mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-11-09 03:20:01 +00:00
Merge branch 'next' of https://github.com/carlesfernandez/gnss-sdr into next
This commit is contained in:
commit
eb18b86c29
@ -4,7 +4,7 @@
|
|||||||
*
|
*
|
||||||
* Cubature_Filter implements the functionality of the Cubature Kalman
|
* Cubature_Filter implements the functionality of the Cubature Kalman
|
||||||
* Filter, which uses multidimensional cubature rules to estimate the
|
* Filter, which uses multidimensional cubature rules to estimate the
|
||||||
* time evolution of a nonlinear system. Unscented_filter implements
|
* time evolution of a nonlinear system. UnscentedFilter implements
|
||||||
* an Unscented Kalman Filter which uses Unscented Transform rules to
|
* an Unscented Kalman Filter which uses Unscented Transform rules to
|
||||||
* perform a similar estimation.
|
* perform a similar estimation.
|
||||||
*
|
*
|
||||||
@ -44,7 +44,7 @@
|
|||||||
|
|
||||||
/***************** CUBATURE KALMAN FILTER *****************/
|
/***************** CUBATURE KALMAN FILTER *****************/
|
||||||
|
|
||||||
Cubature_filter::Cubature_filter()
|
CubatureFilter::CubatureFilter()
|
||||||
{
|
{
|
||||||
int nx = 1;
|
int nx = 1;
|
||||||
x_pred_out = arma::zeros(nx, 1);
|
x_pred_out = arma::zeros(nx, 1);
|
||||||
@ -55,7 +55,7 @@ Cubature_filter::Cubature_filter()
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
Cubature_filter::Cubature_filter(int nx)
|
CubatureFilter::CubatureFilter(int nx)
|
||||||
{
|
{
|
||||||
x_pred_out = arma::zeros(nx, 1);
|
x_pred_out = arma::zeros(nx, 1);
|
||||||
P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
|
P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
|
||||||
@ -65,7 +65,7 @@ Cubature_filter::Cubature_filter(int nx)
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
Cubature_filter::Cubature_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
|
CubatureFilter::CubatureFilter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
|
||||||
{
|
{
|
||||||
x_pred_out = x_pred_0;
|
x_pred_out = x_pred_0;
|
||||||
P_x_pred_out = P_x_pred_0;
|
P_x_pred_out = P_x_pred_0;
|
||||||
@ -75,10 +75,10 @@ Cubature_filter::Cubature_filter(const arma::vec& x_pred_0, const arma::mat& P_x
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
Cubature_filter::~Cubature_filter() = default;
|
CubatureFilter::~CubatureFilter() = default;
|
||||||
|
|
||||||
|
|
||||||
void Cubature_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
|
void CubatureFilter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
|
||||||
{
|
{
|
||||||
x_pred_out = x_pred_0;
|
x_pred_out = x_pred_0;
|
||||||
P_x_pred_out = P_x_pred_0;
|
P_x_pred_out = P_x_pred_0;
|
||||||
@ -91,7 +91,7 @@ void Cubature_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x
|
|||||||
/*
|
/*
|
||||||
* Perform the prediction step of the cubature Kalman filter
|
* Perform the prediction step of the cubature Kalman filter
|
||||||
*/
|
*/
|
||||||
void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance)
|
void CubatureFilter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance)
|
||||||
{
|
{
|
||||||
// Compute number of cubature points
|
// Compute number of cubature points
|
||||||
int nx = x_post.n_elem;
|
int nx = x_post.n_elem;
|
||||||
@ -133,7 +133,7 @@ void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::ma
|
|||||||
/*
|
/*
|
||||||
* Perform the update step of the cubature Kalman filter
|
* Perform the update step of the cubature Kalman filter
|
||||||
*/
|
*/
|
||||||
void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance)
|
void CubatureFilter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance)
