mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-01-18 05:03:01 +00:00
feature: Remove satellite position computation from GNAV Almanac
Removes the satellite position computation from the GNAV Almanac object since it does not seems to be a great usage at the moment. Possible addition of the fields should be added to the RTKLib API
This commit is contained in:
parent
c1df56b7e3
commit
fa235e29a4
@ -54,124 +54,5 @@ Glonass_Gnav_Almanac::Glonass_Gnav_Almanac()
|
||||
d_tau_n_A = 0.0;
|
||||
d_C_n = false;
|
||||
d_l_n = false;
|
||||
}
|
||||
|
||||
void Glonass_Gnav_Almanac::satellite_position(double N_A, double N_i, double t_i)
|
||||
{
|
||||
double T_nom = 43200; // [seconds]
|
||||
double i_nom = D2R*63.0; // [rad]
|
||||
|
||||
double Delta_t = 0.0;
|
||||
double i = 0.0;
|
||||
double T = 0.0;
|
||||
double n = 0.0;
|
||||
double a = 0.0;
|
||||
double lambda_dot = 0.0;
|
||||
double omega_dot = 0.0;
|
||||
double lambda = 0.0;
|
||||
double omega = 0.0;
|
||||
double E_P = 0.0;
|
||||
double Delta_T = 0.0;
|
||||
double M = 0.0;
|
||||
double E = 0.0;
|
||||
double E_old = 0.0;
|
||||
double dE = 0.0;
|
||||
|
||||
double e1_x = 0.0;
|
||||
double e1_y = 0.0;
|
||||
double e1_z = 0.0;
|
||||
|
||||
double e2_x = 0.0;
|
||||
double e2_y = 0.0;
|
||||
double e2_z = 0.0;
|
||||
// Compute time difference to reference time
|
||||
Delta_t = (N_i - N_A) * 86400 + (t_i + d_t_lambda_n_A);
|
||||
|
||||
// Compute the actual inclination
|
||||
i = i_nom + d_Delta_i_n_A;
|
||||
|
||||
// Compute the actual orbital period:
|
||||
T = T_nom + d_Delta_T_n_A;
|
||||
|
||||
// Compute the mean motion
|
||||
n = 2*GLONASS_PI/T;
|
||||
|
||||
// Compute the semi-major axis:
|
||||
a = cbrt(GLONASS_GM/(n*n));
|
||||
|
||||
// Compute correction to longitude of ascending node
|
||||
lambda_dot = -10*pow(GLONASS_SEMI_MAJOR_AXIS / a, 7/2)*D2R*cos(i)/86400;
|
||||
|
||||
// Compute correction to argument of perigee
|
||||
omega_dot = 5*pow(GLONASS_SEMI_MAJOR_AXIS / a, 7/2)*D2R*(5*cos(i)*cos(i) - 1)/86400;
|
||||
|
||||
// Compute corrected longitude of ascending node:
|
||||
lambda = d_lambda_n_A + (lambda_dot - GLONASS_OMEGA_EARTH_DOT)*Delta_t;
|
||||
|
||||
// Compute corrected argument of perigee:
|
||||
omega = d_omega_n_A + omega_dot*Delta_t;
|
||||
|
||||
// Compute eccentric anomaly at point P: Note: P is that point of the orbit the true anomaly of which is identical to the argument of perigee.
