1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-08 19:10:02 +00:00

Merge branch 'glonass' of https://github.com/gnss-sdr/gnss-sdr into glonass

This commit is contained in:
Gastd 2017-10-03 17:50:07 -03:00
commit e6417032a9
18 changed files with 467 additions and 724 deletions

View File

@ -5,7 +5,7 @@ GNSS-SDR.internal_fs_sps=6625000
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=File_Signal_Source
SignalSource.filename=/archive/NT1065_GLONASS_L1_20160831_fs6625e6_if0e3_schar_1m.bin ; <- PUT YOUR FILE HERE
SignalSource.filename=/archive/NT1065_GLONASS_L1_20160923_fs6625e6_if0e3_schar.bin ; <- PUT YOUR FILE HERE
SignalSource.item_type=ibyte
SignalSource.sampling_frequency=6625000
;SignalSource.freq=0
@ -25,20 +25,15 @@ Resampler.sample_freq_out=6625000
Resampler.item_type=gr_complex
;######### CHANNELS GLOBAL CONFIG ############
Channel.signal=1G
Channels.in_acquisition=1
Channels_1G.count=5
Channels.in_acquisition=5
Channel0.signal=1G
Channel1.signal=1G
Channel2.signal=1G
Channel3.signal=1G
Channel4.signal=1G
Channel0.satellite=11
Channel1.satellite=2
Channel2.satellite=18
Channel3.satellite=12
Channel4.satellite=21
; Possible list includes 2, 12, 21, 22
Channel0.satellite=24 ; k=
Channel1.satellite=1 ; k=1
Channel2.satellite=2 ; k=-4
Channel3.satellite=20 ; k=-5
Channel4.satellite=21 ; k=4
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1G.implementation=GLONASS_L1_CA_PCPS_Acquisition
@ -53,9 +48,9 @@ Acquisition_1G.dump_filename=/archive/glo_acquisition.dat
;Acquisition_1G.coherent_integration_time_ms=10
;######### TRACKING GLOBAL CONFIG ############
Tracking_1G.implementation=GLONASS_L1_CA_DLL_PLL_C_Aid_Tracking
Tracking_1G.implementation=GLONASS_L1_CA_DLL_PLL_Tracking
Tracking_1G.item_type=gr_complex
Tracking_1G.if=1
Tracking_1G.if=0
Tracking_1G.early_late_space_chips=0.5
Tracking_1G.pll_bw_hz=25.0;
Tracking_1G.dll_bw_hz=3.0;
@ -63,10 +58,12 @@ Tracking_1G.dump=true;
Tracking_1G.dump_filename=/archive/glo_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_1G.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1G.implementation=GLONASS_L1_CA_Telemetry_Decoder
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
Observables.dump=true;
Observables.dump_filename=/archive/glo_observables.dat
;######### PVT CONFIG ############
PVT.implementation=RTKLIB_PVT

View File

@ -191,7 +191,8 @@ void rtklib_pvt_cc::msg_handler_telemetry(pmt::pmt_t msg)
// insert new ephemeris record
DLOG(INFO) << "GLONASS GNAV New Ephemeris record inserted in global map with TOW =" << glonass_gnav_eph->d_TOW
<< ", GLONASS GNAV Week Number =" << glonass_gnav_eph->d_WN
<< " and Ephemeris IOD = " << glonass_gnav_eph->compute_GLONASS_time(glonass_gnav_eph->d_t_b);
<< " and Ephemeris IOD = " << glonass_gnav_eph->compute_GLONASS_time(glonass_gnav_eph->d_t_b)
<< " from SV = " << glonass_gnav_eph->i_satellite_slot_number;
// update/insert new ephemeris record to the global ephemeris map
d_ls_pvt->glonass_gnav_ephemeris_map[glonass_gnav_eph->i_satellite_PRN] = *glonass_gnav_eph;
}
@ -209,7 +210,8 @@ void rtklib_pvt_cc::msg_handler_telemetry(pmt::pmt_t msg)
std::shared_ptr<Glonass_Gnav_Almanac> glonass_gnav_almanac;
glonass_gnav_almanac = boost::any_cast<std::shared_ptr<Glonass_Gnav_Almanac>>(pmt::any_ref(msg));
d_ls_pvt->glonass_gnav_almanac = *glonass_gnav_almanac;
DLOG(INFO) << "New GLONASS GNAV Almanac has arrived ";
DLOG(INFO) << "New GLONASS GNAV Almanac has arrived "
<< ", GLONASS GNAV Slot Number =" << glonass_gnav_almanac->d_n_A;
}
else
{

View File

@ -139,6 +139,8 @@ void glonass_l1_ca_telemetry_decoder_cc::decode_string(double *frame_symbols,int
// 1. Transform from symbols to bits
std::string bi_binary_code;
std::string relative_code;
std::string data_bits;
// Group samples into bi-binary code
for(int i = 0; i < (frame_length); i++)
{
@ -173,9 +175,15 @@ void glonass_l1_ca_telemetry_decoder_cc::decode_string(double *frame_symbols,int
relative_code.push_back('0');
}
}
// Convert from relative code to data bits
data_bits.push_back('0');
for(int i = 1; i < (GLONASS_GNAV_STRING_BITS); i++)
{
data_bits.push_back(((relative_code[i-1]-'0') ^ (relative_code[i]-'0')) + '0');
}
// 2. Call the GLONASS GNAV string decoder
d_nav.string_decoder(relative_code);
d_nav.string_decoder(data_bits);
// 3. Check operation executed correctly
if(d_nav.flag_CRC_test == true)
@ -186,13 +194,13 @@ void glonass_l1_ca_telemetry_decoder_cc::decode_string(double *frame_symbols,int
{
LOG(INFO) << "GLONASS GNAV CRC error on channel " << d_channel << " from satellite " << d_satellite;
}
// 4. Push the new navigation data to the queues
if (d_nav.have_new_ephemeris() == true)
{
// get object for this SV (mandatory)
std::shared_ptr<Glonass_Gnav_Ephemeris> tmp_obj = std::make_shared<Glonass_Gnav_Ephemeris>(d_nav.get_ephemeris());
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
LOG(INFO) << "GLONASS GNAV Ephemeris have been received on channel" << d_channel << " from satellite " << d_satellite;
}
if (d_nav.have_new_utc_model() == true)
@ -200,12 +208,21 @@ void glonass_l1_ca_telemetry_decoder_cc::decode_string(double *frame_symbols,int
// get object for this SV (mandatory)
std::shared_ptr<Glonass_Gnav_Utc_Model> tmp_obj = std::make_shared<Glonass_Gnav_Utc_Model>(d_nav.get_utc_model());
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
LOG(INFO) << "GLONASS GNAV UTC Model have been received on channel" << d_channel << " from satellite " << d_satellite;
}
if (d_nav.have_new_almanac() == true)
{
unsigned int slot_nbr = d_nav.get_ephemeris().i_satellite_slot_number;
unsigned int slot_nbr = d_nav.i_alm_satellite_slot_number;
std::shared_ptr<Glonass_Gnav_Almanac> tmp_obj= std::make_shared<Glonass_Gnav_Almanac>(d_nav.get_almanac(slot_nbr));
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
LOG(INFO) << "GLONASS GNAV Almanac have been received on channel" << d_channel << " in slot number " << slot_nbr;
}
// 5. Update satellite information on system
if(d_nav.flag_update_slot_number == true)
{
LOG(INFO) << "GLONASS GNAV Slot Number Identified on channel " << d_channel;
d_satellite.what_block(d_satellite.get_system(), d_nav.get_ephemeris().d_n);
d_nav.flag_update_slot_number = false;
}
}
@ -334,10 +351,11 @@ int glonass_l1_ca_telemetry_decoder_cc::general_work (int noutput_items __attrib
// UPDATE GNSS SYNCHRO DATA
//2. Add the telemetry decoder information
if (this->d_flag_preamble == true and d_nav.flag_TOW_set == true)
if (this->d_flag_preamble == true and d_nav.flag_TOW_new == true)
//update TOW at the preamble instant
{
d_TOW_at_current_symbol = floor((d_nav.d_TOW + 2*GLONASS_L1_CA_CODE_PERIOD + GLONASS_GNAV_PREAMBLE_DURATION_S)*1000.0)/1000.0;
d_TOW_at_current_symbol = floor((d_nav.d_TOW - GLONASS_GNAV_PREAMBLE_DURATION_S)*1000.0)/1000.0;
d_nav.flag_TOW_new = false;
}
else //if there is not a new preamble, we define the TOW of the current symbol

