1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-14 20:20:35 +00:00

Add work on acqusition performance test

This commit is contained in:
Carles Fernandez 2018-06-25 00:56:11 +02:00
parent 4b74936715
commit e7bc582e5f
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D

View File

@ -33,22 +33,27 @@
#include "signal_generator_flags.h" #include "signal_generator_flags.h"
#include "tracking_true_obs_reader.h" #include "tracking_true_obs_reader.h"
#include "true_observables_reader.h" #include "true_observables_reader.h"
#include "display.h"
#include <gnuradio/top_block.h> #include <gnuradio/top_block.h>
#include <glog/logging.h> #include <glog/logging.h>
#include <gtest/gtest.h> #include <gtest/gtest.h>
DEFINE_string(config_file_ptest, std::string(""), "File containing the configuration parameters for the position test."); DEFINE_string(config_file_ptest, std::string(""), "File containing the configuration parameters for the position test.");
DEFINE_double(acq_test_threshold, 0.001, "Acquisition threshold"); DEFINE_double(acq_test_threshold, 0.001, "Acquisition threshold");
DEFINE_double(acq_test_pfa, -1.0, "Set threshold via probability of false alarm");
DEFINE_int32(acq_test_coherent_time_ms, 10, "Acquisition coherent time, in ms"); DEFINE_int32(acq_test_coherent_time_ms, 10, "Acquisition coherent time, in ms");
DEFINE_int32(acq_test_PRN, 1, "PRN number"); DEFINE_int32(acq_test_PRN, 1, "PRN number");
DEFINE_int32(acq_test_fake_PRN, 33, "Fake PRN number");
DEFINE_int32(acq_test_signal_duration_s, 2, "Generated signal duration");
DEFINE_bool(acq_test_bit_transition_flag, false, "Bit transition flag");
// ######## GNURADIO BLOCK MESSAGE RECEVER ######### // ######## GNURADIO BLOCK MESSAGE RECEVER #########
class AcqPerfTest_msg_rx; class AcqPerfTest_msg_rx;
//
typedef boost::shared_ptr<AcqPerfTest_msg_rx> AcqPerfTest_msg_rx_sptr; typedef boost::shared_ptr<AcqPerfTest_msg_rx> AcqPerfTest_msg_rx_sptr;
//
AcqPerfTest_msg_rx_sptr AcqPerfTest_msg_rx_make(concurrent_queue<int>& queue); AcqPerfTest_msg_rx_sptr AcqPerfTest_msg_rx_make(concurrent_queue<int>& queue);
//
class AcqPerfTest_msg_rx : public gr::block class AcqPerfTest_msg_rx : public gr::block
{ {
private: private:
@ -59,7 +64,7 @@ private:
public: public:
int rx_message; int rx_message;
~AcqPerfTest_msg_rx(); //!< Default destructor ~AcqPerfTest_msg_rx();
}; };
@ -82,7 +87,6 @@ void AcqPerfTest_msg_rx::msg_handler_events(pmt::pmt_t msg)
LOG(WARNING) << "msg_handler_telemetry Bad any cast!"; LOG(WARNING) << "msg_handler_telemetry Bad any cast!";
rx_message = 0; rx_message = 0;
} }
//std::cout << "Received message:" << rx_message << std::endl;
} }
@ -134,6 +138,7 @@ protected:
void stop_queue(); void stop_queue();
int run_receiver(); int run_receiver();
int run_receiver2(); int run_receiver2();
int count_executions(const std::string& basename, unsigned int sat);
void check_results(); void check_results();
concurrent_queue<int> channel_internal_queue; concurrent_queue<int> channel_internal_queue;
@ -160,15 +165,15 @@ protected:
const int in_acquisition = 1; const int in_acquisition = 1;
const float threshold = FLAGS_acq_test_threshold; const float threshold = FLAGS_acq_test_threshold;
const int max_dwells = 1; const int max_dwells = 1;
const int tong_init_val = 2; const int dump_channel = 0;
const int tong_max_val = 10;
const int tong_max_dwells = 30;
int generated_signal_duration_s = 2; int generated_signal_duration_s = FLAGS_acq_test_signal_duration_s;
unsigned int num_of_realizations = (generated_signal_duration_s * 1000) / FLAGS_acq_test_coherent_time_ms; unsigned int num_of_realizations = (generated_signal_duration_s * 1000) / FLAGS_acq_test_coherent_time_ms;
unsigned int realization_counter; unsigned int realization_counter;
unsigned int observed_satellite = FLAGS_acq_test_PRN;
private: private:
std::string generator_binary; std::string generator_binary;
std::string p1; std::string p1;
@ -196,7 +201,7 @@ void AcquisitionPerformanceTest::init()
gnss_synchro.System = 'G'; gnss_synchro.System = 'G';
std::string signal = "1C"; std::string signal = "1C";
signal.copy(gnss_synchro.Signal, 2, 0); signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = 1; gnss_synchro.PRN = observed_satellite;
message = 0; message = 0;
realization_counter = 0; realization_counter = 0;
} }
@ -211,23 +216,13 @@ void AcquisitionPerformanceTest::start_queue()
void AcquisitionPerformanceTest::wait_message() void AcquisitionPerformanceTest::wait_message()
{ {
//std::chrono::time_point<std::chrono::system_clock> start, end;
//std::chrono::duration<double> elapsed_seconds(0);
while (!stop) while (!stop)
{ {
acquisition->reset(); acquisition->reset();
acquisition->set_state(1); acquisition->set_state(1);
//start = std::chrono::system_clock::now();
channel_internal_queue.wait_and_pop(message); channel_internal_queue.wait_and_pop(message);
//end = std::chrono::system_clock::now();
//elapsed_seconds = end - start;
//mean_acq_time_us += elapsed_seconds.count() * 1e6;
process_message(); process_message();
} }
} }
@ -235,38 +230,12 @@ void AcquisitionPerformanceTest::wait_message()
void AcquisitionPerformanceTest::process_message() void AcquisitionPerformanceTest::process_message()
{ {
if (message == 1)
{
//detection_counter++;
// The term -5 is here to correct the additional delay introduced by the FIR filter
//double delay_error_chips = std::abs(static_cast<double>(expected_delay_chips) - static_cast<double>(gnss_synchro.Acq_delay_samples - 5) * 1023.0 / (static_cast<double>(fs_in) * 1e-3));
//double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
// mse_delay += std::pow(delay_error_chips, 2);
// mse_doppler += std::pow(doppler_error_hz, 2);
// if ((delay_error_chips < max_delay_error_chips) && (doppler_error_hz < max_doppler_error_hz))
// {
// correct_estimation_counter++;
// }
}
realization_counter++; realization_counter++;
acquisition->reset();
std::cout << "Progress: " << round(static_cast<float>(realization_counter) / static_cast<float>(num_of_realizations) * 100.0) << "% \r" << std::flush; acquisition->set_state(1);
if (realization_counter == num_of_realizations) if (realization_counter == num_of_realizations)
{ {
// mse_delay /= num_of_realizations;
// mse_doppler /= num_of_realizations;
//Pd = static_cast<double>(correct_estimation_counter) / static_cast<double>(num_of_realizations);
//Pfa_a = static_cast<double>(detection_counter) / static_cast<double>(num_of_realizations);
//Pfa_p = static_cast<double>(detection_counter - correct_estimation_counter) / static_cast<double>(num_of_realizations);
// mean_acq_time_us /= num_of_realizations;
stop_queue(); stop_queue();
top_block->stop(); top_block->stop();
} }
@ -414,7 +383,7 @@ int AcquisitionPerformanceTest::configure_receiver(double cn0, unsigned int iter
config->set_property("Channels_1C.count", std::to_string(number_of_channels)); config->set_property("Channels_1C.count", std::to_string(number_of_channels));
config->set_property("Channels.in_acquisition", std::to_string(in_acquisition)); config->set_property("Channels.in_acquisition", std::to_string(in_acquisition));
config->set_property("Channel.signal", "1C"); config->set_property("Channel.signal", "1C");
//config->set_property("Channel0.satellite", std::to_string(FLAGS_acq_test_PRN)); //config->set_property("Channel1.satellite", std::to_string(FLAGS_acq_test_PRN));
// Set Acquisition // Set Acquisition
config->set_property("Acquisition_1C.implementation", implementation); config->set_property("Acquisition_1C.implementation", implementation);
@ -423,11 +392,19 @@ int AcquisitionPerformanceTest::configure_receiver(double cn0, unsigned int iter
