_prn_seconds;
|
double T_prn_seconds;
|
||||||
// float T_prn_samples;
|
|
||||||
// float K_blk_samples;
|
|
||||||
//double T_chip_seconds;
|
|
||||||
// double T_prn_seconds;
|
|
||||||
double T_prn_samples;
|
double T_prn_samples;
|
||||||
double K_blk_samples;
|
double K_blk_samples;
|
||||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
||||||
@ -632,8 +612,6 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
|||||||
// Change loop parameters ==========================================
|
// Change loop parameters ==========================================
|
||||||
d_code_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD);
|
d_code_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD);
|
||||||
d_carrier_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD);
|
d_carrier_loop_filter.set_pdi(d_current_ti_ms * GALILEO_E5a_CODE_PERIOD);
|
||||||
// d_code_loop_filter.initialize();
|
|
||||||
// d_carrier_loop_filter.initialize();
|
|
||||||
d_code_loop_filter.set_DLL_BW(d_dll_bw_hz);
|
d_code_loop_filter.set_DLL_BW(d_dll_bw_hz);
|
||||||
d_carrier_loop_filter.set_PLL_BW(d_pll_bw_hz);
|
d_carrier_loop_filter.set_PLL_BW(d_pll_bw_hz);
|
||||||
}
|
}
|
||||||
@ -708,7 +686,6 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
|||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
|
|
||||||
// make an output to not stop the rest of the processing blocks
|
// make an output to not stop the rest of the processing blocks
|
||||||
current_synchro_data.Prompt_I = 0.0;
|
current_synchro_data.Prompt_I = 0.0;
|
||||||
current_synchro_data.Prompt_Q = 0.0;
|
current_synchro_data.Prompt_Q = 0.0;
|
||||||
|
@ -122,25 +122,20 @@ Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc(
|
|||||||
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
|
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
|
||||||
|
|
||||||
// Get space for a vector with the C/A code replica sampled 1x/chip
|
// Get space for a vector with the C/A code replica sampled 1x/chip
|
||||||
d_ca_code = new gr_complex[(int)GPS_L1_CA_CODE_LENGTH_CHIPS + 2];
|
d_ca_code = (gr_complex*)volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
/* If an array is partitioned for more than one thread to operate on,
|
|
||||||
* having the sub-array boundaries unaligned to cache lines could lead
|
|
||||||
* to performance degradation. Here we allocate memory
|
|
||||||
* (gr_complex array of size 2*d_vector_length) aligned to cache of N bytes (machine dependent!)
|
|
||||||
*/
|
|
||||||
// Get space for the resampled early / prompt / late local replicas
|
// Get space for the resampled early / prompt / late local replicas
|
||||||
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_early_code = (gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_prompt_code = (gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_late_code = (gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
// space for carrier wipeoff and signal baseband vectors
|
// space for carrier wipeoff and signal baseband vectors
|
||||||
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_carr_sign = (gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
// correlator outputs (scalar)
|
// correlator outputs (scalar)
|
||||||
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Prompt = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
// sample synchronization
|
// sample synchronization
|
||||||
d_sample_counter = 0;
|
d_sample_counter = 0;
|
||||||
@ -312,8 +307,8 @@ void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::update_local_carrier()
|
|||||||
Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::~Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc()
|
Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::~Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc()
|
||||||
{
|
{
|
||||||
d_dump_file.close();
|
d_dump_file.close();
|
||||||
delete[] d_ca_code;
|
|
||||||
|
|
||||||
|
volk_free(d_ca_code);
|
||||||
volk_free(d_prompt_code);
|
volk_free(d_prompt_code);
|
||||||
volk_free(d_late_code);
|
volk_free(d_late_code);
|
||||||
volk_free(d_early_code);
|
volk_free(d_early_code);
|
||||||
@ -321,6 +316,7 @@ Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::~Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc()
|
|||||||
volk_free(d_Early);
|
volk_free(d_Early);
|
||||||
volk_free(d_Prompt);
|
volk_free(d_Prompt);
|
||||||
volk_free(d_Late);