View File

@ -58,7 +58,7 @@
/*!
* \todo Include in definition header file
*/
#define CN0_ESTIMATION_SAMPLES 20
#define CN0_ESTIMATION_SAMPLES 10
#define MINIMUM_VALID_CN0 25
#define MAXIMUM_LOCK_FAIL_COUNTER 50
#define CARRIER_LOCK_THRESHOLD 0.85

View File

@ -59,7 +59,7 @@
/*!
* \todo Include in definition header file
*/
#define CN0_ESTIMATION_SAMPLES 20
#define CN0_ESTIMATION_SAMPLES 10
#define MINIMUM_VALID_CN0 25
#define MAXIMUM_LOCK_FAIL_COUNTER 50
#define CARRIER_LOCK_THRESHOLD 0.85

View File

@ -56,7 +56,7 @@
/*!
* \todo Include in definition header file
*/
#define CN0_ESTIMATION_SAMPLES 20
#define CN0_ESTIMATION_SAMPLES 10
#define MINIMUM_VALID_CN0 25
#define MAXIMUM_LOCK_FAIL_COUNTER 50
#define CARRIER_LOCK_THRESHOLD 0.85

View File

@ -598,7 +598,7 @@ void GNSSFlowgraph::set_signals_list()
29, 30, 31, 32, 33, 34, 35, 36};
// Removing satellites sharing same frequency number(1 and 5, 2 and 6, 3 and 7, 4 and 6, 11 and 15, 12 and 16, 14 and 18, 17 and 21
std::set<unsigned int> available_glonass_prn = { 1, 2, 3, 4, 9, 10, 11, 12, 18, 19, 20, 21 };
std::set<unsigned int> available_glonass_prn = { 1, 2, 3, 4, 9, 10, 11, 12, 18, 19, 20, 21, 24 };
std::string sv_list = configuration_->property("Galileo.prns", std::string("") );

View File

@ -87,6 +87,7 @@ const double GLONASS_L1_CA_CODE_LENGTH_CHIPS = 511.0; //!< GLONASS L1 C/
const double GLONASS_L1_CA_CODE_PERIOD = 0.001; //!< GLONASS L1 C/A code period [seconds]
const double GLONASS_L1_CA_CHIP_PERIOD = 1.9569e-06; //!< GLONASS L1 C/A chip period [seconds]
const double GLONASS_L1_CA_SYMBOL_RATE_BPS = 1000;
const int GLONASS_L1_CA_NBR_SATS = 24; // STRING DATA WITHOUT PREAMBLE
//FIXME Probably should use leap seconds definitions of rtklib
const double GLONASS_LEAP_SECONDS[21][7] = { /* leap seconds (y,m,d,h,m,s,utc-gpst) */
@ -135,7 +136,7 @@ const std::map<unsigned int, int> GLONASS_PRN =
{17, 4,}, //Plane 3
{18,-3,}, //Plane 3
{19, 3,}, //Plane 3
{20, 2,}, //Plane 3
{20, -5,}, //Plane 3
{21, 4,}, //Plane 3
{22,-3,}, //Plane 3
{23, 3,}, //Plane 3
@ -164,9 +165,9 @@ const int GLONASS_GNAV_DATA_SYMBOLS = 1700; // STRING DATA WITHOUT PREAMBLE
const std::vector<int> GLONASS_GNAV_CRC_I_INDEX {9, 10, 12, 13, 15, 17, 19, 20, 22, 24, 26, 28, 30, 32, 34, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84};
const std::vector<int> GLONASS_GNAV_CRC_J_INDEX {9, 11, 12, 14, 15, 18, 19, 21, 22, 25, 26, 29, 30, 33, 34, 36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57, 60, 61, 64, 65, 67, 68, 71, 72, 75, 76, 79, 80, 83, 84};
const std::vector<int> GLONASS_GNAV_CRC_K_INDEX {10, 11, 12, 16, 17, 18, 19, 23, 24, 25, 26, 31, 32, 33, 34, 38, 39, 40, 41, 46, 47, 48, 49, 54, 55, 56, 57, 62, 63, 64, 65, 69, 70, 71, 72, 77, 78, 79, 80, 85};
const std::vector<int> GLONASS_GNAV_CRC_L_INDEX {9, 11, 12, 14, 15, 18, 19, 21, 22, 25, 26, 29, 30, 33, 34, 36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57, 60, 61, 64, 65, 67, 68, 71, 72, 75, 76, 79, 80, 83, 84};
const std::vector<int> GLONASS_GNAV_CRC_L_INDEX {13, 14, 15, 16, 17, 18, 19, 27, 28, 29, 30, 31, 32, 33, 34, 42, 43, 44, 45, 46, 47, 48, 49, 58, 59, 60, 61, 62, 63, 64, 65, 73, 74, 75, 76, 77, 78, 79, 80};
const std::vector<int> GLONASS_GNAV_CRC_M_INDEX {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 81, 82, 83, 84, 85};
const std::vector<int> GLONASS_GNAV_CRC_N_INDEX {35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85};
const std::vector<int> GLONASS_GNAV_CRC_N_INDEX {35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65};
const std::vector<int> GLONASS_GNAV_CRC_P_INDEX {66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85};
const std::vector<int> GLONASS_GNAV_CRC_Q_INDEX {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85};

View File

@ -54,124 +54,5 @@ Glonass_Gnav_Almanac::Glonass_Gnav_Almanac()
d_tau_n_A = 0.0;
d_C_n = false;
d_l_n = false;
}
void Glonass_Gnav_Almanac::satellite_position(double N_A, double N_i, double t_i)
{
double T_nom = 43200; // [seconds]
double i_nom = D2R*63.0; // [rad]
double Delta_t = 0.0;
double i = 0.0;
double T = 0.0;
double n = 0.0;
double a = 0.0;
double lambda_dot = 0.0;
double omega_dot = 0.0;
double lambda = 0.0;
double omega = 0.0;
double E_P = 0.0;
double Delta_T = 0.0;
double M = 0.0;
double E = 0.0;
double E_old = 0.0;
double dE = 0.0;
double e1_x = 0.0;
double e1_y = 0.0;
double e1_z = 0.0;
double e2_x = 0.0;
double e2_y = 0.0;
double e2_z = 0.0;
// Compute time difference to reference time
Delta_t = (N_i - N_A) * 86400 + (t_i + d_t_lambda_n_A);
// Compute the actual inclination
i = i_nom + d_Delta_i_n_A;
// Compute the actual orbital period:
T = T_nom + d_Delta_T_n_A;
// Compute the mean motion
n = 2*GLONASS_PI/T;
// Compute the semi-major axis:
a = cbrt(GLONASS_GM/(n*n));
// Compute correction to longitude of ascending node
lambda_dot = -10*pow(GLONASS_SEMI_MAJOR_AXIS / a, 7/2)*D2R*cos(i)/86400;
// Compute correction to argument of perigee
omega_dot = 5*pow(GLONASS_SEMI_MAJOR_AXIS / a, 7/2)*D2R*(5*cos(i)*cos(i) - 1)/86400;
// Compute corrected longitude of ascending node:
lambda = d_lambda_n_A + (lambda_dot - GLONASS_OMEGA_EARTH_DOT)*Delta_t;
// Compute corrected argument of perigee:
omega = d_omega_n_A + omega_dot*Delta_t;
// Compute eccentric anomaly at point P: Note: P is that point of the orbit the true anomaly of which is identical to the argument of perigee.
E_P = 2*atan(tan((omega/2)*(sqrt((1 - d_epsilon_n_A)*(1 + d_epsilon_n_A)))));
// Compute time difference to perigee passing
if (omega < GLONASS_PI)
{
Delta_T = (E_P - d_epsilon_n_A*sin(E_P))/n;
}
else
{
Delta_T = (E_P - d_epsilon_n_A*sin(E_P))/n + T;
}
// Compute mean anomaly at epoch t_i:
M = n * (Delta_t - Delta_T);
// Compute eccentric anomaly at epoch t_i. Note: Keplers equation has to be solved iteratively
// Initial guess of eccentric anomaly
E = M;
// --- Iteratively compute eccentric anomaly ----------------------------
for (int ii = 1; ii < 20; ii++)
{
E_old = E;
E = M + d_epsilon_n_A * sin(E);
dE = fmod(E - E_old, 2.0 * GLONASS_PI);
if (fabs(dE) < 1e-12)
{
//Necessary precision is reached, exit from the loop
break;
}
}
// Compute position in orbital coordinate system
d_satpos_Xo = a*cos(E) - d_epsilon_n_A;
d_satpos_Yo = a*sqrt(1 - d_epsilon_n_A*d_epsilon_n_A)*sin(E);
d_satpos_Zo = a*0;
// Compute velocity in orbital coordinate system
d_satvel_Xo = a/(1-d_epsilon_n_A*cos(E))*(-n*sin(E));
d_satvel_Yo = a/(1-d_epsilon_n_A*cos(E))*(n*sqrt(1 - d_epsilon_n_A*d_epsilon_n_A)*cos(E));
d_satvel_Zo = a/(1-d_epsilon_n_A*cos(E))*(0);
// Determine orientation vectors of orbital coordinate system in ECEF system
e1_x = cos(omega)*cos(lambda) - sin(omega)*sin(lambda);
e1_y = cos(omega)*sin(lambda) + sin(omega)*cos(lambda)*cos(i);
e1_z = sin(omega)*sin(i);
e2_x = -sin(omega)*cos(lambda) - sin(omega)*sin(lambda)*cos(i);
e2_y = -sin(omega)*sin(lambda) + cos(omega)*cos(lambda)*cos(i);
e2_z = cos(omega)*sin(i);
// Convert position from orbital to ECEF system
d_satpos_X = d_satpos_Xo*e1_x + d_satpos_Xo*e2_x;
d_satpos_Y = d_satpos_Yo*e1_z + d_satpos_Yo*e2_y;
d_satpos_Z = d_satpos_Zo*e1_z + d_satpos_Zo*e2_z;
// Convert position from orbital to ECEF system
d_satvel_X = d_satvel_Xo*e1_x + d_satvel_Xo*e2_x + GLONASS_OMEGA_EARTH_DOT*d_satpos_Y;
d_satvel_Y = d_satvel_Yo*e1_z + d_satvel_Yo*e2_y - GLONASS_OMEGA_EARTH_DOT*d_satpos_X;
d_satvel_Z = d_satvel_Zo*e1_z + d_satvel_Zo*e2_z;
}

