1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-04-05 02:07:02 +00:00

Upgrading Galileo PVT and Hybrid PVT chains with the latest bug fixes for GPS

This commit is contained in:
Javier Arribas 2017-02-03 13:00:50 +01:00
parent b8ba57b9cf
commit fc7ff7ba0b
6 changed files with 435 additions and 376 deletions

View File

@ -287,6 +287,11 @@ int galileo_e1_pvt_cc::general_work (int noutput_items __attribute__((unused)),
if (pvt_result == true)
{
// correct the observable to account for the receiver clock offset
for (std::map<int,Gnss_Synchro>::iterator it = gnss_observables_map.begin(); it != gnss_observables_map.end(); ++it)
{
it->second.Pseudorange_m = it->second.Pseudorange_m - d_ls_pvt->d_rx_dt_s * GPS_C_m_s;
}
if( first_fix == true)
{
std::cout << "First position fix at " << boost::posix_time::to_simple_string(d_ls_pvt->d_position_UTC_time)

View File

@ -455,6 +455,22 @@ int hybrid_pvt_cc::general_work (int noutput_items __attribute__((unused)), gr_v
if (pvt_result == true)
{
// correct the observable to account for the receiver clock offset
for (std::map<int,Gnss_Synchro>::iterator it = gnss_observables_map.begin(); it != gnss_observables_map.end(); ++it)
{
it->second.Pseudorange_m = it->second.Pseudorange_m - d_ls_pvt->d_rx_dt_s * GPS_C_m_s;
}
if(first_fix == true)
{
std::cout << "First position fix at " << boost::posix_time::to_simple_string(d_ls_pvt->d_position_UTC_time)
<< " UTC is Lat = " << d_ls_pvt->d_latitude_d << " [deg], Long = " << d_ls_pvt->d_longitude_d
<< " [deg], Height= " << d_ls_pvt->d_height_m << " [m]" << std::endl;
ttff_msgbuf ttff;
ttff.mtype = 1;
ttff.ttff = d_sample_counter;
send_sys_v_ttff_msg(ttff);
first_fix = false;
}
d_kml_dump->print_position(d_ls_pvt, d_flag_averaging);
d_geojson_printer->print_position(d_ls_pvt, d_flag_averaging);
d_nmea_printer->Print_Nmea_Line(d_ls_pvt, d_flag_averaging);

View File

@ -48,21 +48,21 @@ galileo_e1_ls_pvt::galileo_e1_ls_pvt(int nchannels, std::string dump_filename, b
// ############# ENABLE DATA FILE LOG #################
if (d_flag_dump_enabled == true)
{
if (d_dump_file.is_open() == false)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
}
}
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
}
}
}
}
@ -78,11 +78,10 @@ bool galileo_e1_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map
{
std::map<int,Gnss_Synchro>::iterator gnss_pseudoranges_iter;
std::map<int,Galileo_Ephemeris>::iterator galileo_ephemeris_iter;
int valid_pseudoranges = gnss_pseudoranges_map.size();
arma::mat W = arma::eye(valid_pseudoranges, valid_pseudoranges); // channels weights matrix
arma::vec obs = arma::zeros(valid_pseudoranges); // pseudoranges observation vector
arma::mat satpos = arma::zeros(3, valid_pseudoranges); // satellite positions matrix
arma::vec W; // channels weight vector
arma::vec obs; // pseudoranges observation vector
arma::mat satpos; // satellite positions matrix
int Galileo_week_number = 0;
double utc = 0.0;
@ -96,60 +95,62 @@ bool galileo_e1_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map
// ****** PREPARE THE LEAST SQUARES DATA (SV POSITIONS MATRIX AND OBS VECTORS) ****
// ********************************************************************************
int valid_obs = 0; //valid observations counter
int obs_counter = 0;
for(gnss_pseudoranges_iter = gnss_pseudoranges_map.begin();
gnss_pseudoranges_iter != gnss_pseudoranges_map.end();
gnss_pseudoranges_iter++)
{
// 1- find the ephemeris for the current SV observation. The SV PRN ID is the map key
galileo_ephemeris_iter = galileo_ephemeris_map.find(gnss_pseudoranges_iter->first);
if (galileo_ephemeris_iter != galileo_ephemeris_map.end())
{
// 1- find the ephemeris for the current SV observation. The SV PRN ID is the map key
galileo_ephemeris_iter = galileo_ephemeris_map.find(gnss_pseudoranges_iter->first);
if (galileo_ephemeris_iter != galileo_ephemeris_map.end())
{
/*!
* \todo Place here the satellite CN0 (power level, or weight factor)
*/
W(obs_counter, obs_counter) = 1.0;
/*!