|
volk_free(d_Late);
|
||||||
|
|
||||||
delete[] d_Prompt_buffer;
|
delete[] d_Prompt_buffer;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -389,8 +385,7 @@ int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vecto
|
|||||||
d_late_code,
|
d_late_code,
|
||||||
d_Early,
|
d_Early,
|
||||||
d_Prompt,
|
d_Prompt,
|
||||||
d_Late,
|
d_Late);
|
||||||
is_unaligned());
|
|
||||||
// check for samples consistency (this should be done before in the receiver / here only if the source is a file)
|
// check for samples consistency (this should be done before in the receiver / here only if the source is a file)
|
||||||
if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true )// or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true)
|
if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true )// or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true)
|
||||||
{
|
{
|
||||||
|
@ -119,25 +119,20 @@ Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc(
|
|||||||
|
|
||||||
// Initialization of local code replica
|
// Initialization of local code replica
|
||||||
// Get space for a vector with the C/A code replica sampled 1x/chip
|
// Get space for a vector with the C/A code replica sampled 1x/chip
|
||||||
d_ca_code = new gr_complex[(int)GPS_L1_CA_CODE_LENGTH_CHIPS + 2];
|
d_ca_code = (gr_complex*)volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
/* If an array is partitioned for more than one thread to operate on,
|
|
||||||
* having the sub-array boundaries unaligned to cache lines could lead
|
|
||||||
* to performance degradation. Here we allocate memory
|
|
||||||
* (gr_complex array of size 2*d_vector_length) aligned to cache of N bytes (machine dependent!)
|
|
||||||
*/
|
|
||||||
// Get space for the resampled early / prompt / late local replicas
|
// Get space for the resampled early / prompt / late local replicas
|
||||||
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_prompt_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
// space for carrier wipeoff and signal baseband vectors
|
// space for carrier wipeoff and signal baseband vectors
|
||||||
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_carr_sign = (gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
// correlator outputs (scalar)
|
// correlator outputs (scalar)
|
||||||
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Prompt = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
//--- Perform initializations ------------------------------
|
//--- Perform initializations ------------------------------
|
||||||
// define initial code frequency basis of NCO
|
// define initial code frequency basis of NCO
|
||||||
@ -385,8 +380,7 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
d_late_code,
|
d_late_code,
|
||||||
d_Early,
|
d_Early,
|
||||||
d_Prompt,
|
d_Prompt,
|
||||||
d_Late,
|
d_Late);
|
||||||
is_unaligned());
|
|
||||||
#else
|
#else
|
||||||
d_correlator.Carrier_wipeoff_and_EPL_volk(d_current_prn_length_samples,
|
d_correlator.Carrier_wipeoff_and_EPL_volk(d_current_prn_length_samples,
|
||||||
in,
|
in,
|
||||||
@ -396,8 +390,7 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
d_late_code,
|
d_late_code,
|
||||||
d_Early,
|
d_Early,
|
||||||
d_Prompt,
|
d_Prompt,
|
||||||
d_Late,
|
d_Late);
|
||||||
is_unaligned());
|
|
||||||
#endif
|
#endif
|
||||||
// ################## PLL ##########################################################
|
// ################## PLL ##########################################################
|
||||||
// PLL discriminator
|
// PLL discriminator
|
||||||
|
@ -117,25 +117,20 @@ Gps_L1_Ca_Dll_Pll_Tracking_cc::Gps_L1_Ca_Dll_Pll_Tracking_cc(
|
|||||||
|
|
||||||
// Initialization of local code replica
|
// Initialization of local code replica
|
||||||
// Get space for a vector with the C/A code replica sampled 1x/chip
|
// Get space for a vector with the C/A code replica sampled 1x/chip
|
||||||
d_ca_code = new gr_complex[(int)GPS_L1_CA_CODE_LENGTH_CHIPS + 2];
|
d_ca_code = (gr_complex*)volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
/* If an array is partitioned for more than one thread to operate on,
|
|
||||||
* having the sub-array boundaries unaligned to cache lines could lead
|
|
||||||
* to performance degradation. Here we allocate memory
|
|
||||||
* (gr_complex array of size 2*d_vector_length) aligned to cache of N bytes (machine dependent!)