config->set_property("Acquisition_1C.doppler_step", std::to_string(doppler_step)); config->set_property("Acquisition_1C.doppler_step", std::to_string(doppler_step));
config->set_property("Acquisition_1C.threshold", std::to_string(threshold)); config->set_property("Acquisition_1C.threshold", std::to_string(threshold));
//config->set_property("Acquisition_1C.pfa", "0.0"); if (FLAGS_acq_test_pfa > 0.0) config->set_property("Acquisition_1C.pfa", std::to_string(FLAGS_acq_test_pfa));
config->set_property("Acquisition_1C.use_CFAR_algorithm", "true"); config->set_property("Acquisition_1C.use_CFAR_algorithm", "true");
config->set_property("Acquisition_1C.coherent_integration_time_ms", std::to_string(coherent_integration_time_ms)); config->set_property("Acquisition_1C.coherent_integration_time_ms", std::to_string(coherent_integration_time_ms));
config->set_property("Acquisition_1C.use_bit_transition_flag", "false"); if (FLAGS_acq_test_bit_transition_flag)
{
config->set_property("Acquisition_1C.bit_transition_flag", "true");
}
else
{
config->set_property("Acquisition_1C.bit_transition_flag", "false");
}
config->set_property("Acquisition_1C.max_dwells", std::to_string(1)); config->set_property("Acquisition_1C.max_dwells", std::to_string(1));
@ -437,16 +414,11 @@ int AcquisitionPerformanceTest::configure_receiver(double cn0, unsigned int iter
config->set_property("Acquisition_1C.make_two_steps", "false"); config->set_property("Acquisition_1C.make_two_steps", "false");
config->set_property("Acquisition_1C.second_nbins", std::to_string(4)); config->set_property("Acquisition_1C.second_nbins", std::to_string(4));
config->set_property("Acquisition_1C.second_doppler_step", std::to_string(125)); config->set_property("Acquisition_1C.second_doppler_step", std::to_string(125));
//if (FLAGS_plot_acq_grid == true)
// {
config->set_property("Acquisition_1C.dump", "true"); config->set_property("Acquisition_1C.dump", "true");
// }
//else
// {
// config->set_property("Acquisition_1C.dump", "false");
// }
std::string dump_file = std::string("./acquisition_") + std::to_string(cn0) + "_" + std::to_string(iter); std::string dump_file = std::string("./acquisition_") + std::to_string(cn0) + "_" + std::to_string(iter);
config->set_property("Acquisition_1C.dump_filename", dump_file); config->set_property("Acquisition_1C.dump_filename", dump_file);
config->set_property("Acquisition_1C.dump_channel", std::to_string(dump_channel));
// Set Tracking // Set Tracking
config->set_property("Tracking_1C.implementation", "GPS_L1_CA_DLL_PLL_Tracking"); config->set_property("Tracking_1C.implementation", "GPS_L1_CA_DLL_PLL_Tracking");
@ -510,10 +482,8 @@ int AcquisitionPerformanceTest::run_receiver()
std::string file = "./" + filename_raw_data; std::string file = "./" + filename_raw_data;
const char* file_name = file.c_str(); const char* file_name = file.c_str();
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(int8_t), file_name, false); gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(int8_t), file_name, false);
std::cout << "Source created" << std::endl;
gr::blocks::interleaved_char_to_complex::sptr gr_interleaved_char_to_complex = gr::blocks::interleaved_char_to_complex::make(); gr::blocks::interleaved_char_to_complex::sptr gr_interleaved_char_to_complex = gr::blocks::interleaved_char_to_complex::make();
std::cout << "Interleaver created" << std::endl;
top_block = gr::make_top_block("Acquisition test"); top_block = gr::make_top_block("Acquisition test");
boost::shared_ptr<AcqPerfTest_msg_rx> msg_rx = AcqPerfTest_msg_rx_make(channel_internal_queue); boost::shared_ptr<AcqPerfTest_msg_rx> msg_rx = AcqPerfTest_msg_rx_make(channel_internal_queue);
@ -521,10 +491,11 @@ int AcquisitionPerformanceTest::run_receiver()
queue = gr::msg_queue::make(0); queue = gr::msg_queue::make(0);