View File

@ -49,13 +49,13 @@ class Glonass_Gnav_Almanac
public:
double d_n_A; //!< Conventional number of satellite within GLONASS space segment [dimensionless]
double d_H_n_A; //!< Carrier frequency number of navigation RF signal transmitted by d_nA satellite as table 4.10 (0-31) [dimensionless]
double d_lambda_n_A; //!< Longitude of the first (within the d_NA day) ascending node of d_nA [semi-circles]
double d_lambda_n_A; //!< Longitude of the first (within the d_NA day) ascending node of d_nA [radians]
double d_t_lambda_n_A; //!< Time of first ascending node passage [s]
double d_Delta_i_n_A; //!< Correction of the mean value of inclination of d_n_A satellite at instant t_lambda_n_A [semi-circles]
double d_Delta_i_n_A; //!< Correction of the mean value of inclination of d_n_A satellite at instant t_lambda_n_A [radians]
double d_Delta_T_n_A; //!< Correction to the mean value of Draconian period of d_n_A satellite at instant t_lambda_n_A [s / orbital period]
double d_Delta_T_n_A_dot; //!< Rate of change of Draconian period of d_n_A satellite at instant t_lambda_n_A [s / orbital period^2]
double d_epsilon_n_A; //!< Eccentricity of d_n_A satellite at instant t_lambda_n_A [dimensionless]
double d_omega_n_A; //!< Argument of preigree of d_n_A satellite at instant t_lambdan_A [semi-circles]
double d_omega_n_A; //!< Argument of perigee of d_n_A satellite at instant t_lambdan_A [radians]
double d_M_n_A; //!< Type of satellite n_A [dimensionless]
double d_KP; //!< Notification on forthcoming leap second correction of UTC [dimensionless]
double d_tau_n_A; //!< Coarse value of d_n_A satellite time correction to GLONASS time at instant t_lambdan_A[s]
@ -67,24 +67,6 @@ public:
unsigned int i_satellite_PRN; //!< SV PRN Number, equivalent to slot number for compatibility with GPS
unsigned int i_satellite_slot_number; //!< SV Slot Number
// satellite positions
double d_satpos_Xo; //!< Earth-fixed coordinate x of the satellite in PZ-90.02 coordinate system [km].
double d_satpos_Yo; //!< Earth-fixed coordinate y of the satellite in PZ-90.02 coordinate system [km]
double d_satpos_Zo; //!< Earth-fixed coordinate z of the satellite in PZ-90.02 coordinate system [km]
// Satellite velocity
double d_satvel_Xo; //!< Earth-fixed velocity coordinate x of the satellite in PZ-90.02 coordinate system [km/s]
double d_satvel_Yo; //!< Earth-fixed velocity coordinate y of the satellite in PZ-90.02 coordinate system [km/s]
double d_satvel_Zo; //!< Earth-fixed velocity coordinate z of the satellite in PZ-90.02 coordinate system [km/s]
// satellite positions
double d_satpos_X; //!< Earth-fixed coordinate x of the satellite in PZ-90.02 coordinate system [km].
double d_satpos_Y; //!< Earth-fixed coordinate y of the satellite in PZ-90.02 coordinate system [km]
double d_satpos_Z; //!< Earth-fixed coordinate z of the satellite in PZ-90.02 coordinate system [km]
// Satellite velocity
double d_satvel_X; //!< Earth-fixed velocity coordinate x of the satellite in PZ-90.02 coordinate system [km/s]
double d_satvel_Y; //!< Earth-fixed velocity coordinate y of the satellite in PZ-90.02 coordinate system [km/s]
double d_satvel_Z; //!< Earth-fixed velocity coordinate z of the satellite in PZ-90.02 coordinate system [km/s]
template<class Archive>
/*!
* \brief Serialize is a boost standard method to be called by the boost XML serialization. Here is used to save the almanac data on disk file.
@ -113,7 +95,6 @@ public:
archive & make_nvp("d_l_n", d_l_n);
}
void satellite_position(double N_A, double N_i, double t_i);
/*!
* Default constructor
*/

