1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-12 02:10:34 +00:00

Merging multichannel stuff. Merge branch 'next' of https://github.com/Arribas/gnss-sdr into next

This commit is contained in:
Carles Fernandez 2015-02-27 11:20:41 +01:00
commit e4fb7a294d
12 changed files with 1711 additions and 253 deletions

View File

@ -19,7 +19,7 @@ ControlThread.wait_for_flowgraph=false
SignalSource.implementation=Nsr_File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=../../../Documents/workspace/code2/trunk/data/E1L1_FE0_Band0.stream
SignalSource.filename=/datalogger/signals/ifen/E1L1_FE0_Band0.stream
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=byte

View File

@ -0,0 +1,399 @@
; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_hz=4000000
;######### CONTROL_THREAD CONFIG ############
ControlThread.wait_for_flowgraph=false
;######### SUPL RRLP GPS assistance configuration #####
GNSS-SDR.SUPL_gps_enabled=false
GNSS-SDR.SUPL_read_gps_assistance_xml=true
GNSS-SDR.SUPL_gps_ephemeris_server=supl.nokia.com
GNSS-SDR.SUPL_gps_ephemeris_port=7275
GNSS-SDR.SUPL_gps_acquisition_server=supl.google.com
GNSS-SDR.SUPL_gps_acquisition_port=7275
GNSS-SDR.SUPL_MCC=244
GNSS-SDR.SUPL_MNS=5
GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource.implementation=UHD_Signal_Source
;#When left empty, the device discovery routines will search all vailable transports on the system (ethernet, usb...)
SignalSource.device_address=192.168.40.2
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;#RF_channels: Number of RF channels present in the frontend device (i.e. USRP with two frontends)
SignalSource.RF_channels=2
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource.sampling_frequency=4000000
;#subdevice: UHD subdevice specification (for USRP dual frontend use A:0 or B:0 or A:0 B:0)
SignalSource.subdevice=A:0 B:0
;######### RF Channels specific settings ######
;## RF CHANNEL 0 ##
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq0=1575420000
;#gain: Front-end Gain in [dB]
SignalSource.gain0=40
;#samples: Number of samples to be processed. Notice that 0 indicates no limit
SignalSource.samples0=0
;#dump: Dump the Signal source RF channel data to a file. Disable this option in this version
SignalSource.dump0=false
SignalSource.dump_filename0=../data/signal_source0.dat
;## RF CHANNEL 1 ##
;#freq: RF front-end center frequency in [Hz]
SignalSource.freq1=1575420000
;#gain: Front-end Gain in [dB]
SignalSource.gain1=40
;#samples: Number of samples to be processed. Notice that 0 indicates no limit
SignalSource.samples1=0
;#dump: Dump the Signal source RF channel data to a file. Disable this option in this version
SignalSource.dump1=false
SignalSource.dump_filename1=../data/signal_source1.dat
;######### SIGNAL_CONDITIONER CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;SignalConditioner.implementation=Signal_Conditioner
SignalConditioner.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data. Please disable it in this version.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter.implementation=Pass_Through
;######### INPUT_FILTER CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
;InputFilter.implementation=Fir_Filter
;InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=4000000
InputFilter.IF=0
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
;Resampler.implementation=Direct_Resampler
Resampler.implementation=Pass_Through
;#dump: Dump the resampled data to a file.
Resampler.dump=false
;#dump_filename: Log path and filename.
Resampler.dump_filename=../data/resampler.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Resampler.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler.sample_freq_in=4000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler.sample_freq_out=4000000
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_GPS.count=8
;#count: Number of available Galileo satellite channels.
Channels_Galileo.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#system: GPS, GLONASS, GALILEO, SBAS or COMPASS
;#if the option is disabled by default is assigned GPS
Channel.system=GPS
;#signal:
;# "1C" GPS L1 C/A
;# "1P" GPS L1 P
;# "1W" GPS L1 Z-tracking and similar (AS on)
;# "1Y" GPS L1 Y
;# "1M" GPS L1 M
;# "1N" GPS L1 codeless
;# "2C" GPS L2 C/A
;# "2D" GPS L2 L1(C/A)+(P2-P1) semi-codeless
;# "2S" GPS L2 L2C (M)
;# "2L" GPS L2 L2C (L)
;# "2X" GPS L2 L2C (M+L)
;# "2P" GPS L2 P
;# "2W" GPS L2 Z-tracking and similar (AS on)
;# "2Y" GPS L2 Y
;# "2M" GPS GPS L2 M
;# "2N" GPS L2 codeless
;# "5I" GPS L5 I
;# "5Q" GPS L5 Q
;# "5X" GPS L5 I+Q
;# "1C" GLONASS G1 C/A
;# "1P" GLONASS G1 P
;# "2C" GLONASS G2 C/A (Glonass M)
;# "2P" GLONASS G2 P
;# "1A" GALILEO E1 A (PRS)
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "1C" GALILEO E1 C (no data)
;# "1X" GALILEO E1 B+C
;# "1Z" GALILEO E1 A+B+C
;# "5I" GALILEO E5a I (F/NAV OS)
;# "5Q" GALILEO E5a Q (no data)
;# "5X" GALILEO E5a I+Q
;# "7I" GALILEO E5b I
;# "7Q" GALILEO E5b Q
;# "7X" GALILEO E5b I+Q
;# "8I" GALILEO E5 I
;# "8Q" GALILEO E5 Q
;# "8X" GALILEO E5 I+Q
;# "6A" GALILEO E6 A
;# "6B" GALILEO E6 B
;# "6C" GALILEO E6 C
;# "6X" GALILEO E6 B+C
;# "6Z" GALILEO E6 A+B+C
;# "1C" SBAS L1 C/A
;# "5I" SBAS L5 I
;# "5Q" SBAS L5 Q
;# "5X" SBAS L5 I+Q
;# "2I" COMPASS E2 I
;# "2Q" COMPASS E2 Q
;# "2X" COMPASS E2 IQ
;# "7I" COMPASS E5b I
;# "7Q" COMPASS E5b Q
;# "7X" COMPASS E5b IQ
;# "6I" COMPASS E6 I
;# "6Q" COMPASS E6 Q
;# "6X" COMPASS E6 IQ
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel.signal=1C
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### CHANNEL 0 CONFIG ############
Channel0.system=GPS
Channel0.signal=1C
;#satellite: Satellite PRN ID for this channel. Disable this option to random search
Channel0.satellite=11
;######### CHANNEL 1 CONFIG ############
Channel1.system=GPS
Channel1.signal=1C
Channel1.satellite=18
;######### ACQUISITION GLOBAL CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_GPS.dump=false
;#filename: Log path and filename
Acquisition_GPS.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_GPS.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_GPS.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_GPS.coherent_integration_time_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_GPS.implementation=GPS_L1_CA_PCPS_Acquisition
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_GPS.threshold=0.02
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_GPS.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_GPS.doppler_max=8000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_GPS.doppler_step=500
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition] (should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_GPS.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_GPS.max_dwells=1
;######### ACQUISITION CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### TRACKING GLOBAL CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
Tracking_GPS.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_GPS.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_GPS.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_GPS.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_GPS.dump_filename=./tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_GPS.pll_bw_hz=50.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_GPS.dll_bw_hz=2.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_GPS.fll_bw_hz=10.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_GPS.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
Tracking_GPS.early_late_space_chips=0.5;
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_GPS.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_GPS.dump=false
;#decimation factor
TelemetryDecoder_GPS.decimation_factor=1;
;######### OBSERVABLES CONFIG ############
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
Observables.implementation=GPS_L1_CA_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
PVT.implementation=GPS_L1_CA_PVT
;#averaging_depth: Number of PVT observations in the moving average algorithm
PVT.averaging_depth=10
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
PVT.flag_averaging=true
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# RINEX, KML, and NMEA output configuration
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;######### OUTPUT_FILTER CONFIG ############
;# Receiver output filter: Leave this block disabled in this version
OutputFilter.implementation=Null_Sink_Output_Filter
OutputFilter.filename=data/gnss-sdr.dat
OutputFilter.item_type=gr_complex