* \todo Place here the satellite CN0 (power level, or weight factor)
*/
W.resize(valid_obs + 1, 1);
W(valid_obs) = 1;
// COMMON RX TIME PVT ALGORITHM
double Rx_time = galileo_current_time;
double Tx_time = Rx_time - gnss_pseudoranges_iter->second.Pseudorange_m / GALILEO_C_m_s;
// COMMON RX TIME PVT ALGORITHM
double Rx_time = galileo_current_time;
double Tx_time = Rx_time - gnss_pseudoranges_iter->second.Pseudorange_m / GALILEO_C_m_s;
// 2- compute the clock drift using the clock model (broadcast) for this SV, including relativistic effect
SV_clock_bias_s = galileo_ephemeris_iter->second.sv_clock_drift(Tx_time);
// 2- compute the clock drift using the clock model (broadcast) for this SV, including relativistic effect
SV_clock_bias_s = galileo_ephemeris_iter->second.sv_clock_drift(Tx_time);
// 3- compute the current ECEF position for this SV using corrected TX time
TX_time_corrected_s = Tx_time - SV_clock_bias_s;
galileo_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
// 3- compute the current ECEF position for this SV using corrected TX time
TX_time_corrected_s = Tx_time - SV_clock_bias_s;
galileo_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
satpos(0,obs_counter) = galileo_ephemeris_iter->second.d_satpos_X;
satpos(1,obs_counter) = galileo_ephemeris_iter->second.d_satpos_Y;
satpos(2,obs_counter) = galileo_ephemeris_iter->second.d_satpos_Z;
//store satellite positions in a matrix
satpos.resize(3, valid_obs + 1);
satpos(0, valid_obs) = galileo_ephemeris_iter->second.d_satpos_X;
satpos(1, valid_obs) = galileo_ephemeris_iter->second.d_satpos_Y;
satpos(2, valid_obs) = galileo_ephemeris_iter->second.d_satpos_Z;
// 4- fill the observations vector with the corrected pseudoranges
obs(obs_counter) = gnss_pseudoranges_iter->second.Pseudorange_m + SV_clock_bias_s * GALILEO_C_m_s;
d_visible_satellites_IDs[valid_obs] = galileo_ephemeris_iter->second.i_satellite_PRN;
d_visible_satellites_CN0_dB[valid_obs] = gnss_pseudoranges_iter->second.CN0_dB_hz;
valid_obs++;
// 4- fill the observations vector with the corrected pseudoranges
obs.resize(valid_obs + 1, 1);
obs(valid_obs) = gnss_pseudoranges_iter->second.Pseudorange_m + SV_clock_bias_s * GALILEO_C_m_s - d_rx_dt_s * GALILEO_C_m_s;
d_visible_satellites_IDs[valid_obs] = galileo_ephemeris_iter->second.i_satellite_PRN;
d_visible_satellites_CN0_dB[valid_obs] = gnss_pseudoranges_iter->second.CN0_dB_hz;
Galileo_week_number = galileo_ephemeris_iter->second.WN_5; //for GST
GST = galileo_ephemeris_map.find(gnss_pseudoranges_iter->first)->second.Galileo_System_Time(Galileo_week_number, galileo_current_time);
// SV ECEF DEBUG OUTPUT
DLOG(INFO) << "ECEF satellite SV ID=" << galileo_ephemeris_iter->second.i_satellite_PRN
<< " X=" << galileo_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << galileo_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << galileo_ephemeris_iter->second.d_satpos_Z
<< " [m] PR_obs=" << obs(obs_counter) << " [m]";
}
else // the ephemeris are not available for this SV
{
// no valid pseudorange for the current SV
W(obs_counter, obs_counter) = 0; // SV de-activated
obs(obs_counter) = 1; // to avoid algorithm problems (divide by zero)
DLOG(INFO) << "No ephemeris data for SV "<< gnss_pseudoranges_iter->first;
}
obs_counter++;
Galileo_week_number = galileo_ephemeris_iter->second.WN_5; //for GST
GST = galileo_ephemeris_map.find(gnss_pseudoranges_iter->first)->second.Galileo_System_Time(Galileo_week_number, galileo_current_time);
// SV ECEF DEBUG OUTPUT
DLOG(INFO) << "ECEF satellite SV ID=" << galileo_ephemeris_iter->second.i_satellite_PRN
<< " X=" << galileo_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << galileo_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << galileo_ephemeris_iter->second.d_satpos_Z
<< " [m] PR_obs=" << obs(valid_obs) << " [m]";
valid_obs++;
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV "<< gnss_pseudoranges_iter->first;
}
}
// ********************************************************************************
// ****** SOLVE LEAST SQUARES******************************************************
@ -158,78 +159,91 @@ bool galileo_e1_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map
LOG(INFO) << "Galileo PVT: valid observations=" << valid_obs;
if (valid_obs >= 4)
{
arma::vec rx_position_and_time;
DLOG(INFO) << "satpos=" << satpos;
DLOG(INFO) << "obs="<< obs;
DLOG(INFO) << "W=" << W;
// check if this is the initial position computation
if (d_rx_dt_s == 0)
{
arma::vec mypos;
DLOG(INFO) << "satpos=" << satpos;
DLOG(INFO) << "obs="<< obs;
DLOG(INFO) << "W=" << W;
mypos = leastSquarePos(satpos, obs, W);
// Compute Gregorian time
utc = galileo_utc_model.GST_to_UTC_time(GST, Galileo_week_number);
// get time string Gregorian calendar
boost::posix_time::time_duration t = boost::posix_time::seconds(utc);
// 22 August 1999 00:00 last Galileo start GST epoch (ICD sec 5.1.2)
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
d_position_UTC_time = p_time;
DLOG(INFO) << "Galileo Position at TOW=" << galileo_current_time << " in ECEF (X,Y,Z) = " << mypos;
cart2geo(static_cast<double>(mypos(0)), static_cast<double>(mypos(1)), static_cast<double>(mypos(2)), 4);
d_rx_dt_s = mypos(3)/GALILEO_C_m_s; // Convert RX time offset from meters to seconds
DLOG(INFO) << "Galileo Position at " << boost::posix_time::to_simple_string(p_time)
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
<< " [deg], Height= " << d_height_m << " [m]" << " RX time offset= " << d_rx_dt_s << " [s]";