View File

@ -43,9 +43,8 @@
void Glonass_Gnav_Navigation_Message::reset()
{
//!< Satellite Identification
i_channel_ID = 0; //!< Channel ID assigned by the receiver
i_satellite_freq_channel = 0; //!< SV Frequency Slot Number
i_satellite_slot_number = 0; //!< SV Orbit Slot Number
i_alm_satellite_slot_number = 0; //!< SV Orbit Slot Number
flag_update_slot_number = false;
//!< Ephmeris Flags
flag_all_ephemeris = false;
@ -74,12 +73,8 @@ void Glonass_Gnav_Navigation_Message::reset()
//broadcast orbit 1
flag_TOW_set = false;
flag_TOW_new = false;
d_TOW = 0.0; //!< Time of GPS Week of the ephemeris set (taken from subframes TOW) [s]
d_TOW_F1 = 0.0; //!< Time of GPS Week from HOW word of Subframe 1 [s]
d_TOW_F2 = 0.0; //!< Time of GPS Week from HOW word of Subframe 2 [s]
d_TOW_F3 = 0.0; //!< Time of GPS Week from HOW word of Subframe 3 [s]
d_TOW_F4 = 0.0; //!< Time of GPS Week from HOW word of Subframe 4 [s]
d_TOW_F5 = 0.0; //!< Time of GPS Week from HOW word of Subframe 5 [s]
flag_CRC_test = false;
d_frame_ID = 0;
@ -90,6 +85,11 @@ void Glonass_Gnav_Navigation_Message::reset()
d_dtr = 0.0;
d_satClkDrift = 0.0;
// Data update information
d_previous_tb = 0.0;
for(unsigned int i = 0; i < GLONASS_L1_CA_NBR_SATS; i++)
d_previous_Na[i] = 0.0;
std::map<int,std::string> satelliteBlock; //!< Map that stores to which block the PRN belongs http://www.navcen.uscg.gov/?Do=constellationStatus
@ -134,7 +134,7 @@ bool Glonass_Gnav_Navigation_Message::CRC_test(std::bitset<GLONASS_GNAV_STRING_B
sum_bits = 0;
for(int i = 0; i < static_cast<int>(GLONASS_GNAV_CRC_I_INDEX.size()); i++)
{
sum_bits += string_bits[GLONASS_GNAV_CRC_I_INDEX[i]];
sum_bits += string_bits[GLONASS_GNAV_CRC_I_INDEX[i]-1];
}
C1 = string_bits[0]^(sum_bits%2);
@ -142,7 +142,7 @@ bool Glonass_Gnav_Navigation_Message::CRC_test(std::bitset<GLONASS_GNAV_STRING_B
sum_bits = 0;
for(int j = 0; j < static_cast<int>(GLONASS_GNAV_CRC_J_INDEX.size()); j++)
{
sum_bits += string_bits[GLONASS_GNAV_CRC_J_INDEX[j]];
sum_bits += string_bits[GLONASS_GNAV_CRC_J_INDEX[j]-1];
}
C2 = (string_bits[1])^(sum_bits%2);
@ -150,7 +150,7 @@ bool Glonass_Gnav_Navigation_Message::CRC_test(std::bitset<GLONASS_GNAV_STRING_B
sum_bits = 0;
for(int k = 0; k < static_cast<int>(GLONASS_GNAV_CRC_K_INDEX.size()); k++)
{
sum_bits += string_bits[GLONASS_GNAV_CRC_K_INDEX[k]];
sum_bits += string_bits[GLONASS_GNAV_CRC_K_INDEX[k]-1];
}
C3 = string_bits[2]^(sum_bits%2);
@ -158,7 +158,7 @@ bool Glonass_Gnav_Navigation_Message::CRC_test(std::bitset<GLONASS_GNAV_STRING_B
sum_bits = 0;
for(int l = 0; l < static_cast<int>(GLONASS_GNAV_CRC_L_INDEX.size()); l++)
{
sum_bits += string_bits[GLONASS_GNAV_CRC_L_INDEX[l]];
sum_bits += string_bits[GLONASS_GNAV_CRC_L_INDEX[l]-1];
}
C4 = string_bits[3]^(sum_bits%2);
@ -166,7 +166,7 @@ bool Glonass_Gnav_Navigation_Message::CRC_test(std::bitset<GLONASS_GNAV_STRING_B
sum_bits = 0;
for(int m = 0; m < static_cast<int>(GLONASS_GNAV_CRC_M_INDEX.size()); m++)
{
sum_bits += string_bits[GLONASS_GNAV_CRC_M_INDEX[m]];
sum_bits += string_bits[GLONASS_GNAV_CRC_M_INDEX[m]-1];
}
C5 = string_bits[4]^(sum_bits%2);
@ -174,7 +174,7 @@ bool Glonass_Gnav_Navigation_Message::CRC_test(std::bitset<GLONASS_GNAV_STRING_B
sum_bits = 0;
for(int n = 0; n < static_cast<int>(GLONASS_GNAV_CRC_N_INDEX.size()); n++)
{
sum_bits += string_bits[GLONASS_GNAV_CRC_N_INDEX[n]];
sum_bits += string_bits[GLONASS_GNAV_CRC_N_INDEX[n]-1];
}
C6 = string_bits[5]^(sum_bits%2);
@ -182,7 +182,7 @@ bool Glonass_Gnav_Navigation_Message::CRC_test(std::bitset<GLONASS_GNAV_STRING_B
sum_bits = 0;
for(int p = 0; p < static_cast<int>(GLONASS_GNAV_CRC_P_INDEX.size()); p++)
{
sum_bits += string_bits[GLONASS_GNAV_CRC_P_INDEX[p]];
sum_bits += string_bits[GLONASS_GNAV_CRC_P_INDEX[p]-1];
}
C7 = string_bits[6]^(sum_bits%2);
@ -191,7 +191,7 @@ bool Glonass_Gnav_Navigation_Message::CRC_test(std::bitset<GLONASS_GNAV_STRING_B
sum_hamming = 0;
for(int q = 0; q < static_cast<int>(GLONASS_GNAV_CRC_Q_INDEX.size()); q++)
{
sum_bits += string_bits[GLONASS_GNAV_CRC_Q_INDEX[q]];
sum_bits += string_bits[GLONASS_GNAV_CRC_Q_INDEX[q]-1];
}
for(int q = 0; q < 8; q++)
{
@ -200,17 +200,18 @@ bool Glonass_Gnav_Navigation_Message::CRC_test(std::bitset<GLONASS_GNAV_STRING_B
C_Sigma = (sum_hamming%2)^(sum_bits%2);
//!< Verification of the data
// All of the checksums are equal to zero
if((C1 & C2 & C3 & C4 & C5 & C6 & C7 & C_Sigma) == 0 )
// (a-i) All checksums (C1,...,C7 and C_Sigma) are equal to zero
if((C1 + C2 + C3 + C4 + C5 + C6 + C7 + C_Sigma) == 0 )
{
return true;
}
// only one of the checksums (C1,...,C7) is equal to zero but C_Sigma = 1
// (a-ii) Only one of the checksums (C1,...,C7) is equal to zero but C_Sigma = 1
else if(C_Sigma == 1 && C1+C2+C3+C4+C5+C6+C7 == 6)
{
return true;
}
else
// All other conditions are assumed errors. TODO: Add correction for case B
{
return false;
}
@ -307,30 +308,82 @@ unsigned int Glonass_Gnav_Navigation_Message::get_frame_number(unsigned int sate
}
else
{
//TODO Find print statement and make it an error
LOG(WARNING) << "GLONASS GNAV: Invalid Satellite Slot Number";
frame_ID = 0;
}
return frame_ID;
}
double Glonass_Gnav_Navigation_Message::get_TOW()
double Glonass_Gnav_Navigation_Message::get_WN()
{
double TOW = 0.0;
double utcsu2utc = 3*3600;
double glot2utcsu = 3*3600;
double WN = 0.0;
double days = 0.0;
double total_sec = 0.0;
int i = 0;
TOW = gnav_ephemeris.d_t_k + glot2utcsu + utcsu2utc + gnav_utc_model.d_tau_c + gnav_utc_model.d_tau_gps;
boost::gregorian::date gps_epoch { 1980, 1, 6 };
// Map to UTC
boost::gregorian::date glo_date(gnav_ephemeris.d_yr, 1, 1);
boost::gregorian::days d2(gnav_ephemeris.d_N_T);
glo_date = glo_date + d2;
boost::posix_time::time_duration t(-6, 0, 0);
boost::posix_time::ptime glo_time(glo_date, t);
boost::gregorian::date utc_date = glo_time.date();
days = static_cast<double>((utc_date - gps_epoch).days());
total_sec = days*86400;
for (i = 0; GLONASS_LEAP_SECONDS[i][0]>0; i++)
{
if (GLONASS_LEAP_SECONDS[i][0] == gnav_ephemeris.d_yr)
{
TOW -= GLONASS_LEAP_SECONDS[i][6];
// We add the leap second when going from utc to gpst
total_sec += GLONASS_LEAP_SECONDS[i][6];
}
}
WN = floor(total_sec/604800);
return WN;
}
double Glonass_Gnav_Navigation_Message::get_TOW()
{
double TOD = 0.0;
double TOW = 0.0;
double dayofweek = 0.0;
double utcsu2utc = 3*3600;
double glot2utcsu = 3*3600;
int i = 0;
// tk is relative to UTC(SU) + 3.00 hrs, so we need to convert to utc and add corrections
// tk plus 10 sec is the true tod since get_TOW is called when in str5
TOD = (gnav_ephemeris.d_t_k + 10) - glot2utcsu - utcsu2utc + gnav_utc_model.d_tau_c + gnav_utc_model.d_tau_gps;
boost::gregorian::date glo_date(gnav_ephemeris.d_yr, 1, 1);
boost::gregorian::days d2(gnav_ephemeris.d_N_T);
glo_date = glo_date + d2;
dayofweek = static_cast<double>(glo_date.day_of_week());
TOW = TOD + dayofweek*86400;
for (i = 0; GLONASS_LEAP_SECONDS[i][0]>0; i++)
{
if (GLONASS_LEAP_SECONDS[i][0] == gnav_ephemeris.d_yr)
{
// We add the leap second when going from utc to gpst
TOW += GLONASS_LEAP_SECONDS[i][6];
}
}
// Compute the arithmetic modules to wrap around range
TOW = TOW - 604800*floor(TOW/604800);
return TOW;
}
@ -341,15 +394,18 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
d_string_ID = 0;
d_frame_ID = 0;
// UNPACK BYTES TO BITS AND REMOVE THE CRC REDUNDANCE
std::bitset<GLONASS_GNAV_STRING_BITS> string_bits = std::bitset<GLONASS_GNAV_STRING_BITS>((frame_string));
d_string_ID = static_cast<unsigned int>(read_navigation_unsigned(string_bits, STRING_ID));
// Unpack bytes to bits
std::bitset<GLONASS_GNAV_STRING_BITS> string_bits (frame_string);
// Perform data verification and exit code if error in bit sequence
flag_CRC_test = CRC_test(string_bits);
if(flag_CRC_test == false)
return 0;
// Decode all 15 string messages
switch (d_string_ID)
{
d_string_ID = static_cast<unsigned int>(read_navigation_unsigned(string_bits, STRING_ID));
switch (d_string_ID) {
case 1:
//--- It is string 1 -----------------------------------------------
gnav_ephemeris.d_P_1 = (static_cast<double>(read_navigation_unsigned(string_bits, P1)) + 1) * 15;