View File

@ -0,0 +1,474 @@
; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
Receiver.sources_count=2
;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
;GNSS-SDR.internal_fs_hz=6826700
GNSS-SDR.internal_fs_hz=2560000
;GNSS-SDR.internal_fs_hz=4096000
;GNSS-SDR.internal_fs_hz=5120000
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;#repeat: Repeat the processing file. Disable this option in this version
SignalSource.repeat=false
;######### CONTROL_THREAD CONFIG ############
ControlThread.wait_for_flowgraph=false
;######### SIGNAL_SOURCE 0 CONFIG ############
;#implementation: Use [File_Signal_Source] [Nsr_File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource0.implementation=Nsr_File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource0.filename=/datalogger/signals/ifen/E1L1_FE0_Band0.stream
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource0.item_type=byte
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource0.sampling_frequency=20480000
;#freq: RF front-end center frequency in [Hz]
SignalSource0.freq=1575420000
;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0)
SignalSource0.subdevice=B:0
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource0.samples=0
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource0.dump=false
SignalSource0.dump_filename=../data/signal_source.dat
;######### SIGNAL_SOURCE 1 CONFIG ############
;#implementation: Use [File_Signal_Source] [Nsr_File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource1.implementation=Nsr_File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource1.filename=/datalogger/signals/ifen/E1L1_FE0_Band0.stream
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource1.item_type=byte
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource1.sampling_frequency=20480000
;#freq: RF front-end center frequency in [Hz]
SignalSource1.freq=1575420000
;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0)
SignalSource1.subdevice=B:0
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource1.samples=0
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource1.dump=false
SignalSource1.dump_filename=../data/signal_source.dat
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=float
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse
;#reponse given a set of band edges, the desired reponse on those bands,
;#and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter0.input_item_type=float
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter0.sampling_frequency=20480000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter0.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=8
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler0.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner1.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
;## Changes the type of input data.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter1.implementation=Pass_Through
DataTypeAdapter1.item_type=float
;######### INPUT_FILTER 1 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation
;# that shifts IF down to zero Hz.
InputFilter1.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse
;#reponse given a set of band edges, the desired reponse on those bands,
;#and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter1.input_item_type=float
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;# Original sampling frequency stored in the signal file
InputFilter1.sampling_frequency=20480000
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter1.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter1.IF=5499998.47412109
;# Decimation factor after the frequency tranaslating block
InputFilter1.decimation_factor=8
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler1.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_GPS.count=8
;#count: Number of available Galileo satellite channels.
Channels_Galileo.count=8
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#system: GPS, GLONASS, GALILEO, SBAS or COMPASS
;#if the option is disabled by default is assigned GPS
Channel.system=GPS, Galileo
;# CHANNEL CONNECTION
Channel0.SignalSource_ID=0
Channel1.SignalSource_ID=0
Channel2.SignalSource_ID=0
Channel3.SignalSource_ID=0
Channel4.SignalSource_ID=0
Channel5.SignalSource_ID=0
Channel6.SignalSource_ID=0
Channel7.SignalSource_ID=0
Channel8.SignalSource_ID=1
Channel9.SignalSource_ID=1
Channel10.SignalSource_ID=1
Channel11.SignalSource_ID=1
Channel12.SignalSource_ID=1
Channel13.SignalSource_ID=1
Channel14.SignalSource_ID=1
Channel15.SignalSource_ID=1
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel.signal=1B
;######### GPS ACQUISITION CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_GPS.dump=false
;#filename: Log path and filename
Acquisition_GPS.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_GPS.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_GPS.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_GPS.sampled_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_GPS.implementation=GPS_L1_CA_PCPS_Acquisition
;#threshold: Acquisition threshold
Acquisition_GPS.threshold=0.0075
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_GPS.pfa=0.01
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_GPS.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_GPS.doppler_step=500
;######### GALILEO ACQUISITION CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_Galileo.dump=false
;#filename: Log path and filename
Acquisition_Galileo.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_Galileo.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_Galileo.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_Galileo.sampled_ms=4
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_Galileo.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#threshold: Acquisition threshold
;Acquisition_Galileo.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_Galileo.pfa=0.0000002
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_Galileo.doppler_max=15000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_Galileo.doppler_step=125
;######### TRACKING GPS CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
Tracking_GPS.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_GPS.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_GPS.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_GPS.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_GPS.dump_filename=../data/epl_tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_GPS.pll_bw_hz=45.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_GPS.dll_bw_hz=2.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_GPS.fll_bw_hz=10.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_GPS.order=3;
;######### TRACKING GALILEO CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
Tracking_Galileo.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_Galileo.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_Galileo.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_Galileo.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_Galileo.dump_filename=../data/veml_tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_Galileo.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_Galileo.dll_bw_hz=2.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_Galileo.fll_bw_hz=10.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_Galileo.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_Galileo.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_Galileo.very_early_late_space_chips=0.6;
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_GPS.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_GPS.dump=false
;#decimation factor
TelemetryDecoder_GPS.decimation_factor=4;
;######### TELEMETRY DECODER GALILEO CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_Galileo.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_Galileo.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
PVT.implementation=Hybrid_PVT
;#averaging_depth: Number of PVT observations in the moving average algorithm
PVT.averaging_depth=10
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
PVT.flag_averaging=false
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=10;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
;######### OUTPUT_FILTER CONFIG ############
;# Receiver output filter: Leave this block disabled in this version
OutputFilter.implementation=Null_Sink_Output_Filter
OutputFilter.filename=data/gnss-sdr.dat
OutputFilter.item_type=gr_complex

