mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-01-15 19:55:47 +00:00
adding NEON protokernel
This commit is contained in:
parent
a71b118170
commit
f6cfc64cf7
@ -1,12 +1,12 @@
|
||||
/*!
|
||||
* \file volk_gnsssdr_16ic_xn_resampler_16ic_xn.h
|
||||
* \brief VOLK_GNSSSDR kernel: Resamples N 16 bits integer short complex vectors using zero hold resample algorithm.
|
||||
* \file volk_gnsssdr_32fc_xn_resampler_32fc_xn.h
|
||||
* \brief VOLK_GNSSSDR kernel: Resamples N complex 32-bit float vectors using zero hold resample algorithm.
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2015. jarribas(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* VOLK_GNSSSDR kernel that esamples N 16 bits integer short complex vectors using zero hold resample algorithm.
|
||||
* It is optimized to resample a sigle GNSS local code signal replica into N vectors fractional-resampled and fractional-delayed
|
||||
* VOLK_GNSSSDR kernel that esamples N complex 32-bit float vectors using zero hold resample algorithm.
|
||||
* It is optimized to resample a single GNSS local code signal replica into N vectors fractional-resampled and fractional-delayed
|
||||
* (i.e. it creates the Early, Prompt, and Late code replicas)
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
@ -35,24 +35,25 @@
|
||||
*/
|
||||
|
||||
/*!
|
||||
* \page volk_gnsssdr_16ic_xn_resampler_16ic_xn
|
||||
* \page volk_gnsssdr_32fc_xn_resampler_32fc_xn
|
||||
*
|
||||
* \b Overview
|
||||
*
|
||||
* Resamples a complex vector (16-bit integer each component), providing \p num_out_vectors outputs.
|
||||
* Resamples a complex vector (32-bit float each component), providing \p num_out_vectors outputs.
|
||||
*
|
||||
* <b>Dispatcher Prototype</b>
|
||||
* \code
|
||||
* void volk_gnsssdr_16ic_xn_resampler_16ic_xn(lv_16sc_t** result, const lv_16sc_t* local_code, float* rem_code_phase_chips, float code_phase_step_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||
* void volk_gnsssdr_32fc_xn_resampler_32fc_xn(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
|
||||
* \endcode
|
||||
*
|
||||
* \b Inputs
|
||||
* \li local_code: One of the vectors to be multiplied.
|
||||
* \li rem_code_phase_chips: Remnant code phase [chips].
|
||||
* \li code_phase_step_chips: Phase increment per sample [chips/sample].
|
||||
* \li shifts_chips: Vector of floats that defines the spacing (in chips) between the replicas of \p local_code
|
||||
* \li code_length_chips: Code length in chips.
|
||||
* \li num_out_vectors Number of output vectors.
|
||||
* \li num_output_samples: The number of data values to be in the resampled vector.
|
||||
* \li num_points: The number of data values to be in the resampled vector.
|
||||
*
|
||||
* \b Outputs
|
||||
* \li result: Pointer to a vector of pointers where the results will be stored.