@ -383,6 +439,8 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
case 3:
// --- It is string 3 ----------------------------------------------
if (flag_ephemeris_str_2 == true)
{
gnav_ephemeris.d_P_3 = static_cast<bool>(read_navigation_bool(string_bits, P3));
gnav_ephemeris.d_gamma_n = static_cast<double>(read_navigation_signed(string_bits, GAMMA_N)) * TWO_N40;
gnav_ephemeris.d_P = static_cast<double>(read_navigation_unsigned(string_bits, P));
@ -392,11 +450,14 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
gnav_ephemeris.d_Zn = static_cast<double>(read_navigation_signed(string_bits, Z_N)) * TWO_N11;
flag_ephemeris_str_3 = true;
}
break;
case 4:
// --- It is string 4 ----------------------------------------------
if (flag_ephemeris_str_3 == true)
{
gnav_ephemeris.d_tau_n = static_cast<double>(read_navigation_signed(string_bits, TAU_N)) * TWO_N30;
gnav_ephemeris.d_Delta_tau_n = static_cast<double>(read_navigation_signed(string_bits, DELTA_TAU_N)) * TWO_N30;
gnav_ephemeris.d_E_n = static_cast<double>(read_navigation_unsigned(string_bits, E_N));
@ -407,15 +468,19 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
gnav_ephemeris.d_M = static_cast<double>(read_navigation_unsigned(string_bits, M));
// Fill in ephemeris deliverables in the code
gnav_ephemeris.i_satellite_slot_number = gnav_ephemeris.d_n;
gnav_ephemeris.i_satellite_PRN = gnav_ephemeris.d_n;
flag_update_slot_number = true;
gnav_ephemeris.i_satellite_slot_number = static_cast<unsigned int>(gnav_ephemeris.d_n);
gnav_ephemeris.i_satellite_PRN = static_cast<unsigned int>(gnav_ephemeris.d_n);
flag_ephemeris_str_4 = true;
}
break;
case 5:
// --- It is string 5 ----------------------------------------------
if (flag_ephemeris_str_4 == true)
{
gnav_utc_model.d_N_A = static_cast<double>(read_navigation_unsigned(string_bits, N_A));
gnav_utc_model.d_tau_c = static_cast<double>(read_navigation_signed(string_bits, TAU_C)) * TWO_N31;
gnav_utc_model.d_N_4 = static_cast<double>(read_navigation_unsigned(string_bits, N_4));
@ -423,10 +488,9 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
gnav_ephemeris.d_l5th_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
flag_utc_model_str_5 = true;
// Compute Year and DoY based on Algorithm A3.11 of GLONASS ICD
if(flag_ephemeris_str_4 == true)
{
//Current year number J in the four-year interval is calculated:
// 1). Current year number J in the four-year interval is calculated
if (gnav_ephemeris.d_N_T >= 1 && gnav_ephemeris.d_N_T <= 366)
{
J = 1;
@ -451,24 +515,32 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
if (flag_ephemeris_str_1 == true)
{
d_TOW = get_TOW();
gnav_ephemeris.d_TOW = d_TOW;
gnav_ephemeris.d_WN = get_WN();
flag_TOW_set = true;
flag_TOW_new = true;
}
}
break;
case 6:
// --- It is string 6 ----------------------------------------------
i_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_satellite_slot_number);
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_alm_satellite_slot_number);
// Make sure a valid frame_ID or satellite slot number is returned
if(d_frame_ID == 0)
return 0;
gnav_almanac[i_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20;
gnav_almanac[i_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20;
gnav_almanac[i_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
gnav_almanac[i_alm_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
flag_almanac_str_6 = true;
@ -478,24 +550,24 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
// --- It is string 7 ----------------------------------------------
if (flag_almanac_str_6 == true)
{
gnav_almanac[i_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15;
gnav_almanac[i_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A));
gnav_almanac[i_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
// Set satellite information for redundancy purposes
if(gnav_almanac[i_satellite_slot_number - 1].d_H_n_A > 24)
if (gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A > 24)
{
gnav_almanac[i_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_satellite_slot_number - 1].d_H_n_A - 32.0;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A - 32.0;
}
gnav_almanac[i_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
if(i_satellite_slot_number == gnav_ephemeris.i_satellite_slot_number)
if (i_alm_satellite_slot_number == gnav_ephemeris.i_satellite_slot_number)
{
gnav_ephemeris.i_satellite_freq_channel = gnav_almanac[i_satellite_slot_number - 1].i_satellite_freq_channel;
gnav_ephemeris.i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel;
}
flag_almanac_str_7 = true;
}
@ -504,16 +576,19 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
break;
case 8:
// --- It is string 8 ----------------------------------------------
i_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_satellite_slot_number);
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_alm_satellite_slot_number);
// Make sure a valid frame_ID or satellite slot number is returned
if(d_frame_ID == 0)
return 0;
gnav_almanac[i_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20;
gnav_almanac[i_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20;
gnav_almanac[i_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
gnav_almanac[i_alm_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
flag_almanac_str_8 = true;
@ -522,37 +597,39 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
// --- It is string 9 ----------------------------------------------
if (flag_almanac_str_8 == true)
{
// TODO signed vs unsigned reading from datasheet
gnav_almanac[i_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15;
gnav_almanac[i_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A)) -32.0;
gnav_almanac[i_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
// Set satellite information for redundancy purposes
if(gnav_almanac[i_satellite_slot_number - 1].d_H_n_A > 24)
if (gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A > 24)
{
gnav_almanac[i_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_satellite_slot_number - 1].d_H_n_A - 32.0;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A - 32.0;
}
gnav_almanac[i_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
flag_almanac_str_9 = true;
}
break;
case 10:
// --- It is string 10 ---------------------------------------------
i_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_satellite_slot_number);
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_alm_satellite_slot_number);
// Make sure a valid frame_ID or satellite slot number is returned
if(d_frame_ID == 0)
return 0;
gnav_almanac[i_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20;
gnav_almanac[i_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20;
gnav_almanac[i_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
gnav_almanac[i_alm_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
flag_almanac_str_10 = true;
@ -562,36 +639,38 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
// --- It is string 11 ---------------------------------------------
if (flag_almanac_str_10 == true)
{
gnav_almanac[i_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15;
gnav_almanac[i_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A)) - 32.0;
gnav_almanac[i_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
// Set satellite information for redundancy purposes
if(gnav_almanac[i_satellite_slot_number - 1].d_H_n_A > 24)
if (gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A > 24)
{
gnav_almanac[i_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_satellite_slot_number - 1].d_H_n_A - 32.0;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A - 32.0;
}
gnav_almanac[i_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
flag_almanac_str_11 = true;
}
break;
case 12:
// --- It is string 12 ---------------------------------------------
i_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_satellite_slot_number);
gnav_almanac[i_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20;
gnav_almanac[i_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20;