View File

@ -0,0 +1,479 @@
; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_hz=4000000
Receiver.sources_count=2
;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing.
; it helps to not overload the CPU, but the processing time will be longer.
SignalSource.enable_throttle_control=false
;#repeat: Repeat the processing file. Disable this option in this version
SignalSource.repeat=false
;######### CONTROL_THREAD CONFIG ############
ControlThread.wait_for_flowgraph=false
;######### SIGNAL_SOURCE 0 CONFIG ############
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource0.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource0.filename=../data/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource0.item_type=short
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource0.sampling_frequency=4000000
;#freq: RF front-end center frequency in [Hz]
SignalSource0.freq=1575420000
;#gain: Front-end Gain in [dB]
SignalSource0.gain=60
;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0)
SignalSource0.subdevice=B:0
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource0.samples=0
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource0.dump=false
SignalSource0.dump_filename=../data/signal_source.dat
;######### SIGNAL_SOURCE 1 CONFIG ############
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource1.implementation=File_Signal_Source
;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource1.filename=../data/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource1.item_type=short
;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource1.sampling_frequency=4000000
;#freq: RF front-end center frequency in [Hz]
SignalSource1.freq=1575420000
;#gain: Front-end Gain in [dB]
SignalSource1.gain=60
;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0)
SignalSource1.subdevice=B:0
;#samples: Number of samples to be processed. Notice that 0 indicates the entire file.
SignalSource1.samples=0
;#dump: Dump the Signal source data to a file. Disable this option in this version
SignalSource1.dump=false
SignalSource1.dump_filename=../data/signal_source.dat
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
;## Changes the type of input data. Please disable it in this version.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter0.implementation=Ishort_To_Complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter0.sampling_frequency=4000000
InputFilter0.IF=0
;######### RESAMPLER 1 CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler1.implementation=Pass_Through
;#dump: Dump the resamplered data to a file.
Resampler1.dump=false
;#dump_filename: Log path and filename.
Resampler1.dump_filename=../data/resampler.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Resampler1.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler1.sample_freq_in=4000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler1.sample_freq_out=4000000
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner1.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
;## Changes the type of input data. Please disable it in this version.
;#implementation: [Pass_Through] disables this block
DataTypeAdapter1.implementation=Ishort_To_Complex
;######### INPUT_FILTER 1 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter1.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter1.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter1.sampling_frequency=4000000
InputFilter1.IF=0
;######### RESAMPLER 1 CONFIG ############
;## Resamples the input data.
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation
Resampler1.implementation=Pass_Through
;#dump: Dump the resamplered data to a file.
Resampler1.dump=false
;#dump_filename: Log path and filename.
Resampler1.dump_filename=../data/resampler.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Resampler1.item_type=gr_complex
;#sample_freq_in: the sample frequency of the input signal
Resampler1.sample_freq_in=4000000
;#sample_freq_out: the desired sample frequency of the output signal
Resampler1.sample_freq_out=4000000
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_GPS.count=2
;#count: Number of available Galileo satellite channels.
Channels_Galileo.count=2
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#system: GPS, GLONASS, GALILEO, SBAS or COMPASS
;#if the option is disabled by default is assigned GPS
Channel.system=GPS, Galileo
;# CHANNEL CONNECTION
Channel0.SignalSource_ID=0
Channel1.SignalSource_ID=0
Channel2.SignalSource_ID=1
Channel3.SignalSource_ID=1
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel.signal=1B
;######### GPS ACQUISITION CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_GPS.dump=false
;#filename: Log path and filename
Acquisition_GPS.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_GPS.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_GPS.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_GPS.sampled_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_GPS.implementation=GPS_L1_CA_PCPS_Acquisition
;#threshold: Acquisition threshold
Acquisition_GPS.threshold=0.0075
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_GPS.pfa=0.01
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_GPS.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_GPS.doppler_step=500
;######### GALILEO ACQUISITION CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_Galileo.dump=false
;#filename: Log path and filename
Acquisition_Galileo.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_Galileo.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_Galileo.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_Galileo.sampled_ms=4
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_Galileo.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#threshold: Acquisition threshold
;Acquisition_Galileo.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_Galileo.pfa=0.0000008
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_Galileo.doppler_max=15000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_Galileo.doppler_step=125
;######### TRACKING GPS CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
Tracking_GPS.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_GPS.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_GPS.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_GPS.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_GPS.dump_filename=../data/epl_tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_GPS.pll_bw_hz=45.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_GPS.dll_bw_hz=4.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_GPS.fll_bw_hz=10.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_GPS.order=3;
;######### TRACKING GALILEO CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
Tracking_Galileo.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_Galileo.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_Galileo.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_Galileo.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_Galileo.dump_filename=../data/veml_tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_Galileo.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_Galileo.dll_bw_hz=2.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_Galileo.fll_bw_hz=10.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_Galileo.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_Galileo.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_Galileo.very_early_late_space_chips=0.6;
;######### TELEMETRY DECODER GPS CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_GPS.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_GPS.dump=false
;#decimation factor
TelemetryDecoder_GPS.decimation_factor=4;
;######### TELEMETRY DECODER GALILEO CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_Galileo.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_Galileo.dump=false
;######### OBSERVABLES CONFIG ############
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.
Observables.implementation=Hybrid_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
PVT.implementation=Hybrid_PVT
;#averaging_depth: Number of PVT observations in the moving average algorithm
PVT.averaging_depth=10
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
PVT.flag_averaging=false
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100;
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500;
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
;######### OUTPUT_FILTER CONFIG ############
;# Receiver output filter: Leave this block disabled in this version
OutputFilter.implementation=Null_Sink_Output_Filter
OutputFilter.filename=data/gnss-sdr.dat
OutputFilter.item_type=gr_complex