|
|
||||||
*/
|
|
||||||
// Get space for the resampled early / prompt / late local replicas
|
// Get space for the resampled early / prompt / late local replicas
|
||||||
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_prompt_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
// space for carrier wipeoff and signal baseband vectors
|
// space for carrier wipeoff and signal baseband vectors
|
||||||
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_carr_sign = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
// correlator outputs (scalar)
|
// correlator outputs (scalar)
|
||||||
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Prompt = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
|
|
||||||
//--- Perform initializations ------------------------------
|
//--- Perform initializations ------------------------------
|
||||||
@ -319,8 +314,8 @@ Gps_L1_Ca_Dll_Pll_Tracking_cc::~Gps_L1_Ca_Dll_Pll_Tracking_cc()
|
|||||||
volk_free(d_Early);
|
volk_free(d_Early);
|
||||||
volk_free(d_Prompt);
|
volk_free(d_Prompt);
|
||||||
volk_free(d_Late);
|
volk_free(d_Late);
|
||||||
|
volk_free(d_ca_code);
|
||||||
|
|
||||||
delete[] d_ca_code;
|
|
||||||
delete[] d_Prompt_buffer;
|
delete[] d_Prompt_buffer;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -377,8 +372,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
|||||||
d_late_code,
|
d_late_code,
|
||||||
d_Early,
|
d_Early,
|
||||||
d_Prompt,
|
d_Prompt,
|
||||||
d_Late,
|
d_Late);
|
||||||
is_unaligned());
|
|
||||||
|
|
||||||
// check for samples consistency (this should be done before in the receiver / here only if the source is a file)
|
// check for samples consistency (this should be done before in the receiver / here only if the source is a file)
|
||||||
if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true ) // or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true)
|
if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true ) // or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true)
|
||||||
|
@ -126,26 +126,21 @@ Gps_L1_Ca_Tcp_Connector_Tracking_cc::Gps_L1_Ca_Tcp_Connector_Tracking_cc(
|
|||||||
|
|
||||||
// Initialization of local code replica
|
// Initialization of local code replica
|
||||||
// Get space for a vector with the C/A code replica sampled 1x/chip
|
// Get space for a vector with the C/A code replica sampled 1x/chip
|
||||||
d_ca_code = new gr_complex[(int)GPS_L1_CA_CODE_LENGTH_CHIPS + 2];
|
d_ca_code = (gr_complex*)volk_malloc((GPS_L1_CA_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment());
|
||||||
d_carr_sign = new gr_complex[d_vector_length*2];
|
d_carr_sign = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
/* If an array is partitioned for more than one thread to operate on,
|
|
||||||
* having the sub-array boundaries unaligned to cache lines could lead
|
|
||||||
* to performance degradation. Here we allocate memory
|
|
||||||
* (gr_comlex array of size 2*d_vector_length) aligned to cache of 16 bytes
|
|
||||||
*/
|
|
||||||
// Get space for the resampled early / prompt / late local replicas
|
// Get space for the resampled early / prompt / late local replicas
|
||||||
d_early_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_early_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
d_prompt_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_prompt_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
d_late_code=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_late_code = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
// space for carrier wipeoff and signal baseband vectors
|
// space for carrier wipeoff and signal baseband vectors
|
||||||
d_carr_sign=(gr_complex*)volk_malloc(2*d_vector_length * sizeof(gr_complex),volk_get_alignment());
|
d_carr_sign = (gr_complex*)volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