gnav_almanac[i_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_alm_satellite_slot_number);
// Make sure a valid frame_ID or satellite slot number is returned
if(d_frame_ID == 0)
return 0;
gnav_almanac[i_alm_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
flag_almanac_str_12 = true;
@ -601,20 +680,20 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
// --- It is string 13 ---------------------------------------------
if (flag_almanac_str_12 == true)
{
gnav_almanac[i_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15;
gnav_almanac[i_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A)) - 32.0;
gnav_almanac[i_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
// Set satellite information for redundancy purposes
if(gnav_almanac[i_satellite_slot_number - 1].d_H_n_A > 24)
if (gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A > 24)
{
gnav_almanac[i_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_satellite_slot_number - 1].d_H_n_A - 32.0;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A - 32.0;
}
gnav_almanac[i_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
flag_almanac_str_13 = true;
}
@ -628,52 +707,53 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
}
else
{
i_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_satellite_slot_number);
gnav_almanac[i_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20;
gnav_almanac[i_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20;
gnav_almanac[i_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
d_frame_ID = get_frame_number(i_alm_satellite_slot_number);
// Make sure a valid frame_ID or satellite slot number is returned
if(d_frame_ID == 0)
return 0;
gnav_almanac[i_alm_satellite_slot_number - 1].d_C_n = static_cast<bool>(read_navigation_bool(string_bits, C_N));
gnav_almanac[i_alm_satellite_slot_number - 1].d_M_n_A = static_cast<double>(read_navigation_unsigned(string_bits, M_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A = static_cast<double>(read_navigation_unsigned(string_bits, n_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_tau_n_A = static_cast<double>(read_navigation_unsigned(string_bits, TAU_N_A)) * TWO_N18;
gnav_almanac[i_alm_satellite_slot_number - 1].d_lambda_n_A = static_cast<double>(read_navigation_signed(string_bits, LAMBDA_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_i_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_I_N_A)) * TWO_N20 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_epsilon_n_A = static_cast<double>(read_navigation_unsigned(string_bits, EPSILON_N_A)) * TWO_N20;
flag_almanac_str_14 = true;
}
break;
case 15:
// --- It is string 9 ----------------------------------------------
if (d_frame_ID != 5 and flag_almanac_str_14 == true )
{
gnav_almanac[i_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15;
gnav_almanac[i_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A)) - 32.0;
gnav_almanac[i_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
// --- It is string 15 ----------------------------------------------
if (d_frame_ID != 5 and flag_almanac_str_14 == true) {
gnav_almanac[i_alm_satellite_slot_number - 1].d_omega_n_A = static_cast<double>(read_navigation_signed(string_bits, OMEGA_N_A)) * TWO_N15 * GLONASS_PI;
gnav_almanac[i_alm_satellite_slot_number - 1].d_t_lambda_n_A = static_cast<double>(read_navigation_unsigned(string_bits, T_LAMBDA_N_A)) * TWO_N5;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_N_A)) * TWO_N9;
gnav_almanac[i_alm_satellite_slot_number - 1].d_Delta_T_n_A_dot = static_cast<double>(read_navigation_signed(string_bits, DELTA_T_DOT_N_A)) * TWO_N14;
gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A = static_cast<double>(read_navigation_unsigned(string_bits, H_N_A));
gnav_almanac[i_alm_satellite_slot_number - 1].d_l_n = static_cast<bool>(read_navigation_bool(string_bits, ALM_L_N));
// Set satellite information for redundancy purposes
if(gnav_almanac[i_satellite_slot_number - 1].d_H_n_A > 24)
if (gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A > 24)
{
gnav_almanac[i_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_satellite_slot_number - 1].d_H_n_A - 32.0;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_freq_channel = gnav_almanac[i_alm_satellite_slot_number - 1].d_H_n_A - 32.0;
}
gnav_almanac[i_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_slot_number = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
gnav_almanac[i_alm_satellite_slot_number - 1].i_satellite_PRN = gnav_almanac[i_alm_satellite_slot_number - 1].d_n_A;
flag_almanac_str_15 = true;
}
break;
default:
LOG(INFO) << "GLONASS GNAV: Invalid String ID of received. Received " << d_string_ID << ", but acceptable range is from 1-15";
LOG(INFO) << "GLONASS GNAV: Invalid String ID of received. Received " << d_string_ID
<< ", but acceptable range is from 1-15";
break;
} // switch string ID ...
return d_string_ID;
}
@ -707,26 +787,29 @@ Glonass_Gnav_Almanac Glonass_Gnav_Navigation_Message::get_almanac(unsigned int s
bool Glonass_Gnav_Navigation_Message::have_new_ephemeris() //Check if we have a new ephemeris stored in the galileo navigation class
{
if ((flag_ephemeris_str_1 == true) and (flag_ephemeris_str_2 == true) and (flag_ephemeris_str_3 == true) and (flag_ephemeris_str_4 == true))
bool new_eph = false;
// We need to make sure we have received the ephemeris info plus the time info
if ((flag_ephemeris_str_1 == true) and (flag_ephemeris_str_2 == true) and
(flag_ephemeris_str_3 == true) and (flag_ephemeris_str_4 == true) and
(flag_utc_model_str_5 == true))
{
if (gnav_ephemeris.d_P_4 == 1)
if(d_previous_tb != gnav_ephemeris.d_t_b)
{
flag_ephemeris_str_1 = false;// clear the flag
flag_ephemeris_str_2 = false;// clear the flag
flag_ephemeris_str_3 = false;// clear the flag
flag_ephemeris_str_4 = false;// clear the flag
flag_all_ephemeris = true;
DLOG(INFO) << "Ephemeris (1, 2, 3, 4) have been received and belong to the same batch" << std::endl;
// Update the time of ephemeris information
d_previous_tb = gnav_ephemeris.d_t_b;
DLOG(INFO) << "GLONASS GNAV Ephemeris (1, 2, 3, 4) have been received and belong to the same batch" << std::endl;
new_eph = true;
}
return true;
}
else
{
return false;
}
}
else
return false;
return new_eph;
}
@ -744,26 +827,54 @@ bool Glonass_Gnav_Navigation_Message::have_new_utc_model() // Check if we have a
bool Glonass_Gnav_Navigation_Message::have_new_almanac() //Check if we have a new almanac data set stored in the galileo navigation class
{
if ((flag_almanac_str_6 == true) and (flag_almanac_str_7 == true) and
(flag_almanac_str_8 == true) and (flag_almanac_str_9 == true) and
(flag_almanac_str_10 == true) and (flag_almanac_str_11 == true) and
(flag_almanac_str_12 == true) and (flag_almanac_str_13 == true) and
(flag_almanac_str_14 == true) and (flag_almanac_str_15 == true))
bool new_alm = false;
if ((flag_almanac_str_6 == true) and (flag_almanac_str_7 == true))
{
//All almanac have been received
if (d_previous_Na[i_alm_satellite_slot_number] != gnav_utc_model.d_N_A)
{
//All almanac have been received for this satellite
flag_almanac_str_6 = false;
flag_almanac_str_7 = false;
new_alm = true;
}
}
if ((flag_almanac_str_8 == true) and (flag_almanac_str_9 == true))
{
if (d_previous_Na[i_alm_satellite_slot_number] != gnav_utc_model.d_N_A)
{
flag_almanac_str_8 = false;
flag_almanac_str_9 = false;
new_alm = true;
}
}
if((flag_almanac_str_10 == true) and (flag_almanac_str_11 == true))
{
if (d_previous_Na[i_alm_satellite_slot_number] != gnav_utc_model.d_N_A)
{
flag_almanac_str_10 = false;
flag_almanac_str_11 = false;
new_alm = true;
}
}
if((flag_almanac_str_12 == true) and (flag_almanac_str_13 == true))
{
if (d_previous_Na[i_alm_satellite_slot_number] != gnav_utc_model.d_N_A)
{
flag_almanac_str_12 = false;
flag_almanac_str_13 = false;
new_alm = true;
}
}
if((flag_almanac_str_14 == true) and (flag_almanac_str_15 == true))
{
if (d_previous_Na[i_alm_satellite_slot_number] != gnav_utc_model.d_N_A)
{
flag_almanac_str_14 = false;
flag_almanac_str_15 = false;
flag_all_almanac = true;
return true;
new_alm = true;
}
else
return false;
}
return new_alm;
}

