1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-15 19:55:47 +00:00

adding NEON protokernel

This commit is contained in:
Carles Fernandez 2016-04-01 01:21:35 +02:00
parent a71b118170
commit f6cfc64cf7

View File

@ -1,12 +1,12 @@
/*!
* \file volk_gnsssdr_16ic_xn_resampler_16ic_xn.h
* \brief VOLK_GNSSSDR kernel: Resamples N 16 bits integer short complex vectors using zero hold resample algorithm.
* \file volk_gnsssdr_32fc_xn_resampler_32fc_xn.h
* \brief VOLK_GNSSSDR kernel: Resamples N complex 32-bit float vectors using zero hold resample algorithm.
* \authors <ul>
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
* </ul>
*
* VOLK_GNSSSDR kernel that esamples N 16 bits integer short complex vectors using zero hold resample algorithm.
* It is optimized to resample a sigle GNSS local code signal replica into N vectors fractional-resampled and fractional-delayed
* VOLK_GNSSSDR kernel that esamples N complex 32-bit float vectors using zero hold resample algorithm.
* It is optimized to resample a single GNSS local code signal replica into N vectors fractional-resampled and fractional-delayed
* (i.e. it creates the Early, Prompt, and Late code replicas)
*
* -------------------------------------------------------------------------
@ -35,24 +35,25 @@
*/
/*!
* \page volk_gnsssdr_16ic_xn_resampler_16ic_xn
* \page volk_gnsssdr_32fc_xn_resampler_32fc_xn
*
* \b Overview
*
* Resamples a complex vector (16-bit integer each component), providing \p num_out_vectors outputs.
* Resamples a complex vector (32-bit float each component), providing \p num_out_vectors outputs.
*
* <b>Dispatcher Prototype</b>
* \code
* void volk_gnsssdr_16ic_xn_resampler_16ic_xn(lv_16sc_t** result, const lv_16sc_t* local_code, float* rem_code_phase_chips, float code_phase_step_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
* void volk_gnsssdr_32fc_xn_resampler_32fc_xn(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
* \endcode
*
* \b Inputs
* \li local_code: One of the vectors to be multiplied.
* \li rem_code_phase_chips: Remnant code phase [chips].
* \li code_phase_step_chips: Phase increment per sample [chips/sample].
* \li shifts_chips: Vector of floats that defines the spacing (in chips) between the replicas of \p local_code
* \li code_length_chips: Code length in chips.
* \li num_out_vectors Number of output vectors.
* \li num_output_samples: The number of data values to be in the resampled vector.
* \li num_points: The number of data values to be in the resampled vector.
*
* \b Outputs
* \li result: Pointer to a vector of pointers where the results will be stored.
@ -66,17 +67,16 @@
#include <volk_gnsssdr/volk_gnsssdr_common.h>
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
//#pragma STDC FENV_ACCESS ON
#ifdef LV_HAVE_GENERIC
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_generic(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_generic(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
int local_code_chip_index;
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
{
for (int n = 0; n < num_output_samples; n++)
for (int n = 0; n < num_points; n++)
{
// resample code for current tap
local_code_chip_index = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
@ -93,17 +93,17 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_generic(lv_32fc_t** re
#ifdef LV_HAVE_SSE3
#include <pmmintrin.h>
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
lv_32fc_t** _result = result;
const unsigned int quarterPoints = num_output_samples / 4;
const unsigned int quarterPoints = num_points / 4;
const __m128 ones = _mm_set1_ps(1.0f);
const __m128 fours = _mm_set1_ps(4.0f);
const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
__attribute__((aligned(16))) int local_code_chip_index[4];
__VOLK_ATTR_ALIGNED(16) int local_code_chip_index[4];
int local_code_chip_index_;
const __m128i zeros = _mm_setzero_si128();
@ -144,7 +144,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(lv_32fc_t** res
}
indexn = _mm_add_ps(indexn, fours);
}
for(unsigned int n = quarterPoints * 4; n < num_output_samples; n++)
for(unsigned int n = quarterPoints * 4; n < num_points; n++)
{
// resample code for current tap
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
@ -153,23 +153,24 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(lv_32fc_t** res
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
}
}
}
#endif
#ifdef LV_HAVE_SSE4_1
#include <smmintrin.h>
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse4_1(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse4_1(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