// correlator outputs (scalar)
|
// correlator outputs (scalar)
|
||||||
d_Early=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Early = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Prompt=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Prompt = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
d_Late=(gr_complex*)volk_malloc(sizeof(gr_complex),volk_get_alignment());
|
d_Late = (gr_complex*)volk_malloc(sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
//--- Perform initializations ------------------------------
|
//--- Perform initializations ------------------------------
|
||||||
// define initial code frequency basis of NCO
|
// define initial code frequency basis of NCO
|
||||||
@ -336,8 +331,8 @@ Gps_L1_Ca_Tcp_Connector_Tracking_cc::~Gps_L1_Ca_Tcp_Connector_Tracking_cc()
|
|||||||
volk_free(d_Early);
|
volk_free(d_Early);
|
||||||
volk_free(d_Prompt);
|
volk_free(d_Prompt);
|
||||||
volk_free(d_Late);
|
volk_free(d_Late);
|
||||||
|
volk_free(d_ca_code);
|
||||||
|
|
||||||
delete[] d_ca_code;
|
|
||||||
delete[] d_Prompt_buffer;
|
delete[] d_Prompt_buffer;
|
||||||
|
|
||||||
d_tcp_com.close_tcp_connection(d_port);
|
d_tcp_com.close_tcp_connection(d_port);
|
||||||
@ -405,8 +400,7 @@ int Gps_L1_Ca_Tcp_Connector_Tracking_cc::general_work (int noutput_items, gr_vec
|
|||||||
d_late_code,
|
d_late_code,
|
||||||
d_Early,
|
d_Early,
|
||||||
d_Prompt,
|
d_Prompt,
|
||||||
d_Late,
|
d_Late);
|
||||||
is_unaligned());
|
|
||||||
|
|
||||||
// check for samples consistency (this should be done before in the receiver / here only if the source is a file)
|
// check for samples consistency (this should be done before in the receiver / here only if the source is a file)
|
||||||
if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true )// or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true)
|
if (std::isnan((*d_Prompt).real()) == true or std::isnan((*d_Prompt).imag()) == true )// or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true)
|
||||||
|
@ -79,234 +79,75 @@ void Correlator::Carrier_wipeoff_and_EPL_generic(int signal_length_samples, cons
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
void Correlator::Carrier_wipeoff_and_EPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, bool input_vector_unaligned)
|
void Correlator::Carrier_wipeoff_and_EPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out)
|
||||||
{
|
{
|
||||||
gr_complex* bb_signal;
|
gr_complex* bb_signal = (gr_complex*)volk_malloc(signal_length_samples * sizeof(gr_complex), volk_get_alignment());
|
||||||
//gr_complex* input_aligned;
|
|
||||||
|
|
||||||
//todo: do something if posix_memalign fails
|
volk_32fc_x2_multiply_32fc(bb_signal, input, carrier, signal_length_samples);
|
||||||
if (posix_memalign((void**)&bb_signal, 16, signal_length_samples * sizeof(gr_complex)) == 0) {};
|
volk_32fc_x2_dot_prod_32fc(E_out, bb_signal, E_code, signal_length_samples);
|
||||||
|
volk_32fc_x2_dot_prod_32fc(P_out, bb_signal, P_code, signal_length_samples);
|
||||||
|
volk_32fc_x2_dot_prod_32fc(L_out, bb_signal, L_code, signal_length_samples);
|
||||||
|
|
||||||
if (input_vector_unaligned == true)
|
volk_free(bb_signal);
|
||||||
{
|
|
||||||
//todo: do something if posix_memalign fails
|
|
||||||
//if (posix_memalign((void**)&input_aligned, 16, signal_length_samples * sizeof(gr_complex)) == 0){};
|
|
||||||
//memcpy(input_aligned,input,signal_length_samples * sizeof(gr_complex));
|
|
||||||
|
|
||||||
volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, signal_length_samples);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
* todo: There is a problem with the aligned version of volk_32fc_x2_multiply_32fc_a.
|
|
||||||
* It crashes even if the is_aligned() work function returns true. Im keeping the unaligned version in both cases..