|
||||||
{
|
{
|
||||||
// Compute number of cubature points
|
// Compute number of cubature points
|
||||||
int nx = x_pred.n_elem;
|
int nx = x_pred.n_elem;
|
||||||
@ -178,25 +178,25 @@ void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec&
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
arma::mat Cubature_filter::get_x_pred() const
|
arma::mat CubatureFilter::get_x_pred() const
|
||||||
{
|
{
|
||||||
return x_pred_out;
|
return x_pred_out;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
arma::mat Cubature_filter::get_P_x_pred() const
|
arma::mat CubatureFilter::get_P_x_pred() const
|
||||||
{
|
{
|
||||||
return P_x_pred_out;
|
return P_x_pred_out;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
arma::mat Cubature_filter::get_x_est() const
|
arma::mat CubatureFilter::get_x_est() const
|
||||||
{
|
{
|
||||||
return x_est;
|
return x_est;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
arma::mat Cubature_filter::get_P_x_est() const
|
arma::mat CubatureFilter::get_P_x_est() const
|
||||||
{
|
{
|
||||||
return P_x_est;
|
return P_x_est;
|
||||||
}
|
}
|
||||||
@ -205,7 +205,7 @@ arma::mat Cubature_filter::get_P_x_est() const
|
|||||||
|
|
||||||
/***************** UNSCENTED KALMAN FILTER *****************/
|
/***************** UNSCENTED KALMAN FILTER *****************/
|
||||||
|
|
||||||
Unscented_filter::Unscented_filter()
|
UnscentedFilter::UnscentedFilter()
|
||||||
{
|
{
|
||||||
int nx = 1;
|
int nx = 1;
|
||||||
x_pred_out = arma::zeros(nx, 1);
|
x_pred_out = arma::zeros(nx, 1);
|
||||||
@ -216,7 +216,7 @@ Unscented_filter::Unscented_filter()
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
Unscented_filter::Unscented_filter(int nx)
|
UnscentedFilter::UnscentedFilter(int nx)
|
||||||
{
|
{
|
||||||
x_pred_out = arma::zeros(nx, 1);
|
x_pred_out = arma::zeros(nx, 1);
|
||||||
P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
|
P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
|
||||||
@ -226,7 +226,7 @@ Unscented_filter::Unscented_filter(int nx)
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
Unscented_filter::Unscented_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
|
UnscentedFilter::UnscentedFilter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
|
||||||
{
|
{
|
||||||
x_pred_out = x_pred_0;
|
x_pred_out = x_pred_0;
|
||||||
P_x_pred_out = P_x_pred_0;
|
P_x_pred_out = P_x_pred_0;
|
||||||
@ -236,10 +236,10 @@ Unscented_filter::Unscented_filter(const arma::vec& x_pred_0, const arma::mat& P
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
Unscented_filter::~Unscented_filter() = default;
|
UnscentedFilter::~UnscentedFilter() = default;
|
||||||
|
|
||||||
|
|
||||||
void Unscented_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
|
void UnscentedFilter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
|
||||||
{
|
{
|
||||||
x_pred_out = x_pred_0;
|
x_pred_out = x_pred_0;
|
||||||
P_x_pred_out = P_x_pred_0;
|
P_x_pred_out = P_x_pred_0;
|
||||||
@ -252,7 +252,7 @@ void Unscented_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_
|
|||||||
/*
|
/*
|
||||||
* Perform the prediction step of the Unscented Kalman filter
|
* Perform the prediction step of the Unscented Kalman filter
|
||||||
*/
|
*/
|
||||||
void Unscented_filter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance)
|
void UnscentedFilter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance)
|
||||||
{
|
{
|
||||||
// Compute number of sigma points
|
// Compute number of sigma points
|
||||||
int nx = x_post.n_elem;
|
int nx = x_post.n_elem;
|
||||||
@ -307,7 +307,7 @@ void Unscented_filter::predict_sequential(const arma::vec& x_post, const arma::m