|
||||
E_P = 2*atan(tan((omega/2)*(sqrt((1 - d_epsilon_n_A)*(1 + d_epsilon_n_A)))));
|
||||
|
||||
// Compute time difference to perigee passing
|
||||
if (omega < GLONASS_PI)
|
||||
{
|
||||
Delta_T = (E_P - d_epsilon_n_A*sin(E_P))/n;
|
||||
}
|
||||
else
|
||||
{
|
||||
Delta_T = (E_P - d_epsilon_n_A*sin(E_P))/n + T;
|
||||
}
|
||||
|
||||
// Compute mean anomaly at epoch t_i:
|
||||
M = n * (Delta_t - Delta_T);
|
||||
|
||||
// Compute eccentric anomaly at epoch t_i. Note: Kepler’s equation has to be solved iteratively
|
||||
|
||||
// Initial guess of eccentric anomaly
|
||||
E = M;
|
||||
|
||||
// --- Iteratively compute eccentric anomaly ----------------------------
|
||||
for (int ii = 1; ii < 20; ii++)
|
||||
{
|
||||
E_old = E;
|
||||
E = M + d_epsilon_n_A * sin(E);
|
||||
dE = fmod(E - E_old, 2.0 * GLONASS_PI);
|
||||
if (fabs(dE) < 1e-12)
|
||||
{
|
||||
//Necessary precision is reached, exit from the loop
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Compute position in orbital coordinate system
|
||||
d_satpos_Xo = a*cos(E) - d_epsilon_n_A;
|
||||
d_satpos_Yo = a*sqrt(1 - d_epsilon_n_A*d_epsilon_n_A)*sin(E);
|
||||
d_satpos_Zo = a*0;
|
||||
|
||||
// Compute velocity in orbital coordinate system
|
||||
d_satvel_Xo = a/(1-d_epsilon_n_A*cos(E))*(-n*sin(E));
|
||||
d_satvel_Yo = a/(1-d_epsilon_n_A*cos(E))*(n*sqrt(1 - d_epsilon_n_A*d_epsilon_n_A)*cos(E));
|
||||
d_satvel_Zo = a/(1-d_epsilon_n_A*cos(E))*(0);
|
||||
|
||||
// Determine orientation vectors of orbital coordinate system in ECEF system
|
||||
e1_x = cos(omega)*cos(lambda) - sin(omega)*sin(lambda);
|
||||
e1_y = cos(omega)*sin(lambda) + sin(omega)*cos(lambda)*cos(i);
|
||||
e1_z = sin(omega)*sin(i);
|
||||
|
||||
e2_x = -sin(omega)*cos(lambda) - sin(omega)*sin(lambda)*cos(i);
|
||||
e2_y = -sin(omega)*sin(lambda) + cos(omega)*cos(lambda)*cos(i);
|
||||
e2_z = cos(omega)*sin(i);
|
||||
|
||||
// Convert position from orbital to ECEF system
|
||||
d_satpos_X = d_satpos_Xo*e1_x + d_satpos_Xo*e2_x;
|
||||
d_satpos_Y = d_satpos_Yo*e1_z + d_satpos_Yo*e2_y;
|
||||
d_satpos_Z = d_satpos_Zo*e1_z + d_satpos_Zo*e2_z;
|
||||
|
||||
// Convert position from orbital to ECEF system
|
||||
d_satvel_X = d_satvel_Xo*e1_x + d_satvel_Xo*e2_x + GLONASS_OMEGA_EARTH_DOT*d_satpos_Y;
|
||||
d_satvel_Y = d_satvel_Yo*e1_z + d_satvel_Yo*e2_y - GLONASS_OMEGA_EARTH_DOT*d_satpos_X;
|
||||
d_satvel_Z = d_satvel_Zo*e1_z + d_satvel_Zo*e2_z;
|
||||
|
||||
}
|
||||
|
@ -49,13 +49,13 @@ class Glonass_Gnav_Almanac
|
||||
public:
|
||||
double d_n_A; //!< Conventional number of satellite within GLONASS space segment [dimensionless]
|
||||
double d_H_n_A; //!< Carrier frequency number of navigation RF signal transmitted by d_nA satellite as table 4.10 (0-31) [dimensionless]
|
||||
double d_lambda_n_A; //!< Longitude of the first (within the d_NA day) ascending node of d_nA [semi-circles]
|
||||
double d_lambda_n_A; //!< Longitude of the first (within the d_NA day) ascending node of d_nA [radians]
|
||||
double d_t_lambda_n_A; //!< Time of first ascending node passage [s]
|
||||
double d_Delta_i_n_A; //!< Correction of the mean value of inclination of d_n_A satellite at instant t_lambda_n_A [semi-circles]
|
||||
double d_Delta_T_n_A; //!< Correction to the mean value of Draconian period of d_n_A satellite at instant t_lambda_n_A[s / orbital period]
|
||||
double d_Delta_i_n_A; //!< Correction of the mean value of inclination of d_n_A satellite at instant t_lambda_n_A [radians]
|
||||
double d_Delta_T_n_A; //!< Correction to the mean value of Draconian period of d_n_A satellite at instant t_lambda_n_A [s / orbital period]
|
||||
double d_Delta_T_n_A_dot; //!< Rate of change of Draconian period of d_n_A satellite at instant t_lambda_n_A [s / orbital period^2]
|
||||
double d_epsilon_n_A; //!< Eccentricity of d_n_A satellite at instant t_lambda_n_A [dimensionless]
|
||||
double d_omega_n_A; //!< Argument of preigree of d_n_A satellite at instant t_lambdan_A [semi-circles]
|
||||
double d_omega_n_A; //!< Argument of perigee of d_n_A satellite at instant t_lambdan_A [radians]
|
||||
double d_M_n_A; //!< Type of satellite n_A [dimensionless]
|
||||
double d_KP; //!< Notification on forthcoming leap second correction of UTC [dimensionless]
|
||||
double d_tau_n_A; //!< Coarse value of d_n_A satellite time correction to GLONASS time at instant t_lambdan_A[s]
|
||||
@ -67,24 +67,6 @@ public:
|
||||
unsigned int i_satellite_PRN; //!< SV PRN Number, equivalent to slot number for compatibility with GPS
|
||||
unsigned int i_satellite_slot_number; //!< SV Slot Number
|
||||
|
||||
// satellite positions
|
||||
double d_satpos_Xo; //!< Earth-fixed coordinate x of the satellite in PZ-90.02 coordinate system [km].