// ###### Compute DOPs ########
compute_DOP();
// ######## LOG FILE #########
if(d_flag_dump_enabled == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
// PVT GPS time
tmp_double = galileo_current_time;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position East [m]
tmp_double = mypos(0);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position North [m]
tmp_double = mypos(1);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position Up [m]
tmp_double = mypos(2);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// User clock offset [s]
tmp_double = mypos(3);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Latitude [deg]
tmp_double = d_latitude_d;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Longitude [deg]
tmp_double = d_longitude_d;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Height [m]
tmp_double = d_height_m;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
catch (const std::ifstream::failure& e)
{
LOG(WARNING) << "Exception writing PVT LS dump file "<< e.what();
}
}
// MOVING AVERAGE PVT
galileo_e1_ls_pvt::pos_averaging(flag_averaging);
// execute Bancroft's algorithm to estimate initial receiver position and time
DLOG(INFO) << " Executing Bancroft algorithm...";
rx_position_and_time = bancroftPos(satpos.t(), obs);
d_rx_pos = rx_position_and_time.rows(0, 2); // save ECEF position for the next iteration
d_rx_dt_s = rx_position_and_time(3) / GALILEO_C_m_s; // save time for the next iteration [meters]->[seconds]
}
// Execute WLS using previous position as the initialization point
rx_position_and_time = leastSquarePos(satpos, obs, W);
d_rx_pos = rx_position_and_time.rows(0, 2); // save ECEF position for the next iteration
d_rx_dt_s += rx_position_and_time(3) / GALILEO_C_m_s; // accumulate the rx time error for the next iteration [meters]->[seconds]
// Compute Gregorian time
utc = galileo_utc_model.GST_to_UTC_time(GST, Galileo_week_number);
// get time string Gregorian calendar
boost::posix_time::time_duration t = boost::posix_time::seconds(utc);
// 22 August 1999 00:00 last Galileo start GST epoch (ICD sec 5.1.2)
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
d_position_UTC_time = p_time;
DLOG(INFO) << "Galileo Position at TOW=" << galileo_current_time << " in ECEF (X,Y,Z) = " << rx_position_and_time;
cart2geo(static_cast<double>(rx_position_and_time(0)), static_cast<double>(rx_position_and_time(1)), static_cast<double>(rx_position_and_time(2)), 4);
d_rx_dt_s = rx_position_and_time(3)/GALILEO_C_m_s; // Convert RX time offset from meters to seconds
DLOG(INFO) << "Galileo Position at " << boost::posix_time::to_simple_string(p_time)
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
<< " [deg], Height= " << d_height_m << " [m]" << " RX time offset= " << d_rx_dt_s << " [s]";
// ###### Compute DOPs ########
compute_DOP();
// ######## LOG FILE #########
if(d_flag_dump_enabled == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
// PVT GPS time
tmp_double = galileo_current_time;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position East [m]
tmp_double = rx_position_and_time(0);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position North [m]
tmp_double = rx_position_and_time(1);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position Up [m]
tmp_double = rx_position_and_time(2);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// User clock offset [s]
tmp_double = rx_position_and_time(3);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Latitude [deg]
tmp_double = d_latitude_d;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Longitude [deg]
tmp_double = d_longitude_d;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Height [m]
tmp_double = d_height_m;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
catch (const std::ifstream::failure& e)
{
LOG(WARNING) << "Exception writing PVT LS dump file "<< e.what();
}
}
// MOVING AVERAGE PVT
galileo_e1_ls_pvt::pos_averaging(flag_averaging);
}
else
{
b_valid_position = false;
}
{
b_valid_position = false;
}
return b_valid_position;
}

View File

@ -133,7 +133,6 @@ bool gps_l1_ca_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map,
obs(valid_obs) = gnss_pseudoranges_iter->second.Pseudorange_m + dtr * GPS_C_m_s - d_rx_dt_s * GPS_C_m_s;
d_visible_satellites_IDs[valid_obs] = gps_ephemeris_iter->second.i_satellite_PRN;
d_visible_satellites_CN0_dB[valid_obs] = gnss_pseudoranges_iter->second.CN0_dB_hz;
valid_obs++;
// SV ECEF DEBUG OUTPUT
DLOG(INFO) << "(new)ECEF satellite SV ID=" << gps_ephemeris_iter->second.i_satellite_PRN
@ -142,6 +141,7 @@ bool gps_l1_ca_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_pseudoranges_map,
<< " [m] Z=" << gps_ephemeris_iter->second.d_satpos_Z
<< " [m] PR_obs=" << obs(valid_obs) << " [m]";
valid_obs++;
// compute the UTC time for this SV (just to print the associated UTC timestamp)
GPS_week = gps_ephemeris_iter->second.i_GPS_week;
utc = gps_utc_model.utc_time(TX_time_corrected_s, GPS_week);

View File

@ -47,21 +47,21 @@ hybrid_ls_pvt::hybrid_ls_pvt(int nchannels, std::string dump_filename, bool flag
d_flag_averaging = false;
// ############# ENABLE DATA FILE LOG #################
if (d_flag_dump_enabled == true)
{
if (d_dump_file.is_open() == false)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
}
}
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "PVT lib dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception opening PVT lib dump file " << e.what();
}
}
}