|
|||||||
/*
|
/*
|
||||||
* Perform the update step of the Unscented Kalman filter
|
* Perform the update step of the Unscented Kalman filter
|
||||||
*/
|
*/
|
||||||
void Unscented_filter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance)
|
void UnscentedFilter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance)
|
||||||
{
|
{
|
||||||
// Compute number of sigma points
|
// Compute number of sigma points
|
||||||
int nx = x_pred.n_elem;
|
int nx = x_pred.n_elem;
|
||||||
@ -364,25 +364,25 @@ void Unscented_filter::update_sequential(const arma::vec& z_upd, const arma::vec
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
arma::mat Unscented_filter::get_x_pred() const
|
arma::mat UnscentedFilter::get_x_pred() const
|
||||||
{
|
{
|
||||||
return x_pred_out;
|
return x_pred_out;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
arma::mat Unscented_filter::get_P_x_pred() const
|
arma::mat UnscentedFilter::get_P_x_pred() const
|
||||||
{
|
{
|
||||||
return P_x_pred_out;
|
return P_x_pred_out;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
arma::mat Unscented_filter::get_x_est() const
|
arma::mat UnscentedFilter::get_x_est() const
|
||||||
{
|
{
|
||||||
return x_est;
|
return x_est;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
arma::mat Unscented_filter::get_P_x_est() const
|
arma::mat UnscentedFilter::get_P_x_est() const
|
||||||
{
|
{
|
||||||
return P_x_est;
|
return P_x_est;
|
||||||
}
|
}
|
||||||
|
@ -2,9 +2,9 @@
|
|||||||
* \file nonlinear_tracking.h
|
* \file nonlinear_tracking.h
|
||||||
* \brief Interface of a library for nonlinear tracking algorithms
|
* \brief Interface of a library for nonlinear tracking algorithms
|
||||||
*
|
*
|
||||||
* Cubature_Filter implements the functionality of the Cubature Kalman
|
* CubatureFilter implements the functionality of the Cubature Kalman
|
||||||
* Filter, which uses multidimensional cubature rules to estimate the
|
* Filter, which uses multidimensional cubature rules to estimate the
|
||||||
* time evolution of a nonlinear system. Unscented_filter implements
|
* time evolution of a nonlinear system. UnscentedFilter implements
|
||||||
* an Unscented Kalman Filter which uses Unscented Transform rules to
|
* an Unscented Kalman Filter which uses Unscented Transform rules to
|
||||||
* perform a similar estimation.
|
* perform a similar estimation.
|
||||||
*
|
*
|
||||||
@ -47,29 +47,29 @@
|
|||||||
#include <gnuradio/gr_complex.h>
|
#include <gnuradio/gr_complex.h>
|
||||||
|
|
||||||
// Abstract model function
|
// Abstract model function
|
||||||
class Model_Function
|
class ModelFunction
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
Model_Function(){};
|
ModelFunction(){};
|
||||||
virtual arma::vec operator()(arma::vec input) = 0;
|
virtual arma::vec operator()(const arma::vec& input) = 0;
|
||||||
virtual ~Model_Function() = default;
|
virtual ~ModelFunction() = default;
|
||||||
};
|
};
|
||||||
|
|
||||||
class Cubature_filter
|
class CubatureFilter
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
// Constructors and destructors
|
// Constructors and destructors
|
||||||
Cubature_filter();
|
CubatureFilter();
|
||||||
Cubature_filter(int nx);
|
CubatureFilter(int nx);
|
||||||
Cubature_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0);
|
CubatureFilter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0);
|
||||||
~Cubature_filter();
|
~CubatureFilter();
|
||||||
|
|
||||||
// Reinitialization function
|
// Reinitialization function
|
||||||
void initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0);
|
void initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0);
|
||||||
|
|