|
|
||||||
*/
|
|
||||||
//use directly the input vector
|
|
||||||
volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, signal_length_samples);
|
|
||||||
}
|
|
||||||
|
|
||||||
volk_32fc_x2_dot_prod_32fc_a(E_out, bb_signal, E_code, signal_length_samples);
|
|
||||||
volk_32fc_x2_dot_prod_32fc_a(P_out, bb_signal, P_code, signal_length_samples);
|
|
||||||
volk_32fc_x2_dot_prod_32fc_a(L_out, bb_signal, L_code, signal_length_samples);
|
|
||||||
|
|
||||||
free(bb_signal);
|
|
||||||
//if (input_vector_unaligned==false)
|
|
||||||
//{
|
|
||||||
// free(input_aligned);
|
|
||||||
//}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//void Correlator::Carrier_wipeoff_and_EPL_volk_IQ(int prn_length_samples,int integration_time ,const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out, bool input_vector_unaligned)
|
//void Correlator::Carrier_wipeoff_and_EPL_volk_IQ(int prn_length_samples,int integration_time ,const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out)
|
||||||
//{
|
//{
|
||||||
// gr_complex* bb_signal;
|
// gr_complex* bb_signal = (gr_complex*)volk_malloc(signal_length_samples * sizeof(gr_complex), volk_get_alignment());
|
||||||
// //gr_complex* input_aligned;
|
// volk_32fc_x2_multiply_32fc(bb_signal, input, carrier, integration_time * prn_length_samples);
|
||||||
//
|
// volk_32fc_x2_dot_prod_32fc(E_out, bb_signal, E_code, integration_time * prn_length_samples);
|
||||||
// //todo: do something if posix_memalign fails
|
// volk_32fc_x2_dot_prod_32fc(P_out, bb_signal, P_code, integration_time * prn_length_samples);
|
||||||
// if (posix_memalign((void**)&bb_signal, 16, integration_time * prn_length_samples * sizeof(gr_complex)) == 0) {};
|
// volk_32fc_x2_dot_prod_32fc(L_out, bb_signal, L_code, integration_time * prn_length_samples);
|
||||||
//
|
|
||||||
// if (input_vector_unaligned == true)
|
|
||||||
// {
|
|
||||||
// //todo: do something if posix_memalign fails
|
|
||||||
// //if (posix_memalign((void**)&input_aligned, 16, signal_length_samples * sizeof(gr_complex)) == 0){};
|
|
||||||
// //memcpy(input_aligned,input,signal_length_samples * sizeof(gr_complex));
|
|
||||||
//
|
|
||||||
// volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, integration_time * prn_length_samples);
|
|
||||||
// }
|
|
||||||
// else
|
|
||||||
// {
|
|
||||||
// /*
|
|
||||||
// * todo: There is a problem with the aligned version of volk_32fc_x2_multiply_32fc_a.
|
|
||||||
// * It crashes even if the is_aligned() work function returns true. Im keeping the unaligned version in both cases..
|
|
||||||
// */
|
|
||||||
// //use directly the input vector
|
|
||||||
// volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, integration_time * prn_length_samples);
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// volk_32fc_x2_dot_prod_32fc_a(E_out, bb_signal, E_code, integration_time * prn_length_samples);
|
|
||||||
// volk_32fc_x2_dot_prod_32fc_a(P_out, bb_signal, P_code, integration_time * prn_length_samples);
|
|
||||||
// volk_32fc_x2_dot_prod_32fc_a(L_out, bb_signal, L_code, integration_time * prn_length_samples);
|
|
||||||
// // Vector of Prompts of I code
|
// // Vector of Prompts of I code
|
||||||
// for (int i = 0; i < integration_time; i++)
|
// for (int i = 0; i < integration_time; i++)
|
||||||
// {
|
// {
|
||||||
// volk_32fc_x2_dot_prod_32fc_a(&P_data_out[i], &bb_signal[i*prn_length_samples], P_data_code, prn_length_samples);
|
// volk_32fc_x2_dot_prod_32fc(&P_data_out[i], &bb_signal[i*prn_length_samples], P_data_code, prn_length_samples);
|
||||||
// }
|
// }
|
||||||
//
|
//
|
||||||
// free(bb_signal);
|
// volk_free(bb_signal);
|
||||||
//
|
|
||||||
//}
|
//}
|
||||||
void Correlator::Carrier_wipeoff_and_EPL_volk_IQ(int signal_length_samples ,const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out, bool input_vector_unaligned)
|
|
||||||
|
void Correlator::Carrier_wipeoff_and_EPL_volk_IQ(int signal_length_samples ,const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out)
|
||||||
{
|
{
|
||||||
gr_complex* bb_signal;
|
gr_complex* bb_signal = (gr_complex*)volk_malloc(signal_length_samples * sizeof(gr_complex), volk_get_alignment());
|
||||||
//gr_complex* input_aligned;
|
|
||||||
|
|
||||||
bb_signal=(gr_complex*)volk_malloc(signal_length_samples * sizeof(gr_complex),volk_get_alignment());
|
volk_32fc_x2_multiply_32fc(bb_signal, input, carrier, signal_length_samples);
|
||||||
|
volk_32fc_x2_dot_prod_32fc(E_out, bb_signal, E_code, signal_length_samples);
|
||||||
if (input_vector_unaligned == true)
|
volk_32fc_x2_dot_prod_32fc(P_out, bb_signal, P_code, signal_length_samples);
|
||||||
{
|
volk_32fc_x2_dot_prod_32fc(L_out, bb_signal, L_code, signal_length_samples);
|
||||||
//todo: do something if posix_memalign fails
|
volk_32fc_x2_dot_prod_32fc(P_data_out, bb_signal, P_data_code, signal_length_samples);
|
||||||
//if (posix_memalign((void**)&input_aligned, 16, signal_length_samples * sizeof(gr_complex)) == 0){};
|
|
||||||
//memcpy(input_aligned,input,signal_length_samples * sizeof(gr_complex));
|
|
||||||
|
|
||||||
volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, signal_length_samples);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
/*
|
|
||||||
* todo: There is a problem with the aligned version of volk_32fc_x2_multiply_32fc_a.