gnss_synchro = Gnss_Synchro(); gnss_synchro = Gnss_Synchro();
init(); init();
acquisition = std::make_shared<GpsL1CaPcpsAcquisition>(config.get(), "Acquisition_1C", 1, 0);
int nsamples = floor(config->property("GNSS-SDR.internal_fs_sps", 2000000) * generated_signal_duration_s); int nsamples = floor(config->property("GNSS-SDR.internal_fs_sps", 2000000) * generated_signal_duration_s);
boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue); boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
acquisition = std::make_shared<GpsL1CaPcpsAcquisition>(config.get(), "Acquisition_1C", 1, 0);
acquisition->set_gnss_synchro(&gnss_synchro); acquisition->set_gnss_synchro(&gnss_synchro);
acquisition->set_channel(0); acquisition->set_channel(0);
acquisition->set_local_code(); acquisition->set_local_code();
@ -535,22 +506,19 @@ int AcquisitionPerformanceTest::run_receiver()
acquisition->connect(top_block); acquisition->connect(top_block);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events")); top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
acquisition->init(); acquisition->init();
top_block->connect(file_source, 0, gr_interleaved_char_to_complex, 0); top_block->connect(file_source, 0, gr_interleaved_char_to_complex, 0);
top_block->connect(gr_interleaved_char_to_complex, 0, valve, 0); top_block->connect(gr_interleaved_char_to_complex, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0); top_block->connect(valve, 0, acquisition->get_left_block(), 0);
std::cout << "Num of realizations: " << num_of_realizations << std::endl;
start_queue(); start_queue();
start = std::chrono::system_clock::now(); start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now(); end = std::chrono::system_clock::now();
//file_source->close();
elapsed_seconds = end - start; elapsed_seconds = end - start;
std::cout << "Acq_delay_samples: " << gnss_synchro.Acq_delay_samples << std::endl;
std::cout << "Acq_doppler_hz: " << gnss_synchro.Acq_doppler_hz << std::endl;
std::cout << "Acq_samplestamp_samples: " << gnss_synchro.Acq_samplestamp_samples << std::endl;
#ifdef OLD_BOOST #ifdef OLD_BOOST
ch_thread.timed_join(boost::posix_time::seconds(1)); ch_thread.timed_join(boost::posix_time::seconds(1));
#endif #endif
@ -563,6 +531,7 @@ int AcquisitionPerformanceTest::run_receiver()
return 0; return 0;
} }
int AcquisitionPerformanceTest::run_receiver2() int AcquisitionPerformanceTest::run_receiver2()
{ {
std::shared_ptr<ControlThread> control_thread; std::shared_ptr<ControlThread> control_thread;
@ -592,14 +561,34 @@ int AcquisitionPerformanceTest::run_receiver2()
} }
int AcquisitionPerformanceTest::count_executions(const std::string& basename, unsigned int sat)
{
FILE* fp;
std::string argum2 = std::string("/bin/ls ") + basename + "* | grep sat_" + std::to_string(sat) + " | wc -l";
char buffer[1024];
fp = popen(&argum2[0], "r");
int num_executions = 1;
if (fp == NULL)
{
std::cout << "Failed to run command: " << argum2 << std::endl;
return 0;
}
while (fgets(buffer, sizeof(buffer), fp) != NULL)
{
std::string aux = std::string(buffer);
EXPECT_EQ(aux.empty(), false);
num_executions = std::stoi(aux);
}
pclose(fp);
return num_executions;
}
TEST_F(AcquisitionPerformanceTest, PdvsCn0) TEST_F(AcquisitionPerformanceTest, PdvsCn0)
{ {
init();
tracking_true_obs_reader true_trk_data; tracking_true_obs_reader true_trk_data;
for (std::vector<double>::const_iterator it = cn0_.cbegin(); it != cn0_.cend(); ++it) for (std::vector<double>::const_iterator it = cn0_.cbegin(); it != cn0_.cend(); ++it)
{ {
// Set parameter to sweep
// Do N_iterations of the experiment // Do N_iterations of the experiment
for (unsigned iter = 0; iter < N_iterations; iter++) for (unsigned iter = 0; iter < N_iterations; iter++)
{ {
@ -611,232 +600,167 @@ TEST_F(AcquisitionPerformanceTest, PdvsCn0)