|
||||
double d_satpos_Yo; //!< Earth-fixed coordinate y of the satellite in PZ-90.02 coordinate system [km]
|
||||
double d_satpos_Zo; //!< Earth-fixed coordinate z of the satellite in PZ-90.02 coordinate system [km]
|
||||
// Satellite velocity
|
||||
double d_satvel_Xo; //!< Earth-fixed velocity coordinate x of the satellite in PZ-90.02 coordinate system [km/s]
|
||||
double d_satvel_Yo; //!< Earth-fixed velocity coordinate y of the satellite in PZ-90.02 coordinate system [km/s]
|
||||
double d_satvel_Zo; //!< Earth-fixed velocity coordinate z of the satellite in PZ-90.02 coordinate system [km/s]
|
||||
|
||||
// satellite positions
|
||||
double d_satpos_X; //!< Earth-fixed coordinate x of the satellite in PZ-90.02 coordinate system [km].
|
||||
double d_satpos_Y; //!< Earth-fixed coordinate y of the satellite in PZ-90.02 coordinate system [km]
|
||||
double d_satpos_Z; //!< Earth-fixed coordinate z of the satellite in PZ-90.02 coordinate system [km]
|
||||
// Satellite velocity
|
||||
double d_satvel_X; //!< Earth-fixed velocity coordinate x of the satellite in PZ-90.02 coordinate system [km/s]
|
||||
double d_satvel_Y; //!< Earth-fixed velocity coordinate y of the satellite in PZ-90.02 coordinate system [km/s]
|
||||
double d_satvel_Z; //!< Earth-fixed velocity coordinate z of the satellite in PZ-90.02 coordinate system [km/s]
|
||||
|
||||
template<class Archive>
|
||||
/*!
|
||||
* \brief Serialize is a boost standard method to be called by the boost XML serialization. Here is used to save the almanac data on disk file.
|
||||
@ -113,7 +95,6 @@ public:
|
||||
archive & make_nvp("d_l_n", d_l_n);
|
||||
}
|
||||
|
||||
void satellite_position(double N_A, double N_i, double t_i);
|
||||
/*!