View File

@ -63,17 +63,13 @@ public:
bool flag_CRC_test;
unsigned int d_frame_ID;
unsigned int d_string_ID;
bool flag_update_slot_number;
Glonass_Gnav_Ephemeris gnav_ephemeris; //!< Ephemeris information decoded
Glonass_Gnav_Utc_Model gnav_utc_model; //!< UTC model information
Glonass_Gnav_Almanac gnav_almanac[24]; //!< Almanac information for all 24 satellites
Glonass_Gnav_Almanac gnav_almanac[GLONASS_L1_CA_NBR_SATS]; //!< Almanac information for all 24 satellites
//!< Satellite Identification
int i_channel_ID; //!< Channel ID assigned by the receiver
unsigned int i_satellite_freq_channel; //!< SV Frequency Slot Number
unsigned int i_satellite_slot_number; //!< SV Orbit Slot Number
//!< Ephmeris Flags
//!< Ephmeris Flags and control variables
bool flag_all_ephemeris; //!< Flag indicating that all strings containing ephemeris have been received
bool flag_ephemeris_str_1; //!< Flag indicating that ephemeris 1/4 (string 1) have been received
bool flag_ephemeris_str_2; //!< Flag indicating that ephemeris 2/4 (string 2) have been received
@ -92,25 +88,26 @@ public:
bool flag_almanac_str_13; //!< Flag indicating that almanac of string 13 have been received
bool flag_almanac_str_14; //!< Flag indicating that almanac of string 14 have been received
bool flag_almanac_str_15; //!< Flag indicating that almanac of string 15 have been received
unsigned int i_alm_satellite_slot_number; //!< SV Orbit Slot Number
//!< UTC and System Clocks Flags
bool flag_utc_model_valid; //!< If set, it indicates that the UTC model parameters are filled
bool flag_utc_model_str_5; //!< Clock info send in string 5 of navigation data
bool flag_utc_model_str_15; //!< Clock info send in string 15 of frame 5 of navigation data
bool flag_TOW_set;
bool flag_TOW_set; //!< Flag indicating when the TOW has been set
bool flag_TOW_new; //!< Flag indicating when a new TOW has been computed
double d_TOW; //!< Time of GPS Week of the ephemeris set (taken from subframes TOW) [s]
double d_TOW_F1; //!< Time of GPS Week from HOW word of Subframe 1 [s]
double d_TOW_F2; //!< Time of GPS Week from HOW word of Subframe 2 [s]
double d_TOW_F3; //!< Time of GPS Week from HOW word of Subframe 3 [s]
double d_TOW_F4; //!< Time of GPS Week from HOW word of Subframe 4 [s]
double d_TOW_F5; //!< Time of GPS Week from HOW word of Subframe 5 [s]
// Clock terms
double d_satClkCorr; // Satellite clock error
double d_dtr; // Relativistic clock correction term
double d_satClkDrift; // Satellite clock drift
// Data update parameters
double d_previous_tb;
double d_previous_Na[GLONASS_L1_CA_NBR_SATS];
bool CRC_test(std::bitset<GLONASS_GNAV_STRING_BITS> bits);
unsigned int get_frame_number(unsigned int satellite_slot_number);
@ -162,6 +159,8 @@ public:
*/
double get_TOW();
double get_WN();
/*!
* \brief Computes the Coordinated Universal Time (UTC) and returns it in [s]
*/

View File

@ -145,7 +145,6 @@ DECLARE_string(log_dir);
#endif
#include "unit-tests/system-parameters/glonass_gnav_ephemeris_test.cc"
#include "unit-tests/system-parameters/glonass_gnav_almanac_test.cc"
#include "unit-tests/system-parameters/glonass_gnav_nav_message_test.cc"
// For GPS NAVIGATION (L1)

View File

@ -1,76 +0,0 @@
/*!
* \file code_generation_test.cc
* \note Code added as part of GSoC 2017 program
* \author Damian Miralles, 2017. dmiralles2009(at)gmail.com
* \see <a href="http://russianspacesystems.ru/wp-content/uploads/2016/08/ICD_GLONASS_eng_v5.1.pdf">GLONASS ICD</a>
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <complex>
#include <ctime>
#include "gps_sdr_signal_processing.h"
#include "gnss_signal_processing.h"
#include <complex>
#include <ctime>
#include "gnss_signal_processing.h"
#include "glonass_gnav_almanac.h"
// See A 3.2.3
TEST(GlonassGnavAlmanacTest, SatellitePosition)
{
double N_i = 615; // [days]
double t_i = 33300.0; // [seconds]
double Xoi = 10947.021572; // [km]
double Yoi = 13078.978287; // [km]
double Zoi = 18922.063362; // [km]
double Vxoi = -3.375497; // [m/s]
double Vyoi = -0.161453; // [Кm/s]
double Vzoi = 2.060844; // [Кm/s]
double N_A = 615; // [days]
Glonass_Gnav_Almanac gnav_almanac;
gnav_almanac.d_lambda_n_A = -0.189986229; // [half cycles]
gnav_almanac.d_t_lambda_n_A = 27122.09375; // [second]
gnav_almanac.d_Delta_i_n_A = 0.011929512; // [half cycle]
gnav_almanac.d_Delta_T_n_A = -2655.76171875; // [seconds]
gnav_almanac.d_Delta_T_n_A_dot = 0.000549316; // [Secjnds/cycle2]
gnav_almanac.d_epsilon_n_A = 0.001482010; // [unitless]
gnav_almanac.d_omega_n_A = 0.440277100; // [Half cycle]
gnav_almanac.satellite_position(N_A, N_i, t_i);
ASSERT_TRUE(gnav_almanac.d_satpos_Xo - Xoi < DBL_EPSILON );
ASSERT_TRUE(gnav_almanac.d_satpos_Yo - Yoi < DBL_EPSILON );
ASSERT_TRUE(gnav_almanac.d_satpos_Zo - Zoi < DBL_EPSILON );
ASSERT_TRUE(gnav_almanac.d_satvel_Xo - Vxoi < DBL_EPSILON );
ASSERT_TRUE(gnav_almanac.d_satvel_Yo - Vyoi < DBL_EPSILON );
ASSERT_TRUE(gnav_almanac.d_satvel_Zo - Vzoi < DBL_EPSILON );
}

View File

@ -44,7 +44,7 @@
* \test The provided string was generated with a version of MATLAB GNSS-SDR that
* the author coded to perform proper decoding of GLONASS GNAV signals.
*/
TEST(GlonassGnavNavigationMessageTest, CRCTest)
TEST(GlonassGnavNavigationMessageTest, CRCTestSuccess)
{
// Variables declarations in code
bool test_result;
@ -59,6 +59,27 @@ TEST(GlonassGnavNavigationMessageTest, CRCTest)
ASSERT_TRUE(test_result);
}
/*!
* \brief Testing CRC computation for GLONASS GNAV data bits of a string
* \test The provided string was generated with a version of MATLAB GNSS-SDR that
* the author coded to perform proper decoding of GLONASS GNAV signals.
*/
TEST(GlonassGnavNavigationMessageTest, CRCTestFailure)
{
// Variables declarations in code
bool test_result;
// Constructor of string to bitset will flip the order of the bits. Needed for CRC computation
std::bitset<GLONASS_GNAV_STRING_BITS> string_bits (std::string ("0111100100001100000000000000000000000000110011110001100000000000000001100100011000000"));
Glonass_Gnav_Navigation_Message gnav_nav_message;
gnav_nav_message.reset();
// Call function to test
test_result = gnav_nav_message.CRC_test(string_bits);
// Check results in unit test assetions
ASSERT_FALSE(test_result);
}
/*!
* \brief Testing string decoding for GLONASS GNAV messages
* \test The provided string (str1.....str15) was generated with a version of

View File

@ -4,19 +4,20 @@
clearvars;
close all;
addpath('./libs');
samplingFreq = 2600000; %[Hz]
channels=2;
path='/home/javier/git/gnss-sdr/build/';
observables_log_path=[path 'observables.dat'];
samplingFreq = 6625000; %[Hz]
channels=5;
path='/archive/';
observables_log_path=[path 'glo_observables.dat'];
GNSS_observables= read_hybrid_observables_dump(channels,observables_log_path);
%%
%optional:
%search all channels having good satellite simultaneously
min_idx=1;
for n=1:1:channels
idx=find(GNSS_observables.valid(n,:)>0,1,'first');
if min_idx<idx
min_idx=idx;
min_idx=idx
end
end