// Generate signal raw signal samples and observations RINEX file // Generate signal raw signal samples and observations RINEX file
generate_signal(); generate_signal();
// Configure the receiver std::cout << "Execution for CN0 = " << *it << " dB-Hz" << std::endl;
configure_receiver(*it, iter); for (unsigned k = 0; k < 2; k++)
// remove old files
// FILE* fp2;
// std::string remove_old_files = std::string("/bin/rm ") + basename + "*.mat";
// fp2 = popen(&remove_old_files[0], "r");
// pclose(fp2);
// Run it
run_receiver();
// Read and store reference data and results
std::cout << basename << std::endl;
// count executions
FILE* fp;
std::string argum2 = std::string("/bin/ls ") + basename + "* | wc -l";
char buffer[1024];
fp = popen(&argum2[0], "r");
int num_executions = 1;
if (fp == NULL)
{ {
std::cout << "Failed to run command: " << argum2 << std::endl; if (k == 0)
//return -1;
}
while (fgets(buffer, sizeof(buffer), fp) != NULL)
{
std::string aux = std::string(buffer);
EXPECT_EQ(aux.empty(), false);
num_executions = std::stoi(aux);
}
pclose(fp);
int ch = 0;
arma::vec meas_timestamp_s = arma::zeros(num_executions, 1);
arma::vec meas_doppler = arma::zeros(num_executions, 1);
arma::vec positive_acq = arma::zeros(num_executions, 1);
arma::vec meas_acq_delay_chips = arma::zeros(num_executions, 1);
double coh_time_ms = config->property("Acquisition_1C.coherent_integration_time_ms", 1);
std::cout << "Num executions: " << std::endl;
for (int execution = 1; execution <= num_executions; execution++)
{
acquisition_dump_reader acq_dump(basename, FLAGS_acq_test_PRN, config->property("Acquisition_1C.doppler_max", 0), config->property("Acquisition_1C.doppler_step", 0), config->property("GNSS-SDR.internal_fs_sps", 0) * GPS_L1_CA_CODE_PERIOD * static_cast<double>(coh_time_ms), ch, execution);
if (!acq_dump.read_binary_acq())
;
if (acq_dump.positive_acq)
{ {
//std::cout << "Meas acq_delay_samples: " << acq_dump.acq_delay_samples << " chips: " << acq_dump.acq_delay_samples / (baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD / GPS_L1_CA_CODE_LENGTH_CHIPS) << std::endl; observed_satellite = FLAGS_acq_test_PRN;
meas_timestamp_s(execution - 1) = acq_dump.sample_counter / baseband_sampling_freq;
meas_doppler(execution - 1) = acq_dump.acq_doppler_hz;
meas_acq_delay_chips(execution - 1) = acq_dump.acq_delay_samples / (baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD / GPS_L1_CA_CODE_LENGTH_CHIPS);
positive_acq(execution - 1) = acq_dump.positive_acq;
} }
else else
{ {
//std::cout << "Failed acquisition." << std::endl; observed_satellite = FLAGS_acq_test_fake_PRN;
meas_timestamp_s(execution - 1) = arma::datum::inf;
meas_doppler(execution - 1) = arma::datum::inf;
meas_acq_delay_chips(execution - 1) = arma::datum::inf;
positive_acq(execution - 1) = acq_dump.positive_acq;
} }
} init();
std::string true_trk_file = std::string("./gps_l1_ca_obs_prn"); // Configure the receiver
true_trk_file.append(std::to_string(FLAGS_acq_test_PRN)); configure_receiver(*it, iter);
true_trk_file.append(".dat");
true_trk_data.close_obs_file();
true_trk_data.open_obs_file(true_trk_file);
// Run it
run_receiver();
// load the true values // count executions
long int n_true_epochs = true_trk_data.num_epochs(); int num_executions = count_executions(basename, observed_satellite);
arma::vec true_timestamp_s = arma::zeros(n_true_epochs, 1); // Read measured data
arma::vec true_acc_carrier_phase_cycles = arma::zeros(n_true_epochs, 1); int ch = config->property("Acquisition_1C.dump_channel", 0);
arma::vec true_Doppler_Hz = arma::zeros(n_true_epochs, 1); arma::vec meas_timestamp_s = arma::zeros(num_executions, 1);
arma::vec true_prn_delay_chips = arma::zeros(n_true_epochs, 1); arma::vec meas_doppler = arma::zeros(num_executions, 1);
arma::vec true_tow_s = arma::zeros(n_true_epochs, 1); arma::vec positive_acq = arma::zeros(num_executions, 1);