}
@ -78,11 +78,9 @@ bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_observables_map, dou
std::map<int,Gps_Ephemeris>::iterator gps_ephemeris_iter;
std::map<int,Gps_CNAV_Ephemeris>::iterator gps_cnav_ephemeris_iter;
int valid_observables = gnss_observables_map.size();
arma::mat W = arma::eye(valid_observables, valid_observables); // channels weights matrix
arma::vec obs = arma::zeros(valid_observables); // observables observation vector
arma::mat satpos = arma::zeros(3, valid_observables); // satellite positions matrix
arma::vec W; // channels weight vector
arma::vec obs; // pseudoranges observation vector
arma::mat satpos; // satellite positions matrix
int Galileo_week_number = 0;
int GPS_week = 0;
@ -98,168 +96,184 @@ bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_observables_map, dou
// ****** PREPARE THE LEAST SQUARES DATA (SV POSITIONS MATRIX AND OBS VECTORS) ****
// ********************************************************************************
int valid_obs = 0; //valid observations counter
int obs_counter = 0;
for(gnss_observables_iter = gnss_observables_map.begin();
gnss_observables_iter != gnss_observables_map.end();
gnss_observables_iter++)
{
switch(gnss_observables_iter->second.System)
{
if(gnss_observables_iter->second.System == 'E')
{
// 1 Gal - find the ephemeris for the current GALILEO SV observation. The SV PRN ID is the map key
galileo_ephemeris_iter = galileo_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (galileo_ephemeris_iter != galileo_ephemeris_map.end())
{
/*!
* \todo Place here the satellite CN0 (power level, or weight factor)
*/
W(obs_counter, obs_counter) = 1;
case 'E':
{
// 1 Gal - find the ephemeris for the current GALILEO SV observation. The SV PRN ID is the map key
galileo_ephemeris_iter = galileo_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (galileo_ephemeris_iter != galileo_ephemeris_map.end())
{
/*!
* \todo Place here the satellite CN0 (power level, or weight factor)
*/
W.resize(valid_obs + 1, 1);
W(valid_obs) = 1;
// COMMON RX TIME PVT ALGORITHM
double Rx_time = hybrid_current_time;
double Tx_time = Rx_time - gnss_observables_iter->second.Pseudorange_m / GALILEO_C_m_s;
// COMMON RX TIME PVT ALGORITHM
double Rx_time = hybrid_current_time;
double Tx_time = Rx_time - gnss_observables_iter->second.Pseudorange_m / GALILEO_C_m_s;
// 2- compute the clock drift using the clock model (broadcast) for this SV
SV_clock_bias_s = galileo_ephemeris_iter->second.sv_clock_drift(Tx_time);
// 2- compute the clock drift using the clock model (broadcast) for this SV
SV_clock_bias_s = galileo_ephemeris_iter->second.sv_clock_drift(Tx_time);
// 3- compute the current ECEF position for this SV using corrected TX time
TX_time_corrected_s = Tx_time - SV_clock_bias_s;
galileo_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
// 3- compute the current ECEF position for this SV using corrected TX time
TX_time_corrected_s = Tx_time - SV_clock_bias_s;
galileo_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
satpos(0,obs_counter) = galileo_ephemeris_iter->second.d_satpos_X;
satpos(1,obs_counter) = galileo_ephemeris_iter->second.d_satpos_Y;
satpos(2,obs_counter) = galileo_ephemeris_iter->second.d_satpos_Z;
//store satellite positions in a matrix
satpos.resize(3, valid_obs + 1);
satpos(0, valid_obs) = galileo_ephemeris_iter->second.d_satpos_X;
satpos(1, valid_obs) = galileo_ephemeris_iter->second.d_satpos_Y;
satpos(2, valid_obs) = galileo_ephemeris_iter->second.d_satpos_Z;
// 5- fill the observations vector with the corrected observables
obs(obs_counter) = gnss_observables_iter->second.Pseudorange_m + SV_clock_bias_s * GALILEO_C_m_s;
d_visible_satellites_IDs[valid_obs] = galileo_ephemeris_iter->second.i_satellite_PRN;
d_visible_satellites_CN0_dB[valid_obs] = gnss_observables_iter->second.CN0_dB_hz;
valid_obs++;
Galileo_week_number = galileo_ephemeris_iter->second.WN_5; //for GST
GST = galileo_ephemeris_iter->second.Galileo_System_Time(Galileo_week_number, hybrid_current_time);
// 4- fill the observations vector with the corrected observables
obs.resize(valid_obs + 1, 1);
obs(valid_obs) = gnss_observables_iter->second.Pseudorange_m + SV_clock_bias_s * GALILEO_C_m_s - d_rx_dt_s * GALILEO_C_m_s;
d_visible_satellites_IDs[valid_obs] = galileo_ephemeris_iter->second.i_satellite_PRN;
d_visible_satellites_CN0_dB[valid_obs] = gnss_observables_iter->second.CN0_dB_hz;
// SV ECEF DEBUG OUTPUT
DLOG(INFO) << "ECEF satellite SV ID=" << galileo_ephemeris_iter->second.i_satellite_PRN
<< " X=" << galileo_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << galileo_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << galileo_ephemeris_iter->second.d_satpos_Z
<< " [m] PR_obs=" << obs(obs_counter) << " [m]";
}
else // the ephemeris are not available for this SV
{
// no valid pseudorange for the current SV
W(obs_counter, obs_counter) = 0; // SV de-activated
obs(obs_counter) = 1; // to avoid algorithm problems (divide by zero)
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
else if(gnss_observables_iter->second.System == 'G')
{
//std::cout << "Satellite System: " << gnss_observables_iter->second.System <<std::endl;
// 1 GPS - find the ephemeris for the current GPS SV observation. The SV PRN ID is the map key
std::string sig_(gnss_observables_iter->second.Signal);
if(sig_.compare("1C") == 0)
{
gps_ephemeris_iter = gps_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_ephemeris_iter != gps_ephemeris_map.end())
{
/*!