||||||
// Prediction and estimation
|
// Prediction and estimation
|
||||||
void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance);
|
void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance);
|
||||||
void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance);
|
void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance);
|
||||||
|
|
||||||
// Getters
|
// Getters
|
||||||
arma::mat get_x_pred() const;
|
arma::mat get_x_pred() const;
|
||||||
@ -84,21 +84,21 @@ private:
|
|||||||
arma::mat P_x_est;
|
arma::mat P_x_est;
|
||||||
};
|
};
|
||||||
|
|
||||||
class Unscented_filter
|
class UnscentedFilter
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
// Constructors and destructors
|
// Constructors and destructors
|
||||||
Unscented_filter();
|
UnscentedFilter();
|
||||||
Unscented_filter(int nx);
|
UnscentedFilter(int nx);
|
||||||
Unscented_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0);
|
UnscentedFilter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0);
|
||||||
~Unscented_filter();
|
~UnscentedFilter();
|
||||||
|
|
||||||
// Reinitialization function
|
// Reinitialization function
|
||||||
void initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0);
|
void initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0);
|
||||||
|
|
||||||
// Prediction and estimation
|
// Prediction and estimation
|
||||||
void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance);
|
void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, ModelFunction* transition_fcn, const arma::mat& noise_covariance);
|
||||||
void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance);
|
void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, ModelFunction* measurement_fcn, const arma::mat& noise_covariance);
|
||||||
|
|
||||||
// Getters
|
// Getters
|
||||||
arma::mat get_x_pred() const;
|
arma::mat get_x_pred() const;
|
||||||
|
@ -36,21 +36,21 @@
|
|||||||
#define CUBATURE_TEST_N_TRIALS 1000
|
#define CUBATURE_TEST_N_TRIALS 1000
|
||||||
#define CUBATURE_TEST_TOLERANCE 0.01
|
#define CUBATURE_TEST_TOLERANCE 0.01
|
||||||
|
|
||||||
class Transition_Model : public Model_Function
|
class TransitionModel : public ModelFunction
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
Transition_Model(arma::mat kf_F) { coeff_mat = kf_F; };
|
TransitionModel(const arma::mat& kf_F) { coeff_mat = kf_F; };
|
||||||
virtual arma::vec operator()(arma::vec input) { return coeff_mat * input; };
|
virtual arma::vec operator()(const arma::vec& input) { return coeff_mat * input; };
|
||||||
|
|
||||||
private:
|
private:
|
||||||
arma::mat coeff_mat;
|
arma::mat coeff_mat;
|
||||||
};
|
};
|
||||||
|
|
||||||
class Measurement_Model : public Model_Function
|
class MeasurementModel : public ModelFunction
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
Measurement_Model(arma::mat kf_H) { coeff_mat = kf_H; };
|
MeasurementModel(const arma::mat& kf_H) { coeff_mat = kf_H; };
|
||||||
virtual arma::vec operator()(arma::vec input) { return coeff_mat * input; };
|
virtual arma::vec operator()(const arma::vec& input) { return coeff_mat * input; };
|
||||||
|
|
||||||
private:
|
private:
|
||||||
arma::mat coeff_mat;
|
arma::mat coeff_mat;
|
||||||
@ -58,7 +58,7 @@ private:
|
|||||||
|
|
||||||
TEST(CubatureFilterComputationTest, CubatureFilterTest)
|
TEST(CubatureFilterComputationTest, CubatureFilterTest)
|
||||||
{
|
{
|
||||||
Cubature_filter kf_cubature;
|
CubatureFilter kf_cubature;
|
||||||
|
|
||||||
arma::vec kf_x;
|
arma::vec kf_x;
|
||||||
arma::mat kf_P_x;
|
arma::mat kf_P_x;
|
||||||
@ -88,8 +88,8 @@ TEST(CubatureFilterComputationTest, CubatureFilterTest)
|
|||||||
arma::mat kf_P_y;