|
|
||||||
* It crashes even if the is_aligned() work function returns true. Im keeping the unaligned version in both cases..
|
|
||||||
*/
|
|
||||||
//use directly the input vector
|
|
||||||
volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, signal_length_samples);
|
|
||||||
}
|
|
||||||
|
|
||||||
volk_32fc_x2_dot_prod_32fc_a(E_out, bb_signal, E_code, signal_length_samples);
|
|
||||||
volk_32fc_x2_dot_prod_32fc_a(P_out, bb_signal, P_code, signal_length_samples);
|
|
||||||
volk_32fc_x2_dot_prod_32fc_a(L_out, bb_signal, L_code, signal_length_samples);
|
|
||||||
volk_32fc_x2_dot_prod_32fc_a(P_data_out, bb_signal, P_data_code, signal_length_samples);
|
|
||||||
|
|
||||||
|
|
||||||
free(bb_signal);
|
|
||||||
|
|
||||||
|
volk_free(bb_signal);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void Correlator::Carrier_wipeoff_and_VEPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* VE_code, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* VL_code, gr_complex* VE_out, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* VL_out)
|
||||||
|
{
|
||||||
|
gr_complex* bb_signal = (gr_complex*)volk_malloc(signal_length_samples * sizeof(gr_complex), volk_get_alignment());
|
||||||
|
|
||||||
|
volk_32fc_x2_multiply_32fc(bb_signal, input, carrier, signal_length_samples);
|
||||||
|
volk_32fc_x2_dot_prod_32fc(VE_out, bb_signal, VE_code, signal_length_samples);
|
||||||
|
volk_32fc_x2_dot_prod_32fc(E_out, bb_signal, E_code, signal_length_samples);
|
||||||
|
volk_32fc_x2_dot_prod_32fc(P_out, bb_signal, P_code, signal_length_samples);
|
||||||
|
volk_32fc_x2_dot_prod_32fc(L_out, bb_signal, L_code, signal_length_samples);
|
||||||
|
volk_32fc_x2_dot_prod_32fc(VL_out, bb_signal, VL_code, signal_length_samples);
|
||||||
|
|
||||||
|
volk_free(bb_signal);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Correlator::Correlator ()
|
||||||
|
{}
|
||||||
|
|
||||||
|
|
||||||
|
Correlator::~Correlator ()
|
||||||
|
{}
|
||||||
|
|
||||||
|
|
||||||
#ifndef GENERIC_ARCH
|
#ifndef GENERIC_ARCH
|
||||||
void Correlator::Carrier_wipeoff_and_EPL_volk_custom(int signal_length_samples, const gr_complex* input, gr_complex* carrier,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, bool input_vector_unaligned)
|
void Correlator::Carrier_wipeoff_and_EPL_volk_custom(int signal_length_samples, const gr_complex* input, gr_complex* carrier,gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out)
|
||||||
{
|
{
|
||||||
volk_cw_epl_corr_u(input, carrier, E_code, P_code, L_code, E_out, P_out, L_out, signal_length_samples);
|
volk_cw_epl_corr_u(input, carrier, E_code, P_code, L_code, E_out, P_out, L_out, signal_length_samples);
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
void Correlator::Carrier_wipeoff_and_VEPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* VE_code, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* VL_code, gr_complex* VE_out, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* VL_out, bool input_vector_unaligned)
|
|
||||||
{
|
|
||||||
gr_complex* bb_signal;
|
|
||||||
//gr_complex* input_aligned;
|
|
||||||
|
|
||||||
bb_signal=(gr_complex*)volk_malloc(signal_length_samples * sizeof(gr_complex),volk_get_alignment());
|
|
||||||
|
|
||||||
if (input_vector_unaligned == false)
|
|
||||||
{
|
|
||||||
//todo: do something if posix_memalign fails
|
|
||||||
//if (posix_memalign((void**)&input_aligned, 16, signal_length_samples * sizeof(gr_complex)) == 0){};
|
|
||||||