* \todo Place here the satellite CN0 (power level, or weight factor)
*/
W(obs_counter, obs_counter) = 1;
Galileo_week_number = galileo_ephemeris_iter->second.WN_5; //for GST
GST = galileo_ephemeris_iter->second.Galileo_System_Time(Galileo_week_number, hybrid_current_time);
// COMMON RX TIME PVT ALGORITHM MODIFICATION (Like RINEX files)
// first estimate of transmit time
double Rx_time = hybrid_current_time;
double Tx_time = Rx_time - gnss_observables_iter->second.Pseudorange_m / GPS_C_m_s;
// SV ECEF DEBUG OUTPUT
DLOG(INFO) << "ECEF satellite SV ID=" << galileo_ephemeris_iter->second.i_satellite_PRN
<< " X=" << galileo_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << galileo_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << galileo_ephemeris_iter->second.d_satpos_Z
<< " [m] PR_obs=" << obs(valid_obs) << " [m]";
// 2- compute the clock drift using the clock model (broadcast) for this SV
SV_clock_bias_s = gps_ephemeris_iter->second.sv_clock_drift(Tx_time);
valid_obs++;
}
// 3- compute the current ECEF position for this SV using corrected TX time
TX_time_corrected_s = Tx_time - SV_clock_bias_s;
gps_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
satpos(0, obs_counter) = gps_ephemeris_iter->second.d_satpos_X;
satpos(1, obs_counter) = gps_ephemeris_iter->second.d_satpos_Y;
satpos(2, obs_counter) = gps_ephemeris_iter->second.d_satpos_Z;
// 5- fill the observations vector with the corrected observables
obs(obs_counter) = gnss_observables_iter->second.Pseudorange_m + SV_clock_bias_s * GPS_C_m_s;
d_visible_satellites_IDs[valid_obs] = gps_ephemeris_iter->second.i_satellite_PRN;
d_visible_satellites_CN0_dB[valid_obs] = gnss_observables_iter->second.CN0_dB_hz;
valid_obs++;
GPS_week = gps_ephemeris_iter->second.i_GPS_week;
// SV ECEF DEBUG OUTPUT
DLOG(INFO) << "(new)ECEF satellite SV ID=" << gps_ephemeris_iter->second.i_satellite_PRN
<< " X=" << gps_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << gps_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << gps_ephemeris_iter->second.d_satpos_Z
<< " [m] PR_obs=" << obs(obs_counter) << " [m]";
}
else // the ephemeris are not available for this SV
{
// no valid pseudorange for the current SV
W(obs_counter, obs_counter) = 0; // SV de-activated
obs(obs_counter) = 1; // to avoid algorithm problems (divide by zero)
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
if(sig_.compare("2S") == 0)
{
gps_cnav_ephemeris_iter = gps_cnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_cnav_ephemeris_iter != gps_cnav_ephemeris_map.end())
{
/*!