View File

@ -63,7 +63,6 @@ SignalConditioner::~SignalConditioner()
}
void SignalConditioner::connect(gr::top_block_sptr top_block)
{
if (connected_)
@ -77,19 +76,14 @@ void SignalConditioner::connect(gr::top_block_sptr top_block)
top_block->connect(data_type_adapt_->get_right_block(), 0,
in_filt_->get_left_block(), 0);
DLOG(INFO) << "data_type_adapter -> input_filter";
top_block->connect(in_filt_->get_right_block(), 0,
res_->get_left_block(), 0);
DLOG(INFO) << "input_filter -> resampler";
connected_ = true;
}
void SignalConditioner::disconnect(gr::top_block_sptr top_block)
{
if (!connected_)
@ -116,8 +110,6 @@ gr::basic_block_sptr SignalConditioner::get_left_block()
return data_type_adapt_->get_left_block();
}
gr::basic_block_sptr SignalConditioner::get_right_block()
{
return res_->get_right_block();

View File

@ -50,28 +50,51 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
std::string empty = "";
std::string default_dump_file = "./data/signal_source.dat";
std::string default_item_type = "cshort";
samples_ = configuration->property(role + ".samples", 0);
dump_ = configuration->property(role + ".dump", false);
dump_filename_ = configuration->property(role + ".dump_filename", default_dump_file);
// UHD PARAMETERS
uhd::device_addr_t dev_addr;
device_address_= configuration->property(role + ".device_address", empty);
// When left empty, the device discovery routines will search all
// available transports on the system (ethernet, usb...).
// To narrow down the discovery process to a particular device,
// specify a transport key/value pair specific to your device.
if (empty.compare(device_address_) != 0) // if not empty
{
dev_addr["addr"] = device_address_;
}
subdevice_ = configuration->property(role + ".subdevice", empty);
freq_ = configuration->property(role + ".freq", GPS_L1_FREQ_HZ);
gain_ = configuration->property(role + ".gain", (double)50.0);
sample_rate_ = configuration->property(role + ".sampling_frequency", (double)4.0e6);
IF_bandwidth_hz_ = configuration->property(role + ".IF_bandwidth_hz", sample_rate_/2);
item_type_ = configuration->property(role + ".item_type", default_item_type);
// UHD COMMON PARAMETERS
uhd::device_addr_t dev_addr;
device_address_= configuration->property(role + ".device_address", empty);
// When left empty, the device discovery routines will search all
// available transports on the system (ethernet, usb...).
// To narrow down the discovery process to a particular device,
// specify a transport key/value pair specific to your device.
if (empty.compare(device_address_) != 0) // if not empty
{
dev_addr["addr"] = device_address_;
}
subdevice_=configuration->property(role + ".subdevice", empty);
RF_channels_=configuration->property(role + ".RF_channels", 1);
sample_rate_ = configuration->property(role + ".sampling_frequency", (double)4.0e6);
item_type_ = configuration->property(role + ".item_type", default_item_type);
if (RF_channels_==1)
{
// Single RF channel UHD operation (backward compatible config file format)
samples_.push_back(configuration->property(role + ".samples", 0));
dump_.push_back(configuration->property(role + ".dump", false));
dump_filename_.push_back(configuration->property(role + ".dump_filename", default_dump_file));
freq_.push_back(configuration->property(role + ".freq", GPS_L1_FREQ_HZ));
gain_.push_back(configuration->property(role + ".gain", (double)50.0));
IF_bandwidth_hz_.push_back(configuration->property(role + ".IF_bandwidth_hz", sample_rate_/2));
}else{
// multiple RF channels selected
for (int i=0;i<RF_channels_;i++)
{
// Single RF channel UHD operation (backward compatible config file format)
samples_.push_back(configuration->property(role + ".samples" + boost::lexical_cast<std::string>(i), 0));
dump_.push_back(configuration->property(role + ".dump" + boost::lexical_cast<std::string>(i), false));
dump_filename_.push_back(configuration->property(role + ".dump_filename" + boost::lexical_cast<std::string>(i), default_dump_file));
freq_.push_back(configuration->property(role + ".freq" + boost::lexical_cast<std::string>(i), GPS_L1_FREQ_HZ));
gain_.push_back(configuration->property(role + ".gain" + boost::lexical_cast<std::string>(i), (double)50.0));
IF_bandwidth_hz_.push_back(configuration->property(role + ".IF_bandwidth_hz" + boost::lexical_cast<std::string>(i), sample_rate_/2));
}
}
// 1. Make the uhd driver instance
//uhd_source_= uhd::usrp::multi_usrp::make(dev_addr);
@ -85,25 +108,45 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
if (item_type_.compare("cbyte") == 0)
{
item_size_ = sizeof(lv_8sc_t);
uhd_source_ = gr::uhd::usrp_source::make(dev_addr, uhd::stream_args_t("sc8"));
uhd_stream_args_=uhd::stream_args_t("sc8");
}
else if (item_type_.compare("cshort") == 0)
{
item_size_ = sizeof(lv_16sc_t);
uhd_source_ = gr::uhd::usrp_source::make(dev_addr, uhd::stream_args_t("sc16"));
uhd_stream_args_=uhd::stream_args_t("sc16");
}
else if (item_type_.compare("gr_complex") == 0)
{
item_size_ = sizeof(gr_complex);
uhd_source_ = gr::uhd::usrp_source::make(dev_addr, uhd::stream_args_t("fc32"));
uhd_stream_args_=uhd::stream_args_t("fc32");
}
else
{
LOG(WARNING) << item_type_ << " unrecognized item type. Using cshort.";
item_size_ = sizeof(lv_16sc_t);
uhd_source_ = gr::uhd::usrp_source::make(dev_addr, uhd::stream_args_t("sc16"));
uhd_stream_args_=uhd::stream_args_t("sc16");
}
// select the number of channels and the subdevice specifications
for (int i=0;i<RF_channels_;i++)
{
uhd_stream_args_.channels.push_back(i);
}
// 1.2 Make the UHD source object
uhd_source_ = gr::uhd::usrp_source::make(dev_addr, uhd_stream_args_);
// Set subdevice specification string for USRP family devices. It is composed of:
// <motherboard slot name>:<daughterboard frontend name>
// For motherboards: All USRP family motherboards have a first slot named A:.
// The USRP1 has two daughterboard subdevice slots, known as A: and B:.
// For daughterboards, see http://files.ettus.com/uhd_docs/manual/html/dboards.html
// "0" is valid for DBSRX, DBSRX2, WBX Series
// Dual channel example: "A:0 B:0"
// TODO: Add support for multiple motherboards (i.e. four channels "A:0 B:0 A:1 B1")
uhd_source_->set_subdev_spec(subdevice_, 0);
// 2.1 set sampling clock reference
// Set the clock source for the usrp device.
// Options: internal, external, or MIMO
@ -116,69 +159,70 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
std::cout << boost::format("Sampling Rate for the USRP device: %f [sps]...") % (uhd_source_->get_samp_rate()) << std::endl;
LOG(INFO) << boost::format("Sampling Rate for the USRP device: %f [sps]...") % (uhd_source_->get_samp_rate());
// 3. Tune the usrp device to the desired center frequency
uhd_source_->set_center_freq(freq_);
std::cout << boost::format("Actual USRP center freq.: %f [Hz]...") % (uhd_source_->get_center_freq()) << std::endl << std::endl;
LOG(INFO) << boost::format("Actual USRP center freq. set to: %f [Hz]...") % (uhd_source_->get_center_freq());