lv_32fc_t** _result = result;
const unsigned int quarterPoints = num_output_samples / 4;
const unsigned int quarterPoints = num_points / 4;
const __m128 fours = _mm_set1_ps(4.0f);
const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
__attribute__((aligned(16))) int local_code_chip_index[4];
__VOLK_ATTR_ALIGNED(16) int local_code_chip_index[4];
int local_code_chip_index_;
const __m128i zeros = _mm_setzero_si128();
@ -207,7 +208,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse4_1(lv_32fc_t** r
}
indexn = _mm_add_ps(indexn, fours);
}
for(unsigned int n = quarterPoints * 4; n < num_output_samples; n++)
for(unsigned int n = quarterPoints * 4; n < num_points; n++)
{
// resample code for current tap
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
@ -216,24 +217,24 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse4_1(lv_32fc_t** r
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
}
}
}
#endif
#ifdef LV_HAVE_AVX
#include <immintrin.h>
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
lv_32fc_t** _result = result;
const unsigned int avx_iters = num_output_samples / 8;
const unsigned int avx_iters = num_points / 8;
const __m256 eights = _mm256_set1_ps(8.0f);
const __m256 rem_code_phase_chips_reg = _mm256_set1_ps(rem_code_phase_chips);
const __m256 code_phase_step_chips_reg = _mm256_set1_ps(code_phase_step_chips);
__attribute__((aligned(32))) int local_code_chip_index[8];
__VOLK_ATTR_ALIGNED(32) int local_code_chip_index[8];
int local_code_chip_index_;
const __m256 zeros = _mm256_setzero_ps();
@ -271,8 +272,8 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(lv_32fc_t** resu
}
indexn = _mm256_add_ps(indexn, eights);
}
_mm256_zeroupper();
for(unsigned int n = avx_iters * 8; n < num_output_samples; n++)
for(unsigned int n = avx_iters * 8; n < num_points; n++)
{
// resample code for current tap
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
@ -281,10 +282,83 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(lv_32fc_t** resu
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
}
}
_mm256_zeroupper();
}
#endif
#endif /*INCLUDED_volk_gnsssdr_16ic_xn_resampler_16ic_xn_H*/
#ifdef LV_HAVE_NEON
#include <arm_neon.h>
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_neon(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
lv_32fc_t** _result = result;
const unsigned int neon_iters = num_points / 4;
const int32x4_t ones = vdupq_n_s32(1);
const float32x4_t fours = vdupq_n_f32(4.0f);
const float32x4_t rem_code_phase_chips_reg = vdupq_n_f32(rem_code_phase_chips);
const float32x4_t code_phase_step_chips_reg = vdupq_n_f32(code_phase_step_chips);
__VOLK_ATTR_ALIGNED(16) int32_t local_code_chip_index[4];
int32_t local_code_chip_index_;
const int32x4_t zeros = vdupq_n_s32(0);
const float32x4_t code_length_chips_reg_f = vdupq_n_f32((float)code_length_chips);
const int32x4_t code_length_chips_reg_i = vdupq_n_s32((int32_t)code_length_chips);
int32x4_t local_code_chip_index_reg, aux_i, negatives, i;
float32x4_t aux, aux2, shifts_chips_reg, fi, c, j, cTrunc, base, indexn;
__VOLK_ATTR_ALIGNED(16) const float vec[4] = { 0.0f, 1.0f, 2.0f, 3.0f };
uint32x4_t igx;
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
{
shifts_chips_reg = vdupq_n_f32((float)shifts_chips[current_correlator_tap]);
aux2 = vsubq_f32(shifts_chips_reg, rem_code_phase_chips_reg);
indexn = vld1q_f32((float*)vec);
for(unsigned int n = 0; n < neon_iters; n++)
{
aux = vmulq_f32(code_phase_step_chips_reg, indexn);
aux = vaddq_f32(aux, aux2);
// floor
i = vcvtq_s32_f32(aux);
fi = vcvtq_f32_s32(i);
igx = vcgtq_f32(fi, aux);
j = vcvtq_f32_s32(vandq_s32(vreinterpretq_s32_u32(igx), ones));
aux = vsubq_f32(fi, j);
// fmod
c = vdivq_f32(aux, code_length_chips_reg_f);
i = vcvtq_s32_f32(c);
cTrunc = vcvtq_f32_s32(i);
base = vmulq_f32(cTrunc, code_length_chips_reg_f);
aux = vsubq_f32(aux, base);
local_code_chip_index_reg = vcvtq_s32_f32(aux);
negatives = vreinterpretq_s32_u32(vcltq_s32(local_code_chip_index_reg, zeros));
aux_i = vandq_s32(code_length_chips_reg_i, negatives);
local_code_chip_index_reg = vaddq_s32(local_code_chip_index_reg, aux_i);
vst1q_s32((int32_t*)local_code_chip_index, local_code_chip_index_reg);
for(unsigned int k = 0; k < 4; ++k)
{
_result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
}
indexn = vaddq_f32(indexn, fours);
}
for(unsigned int n = neon_iters * 4; n < num_points; n++)
{
// resample code for current tap
local_code_chip_index_ = (int32_t)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
//Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
}
}
}
#endif
#endif /*INCLUDED_volk_gnsssdr_32fc_xn_resampler_32fc_xn_H*/