* \todo Place here the satellite CN0 (power level, or weight factor)
*/
W(obs_counter, obs_counter) = 1;
// COMMON RX TIME PVT ALGORITHM MODIFICATION (Like RINEX files)
// first estimate of transmit time
double Rx_time = hybrid_current_time;
double Tx_time = Rx_time - gnss_observables_iter->second.Pseudorange_m / GPS_C_m_s;
// 2- compute the clock drift using the clock model (broadcast) for this SV
SV_clock_bias_s = gps_cnav_ephemeris_iter->second.sv_clock_drift(Tx_time);
// 3- compute the current ECEF position for this SV using corrected TX time
TX_time_corrected_s = Tx_time - SV_clock_bias_s;
gps_cnav_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
satpos(0, obs_counter) = gps_cnav_ephemeris_iter->second.d_satpos_X;
satpos(1, obs_counter) = gps_cnav_ephemeris_iter->second.d_satpos_Y;
satpos(2, obs_counter) = gps_cnav_ephemeris_iter->second.d_satpos_Z;
// 5- fill the observations vector with the corrected observables
obs(obs_counter) = gnss_observables_iter->second.Pseudorange_m + SV_clock_bias_s * GPS_C_m_s;
d_visible_satellites_IDs[valid_obs] = gps_cnav_ephemeris_iter->second.i_satellite_PRN;
d_visible_satellites_CN0_dB[valid_obs] = gnss_observables_iter->second.CN0_dB_hz;
valid_obs++;
GPS_week = gps_cnav_ephemeris_iter->second.i_GPS_week;
// SV ECEF DEBUG OUTPUT
DLOG(INFO) << "(new)ECEF satellite SV ID=" << gps_cnav_ephemeris_iter->second.i_satellite_PRN
<< " X=" << gps_cnav_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << gps_cnav_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << gps_cnav_ephemeris_iter->second.d_satpos_Z
<< " [m] PR_obs=" << obs(obs_counter) << " [m]";
}
else // the ephemeris are not available for this SV
{
// no valid pseudorange for the current SV
W(obs_counter, obs_counter) = 0; // SV de-activated
obs(obs_counter) = 1; // to avoid algorithm problems (divide by zero)
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
}
obs_counter++;
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
break;
}
case 'G':
{
// 1 GPS - find the ephemeris for the current GPS SV observation. The SV PRN ID is the map key
std::string sig_(gnss_observables_iter->second.Signal);
if(sig_.compare("1C") == 0)
{
gps_ephemeris_iter = gps_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_ephemeris_iter != gps_ephemeris_map.end())
{
/*!
* \todo Place here the satellite CN0 (power level, or weight factor)
*/
W.resize(valid_obs + 1, 1);
W(valid_obs) = 1;
// COMMON RX TIME PVT ALGORITHM MODIFICATION (Like RINEX files)
// first estimate of transmit time
double Rx_time = hybrid_current_time;
double Tx_time = Rx_time - gnss_observables_iter->second.Pseudorange_m / GPS_C_m_s;
// 2- compute the clock drift using the clock model (broadcast) for this SV, not including relativistic effect
SV_clock_bias_s = gps_ephemeris_iter->second.sv_clock_drift(Tx_time); //- gps_ephemeris_iter->second.d_TGD;
// 3- compute the current ECEF position for this SV using corrected TX time and obtain clock bias including relativistic effect
TX_time_corrected_s = Tx_time - SV_clock_bias_s;
double dtr = gps_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
//store satellite positions in a matrix
satpos.resize(3, valid_obs + 1);
satpos(0, valid_obs) = gps_ephemeris_iter->second.d_satpos_X;
satpos(1, valid_obs) = gps_ephemeris_iter->second.d_satpos_Y;
satpos(2, valid_obs) = gps_ephemeris_iter->second.d_satpos_Z;
// 4- fill the observations vector with the corrected pseudoranges
obs.resize(valid_obs + 1, 1);
obs(valid_obs) = gnss_observables_iter->second.Pseudorange_m + dtr * GPS_C_m_s - d_rx_dt_s * GPS_C_m_s;
d_visible_satellites_IDs[valid_obs] = gps_ephemeris_iter->second.i_satellite_PRN;
d_visible_satellites_CN0_dB[valid_obs] = gnss_observables_iter->second.CN0_dB_hz;
// SV ECEF DEBUG OUTPUT
DLOG(INFO) << "(new)ECEF satellite SV ID=" << gps_ephemeris_iter->second.i_satellite_PRN
<< " X=" << gps_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << gps_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << gps_ephemeris_iter->second.d_satpos_Z
<< " [m] PR_obs=" << obs(valid_obs) << " [m]";
valid_obs++;
// compute the UTC time for this SV (just to print the associated UTC timestamp)
GPS_week = gps_ephemeris_iter->second.i_GPS_week;
utc = gps_utc_model.utc_time(TX_time_corrected_s, GPS_week);
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->first;
}
}
if(sig_.compare("2S") == 0)
{
gps_cnav_ephemeris_iter = gps_cnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_cnav_ephemeris_iter != gps_cnav_ephemeris_map.end())
{
/*!