|
||||
@ -66,17 +67,16 @@
|
||||
#include <volk_gnsssdr/volk_gnsssdr_common.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||
|
||||
//#pragma STDC FENV_ACCESS ON
|
||||
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
|
||||
|
||||
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_generic(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_generic(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
|
||||
{
|
||||
int local_code_chip_index;
|
||||
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
|
||||
{
|
||||
for (int n = 0; n < num_output_samples; n++)
|
||||
for (int n = 0; n < num_points; n++)
|
||||
{
|
||||
// resample code for current tap
|
||||
local_code_chip_index = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
|
||||
@ -93,17 +93,17 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_generic(lv_32fc_t** re
|
||||
|
||||
#ifdef LV_HAVE_SSE3
|
||||
#include <pmmintrin.h>
|
||||
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
|
||||
{
|
||||
lv_32fc_t** _result = result;
|
||||
const unsigned int quarterPoints = num_output_samples / 4;
|
||||
const unsigned int quarterPoints = num_points / 4;
|
||||
|
||||
const __m128 ones = _mm_set1_ps(1.0f);
|
||||
const __m128 fours = _mm_set1_ps(4.0f);
|
||||
const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
|
||||
const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
|
||||
|
||||
__attribute__((aligned(16))) int local_code_chip_index[4];
|
||||
__VOLK_ATTR_ALIGNED(16) int local_code_chip_index[4];
|
||||
int local_code_chip_index_;
|
||||
|
||||
const __m128i zeros = _mm_setzero_si128();
|
||||
@ -144,7 +144,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(lv_32fc_t** res
|
||||
}
|
||||
indexn = _mm_add_ps(indexn, fours);
|
||||
}
|
||||
for(unsigned int n = quarterPoints * 4; n < num_output_samples; n++)
|
||||
for(unsigned int n = quarterPoints * 4; n < num_points; n++)
|
||||
{
|
||||
// resample code for current tap
|
||||
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
|
||||
@ -153,23 +153,24 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse3(lv_32fc_t** res
|
||||
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
|
||||
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE4_1
|
||||
#include <smmintrin.h>
|
||||
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse4_1(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse4_1(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
|
||||
{
|
||||
lv_32fc_t** _result = result;
|
||||
const unsigned int quarterPoints = num_output_samples / 4;
|
||||
const unsigned int quarterPoints = num_points / 4;
|
||||
|
||||
const __m128 fours = _mm_set1_ps(4.0f);
|
||||
const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
|
||||
const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
|
||||
|
||||
__attribute__((aligned(16))) int local_code_chip_index[4];
|
||||
__VOLK_ATTR_ALIGNED(16) int local_code_chip_index[4];
|
||||
int local_code_chip_index_;
|
||||
|
||||
const __m128i zeros = _mm_setzero_si128();
|
||||
@ -207,7 +208,7 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse4_1(lv_32fc_t** r
|
||||
}
|
||||
indexn = _mm_add_ps(indexn, fours);
|
||||
}
|
||||
for(unsigned int n = quarterPoints * 4; n < num_output_samples; n++)
|
||||
for(unsigned int n = quarterPoints * 4; n < num_points; n++)
|
||||
{
|
||||
// resample code for current tap
|
||||
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
|
||||
@ -216,24 +217,24 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_sse4_1(lv_32fc_t** r
|
||||
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
|
||||
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef LV_HAVE_AVX
|
||||
#include <immintrin.h>
|
||||
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_output_samples)
|
||||
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
|
||||
{
|
||||
lv_32fc_t** _result = result;
|
||||
const unsigned int avx_iters = num_output_samples / 8;
|
||||
const unsigned int avx_iters = num_points / 8;
|
||||
|
||||
const __m256 eights = _mm256_set1_ps(8.0f);
|
||||
const __m256 rem_code_phase_chips_reg = _mm256_set1_ps(rem_code_phase_chips);
|
||||
const __m256 code_phase_step_chips_reg = _mm256_set1_ps(code_phase_step_chips);
|
||||
|
||||
__attribute__((aligned(32))) int local_code_chip_index[8];
|