View File

@ -1,193 +0,0 @@
% /*!
% * \file glonass_l1_ca_dll_pll_read_tracking_dump.m
% * \brief Read GNSS-SDR Tracking dump binary file into MATLAB.
% * \author Damian Miralles, 2017. dmiralles2009(at)gmail.com
% * -------------------------------------------------------------------------
% *
% * Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors)
% *
% * GNSS-SDR is a software defined Global Navigation
% * Satellite Systems receiver
% *
% * This file is part of GNSS-SDR.
% *
% * GNSS-SDR is free software: you can redistribute it and/or modify
% * it under the terms of the GNU General Public License as published by
% * the Free Software Foundation, either version 3 of the License, or
% * at your option) any later version.
% *
% * GNSS-SDR is distributed in the hope that it will be useful,
% * but WITHOUT ANY WARRANTY; without even the implied warranty of
% * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% * GNU General Public License for more details.
% *
% * You should have received a copy of the GNU General Public License
% * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
% *
% * -------------------------------------------------------------------------
% */
function [GNSS_tracking] = glonass_l1_ca_dll_pll_read_tracking_dump (filename, count)
%% usage: glonass_l1_ca_dll_pll_read_tracking_dump_64bits (filename, [count])
%%
%% open GNSS-SDR tracking binary log file .dat and return the contents
%%
m = nargchk (1,2,nargin);
num_float_vars=5;
num_unsigned_long_int_vars=1;
num_double_vars=11;
num_unsigned_int_vars=1;
double_size_bytes=8;
unsigned_long_int_size_bytes=8;
float_size_bytes=4;
long_int_size_bytes=4;
skip_bytes_each_read=float_size_bytes*num_float_vars+unsigned_long_int_size_bytes*num_unsigned_long_int_vars+double_size_bytes*num_double_vars+long_int_size_bytes*num_unsigned_int_vars;
bytes_shift=0;
if (m)
usage (m);
end
if (nargin < 2)
%count = Inf;
file_stats = dir(filename);
%round num bytes to read to integer number of samples (to protect the script from binary
%dump end file transitory)
count = (file_stats.bytes - mod(file_stats.bytes,skip_bytes_each_read))/skip_bytes_each_read;
end
%loops_counter = fread (f, count, 'uint32',4*12);
f = fopen (filename, 'rb');
if (f < 0)
else
v1 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v2 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v3 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v4 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved float
v5 = fread (f, count, 'float',skip_bytes_each_read-float_size_bytes);
bytes_shift=bytes_shift+float_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved unsigned_long_int
v6 = fread (f, count, 'uint64',skip_bytes_each_read-unsigned_long_int_size_bytes);
bytes_shift=bytes_shift+unsigned_long_int_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved double
v7 = fread (f, count, 'float64',skip_bytes_each_read-double_size_bytes);
bytes_shift=bytes_shift+double_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved double
v8 = fread (f, count, 'float64',skip_bytes_each_read-double_size_bytes);
bytes_shift=bytes_shift+double_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved double
v9 = fread (f, count, 'float64',skip_bytes_each_read-double_size_bytes);
bytes_shift=bytes_shift+double_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved double
v10 = fread (f, count, 'float64',skip_bytes_each_read-double_size_bytes);
bytes_shift=bytes_shift+double_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved double
v11 = fread (f, count, 'float64',skip_bytes_each_read-double_size_bytes);
bytes_shift=bytes_shift+double_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved double
v12 = fread (f, count, 'float64',skip_bytes_each_read-double_size_bytes);
bytes_shift=bytes_shift+double_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved double
v13 = fread (f, count, 'float64',skip_bytes_each_read-double_size_bytes);
bytes_shift=bytes_shift+double_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved double
v14 = fread (f, count, 'float64',skip_bytes_each_read-double_size_bytes);
bytes_shift=bytes_shift+double_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved double
v15 = fread (f, count, 'float64',skip_bytes_each_read-double_size_bytes);
bytes_shift=bytes_shift+double_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved double
v16 = fread (f, count, 'float64',skip_bytes_each_read-double_size_bytes);
bytes_shift=bytes_shift+double_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved double
v17 = fread (f, count, 'float64',skip_bytes_each_read-double_size_bytes);
bytes_shift=bytes_shift+double_size_bytes;
fseek(f,bytes_shift,'bof'); % move to next interleaved double
v18 = fread (f, count, 'uint32',skip_bytes_each_read-double_size_bytes);
fclose (f);
%%%%%%%% output vars %%%%%%%%
% // EPR
% d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
% d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
% d_dump_file.write(reinterpret_cast<char*>(&tmp_L), sizeof(float));
% // PROMPT I and Q (to analyze navigation symbols)
% d_dump_file.write(reinterpret_cast<char*>(&prompt_I), sizeof(float));
% d_dump_file.write(reinterpret_cast<char*>(&prompt_Q), sizeof(float));
% // PRN start sample stamp
% //tmp_float=(float)d_sample_counter;
% d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
% // accumulated carrier phase
% d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(double));
%
% // carrier and code frequency
% d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
% d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
%
% //PLL commands
% d_dump_file.write(reinterpret_cast<char*>(&carr_phase_error_secs_Ti), sizeof(double));
% d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
%
% //DLL commands
% d_dump_file.write(reinterpret_cast<char*>(&code_error_chips_Ti), sizeof(double));
% d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(double));
%
% // CN0 and carrier lock test
% d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
% d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
%
% // AUX vars (for debug purposes)
% tmp_double = d_rem_code_phase_samples;
% d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
% tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
% d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
% // PRN
% unsigned int prn_ = d_acquisition_gnss_synchro->PRN;
% d_dump_file.write(reinterpret_cast<char*>(&prn_), sizeof(unsigned int));
E=v1;
P=v2;
L=v3;
prompt_I=v4;
prompt_Q=v5;
PRN_start_sample=v6;
acc_carrier_phase_rad=v7;
carrier_doppler_hz=v8;
code_freq_hz=v9;
carr_error=v10;
carr_nco=v11;
code_error=v12;
code_nco=v13;
CN0_SNV_dB_Hz=v14;
carrier_lock_test=v15;
var1=v16;
var2=v17;
PRN=v18;
GNSS_tracking.E=E;
GNSS_tracking.P=P;
GNSS_tracking.L=L;
GNSS_tracking.prompt_I=prompt_I;
GNSS_tracking.prompt_Q=prompt_Q;
GNSS_tracking.PRN_start_sample=PRN_start_sample;
GNSS_tracking.acc_carrier_phase_rad=acc_carrier_phase_rad;
GNSS_tracking.carrier_doppler_hz=carrier_doppler_hz;
GNSS_tracking.code_freq_hz=code_freq_hz;
GNSS_tracking.carr_error=carr_error;
GNSS_tracking.carr_nco=carr_nco;
GNSS_tracking.code_error=code_error
GNSS_tracking.code_nco=code_nco;
GNSS_tracking.CN0_SNV_dB_Hz=CN0_SNV_dB_Hz;
GNSS_tracking.carrier_lock_test=carrier_lock_test;
GNSS_tracking.d_rem_code_phase_samples=var1;
GNSS_tracking.var2=var2;
GNSS_tracking.PRN=PRN;
end

View File

@ -166,18 +166,19 @@ for channelNr = channelList
title (handles(4, 1), 'Carrier to Noise Ratio');
%----- Carrier Frequency --------------------------------
plot (handles(4, 2), timeAxisInSeconds, ...
trackResults(channelNr).carrFreq(1:settings.msToProcess), 'Color',[0.42 0.25 0.39]);
plot (handles(4, 2), timeAxisInSeconds(2:end), ...
trackResults(channelNr).carrFreq(2:settings.msToProcess), 'Color',[0.42 0.25 0.39]);
grid (handles(4, 2));
axis (handles(4, 2), 'tight');
axis (handles(4, 2));
xlabel(handles(4, 2), 'Time (s)');
ylabel(handles(4, 2), 'Freq (hz)');
title (handles(4, 2), 'Carrier Freq');
%----- Code Frequency----------------------------------
plot (handles(4, 3), timeAxisInSeconds, ...
trackResults(channelNr).codeFreq(1:settings.msToProcess), 'Color',[0.2 0.3 0.49]);
%--- Skip sample 0 to help with results display
plot (handles(4, 3), timeAxisInSeconds(2:end), ...
trackResults(channelNr).codeFreq(2:settings.msToProcess), 'Color',[0.2 0.3 0.49]);
grid (handles(4, 3));
axis (handles(4, 3), 'tight');