|
arma::mat kf_P_y;
|
||||||
arma::mat kf_K;
|
arma::mat kf_K;
|
||||||
|
|
||||||
Model_Function* transition_function;
|
ModelFunction* transition_function;
|
||||||
Model_Function* measurement_function;
|
ModelFunction* measurement_function;
|
||||||
|
|
||||||
//--- Perform initializations ------------------------------
|
//--- Perform initializations ------------------------------
|
||||||
|
|
||||||
@ -97,14 +97,15 @@ TEST(CubatureFilterComputationTest, CubatureFilterTest)
|
|||||||
std::default_random_engine e1(r());
|
std::default_random_engine e1(r());
|
||||||
std::normal_distribution<float> normal_dist(0, 5);
|
std::normal_distribution<float> normal_dist(0, 5);
|
||||||
std::uniform_real_distribution<float> uniform_dist(0.1, 5.0);
|
std::uniform_real_distribution<float> uniform_dist(0.1, 5.0);
|
||||||
|
std::uniform_int_distribution<> uniform_dist_int(1, 5);
|
||||||
|
|
||||||
uint8_t nx = 0;
|
uint8_t nx = 0;
|
||||||
uint8_t ny = 0;
|
uint8_t ny = 0;
|
||||||
|
|
||||||
for (uint16_t k = 0; k < CUBATURE_TEST_N_TRIALS; k++)
|
for (uint16_t k = 0; k < CUBATURE_TEST_N_TRIALS; k++)
|
||||||
{
|
{
|
||||||
nx = std::rand() % 5 + 1;
|
nx = static_cast<uint8_t>(uniform_dist_int(e1));
|
||||||
ny = std::rand() % 5 + 1;
|
ny = static_cast<uint8_t>(uniform_dist_int(e1));
|
||||||
|
|
||||||
kf_x = arma::randn<arma::vec>(nx, 1);
|
kf_x = arma::randn<arma::vec>(nx, 1);
|
||||||
|
|
||||||
@ -117,7 +118,7 @@ TEST(CubatureFilterComputationTest, CubatureFilterTest)
|
|||||||
kf_F = arma::randu<arma::mat>(nx, nx);
|
kf_F = arma::randu<arma::mat>(nx, nx);
|
||||||
kf_Q = arma::diagmat(arma::randu<arma::vec>(nx, 1));
|
kf_Q = arma::diagmat(arma::randu<arma::vec>(nx, 1));
|
||||||
|
|
||||||
transition_function = new Transition_Model(kf_F);
|
transition_function = new TransitionModel(kf_F);
|
||||||
arma::mat ttx = (*transition_function)(kf_x_post);
|
arma::mat ttx = (*transition_function)(kf_x_post);
|
||||||
|
|
||||||
kf_cubature.predict_sequential(kf_x_post, kf_P_x_post, transition_function, kf_Q);
|
kf_cubature.predict_sequential(kf_x_post, kf_P_x_post, transition_function, kf_Q);
|
||||||
@ -140,7 +141,7 @@ TEST(CubatureFilterComputationTest, CubatureFilterTest)
|
|||||||
|
|
||||||
kf_y = kf_H * (kf_F * kf_x + eta) + nu;
|
kf_y = kf_H * (kf_F * kf_x + eta) + nu;
|
||||||
|
|
||||||
measurement_function = new Measurement_Model(kf_H);
|
measurement_function = new MeasurementModel(kf_H);
|
||||||
kf_cubature.update_sequential(kf_y, kf_x_pre, kf_P_x_pre, measurement_function, kf_R);
|
kf_cubature.update_sequential(kf_y, kf_x_pre, kf_P_x_pre, measurement_function, kf_R);
|
||||||
|
|
||||||
ckf_x_post = kf_cubature.get_x_est();
|
ckf_x_post = kf_cubature.get_x_est();
|
||||||
|
@ -36,21 +36,21 @@
|
|||||||
#define UNSCENTED_TEST_N_TRIALS 10
|
#define UNSCENTED_TEST_N_TRIALS 10
|
||||||
#define UNSCENTED_TEST_TOLERANCE 10
|
#define UNSCENTED_TEST_TOLERANCE 10
|
||||||
|
|
||||||
class Transition_Model_UKF : public Model_Function
|
class TransitionModelUKF : public ModelFunction
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
Transition_Model_UKF(arma::mat kf_F) { coeff_mat = kf_F; };
|
TransitionModelUKF(const arma::mat& kf_F) { coeff_mat = kf_F; };
|
||||||
virtual arma::vec operator()(arma::vec input) { return coeff_mat * input; };
|
virtual arma::vec operator()(const arma::vec& input) { return coeff_mat * input; };
|
||||||
|
|
||||||
private:
|
private:
|
||||||
arma::mat coeff_mat;
|
arma::mat coeff_mat;
|
||||||
};
|
};
|
||||||
|
|
||||||
class Measurement_Model_UKF : public Model_Function
|
class MeasurementModelUKF : public ModelFunction
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