||||
__VOLK_ATTR_ALIGNED(32) int local_code_chip_index[8];
|
||||
int local_code_chip_index_;
|
||||
|
||||
const __m256 zeros = _mm256_setzero_ps();
|
||||
@ -271,8 +272,8 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(lv_32fc_t** resu
|
||||
}
|
||||
indexn = _mm256_add_ps(indexn, eights);
|
||||
}
|
||||
_mm256_zeroupper();
|
||||
for(unsigned int n = avx_iters * 8; n < num_output_samples; n++)
|
||||
|
||||
for(unsigned int n = avx_iters * 8; n < num_points; n++)
|
||||
{
|
||||
// resample code for current tap
|
||||
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
|
||||
@ -281,10 +282,83 @@ static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_a_avx(lv_32fc_t** resu
|
||||
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
|
||||
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
|
||||
}
|
||||
|
||||
}
|
||||
_mm256_zeroupper();
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif /*INCLUDED_volk_gnsssdr_16ic_xn_resampler_16ic_xn_H*/
|
||||
|
||||
#ifdef LV_HAVE_NEON
|
||||
#include <arm_neon.h>
|
||||
|
||||
static inline void volk_gnsssdr_32fc_xn_resampler_32fc_xn_neon(lv_32fc_t** result, const lv_32fc_t* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
|
||||
{
|
||||
lv_32fc_t** _result = result;
|
||||
const unsigned int neon_iters = num_points / 4;
|
||||
const int32x4_t ones = vdupq_n_s32(1);
|
||||
const float32x4_t fours = vdupq_n_f32(4.0f);
|
||||
const float32x4_t rem_code_phase_chips_reg = vdupq_n_f32(rem_code_phase_chips);
|
||||
const float32x4_t code_phase_step_chips_reg = vdupq_n_f32(code_phase_step_chips);
|
||||
|
||||
__VOLK_ATTR_ALIGNED(16) int32_t local_code_chip_index[4];
|
||||
int32_t local_code_chip_index_;
|
||||
|
||||
const int32x4_t zeros = vdupq_n_s32(0);
|
||||
const float32x4_t code_length_chips_reg_f = vdupq_n_f32((float)code_length_chips);
|
||||
const int32x4_t code_length_chips_reg_i = vdupq_n_s32((int32_t)code_length_chips);
|
||||
int32x4_t local_code_chip_index_reg, aux_i, negatives, i;
|
||||
float32x4_t aux, aux2, shifts_chips_reg, fi, c, j, cTrunc, base, indexn;
|
||||
__VOLK_ATTR_ALIGNED(16) const float vec[4] = { 0.0f, 1.0f, 2.0f, 3.0f };
|
||||
uint32x4_t igx;
|
||||
for (int current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
|
||||
{
|
||||
shifts_chips_reg = vdupq_n_f32((float)shifts_chips[current_correlator_tap]);
|
||||
aux2 = vsubq_f32(shifts_chips_reg, rem_code_phase_chips_reg);
|
||||
indexn = vld1q_f32((float*)vec);
|
||||
for(unsigned int n = 0; n < neon_iters; n++)
|
||||
{
|
||||
aux = vmulq_f32(code_phase_step_chips_reg, indexn);
|
||||
aux = vaddq_f32(aux, aux2);
|
||||
// floor
|
||||
i = vcvtq_s32_f32(aux);
|
||||
fi = vcvtq_f32_s32(i);
|
||||
igx = vcgtq_f32(fi, aux);
|
||||
j = vcvtq_f32_s32(vandq_s32(vreinterpretq_s32_u32(igx), ones));
|
||||
aux = vsubq_f32(fi, j);
|
||||
// fmod
|
||||
c = vdivq_f32(aux, code_length_chips_reg_f);
|
||||
i = vcvtq_s32_f32(c);
|
||||
cTrunc = vcvtq_f32_s32(i);
|
||||
base = vmulq_f32(cTrunc, code_length_chips_reg_f);
|
||||
aux = vsubq_f32(aux, base);
|
||||
local_code_chip_index_reg = vcvtq_s32_f32(aux);
|
||||
|
||||
negatives = vreinterpretq_s32_u32(vcltq_s32(local_code_chip_index_reg, zeros));
|
||||
aux_i = vandq_s32(code_length_chips_reg_i, negatives);
|
||||
local_code_chip_index_reg = vaddq_s32(local_code_chip_index_reg, aux_i);
|
||||
vst1q_s32((int32_t*)local_code_chip_index, local_code_chip_index_reg);
|
||||
|
||||
for(unsigned int k = 0; k < 4; ++k)
|
||||
{
|
||||
_result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
|
||||
}
|
||||
indexn = vaddq_f32(indexn, fours);
|
||||
}
|
||||
for(unsigned int n = neon_iters * 4; n < num_points; n++)
|
||||
{
|
||||
// resample code for current tap
|
||||
local_code_chip_index_ = (int32_t)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
|
||||
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
|
||||
//Take into account that in multitap correlators, the shifts can be negative!
|
||||
if (local_code_chip_index_ < 0) local_code_chip_index_ += code_length_chips;
|
||||
_result[current_correlator_tap][n] = local_code[local_code_chip_index_];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#endif /*INCLUDED_volk_gnsssdr_32fc_xn_resampler_32fc_xn_H*/
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user