std::vector<std::string> sensor_names;
// TODO: Assign the remnant IF from the PLL tune error
std::cout << boost::format("PLL Frequency tune error %f [Hz]...") % (uhd_source_->get_center_freq() - freq_) << std::endl;
LOG(INFO) << boost::format("PLL Frequency tune error %f [Hz]...") % (uhd_source_->get_center_freq() - freq_);
for (int i=0;i<RF_channels_;i++)
{
// 3. Tune the usrp device to the desired center frequency
uhd_source_->set_center_freq(freq_.at(i),i);
std::cout << boost::format("Actual USRP center freq.: %f [Hz]...") % (uhd_source_->get_center_freq(i)) << std::endl << std::endl;
LOG(INFO) << boost::format("Actual USRP center freq. set to: %f [Hz]...") % (uhd_source_->get_center_freq(i));
// 4. set the gain for the daughterboard
uhd_source_->set_gain(gain_);
std::cout << boost::format("Actual daughterboard gain set to: %f dB...") % uhd_source_->get_gain() << std::endl;
LOG(INFO) << boost::format("Actual daughterboard gain set to: %f dB...") % uhd_source_->get_gain();
// TODO: Assign the remnant IF from the PLL tune error
std::cout << boost::format("PLL Frequency tune error %f [Hz]...") % (uhd_source_->get_center_freq(i) - freq_.at(i)) << std::endl;
LOG(INFO) << boost::format("PLL Frequency tune error %f [Hz]...") % (uhd_source_->get_center_freq(i) - freq_.at(i));
//5. Set the bandpass filter on the RF frontend
std::cout << boost::format("Setting RF bandpass filter bandwidth to: %f [Hz]...") % IF_bandwidth_hz_ << std::endl;
uhd_source_->set_bandwidth(IF_bandwidth_hz_);
// 4. set the gain for the daughterboard
uhd_source_->set_gain(gain_.at(i),i);
std::cout << boost::format("Actual daughterboard gain set to: %f dB...") % uhd_source_->get_gain(i) << std::endl;
LOG(INFO) << boost::format("Actual daughterboard gain set to: %f dB...") % uhd_source_->get_gain(i);
//set the antenna (optional)
//uhd_source_->set_antenna(ant);
//5. Set the bandpass filter on the RF frontend
std::cout << boost::format("Setting RF bandpass filter bandwidth to: %f [Hz]...") % IF_bandwidth_hz_.at(i) << std::endl;
uhd_source_->set_bandwidth(IF_bandwidth_hz_.at(i),i);
// We should wait? #include <boost/thread.hpp>
// boost::this_thread::sleep(boost::posix_time::seconds(1));
//set the antenna (optional)
//uhd_source_->set_antenna(ant);
// Check out the status of the lo_locked sensor (boolean for LO lock state)
std::vector<std::string> sensor_names;
sensor_names = uhd_source_->get_sensor_names(0);
if (std::find(sensor_names.begin(), sensor_names.end(), "lo_locked") != sensor_names.end())
{
uhd::sensor_value_t lo_locked = uhd_source_->get_sensor("lo_locked", 0);
std::cout << boost::format("Check for front-end %s ...") % lo_locked.to_pp_string() << " is ";
if (lo_locked.to_bool() == true)
{
std::cout << "Locked" << std::endl;
}
else
{
std::cout << "UNLOCKED!" <<std::endl;
}
//UHD_ASSERT_THROW(lo_locked.to_bool());
}
// We should wait? #include <boost/thread.hpp>
// boost::this_thread::sleep(boost::posix_time::seconds(1));
// Set subdevice specification string for USRP family devices. It is composed of:
// <motherboard slot name>:<daughterboard frontend name>
// For motherboards: All USRP family motherboards have a first slot named A:.
// The USRP1 has two daughterboard subdevice slots, known as A: and B:.
// For daughterboards, see http://files.ettus.com/uhd_docs/manual/html/dboards.html
// "0" is valid for DBSRX, DBSRX2, WBX Series
uhd_source_->set_subdev_spec(subdevice_, 0);
// Check out the status of the lo_locked sensor (boolean for LO lock state)
sensor_names = uhd_source_->get_sensor_names(i);
if (std::find(sensor_names.begin(), sensor_names.end(), "lo_locked") != sensor_names.end())
{
uhd::sensor_value_t lo_locked = uhd_source_->get_sensor("lo_locked", i);
std::cout << boost::format("Check for front-end %s ...") % lo_locked.to_pp_string() << " is ";
if (lo_locked.to_bool() == true)
{
std::cout << "Locked" << std::endl;
}
else
{
std::cout << "UNLOCKED!" <<std::endl;
}
//UHD_ASSERT_THROW(lo_locked.to_bool());
}
}
if (samples_ != 0)
{
LOG(INFO) << "Send STOP signal after " << samples_ << " samples";
valve_ = gnss_sdr_make_valve(item_size_, samples_, queue_);
DLOG(INFO) << "valve(" << valve_->unique_id() << ")";
}
if (dump_)
{
LOG(INFO) << "Dumping output into file " << dump_filename_;
file_sink_ = gr::blocks::file_sink::make(item_size_, dump_filename_.c_str());
DLOG(INFO) << "file_sink(" << file_sink_->unique_id() << ")";
}
for (int i=0;i<RF_channels_;i++)
{
if (samples_.at(i) != 0)
{
LOG(INFO) << "RF_channel "<<i<<" Send STOP signal after " << samples_.at(i) << " samples";
valve_.push_back(gnss_sdr_make_valve(item_size_, samples_.at(i), queue_));
DLOG(INFO) << "valve(" << valve_.at(i)->unique_id() << ")";
}
if (dump_.at(i))
{
LOG(INFO) << "RF_channel "<<i<< "Dumping output into file " << dump_filename_.at(i);
file_sink_.push_back(gr::blocks::file_sink::make(item_size_, dump_filename_.at(i).c_str()));
DLOG(INFO) << "file_sink(" << file_sink_.at(i)->unique_id() << ")";
}
}
}
@ -186,50 +230,56 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
UhdSignalSource::~UhdSignalSource()
{}
void UhdSignalSource::connect(gr::top_block_sptr top_block)
{
if (samples_ != 0)
{
top_block->connect(uhd_source_, 0, valve_, 0);
DLOG(INFO) << "connected usrp source to valve";
if (dump_)
{
top_block->connect(valve_, 0, file_sink_, 0);
DLOG(INFO) << "connected valve to file sink";
}
}
else
{
if (dump_)
{
top_block->connect(uhd_source_, 0, file_sink_, 0);
DLOG(INFO) << "connected usrp source to file sink";
}
}
for (int i=0;i<RF_channels_;i++)
{
if (samples_.at(i) != 0)
{
top_block->connect(uhd_source_, i, valve_.at(i), 0);
DLOG(INFO) << "connected usrp source to valve RF Channel "<< i;
if (dump_.at(i))
{
top_block->connect(valve_.at(i), 0, file_sink_.at(i), 0);
DLOG(INFO) << "connected valve to file sink RF Channel "<< i;
}
}
else
{
if (dump_.at(i))
{
top_block->connect(uhd_source_, i, file_sink_.at(i), 0);
DLOG(INFO) << "connected usrp source to file sink RF Channel "<< i;
}
}
}
}
void UhdSignalSource::disconnect(gr::top_block_sptr top_block)
{
if (samples_ != 0)
{
top_block->disconnect(uhd_source_, 0, valve_, 0);
LOG(INFO) << "UHD source disconnected";
if (dump_)
{
top_block->disconnect(valve_, 0, file_sink_, 0);
}
}
else
{
if (dump_)
{
top_block->disconnect(uhd_source_, 0, file_sink_, 0);
}
}
for (int i=0;i<RF_channels_;i++)
{
if (samples_.at(i) != 0)
{
top_block->disconnect(uhd_source_, i, valve_.at(i), 0);
LOG(INFO) << "UHD source disconnected";
if (dump_.at(i))
{
top_block->disconnect(valve_.at(i), 0, file_sink_.at(i), 0);
}
}
else
{
if (dump_.at(i))
{
top_block->disconnect(uhd_source_, i, file_sink_.at(i), 0);
}
}
}
}
@ -242,12 +292,16 @@ gr::basic_block_sptr UhdSignalSource::get_left_block()
}
gr::basic_block_sptr UhdSignalSource::get_right_block()
{
if (samples_ != 0)
return get_right_block(0);
}
gr::basic_block_sptr UhdSignalSource::get_right_block(int RF_channel)
{
if (samples_.at(RF_channel) != 0)
{
return valve_;
return valve_.at(RF_channel);
}
else
{