arma::vec meas_acq_delay_chips = arma::zeros(num_executions, 1);
long int epoch_counter = 0; double coh_time_ms = config->property("Acquisition_1C.coherent_integration_time_ms", 1);
while (true_trk_data.read_binary_obs())
{
true_timestamp_s(epoch_counter) = true_trk_data.signal_timestamp_s;
true_acc_carrier_phase_cycles(epoch_counter) = true_trk_data.acc_carrier_phase_cycles;
true_Doppler_Hz(epoch_counter) = true_trk_data.doppler_l1_hz;
true_prn_delay_chips(epoch_counter) = GPS_L1_CA_CODE_LENGTH_CHIPS - true_trk_data.prn_delay_chips;
true_tow_s(epoch_counter) = true_trk_data.tow;
epoch_counter++;
//std::cout << "True PRN_Delay chips = " << GPS_L1_CA_CODE_LENGTH_CHIPS - true_trk_data.prn_delay_chips << " at " << true_trk_data.signal_timestamp_s << std::endl;
}
if (epoch_counter > 2)
{
arma::vec true_interpolated_doppler = arma::zeros(num_executions, 1);
arma::vec true_interpolated_prn_delay_chips = arma::zeros(num_executions, 1);
interp1(true_timestamp_s, true_Doppler_Hz, meas_timestamp_s, true_interpolated_doppler);
interp1(true_timestamp_s, true_prn_delay_chips, meas_timestamp_s, true_interpolated_prn_delay_chips);
arma::vec doppler_estimation_error = true_interpolated_doppler - meas_doppler; std::cout << "Num executions: " << num_executions << std::endl;
std::cout << "Doppler estimation error [Hz]: "; for (int execution = 1; execution <= num_executions; execution++)
for (int i = 0; i < num_executions - 1; i++)
{ {
std::cout << doppler_estimation_error(i) << " "; acquisition_dump_reader acq_dump(basename, observed_satellite, config->property("Acquisition_1C.doppler_max", 0), config->property("Acquisition_1C.doppler_step", 0), config->property("GNSS-SDR.internal_fs_sps", 0) * GPS_L1_CA_CODE_PERIOD * static_cast<double>(coh_time_ms), ch, execution);
} acq_dump.read_binary_acq();
std::cout << std::endl; if (acq_dump.positive_acq)
arma::vec delay_estimation_error = true_interpolated_prn_delay_chips - meas_acq_delay_chips;
std::cout << "Delay estimation error [chips]: ";
for (int i = 0; i < num_executions - 1; i++)
{
std::cout << delay_estimation_error(i) << " ";
}
std::cout << std::endl;
double detected = arma::accu(positive_acq);
std::cout << "Probability of detection for channel=" << ch << ", CN0=" << *it << " dBHz"
<< ": " << (num_executions > 0 ? (detected / num_executions) : 0.0) << std::endl;
arma::vec correct_acq = arma::zeros(num_executions, 1);
double correctly_detected = 0.0;
for (int i = 0; i < num_executions - 1; i++)
{
if (abs(delay_estimation_error(i)) < 0.5)
{ {
correctly_detected = correctly_detected + 1.0; //std::cout << "Meas acq_delay_samples: " << acq_dump.acq_delay_samples << " chips: " << acq_dump.acq_delay_samples / (baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD / GPS_L1_CA_CODE_LENGTH_CHIPS) << std::endl;
meas_timestamp_s(execution - 1) = acq_dump.sample_counter / baseband_sampling_freq;
meas_doppler(execution - 1) = acq_dump.acq_doppler_hz;
meas_acq_delay_chips(execution - 1) = acq_dump.acq_delay_samples / (baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD / GPS_L1_CA_CODE_LENGTH_CHIPS);
positive_acq(execution - 1) = acq_dump.positive_acq;
}
else
{
//std::cout << "Failed acquisition." << std::endl;
meas_timestamp_s(execution - 1) = arma::datum::inf;
meas_doppler(execution - 1) = arma::datum::inf;
meas_acq_delay_chips(execution - 1) = arma::datum::inf;
positive_acq(execution - 1) = acq_dump.positive_acq;
} }
} }
std::cout << "Probability of correct detection for channel=" << ch << ", CN0=" << *it << " dBHz"
<< ": " << (num_executions > 0 ? (correctly_detected / num_executions) : 0.0) << std::endl;
}
else
{
std::cout << "No reference data has been found. Maybe a non-present satellite?" << std::endl;
double wrongly_detected = arma::accu(positive_acq); // Read reference data