Measurement_Model_UKF(arma::mat kf_H) { coeff_mat = kf_H; };
|
MeasurementModelUKF(const arma::mat& kf_H) { coeff_mat = kf_H; };
|
||||||
virtual arma::vec operator()(arma::vec input) { return coeff_mat * input; };
|
virtual arma::vec operator()(const arma::vec& input) { return coeff_mat * input; };
|
||||||
|
|
||||||
private:
|
private:
|
||||||
arma::mat coeff_mat;
|
arma::mat coeff_mat;
|
||||||
@ -58,7 +58,7 @@ private:
|
|||||||
|
|
||||||
TEST(UnscentedFilterComputationTest, UnscentedFilterTest)
|
TEST(UnscentedFilterComputationTest, UnscentedFilterTest)
|
||||||
{
|
{
|
||||||
Unscented_filter kf_unscented;
|
UnscentedFilter kf_unscented;
|
||||||
|
|
||||||
arma::vec kf_x;
|
arma::vec kf_x;
|
||||||
arma::mat kf_P_x;
|
arma::mat kf_P_x;
|
||||||
@ -88,8 +88,8 @@ TEST(UnscentedFilterComputationTest, UnscentedFilterTest)
|
|||||||
arma::mat kf_P_y;
|
arma::mat kf_P_y;
|
||||||
arma::mat kf_K;
|
arma::mat kf_K;
|
||||||
|
|
||||||
Model_Function* transition_function;
|
ModelFunction* transition_function;
|
||||||
Model_Function* measurement_function;
|
ModelFunction* measurement_function;
|
||||||
|
|
||||||
//--- Perform initializations ------------------------------
|
//--- Perform initializations ------------------------------
|
||||||
|
|
||||||
@ -97,14 +97,15 @@ TEST(UnscentedFilterComputationTest, UnscentedFilterTest)
|
|||||||
std::default_random_engine e1(r());
|
std::default_random_engine e1(r());
|
||||||
std::normal_distribution<float> normal_dist(0, 5);
|
std::normal_distribution<float> normal_dist(0, 5);
|
||||||
std::uniform_real_distribution<float> uniform_dist(0.1, 5.0);
|
std::uniform_real_distribution<float> uniform_dist(0.1, 5.0);
|
||||||
|
std::uniform_int_distribution<> uniform_dist_int(1, 5);
|
||||||
|
|
||||||
uint8_t nx = 0;
|
uint8_t nx = 0;
|
||||||
uint8_t ny = 0;
|
uint8_t ny = 0;
|
||||||
|
|
||||||
for (uint16_t k = 0; k < UNSCENTED_TEST_N_TRIALS; k++)
|
for (uint16_t k = 0; k < UNSCENTED_TEST_N_TRIALS; k++)
|
||||||
{
|
{
|
||||||
nx = std::rand() % 5 + 1;
|
nx = static_cast<uint8_t>(uniform_dist_int(e1));
|
||||||
ny = std::rand() % 5 + 1;
|
ny = static_cast<uint8_t>(uniform_dist_int(e1));
|
||||||
|
|
||||||
kf_x = arma::randn<arma::vec>(nx, 1);
|
kf_x = arma::randn<arma::vec>(nx, 1);
|
||||||
|
|
||||||
@ -117,7 +118,7 @@ TEST(UnscentedFilterComputationTest, UnscentedFilterTest)
|
|||||||
kf_F = arma::randu<arma::mat>(nx, nx);
|
kf_F = arma::randu<arma::mat>(nx, nx);
|
||||||
kf_Q = arma::diagmat(arma::randu<arma::vec>(nx, 1));
|
kf_Q = arma::diagmat(arma::randu<arma::vec>(nx, 1));
|
||||||
|
|
||||||
transition_function = new Transition_Model_UKF(kf_F);
|
transition_function = new TransitionModelUKF(kf_F);
|
||||||
arma::mat ttx = (*transition_function)(kf_x_post);
|
arma::mat ttx = (*transition_function)(kf_x_post);
|
||||||
|
|
||||||
kf_unscented.predict_sequential(kf_x_post, kf_P_x_post, transition_function, kf_Q);
|
kf_unscented.predict_sequential(kf_x_post, kf_P_x_post, transition_function, kf_Q);
|
||||||
@ -140,7 +141,7 @@ TEST(UnscentedFilterComputationTest, UnscentedFilterTest)
|
|||||||
|
|
||||||
kf_y = kf_H * (kf_F * kf_x + eta) + nu;
|
kf_y = kf_H * (kf_F * kf_x + eta) + nu;
|
||||||
|
|
||||||
measurement_function = new Measurement_Model_UKF(kf_H);
|
measurement_function = new MeasurementModelUKF(kf_H);
|
||||||
kf_unscented.update_sequential(kf_y, kf_x_pre, kf_P_x_pre, measurement_function, kf_R);
|
kf_unscented.update_sequential(kf_y, kf_x_pre, kf_P_x_pre, measurement_function, kf_R);
|
||||||
|
|
||||||
ukf_x_post = kf_unscented.get_x_est();
|
ukf_x_post = kf_unscented.get_x_est();
|
||||||
|
Loading…
Reference in New Issue
Block a user