View File

@ -76,34 +76,35 @@ public:
void disconnect(gr::top_block_sptr top_block);
gr::basic_block_sptr get_left_block();
gr::basic_block_sptr get_right_block();
gr::basic_block_sptr get_right_block(int RF_channel);
private:
std::string role_;
// UHD SETTINGS
std::string device_address_;
std::string subdevice_;
double sample_rate_;
unsigned int in_stream_;
unsigned int out_stream_;
double freq_;
double gain_;
double IF_bandwidth_hz_;
std::string item_type_;
size_t item_size_;
long samples_;
bool dump_;
std::string dump_filename_;
//boost::shared_ptr<uhd_usrp_source> uhd_source_;
gr::uhd::usrp_source::sptr uhd_source_;
boost::shared_ptr<gr::block> valve_;
//gr_block_sptr file_sink_;
gr::blocks::file_sink::sptr file_sink_;
// UHD SETTINGS
uhd::stream_args_t uhd_stream_args_;
std::string device_address_;
double sample_rate_;
int RF_channels_;
std::string item_type_;
size_t item_size_;
std::string subdevice_;
std::vector<double> freq_;
std::vector<double> gain_;
std::vector<double> IF_bandwidth_hz_;
std::vector<long> samples_;
std::vector<bool> dump_;
std::vector<std::string> dump_filename_;
std::vector<boost::shared_ptr<gr::block>> valve_;
std::vector<gr::blocks::file_sink::sptr> file_sink_;
boost::shared_ptr<gr::msg_queue> queue_;
};

View File

@ -58,8 +58,28 @@ public:
virtual size_t item_size() = 0;
virtual void connect(gr::top_block_sptr top_block) = 0;
virtual void disconnect(gr::top_block_sptr top_block) = 0;
virtual gr::basic_block_sptr get_left_block() = 0;
virtual gr::basic_block_sptr get_right_block() = 0;
virtual gr::basic_block_sptr get_left_block(int RF_channel)
{
if (RF_channel==0) // avoid unused param warning
{
return NULL; // added to support raw array access (non pure virtual to allow left unimplemented)= 0;
}else{
return NULL; // added to support raw array access (non pure virtual to allow left unimplemented)= 0;
}
}
virtual gr::basic_block_sptr get_right_block(int RF_channel)
{
if (RF_channel==0) // avoid unused param warning
{
return NULL; // added to support raw array access (non pure virtual to allow left unimplemented)= 0;
}else{
return NULL; // added to support raw array access (non pure virtual to allow left unimplemented)= 0;
}
}
};
#endif /*GNSS_SDR_GNSS_BLOCK_INTERFACE_H_*/