* \todo Place here the satellite CN0 (power level, or weight factor)
*/
W.resize(valid_obs + 1, 1);
W(valid_obs) = 1;
// COMMON RX TIME PVT ALGORITHM MODIFICATION (Like RINEX files)
// first estimate of transmit time
double Rx_time = hybrid_current_time;
double Tx_time = Rx_time - gnss_observables_iter->second.Pseudorange_m / GPS_C_m_s;
// 2- compute the clock drift using the clock model (broadcast) for this SV
SV_clock_bias_s = gps_cnav_ephemeris_iter->second.sv_clock_drift(Tx_time);
// 3- compute the current ECEF position for this SV using corrected TX time
TX_time_corrected_s = Tx_time - SV_clock_bias_s;
gps_cnav_ephemeris_iter->second.satellitePosition(TX_time_corrected_s);
//store satellite positions in a matrix
satpos.resize(3, valid_obs + 1);
satpos(0, valid_obs) = gps_cnav_ephemeris_iter->second.d_satpos_X;
satpos(1, valid_obs) = gps_cnav_ephemeris_iter->second.d_satpos_Y;
satpos(2, valid_obs) = gps_cnav_ephemeris_iter->second.d_satpos_Z;
// 4- fill the observations vector with the corrected observables
obs.resize(valid_obs + 1, 1);
obs(valid_obs) = gnss_observables_iter->second.Pseudorange_m + SV_clock_bias_s * GPS_C_m_s;
d_visible_satellites_IDs[valid_obs] = gps_cnav_ephemeris_iter->second.i_satellite_PRN;
d_visible_satellites_CN0_dB[valid_obs] = gnss_observables_iter->second.CN0_dB_hz;
GPS_week = gps_cnav_ephemeris_iter->second.i_GPS_week;
// SV ECEF DEBUG OUTPUT
DLOG(INFO) << "(new)ECEF satellite SV ID=" << gps_cnav_ephemeris_iter->second.i_satellite_PRN
<< " X=" << gps_cnav_ephemeris_iter->second.d_satpos_X
<< " [m] Y=" << gps_cnav_ephemeris_iter->second.d_satpos_Y
<< " [m] Z=" << gps_cnav_ephemeris_iter->second.d_satpos_Z
<< " [m] PR_obs=" << obs(valid_obs) << " [m]";
valid_obs++;
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
break;
}
default :
DLOG(INFO) << "Hybrid observables: Unknown GNSS";
break;
}
}
// ********************************************************************************
// ****** SOLVE LEAST SQUARES******************************************************
@ -269,86 +283,101 @@ bool hybrid_ls_pvt::get_PVT(std::map<int,Gnss_Synchro> gnss_observables_map, dou
LOG(INFO) << "HYBRID PVT: valid observations=" << valid_obs;
if(valid_obs >= 4)
{
arma::vec rx_position_and_time;
DLOG(INFO) << "satpos=" << satpos;
DLOG(INFO) << "obs=" << obs;
DLOG(INFO) << "W=" << W;
// check if this is the initial position computation
if (d_rx_dt_s == 0)
{
// execute Bancroft's algorithm to estimate initial receiver position and time
DLOG(INFO) << " Executing Bancroft algorithm...";
rx_position_and_time = bancroftPos(satpos.t(), obs);
d_rx_pos = rx_position_and_time.rows(0, 2); // save ECEF position for the next iteration
d_rx_dt_s = rx_position_and_time(3) / GPS_C_m_s; // save time for the next iteration [meters]->[seconds]
}
// Execute WLS using previous position as the initialization point
rx_position_and_time = leastSquarePos(satpos, obs, W);
d_rx_pos = rx_position_and_time.rows(0, 2); // save ECEF position for the next iteration
d_rx_dt_s += rx_position_and_time(3) / GPS_C_m_s; // accumulate the rx time error for the next iteration [meters]->[seconds]
DLOG(INFO) << "Hybrid Position at TOW=" << hybrid_current_time << " in ECEF (X,Y,Z,t[meters]) = " << rx_position_and_time;
DLOG(INFO) << "Accumulated rx clock error=" << d_rx_dt_s << " clock error for this iteration=" << rx_position_and_time(3) / GPS_C_m_s << " [s]";
double secondsperweek = 604800.0;
// Compute GST and Gregorian time
if( GST != 0.0)
{
arma::vec mypos;
DLOG(INFO) << "satpos=" << satpos;
DLOG(INFO) << "obs=" << obs;
DLOG(INFO) << "W=" << W;
mypos = leastSquarePos(satpos, obs, W);
d_rx_dt_s = mypos(3) / GPS_C_m_s; // Convert RX time offset from meters to seconds
double secondsperweek = 604800.0;
// Compute GST and Gregorian time
if( GST != 0.0)
{
utc = galileo_utc_model.GST_to_UTC_time(GST, Galileo_week_number);
}
else
{
utc = gps_utc_model.utc_time(TX_time_corrected_s, GPS_week) + secondsperweek * static_cast<double>(GPS_week);
}
// get time string Gregorian calendar
boost::posix_time::time_duration t = boost::posix_time::seconds(utc);
// 22 August 1999 00:00 last Galileo start GST epoch (ICD sec 5.1.2)
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
d_position_UTC_time = p_time;
DLOG(INFO) << "HYBRID Position at TOW=" << hybrid_current_time << " in ECEF (X,Y,Z) = " << mypos;
cart2geo(static_cast<double>(mypos(0)), static_cast<double>(mypos(1)), static_cast<double>(mypos(2)), 4);
DLOG(INFO) << "Hybrid Position at " << boost::posix_time::to_simple_string(p_time)
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
<< " [deg], Height= " << d_height_m << " [m]" << " RX time offset= " << d_rx_dt_s << " [s]";
// ###### Compute DOPs ########
hybrid_ls_pvt::compute_DOP();
// ######## LOG FILE #########
if(d_flag_dump_enabled == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
// PVT GPS time
tmp_double = hybrid_current_time;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position East [m]
tmp_double = mypos(0);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position North [m]