//memcpy(input_aligned,input,signal_length_samples * sizeof(gr_complex));
|
|
||||||
|
|
||||||
volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, signal_length_samples);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
//use directly the input vector
|
|
||||||
volk_32fc_x2_multiply_32fc_u(bb_signal, input, carrier, signal_length_samples);
|
|
||||||
}
|
|
||||||
volk_32fc_x2_dot_prod_32fc_a(VE_out, bb_signal, VE_code, signal_length_samples);
|
|
||||||
volk_32fc_x2_dot_prod_32fc_a(E_out, bb_signal, E_code, signal_length_samples);
|
|
||||||
volk_32fc_x2_dot_prod_32fc_a(P_out, bb_signal, P_code, signal_length_samples);
|
|
||||||
volk_32fc_x2_dot_prod_32fc_a(L_out, bb_signal, L_code, signal_length_samples);
|
|
||||||
volk_32fc_x2_dot_prod_32fc_a(VL_out, bb_signal, VL_code, signal_length_samples);
|
|
||||||
|
|
||||||
free(bb_signal);
|
|
||||||
//if (input_vector_unaligned == false)
|
|
||||||
//{
|
|
||||||
//free(input_aligned);
|
|
||||||
//}
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
void Correlator::cpu_arch_test_volk_32fc_x2_dot_prod_32fc_a()
|
|
||||||
{
|
|
||||||
//
|
|
||||||
//struct volk_func_desc desc=volk_32fc_x2_dot_prod_32fc_a_get_func_desc();
|
|
||||||
volk_func_desc_t desc = volk_32fc_x2_dot_prod_32fc_get_func_desc();
|
|
||||||
|
|
||||||
std::vector<std::string> arch_list;
|
|
||||||
|
|
||||||
for(int i = 0; i < desc.n_archs; ++i)
|
|
||||||
{
|
|
||||||
//if(!(archs[i+1] & volk_get_lvarch())) continue; //this arch isn't available on this pc
|
|
||||||
arch_list.push_back(std::string(desc.indices[i]));
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
//first let's get a list of available architectures for the test
|
|
||||||
if(arch_list.size() < 2)
|
|
||||||
{
|
|
||||||
std::cout << "no architectures to test" << std::endl;
|
|
||||||
this->volk_32fc_x2_dot_prod_32fc_a_best_arch = "generic";
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
std::cout << "Detected architectures in this machine for volk_32fc_x2_dot_prod_32fc_a:" << std::endl;
|
|
||||||
for (unsigned int i=0; i < arch_list.size(); ++i)
|
|
||||||
{
|
|
||||||
std::cout << "Arch " << i << ":" << arch_list.at(i) << std::endl;
|
|
||||||
}
|
|
||||||
// TODO: Make a test to find the best architecture
|
|
||||||
this->volk_32fc_x2_dot_prod_32fc_a_best_arch = arch_list.at(arch_list.size() - 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::cout << "Selected architecture for volk_32fc_x2_dot_prod_32fc_a is " << this->volk_32fc_x2_dot_prod_32fc_a_best_arch << std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void Correlator::cpu_arch_test_volk_32fc_x2_multiply_32fc_a()
|
|
||||||
{
|
|
||||||
//
|
|
||||||
volk_func_desc_t desc = volk_32fc_x2_multiply_32fc_a_get_func_desc();
|
|
||||||
std::vector<std::string> arch_list;
|
|
||||||
|
|
||||||
for(int i = 0; i < desc.n_archs; ++i)
|
|
||||||
{
|
|
||||||
//if(!(archs[i+1] & volk_get_lvarch())) continue; //this arch isn't available on this pc
|
|
||||||
arch_list.push_back(std::string(desc.indices[i]));
|
|
||||||
}
|
|
||||||
|
|
||||||
this->volk_32fc_x2_multiply_32fc_a_best_arch = "generic";
|
|
||||||
//first let's get a list of available architectures for the test
|
|
||||||
if(arch_list.size() < 2)
|
|
||||||
{
|
|
||||||
std::cout << "no architectures to test" << std::endl;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
std::cout << "Detected architectures in this machine for volk_32fc_x2_multiply_32fc_a:" << std::endl;
|
|
||||||
for (unsigned int i=0; i < arch_list.size(); ++i)