|
||||
* Default constructor
|
||||
*/
|
||||
|
@ -470,8 +470,8 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
|
||||
|
||||
flag_almanac_str_6 = true;
|
||||
@ -482,7 +482,7 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
|
||||
// --- It is string 7 ----------------------------------------------
|
||||
if (flag_almanac_str_6 == true)
|
||||
{
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
|
||||
@ -515,8 +515,8 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
|
||||
|
||||
flag_almanac_str_8 = true;
|
||||
@ -526,7 +526,7 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
|
||||
// --- It is string 9 ----------------------------------------------
|
||||
if (flag_almanac_str_8 == true)
|
||||
{
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
|
||||
@ -553,8 +553,8 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
|
||||
|
||||
flag_almanac_str_10 = true;
|
||||
@ -565,7 +565,7 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
|
||||
// --- It is string 11 ---------------------------------------------
|
||||
if (flag_almanac_str_10 == true)
|
||||
{
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
|
||||
@ -592,8 +592,8 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
|
||||
|
||||
flag_almanac_str_12 = true;
|
||||
@ -604,7 +604,7 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
|
||||
// --- It is string 13 ---------------------------------------------
|
||||
if (flag_almanac_str_12 == true)
|
||||
{
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
|
||||
@ -638,8 +638,8 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
|
||||
|
||||
flag_almanac_str_14 = true;
|
||||
@ -651,7 +651,7 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
|
||||
case 15:
|
||||
// --- It is string 9 ----------------------------------------------
|
||||
if (d_frame_ID != 5 and flag_almanac_str_14 == true) {
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
|
||||
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
|
||||
|
@ -144,7 +144,6 @@ DECLARE_string(log_dir);
|
||||
#endif
|
||||
|
||||
#include "unit-tests/system-parameters/glonass_gnav_ephemeris_test.cc"
|
||||
#include "unit-tests/system-parameters/glonass_gnav_almanac_test.cc"
|
||||
#include "unit-tests/system-parameters/glonass_gnav_nav_message_test.cc"
|
||||
|
||||
// For GPS NAVIGATION (L1)
|
||||
|
@ -1,76 +0,0 @@
|
||||
/*!
|
||||
* \file code_generation_test.cc
|
||||
* \note Code added as part of GSoC 2017 program
|
||||
* \author Damian Miralles, 2017. dmiralles2009(at)gmail.com
|
||||
* \see <a href="http://russianspacesystems.ru/wp-content/uploads/2016/08/ICD_GLONASS_eng_v5.1.pdf">GLONASS ICD</a>
|
||||
*
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
|
||||
#include <complex>
|
||||
#include <ctime>
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
#include "gnss_signal_processing.h"
|
||||
|
||||
#include <complex>
|
||||
#include <ctime>
|
||||
#include "gnss_signal_processing.h"
|
||||
#include "glonass_gnav_almanac.h"
|
||||
|
||||
// See A 3.2.3
|
||||
TEST(GlonassGnavAlmanacTest, SatellitePosition)
|
||||
{
|
||||
double N_i = 615; // [days]
|
||||
double t_i = 33300.0; // [seconds]
|
||||
double Xoi = 10947.021572; // [km]
|
||||
double Yoi = 13078.978287; // [km]
|
||||
double Zoi = 18922.063362; // [km]
|
||||
double Vxoi = -3.375497; // [m/s]
|
||||
double Vyoi = -0.161453; // [Кm/s]
|
||||
double Vzoi = 2.060844; // [Кm/s]
|
||||
double N_A = 615; // [days]
|
||||
|
||||
Glonass_Gnav_Almanac gnav_almanac;
|
||||
|
||||
|
||||
gnav_almanac.d_lambda_n_A = -0.189986229; // [half cycles]
|
||||
gnav_almanac.d_t_lambda_n_A = 27122.09375; // [second]
|
||||
gnav_almanac.d_Delta_i_n_A = 0.011929512; // [half cycle]
|
||||
gnav_almanac.d_Delta_T_n_A = -2655.76171875; // [seconds]
|
||||
gnav_almanac.d_Delta_T_n_A_dot = 0.000549316; // [Secjnds/cycle2]
|
||||
gnav_almanac.d_epsilon_n_A = 0.001482010; // [unitless]
|
||||
gnav_almanac.d_omega_n_A = 0.440277100; // [Half cycle]
|
||||
|
||||
gnav_almanac.satellite_position(N_A, N_i, t_i);
|
||||
|
||||
//ASSERT_TRUE(gnav_almanac.d_satpos_Xo - Xoi < DBL_EPSILON );
|
||||
//ASSERT_TRUE(gnav_almanac.d_satpos_Yo - Yoi < DBL_EPSILON );
|
||||
//ASSERT_TRUE(gnav_almanac.d_satpos_Zo - Zoi < DBL_EPSILON );
|
||||
//ASSERT_TRUE(gnav_almanac.d_satvel_Xo - Vxoi < DBL_EPSILON );
|
||||
//ASSERT_TRUE(gnav_almanac.d_satvel_Yo - Vyoi < DBL_EPSILON );
|
||||
//ASSERT_TRUE(gnav_almanac.d_satvel_Zo - Vzoi < DBL_EPSILON );
|
||||
}
|
Loading…
Reference in New Issue
Block a user