tmp_double = mypos(1);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position Up [m]
tmp_double = mypos(2);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// User clock offset [s]
tmp_double = mypos(3);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Latitude [deg]
tmp_double = d_latitude_d;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Longitude [deg]
tmp_double = d_longitude_d;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Height [m]
tmp_double = d_height_m;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
catch (const std::ifstream::failure& e)
{
LOG(WARNING) << "Exception writing PVT LS dump file " << e.what();
}
}
// MOVING AVERAGE PVT
pos_averaging(flag_averaging);
utc = galileo_utc_model.GST_to_UTC_time(GST, Galileo_week_number);
}
else
{
utc = gps_utc_model.utc_time(TX_time_corrected_s, GPS_week) + secondsperweek * static_cast<double>(GPS_week);
}
// get time string Gregorian calendar
boost::posix_time::time_duration t = boost::posix_time::seconds(utc);
// 22 August 1999 00:00 last Galileo start GST epoch (ICD sec 5.1.2)
boost::posix_time::ptime p_time(boost::gregorian::date(1999, 8, 22), t);
d_position_UTC_time = p_time;
cart2geo(static_cast<double>(rx_position_and_time(0)), static_cast<double>(rx_position_and_time(1)), static_cast<double>(rx_position_and_time(2)), 4);
DLOG(INFO) << "Hybrid Position at " << boost::posix_time::to_simple_string(p_time)
<< " is Lat = " << d_latitude_d << " [deg], Long = " << d_longitude_d
<< " [deg], Height= " << d_height_m << " [m]" << " RX time offset= " << d_rx_dt_s << " [s]";
// ###### Compute DOPs ########
hybrid_ls_pvt::compute_DOP();
// ######## LOG FILE #########
if(d_flag_dump_enabled == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
// PVT GPS time
tmp_double = hybrid_current_time;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position East [m]
tmp_double = rx_position_and_time(0);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position North [m]
tmp_double = rx_position_and_time(1);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// ECEF User Position Up [m]
tmp_double = rx_position_and_time(2);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// User clock offset [s]
tmp_double = rx_position_and_time(3);
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Latitude [deg]
tmp_double = d_latitude_d;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Longitude [deg]
tmp_double = d_longitude_d;
d_dump_file.write((char*)&tmp_double, sizeof(double));
// GEO user position Height [m]
tmp_double = d_height_m;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
catch (const std::ifstream::failure& e)
{
LOG(WARNING) << "Exception writing PVT LS dump file " << e.what();
}
}
// MOVING AVERAGE PVT
pos_averaging(flag_averaging);
}
else
{
b_valid_position = false;
}
{
b_valid_position = false;
}
return b_valid_position;
}

View File

@ -196,7 +196,6 @@ int hybrid_observables_cc::general_work (int noutput_items,
DLOG(INFO) << "d_TOW_hybrid_reference [ms] = " << d_TOW_reference * 1000;
double d_ref_PRN_rx_time_ms = gnss_synchro_iter->second.Prn_timestamp_ms;
DLOG(INFO) << "ref_PRN_rx_time_ms [ms] = " << d_ref_PRN_rx_time_ms;
//int reference_channel= gnss_synchro_iter->second.Channel_ID;
// Now compute RX time differences due to the PRN alignment in the correlators
for(gnss_synchro_iter = current_gnss_synchro_map.begin(); gnss_synchro_iter != current_gnss_synchro_map.end(); gnss_synchro_iter++)
@ -235,8 +234,6 @@ int hybrid_observables_cc::general_work (int noutput_items,
dopper_vec_hz = arma::vec(std::vector<double>(d_carrier_doppler_queue_hz[gnss_synchro_iter->second.Channel_ID].begin(), d_carrier_doppler_queue_hz[gnss_synchro_iter->second.Channel_ID].end()));
desired_symbol_TOW[0] = symbol_TOW_vec_s[history_deep - 1] + delta_rx_time_ms / 1000.0;
// arma::interp1(symbol_TOW_vec_s,dopper_vec_hz,desired_symbol_TOW,dopper_vec_interp_hz);
// arma::interp1(symbol_TOW_vec_s,acc_phase_vec_rads,desired_symbol_TOW,acc_phase_vec_interp_rads);
// Curve fitting to cuadratic function
arma::mat A = arma::ones<arma::mat> (history_deep, 2);
@ -249,10 +246,8 @@ int hybrid_observables_cc::general_work (int noutput_items,
coef_doppler = pinv_A * dopper_vec_hz;
arma::vec acc_phase_lin;
arma::vec carrier_doppler_lin;
acc_phase_lin = coef_acc_phase[0] + coef_acc_phase[1] * desired_symbol_TOW[0]; // +coef_acc_phase[2]*desired_symbol_TOW[0]*desired_symbol_TOW[0];
carrier_doppler_lin = coef_doppler[0] + coef_doppler[1] * desired_symbol_TOW[0]; // +coef_doppler[2]*desired_symbol_TOW[0]*desired_symbol_TOW[0];
//std::cout<<"acc_phase_vec_interp_rads="<<acc_phase_vec_interp_rads[0]<<std::endl;
//std::cout<<"dopper_vec_interp_hz="<<dopper_vec_interp_hz[0]<<std::endl;
acc_phase_lin = coef_acc_phase[0] + coef_acc_phase[1] * desired_symbol_TOW[0];
carrier_doppler_lin = coef_doppler[0] + coef_doppler[1] * desired_symbol_TOW[0];
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Carrier_phase_rads = acc_phase_lin[0];
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Carrier_Doppler_hz = carrier_doppler_lin[0];
}