View File

@ -125,22 +125,42 @@ GNSSBlockFactory::~GNSSBlockFactory()
std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetSignalSource(
std::shared_ptr<ConfigurationInterface> configuration, boost::shared_ptr<gr::msg_queue> queue)
std::shared_ptr<ConfigurationInterface> configuration, boost::shared_ptr<gr::msg_queue> queue, int ID)
{
std::string default_implementation = "File_Signal_Source";
std::string implementation = configuration->property("SignalSource.implementation", default_implementation);
std::string role="SignalSource";//backwards compatibility for old conf files
if (ID!=-1)
{
role="SignalSource"+ boost::lexical_cast<std::string>(ID);
}
std::string implementation = configuration->property(role + ".implementation", default_implementation);
LOG(INFO) << "Getting SignalSource with implementation " << implementation;
return GetBlock(configuration, "SignalSource", implementation, 0, 1, queue);
return GetBlock(configuration, role, implementation, 0, 1, queue);
}
std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetSignalConditioner(
std::shared_ptr<ConfigurationInterface> configuration, boost::shared_ptr<gr::msg_queue> queue)
std::shared_ptr<ConfigurationInterface> configuration, boost::shared_ptr<gr::msg_queue> queue, int ID)
{
std::string default_implementation = "Pass_Through";
//backwards compatibility for old conf files
std::string role_conditioner="SignalConditioner" ;
std::string role_datatypeadapter="DataTypeAdapter";
std::string role_inputfilter="InputFilter";
std::string role_resampler="Resampler";
if (ID!=-1)
{
role_conditioner="SignalConditioner" + boost::lexical_cast<std::string>(ID);
role_datatypeadapter="DataTypeAdapter" + boost::lexical_cast<std::string>(ID);
role_inputfilter="InputFilter" + boost::lexical_cast<std::string>(ID);
role_resampler="Resampler" + boost::lexical_cast<std::string>(ID);
}
std::string signal_conditioner = configuration->property(
"SignalConditioner.implementation", default_implementation);
role_conditioner+".implementation", default_implementation);
std::string data_type_adapter;
std::string input_filter;
std::string resampler;
@ -153,11 +173,11 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetSignalConditioner(
else
{
data_type_adapter = configuration->property(
"DataTypeAdapter.implementation", default_implementation);
role_datatypeadapter + ".implementation", default_implementation);
input_filter = configuration->property(
"InputFilter.implementation", default_implementation);
role_inputfilter + ".implementation", default_implementation);
resampler = configuration->property(
"Resampler.implementation", default_implementation);
role_resampler + ".implementation", default_implementation);
}
LOG(INFO) << "Getting SignalConditioner with DataTypeAdapter implementation: "
@ -169,20 +189,20 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetSignalConditioner(
{
//instantiate the array version
std::unique_ptr<GNSSBlockInterface> conditioner_(new ArraySignalConditioner(configuration.get(), GetBlock(configuration,
"DataTypeAdapter", data_type_adapter, 1, 1, queue).release(), GetBlock(
configuration,"InputFilter", input_filter, 1, 1, queue).release(),
GetBlock(configuration,"Resampler", resampler, 1, 1, queue).release(),
"SignalConditioner", "Signal_Conditioner", queue));
role_datatypeadapter, data_type_adapter, 1, 1, queue).release(), GetBlock(
configuration,role_inputfilter, input_filter, 1, 1, queue).release(),
GetBlock(configuration,role_resampler, resampler, 1, 1, queue).release(),
role_conditioner, "Signal_Conditioner", queue));
return conditioner_;
}
else
{
//single-antenna version
std::unique_ptr<GNSSBlockInterface> conditioner_(new SignalConditioner(configuration.get(), GetBlock(configuration,
"DataTypeAdapter", data_type_adapter, 1, 1, queue).release(), GetBlock(
configuration,"InputFilter", input_filter, 1, 1, queue).release(),
GetBlock(configuration,"Resampler", resampler, 1, 1, queue).release(),
"SignalConditioner", "Signal_Conditioner", queue));
role_datatypeadapter, data_type_adapter, 1, 1, queue).release(), GetBlock(
configuration,role_inputfilter, input_filter, 1, 1, queue).release(),
GetBlock(configuration,role_resampler, resampler, 1, 1, queue).release(),
role_conditioner, "Signal_Conditioner", queue));
return conditioner_;
}
}

View File

@ -57,10 +57,10 @@ public:
GNSSBlockFactory();
virtual ~GNSSBlockFactory();
std::unique_ptr<GNSSBlockInterface> GetSignalSource(std::shared_ptr<ConfigurationInterface> configuration,
boost::shared_ptr<gr::msg_queue> queue);
boost::shared_ptr<gr::msg_queue> queue, int ID=-1);
std::unique_ptr<GNSSBlockInterface> GetSignalConditioner(std::shared_ptr<ConfigurationInterface> configuration,
boost::shared_ptr<gr::msg_queue> queue);
boost::shared_ptr<gr::msg_queue> queue, int ID=-1);
std::unique_ptr<GNSSBlockInterface> GetPVT(std::shared_ptr<ConfigurationInterface> configuration,
boost::shared_ptr<gr::msg_queue> queue);