std::cout << "Probability of false alarm for channel=" << ch << ", CN0=" << *it << " dBHz" std::string true_trk_file = std::string("./gps_l1_ca_obs_prn");
<< ": " << (num_executions > 0 ? (wrongly_detected / num_executions) : 0.0) << std::endl; true_trk_file.append(std::to_string(observed_satellite));
true_trk_file.append(".dat");
true_trk_data.close_obs_file();
true_trk_data.open_obs_file(true_trk_file);
// load the true values
long int n_true_epochs = true_trk_data.num_epochs();
arma::vec true_timestamp_s = arma::zeros(n_true_epochs, 1);
arma::vec true_acc_carrier_phase_cycles = arma::zeros(n_true_epochs, 1);
arma::vec true_Doppler_Hz = arma::zeros(n_true_epochs, 1);
arma::vec true_prn_delay_chips = arma::zeros(n_true_epochs, 1);
arma::vec true_tow_s = arma::zeros(n_true_epochs, 1);
long int epoch_counter = 0;
int num_clean_executions = 0;
while (true_trk_data.read_binary_obs())
{
true_timestamp_s(epoch_counter) = true_trk_data.signal_timestamp_s;
true_acc_carrier_phase_cycles(epoch_counter) = true_trk_data.acc_carrier_phase_cycles;
true_Doppler_Hz(epoch_counter) = true_trk_data.doppler_l1_hz;
true_prn_delay_chips(epoch_counter) = GPS_L1_CA_CODE_LENGTH_CHIPS - true_trk_data.prn_delay_chips;
true_tow_s(epoch_counter) = true_trk_data.tow;
epoch_counter++;
//std::cout << "True PRN_Delay chips = " << GPS_L1_CA_CODE_LENGTH_CHIPS - true_trk_data.prn_delay_chips << " at " << true_trk_data.signal_timestamp_s << std::endl;
}
// Process results
arma::vec clean_doppler_estimation_error;
arma::vec clean_delay_estimation_error;
if (epoch_counter > 2)
{
arma::vec true_interpolated_doppler = arma::zeros(num_executions, 1);
arma::vec true_interpolated_prn_delay_chips = arma::zeros(num_executions, 1);
interp1(true_timestamp_s, true_Doppler_Hz, meas_timestamp_s, true_interpolated_doppler);
interp1(true_timestamp_s, true_prn_delay_chips, meas_timestamp_s, true_interpolated_prn_delay_chips);
arma::vec doppler_estimation_error = true_interpolated_doppler - meas_doppler;
arma::vec delay_estimation_error = true_interpolated_prn_delay_chips - (meas_acq_delay_chips - ((1.0 / baseband_sampling_freq) / GPS_L1_CA_CHIP_PERIOD)); // compensate 1 sample delay
// Cut measurements without reference
for (unsigned int i = 0; i < num_executions; i++)
{
if (!std::isnan(doppler_estimation_error(i)) and !std::isnan(delay_estimation_error(i)))
{
num_clean_executions++;
}
}
clean_doppler_estimation_error = arma::zeros(num_clean_executions, 1);
clean_delay_estimation_error = arma::zeros(num_clean_executions, 1);
num_clean_executions = 0;
for (unsigned int i = 0; i < num_executions; i++)
{
if (!std::isnan(doppler_estimation_error(i)) and !std::isnan(delay_estimation_error(i)))
{
clean_doppler_estimation_error(num_clean_executions) = doppler_estimation_error(i);
clean_delay_estimation_error(num_clean_executions) = delay_estimation_error(i);
num_clean_executions++;
}
}
std::cout << "Doppler estimation error [Hz]: ";
for (int i = 0; i < num_executions - 1; i++)
{
std::cout << doppler_estimation_error(i) << " ";
}
std::cout << std::endl;
std::cout << "Delay estimation error [chips]: ";
for (int i = 0; i < num_executions - 1; i++)
{
std::cout << delay_estimation_error(i) << " ";
}
std::cout << std::endl;
double detected = arma::accu(positive_acq);
std::cout << TEXT_BOLD_BLACK << "Probability of detection for channel=" << ch << ", CN0=" << *it << " dBHz"
<< ": " << (num_executions > 0 ? (detected / num_executions) : 0.0) << TEXT_RESET << std::endl;
}
if (num_clean_executions > 0)
{
arma::vec correct_acq = arma::zeros(num_executions, 1);
double correctly_detected = 0.0;
for (int i = 0; i < num_clean_executions - 1; i++)
{
if (abs(clean_delay_estimation_error(i)) < 0.5 and abs(clean_doppler_estimation_error(i)) < static_cast<float>(config->property("Acquisition_1C.doppler_step", 1)) / 2.0)
{
correctly_detected = correctly_detected + 1.0;