|
|
||||||
{
|
|
||||||
std::cout << "Arch " << i << ":" << arch_list.at(i) << std::endl;
|
|
||||||
if (arch_list.at(i).find("sse") != std::string::npos)
|
|
||||||
{
|
|
||||||
// TODO: Make a test to find the best architecture
|
|
||||||
this->volk_32fc_x2_multiply_32fc_a_best_arch = arch_list.at(i);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
std::cout << "Selected architecture for volk_32fc_x2_multiply_32fc_a_best_arch is " << this->volk_32fc_x2_multiply_32fc_a_best_arch << std::endl;
|
|
||||||
}
|
|
||||||
*/
|
|
||||||
|
|
||||||
Correlator::Correlator ()
|
|
||||||
{
|
|
||||||
//cpu_arch_test_volk_32fc_x2_dot_prod_32fc_a();
|
|
||||||
//cpu_arch_test_volk_32fc_x2_multiply_32fc_a();
|
|
||||||
}
|
|
||||||
|
|
||||||
Correlator::~Correlator ()
|
|
||||||
{}
|
|
||||||
|
@ -54,22 +54,18 @@ class Correlator
|
|||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
void Carrier_wipeoff_and_EPL_generic(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out);
|
void Carrier_wipeoff_and_EPL_generic(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out);
|
||||||
void Carrier_wipeoff_and_EPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, bool input_vector_unaligned);
|
void Carrier_wipeoff_and_EPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out);
|
||||||
void Carrier_wipeoff_and_VEPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* VE_code, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* VL_code, gr_complex* VE_out, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* VL_out, bool input_vector_unaligned);
|
void Carrier_wipeoff_and_VEPL_volk(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* VE_code, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* VL_code, gr_complex* VE_out, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* VL_out);
|
||||||
// void Carrier_wipeoff_and_EPL_volk_IQ(int prn_length_samples,int integration_time ,const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out, bool input_vector_unaligned);
|
// void Carrier_wipeoff_and_EPL_volk_IQ(int prn_length_samples,int integration_time ,const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out);
|
||||||
void Carrier_wipeoff_and_EPL_volk_IQ(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out, bool input_vector_unaligned);
|
void Carrier_wipeoff_and_EPL_volk_IQ(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* P_data_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, gr_complex* P_data_out);
|
||||||
Correlator();
|
Correlator();
|
||||||
~Correlator();
|
~Correlator();
|
||||||
#ifndef GENERIC_ARCH
|
#ifndef GENERIC_ARCH
|
||||||
void Carrier_wipeoff_and_EPL_volk_custom(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out, bool input_vector_unaligned);
|
void Carrier_wipeoff_and_EPL_volk_custom(int signal_length_samples, const gr_complex* input, gr_complex* carrier, gr_complex* E_code, gr_complex* P_code, gr_complex* L_code, gr_complex* E_out, gr_complex* P_out, gr_complex* L_out);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
private:
|
private:
|
||||||
std::string volk_32fc_x2_multiply_32fc_a_best_arch;
|
|
||||||
std::string volk_32fc_x2_dot_prod_32fc_a_best_arch;
|
|
||||||
unsigned long next_power_2(unsigned long v);
|
unsigned long next_power_2(unsigned long v);
|
||||||
void cpu_arch_test_volk_32fc_x2_dot_prod_32fc_a();
|
|
||||||
void cpu_arch_test_volk_32fc_x2_multiply_32fc_a();
|
|
||||||
};
|
};
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user