}
}
std::cout << TEXT_BOLD_BLACK << "Probability of correct detection for channel=" << ch << ", CN0=" << *it << " dBHz"
<< ": " << (num_clean_executions > 0 ? (correctly_detected / num_clean_executions) : 0.0) << TEXT_RESET << std::endl;
}
else
{
std::cout << "No reference data has been found. Maybe a non-present satellite?" << std::endl;
double wrongly_detected = arma::accu(positive_acq);
std::cout << TEXT_BOLD_BLACK << "Probability of false alarm for channel=" << ch << ", CN0=" << *it << " dBHz"
<< ": " << (num_executions > 0 ? (wrongly_detected / num_executions) : 0.0) << TEXT_RESET << std::endl;
}
true_trk_data.restart();
} }
true_trk_data.restart();
} }
true_trk_data.close_obs_file();
// Compute results // Compute results
} }
} }
//TEST_F(AcquisitionPerformanceTest, ValidationOfResults)
//{
// std::chrono::time_point<std::chrono::system_clock> start, end;
// std::chrono::duration<double> elapsed_seconds(0.0);
// top_block = gr::make_top_block("Acquisition test");
//
// double expected_delay_samples = 524;
// double expected_doppler_hz = 1680;
//
// init();
//
// if (FLAGS_plot_acq_grid == true)
// {
// std::string data_str = "./tmp-acq-gps1";
// if (boost::filesystem::exists(data_str))
// {
// boost::filesystem::remove_all(data_str);
// }
// boost::filesystem::create_directory(data_str);
// }
//
// std::shared_ptr<GpsL1CaPcpsAcquisition> acquisition = std::make_shared<GpsL1CaPcpsAcquisition>(config.get(), "Acquisition_1C", 1, 0);
// boost::shared_ptr<AcqPerfTest_msg_rx> msg_rx = AcqPerfTest_msg_rx_make();
//
// ASSERT_NO_THROW({
// acquisition->set_channel(1);
// }) << "Failure setting channel.";
//
// ASSERT_NO_THROW({
// acquisition->set_gnss_synchro(&gnss_synchro);
// }) << "Failure setting gnss_synchro.";
//
// ASSERT_NO_THROW({
// acquisition->set_threshold(0.001);
// }) << "Failure setting threshold.";
//
// ASSERT_NO_THROW({
// acquisition->set_doppler_max(doppler_max);
// }) << "Failure setting doppler_max.";
//
// ASSERT_NO_THROW({
// acquisition->set_doppler_step(doppler_step);
// }) << "Failure setting doppler_step.";
//
// ASSERT_NO_THROW({
// acquisition->connect(top_block);
// }) << "Failure connecting acquisition to the top_block.";
//
// ASSERT_NO_THROW({
// std::string path = std::string(TEST_PATH);
// std::string file = path + "signal_samples/GPS_L1_CA_ID_1_Fs_4Msps_2ms.dat";
// const char* file_name = file.c_str();
// gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex), file_name, false);
// top_block->connect(file_source, 0, acquisition->get_left_block(), 0);
// top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
// }) << "Failure connecting the blocks of acquisition test.";
//
// acquisition->set_local_code();
// acquisition->set_state(1); // Ensure that acquisition starts at the first sample
// acquisition->init();
//
// EXPECT_NO_THROW({
// start = std::chrono::system_clock::now();
// top_block->run(); // Start threads and wait
// end = std::chrono::system_clock::now();
// elapsed_seconds = end - start;
// }) << "Failure running the top_block.";
//
// unsigned long int nsamples = gnss_synchro.Acq_samplestamp_samples;
// std::cout << "Acquired " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
// ASSERT_EQ(1, msg_rx->rx_message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS.";
//
// double delay_error_samples = std::abs(expected_delay_samples - gnss_synchro.Acq_delay_samples);
// float delay_error_chips = static_cast<float>(delay_error_samples * 1023 / 4000);
// double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
//
// EXPECT_LE(doppler_error_hz, 666) << "Doppler error exceeds the expected value: 666 Hz = 2/(3*integration period)";
// EXPECT_LT(delay_error_chips, 0.5) << "Delay error exceeds the expected value: 0.5 chips";
//
// /*if (FLAGS_plot_acq_grid == true)
// {
// plot_grid();
// }*/
//}