View File

@ -54,7 +54,7 @@ GNSSFlowgraph::GNSSFlowgraph(std::shared_ptr<ConfigurationInterface> configurati
connected_ = false;
running_ = false;
configuration_ = configuration;
std::shared_ptr<std::vector<std::shared_ptr<GNSSBlockInterface>>> blocks_ = std::make_shared<std::vector<std::shared_ptr<GNSSBlockInterface>>>();
//std::shared_ptr<std::vector<std::shared_ptr<GNSSBlockInterface>>> blocks_ = std::make_shared<std::vector<std::shared_ptr<GNSSBlockInterface>>>();
queue_ = queue;
init();
}
@ -62,11 +62,9 @@ GNSSFlowgraph::GNSSFlowgraph(std::shared_ptr<ConfigurationInterface> configurati
GNSSFlowgraph::~GNSSFlowgraph()
{
blocks_->clear();
//blocks_->clear();
}
void GNSSFlowgraph::start()
{
if (running_)
@ -89,8 +87,6 @@ void GNSSFlowgraph::start()
running_ = true;
}
void GNSSFlowgraph::stop()
{
for (unsigned int i = 0; i < channels_count_; i++)
@ -104,7 +100,6 @@ void GNSSFlowgraph::stop()
}
void GNSSFlowgraph::connect()
{
/* Connects the blocks in the flowgraph
@ -118,40 +113,45 @@ void GNSSFlowgraph::connect()
return;
}
try
{
sig_source_ = std::move(blocks_->at(0));
sig_source_->connect(top_block_);
}
catch (std::exception& e)
{
LOG(INFO) << "Can't connect signal source block internally";
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
for (int i = 0; i < sources_count_; i++)
{
try
{
sig_source_.at(i)->connect(top_block_);
}
catch (std::exception& e)
{
LOG(INFO) << "Can't connect signal source block " << i << " internally";
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
}
// Signal Source > Signal conditioner >
try
{
sig_conditioner_ = std::move(blocks_->at(1));
sig_conditioner_->connect(top_block_);
}
catch (std::exception& e)
{
LOG(WARNING) << "Can't connect signal conditioner block internally";
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
for (int i = 0; i < sources_count_; i++)
{
try
{
sig_conditioner_.at(i)->connect(top_block_);
}
catch (std::exception& e)
{
LOG(INFO) << "Can't connect signal conditioner block " << i << " internally";
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
}
for (unsigned int i = 0; i < channels_count_; i++)
{
try
{
auto chan_ = std::move(blocks_->at(i + 5));
std::shared_ptr<ChannelInterface> chan = std::dynamic_pointer_cast<ChannelInterface>(chan_);
channels_.push_back(chan);
//auto chan_ = std::move(blocks_->at(i));
//std::shared_ptr<ChannelInterface> chan = std::dynamic_pointer_cast<ChannelInterface>(chan_);
//channels_.push_back(chan);
channels_.at(i)->connect(top_block_);
}
catch (std::exception& e)
@ -165,7 +165,7 @@ void GNSSFlowgraph::connect()
try
{
observables_ = std::move(blocks_->at(2));
//observables_ = std::move(blocks_->at(2));
observables_->connect(top_block_);
}
catch (std::exception& e)
@ -179,7 +179,7 @@ void GNSSFlowgraph::connect()
// Signal Source > Signal conditioner >> Channels >> Observables > PVT
try
{
pvt_ = std::move(blocks_->at(3));
//pvt_ = std::move(blocks_->at(3));
pvt_->connect(top_block_);
}
catch (std::exception& e)
@ -193,7 +193,7 @@ void GNSSFlowgraph::connect()
// Signal Source > Signal conditioner >> Channels >> Observables > PVT > Output Filter
try
{
output_filter_ = std::move(blocks_->at(4));
//output_filter_ = std::move(blocks_->at(4));
output_filter_->connect(top_block_);
}
catch (std::exception& e)
@ -206,52 +206,62 @@ void GNSSFlowgraph::connect()
DLOG(INFO) << "blocks connected internally";
// Signal Source > Signal conditioner >
try
{
if(sig_source_->implementation().compare("Raw_Array_Signal_Source") == 0)
{
//Multichannel Array
std::cout << "ARRAY MODE" << std::endl;
for (int i = 0; i < GNSS_SDR_ARRAY_SIGNAL_CONDITIONER_CHANNELS; i++)
{
std::cout << "connecting ch "<< i << std::endl;
top_block_->connect(sig_source_->get_right_block(), i, sig_conditioner_->get_left_block(), i);
}
}
else
{
//single channel
top_block_->connect(sig_source_->get_right_block(), 0, sig_conditioner_->get_left_block(), 0);
}
// Signal Source (i) > Signal conditioner (i) >
}
catch (std::exception& e)
{
LOG(WARNING) << "Can't connect signal source to signal conditioner";
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
for (int i = 0; i < sources_count_; i++)
{
try
{
//TODO: Remove this array implementation and create generic multistream connector
//(if a signal source has more than 1 stream, then connect it to the multistream signal conditioner)
if(sig_source_.at(i)->implementation().compare("Raw_Array_Signal_Source") == 0)
{
//Multichannel Array
std::cout << "ARRAY MODE" << std::endl;
for (int j = 0; j < GNSS_SDR_ARRAY_SIGNAL_CONDITIONER_CHANNELS; j++)
{
std::cout << "connecting ch "<< j << std::endl;
top_block_->connect(sig_source_.at(i)->get_right_block(), j, sig_conditioner_.at(i)->get_left_block(), j);
}
}
else
{
//single channel
top_block_->connect(sig_source_.at(i)->get_right_block(), 0, sig_conditioner_.at(i)->get_left_block(), 0);
}
}
catch (std::exception& e)
{
LOG(WARNING) << "Can't connect signal source " << i << " to signal conditioner " << i;
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
}
DLOG(INFO) << "Signal source connected to signal conditioner";
// Signal Source > Signal conditioner >> channels_count_ number of Channels in parallel
// Signal conditioner (selected_signal_source) >> channels (i) (dependent of their associated SignalSource_ID)
int selected_signal_source;
for (unsigned int i = 0; i < channels_count_; i++)
{
try
{
top_block_->connect(sig_conditioner_->get_right_block(), 0,
channels_.at(i)->get_left_block(), 0);
selected_signal_source = configuration_->property("Channel" + boost::lexical_cast<std::string>(i) +".SignalSource_ID", 0);
try
{
top_block_->connect(sig_conditioner_.at(selected_signal_source)->get_right_block(), 0,
channels_.at(i)->get_left_block(), 0);
}
catch (std::exception& e)
{
LOG(WARNING) << "Can't connect signal conditioner to channel " << i;
LOG(WARNING) << "Can't connect signal conditioner "<<selected_signal_source<<" to channel " << i;
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
DLOG(INFO) << "signal conditioner connected to channel " << i;
DLOG(INFO) << "signal conditioner "<<selected_signal_source<<" connected to channel " << i;
// Signal Source > Signal conditioner >> Channels >> Observables
try
@ -344,9 +354,6 @@ void GNSSFlowgraph::wait()
}
/*
* Applies an action to the flowgraph
*
@ -451,25 +458,34 @@ void GNSSFlowgraph::init()
*/
std::shared_ptr<GNSSBlockFactory> block_factory_ = std::make_shared<GNSSBlockFactory>();
std::shared_ptr<GNSSBlockInterface> signal_source_ = block_factory_->GetSignalSource(configuration_, queue_);
std::shared_ptr<GNSSBlockInterface> cond_ = block_factory_->GetSignalConditioner(configuration_, queue_);
std::shared_ptr<GNSSBlockInterface> obs_ = block_factory_->GetObservables(configuration_, queue_);
std::shared_ptr<GNSSBlockInterface> pvt_ = block_factory_->GetPVT(configuration_, queue_);
std::shared_ptr<GNSSBlockInterface> output_ = block_factory_->GetOutputFilter(configuration_, queue_);
// 1. read the number of RF front-ends available (one file_source per RF front-end)
sources_count_ = configuration_->property("Receiver.sources_count", 1);
blocks_->push_back(signal_source_);
blocks_->push_back(cond_);
blocks_->push_back(obs_);
blocks_->push_back(pvt_);
blocks_->push_back(output_);
if (sources_count_>1)
{
for (int i = 0; i < sources_count_; i++)
{
std::cout<<"creating source "<<i<<std::endl;
sig_source_.push_back(block_factory_->GetSignalSource(configuration_, queue_,i));
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, queue_, i));
}
}else{
//backwards compatibility for old config files
sig_source_.push_back(block_factory_->GetSignalSource(configuration_, queue_,-1));
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, queue_, -1));
}
observables_ = block_factory_->GetObservables(configuration_, queue_);
pvt_ = block_factory_->GetPVT(configuration_, queue_);
output_filter_ = block_factory_->GetOutputFilter(configuration_, queue_);
std::shared_ptr<std::vector<std::unique_ptr<GNSSBlockInterface>>> channels = block_factory_->GetChannels(configuration_, queue_);
channels_count_ = channels->size();
for (unsigned int i = 0; i < channels_count_; i++)
{
std::shared_ptr<GNSSBlockInterface> chan_ = std::move(channels->at(i));
blocks_->push_back(chan_);
std::shared_ptr<GNSSBlockInterface> chan_ = std::move(channels->at(i));
channels_.push_back(std::dynamic_pointer_cast<ChannelInterface>(chan_));
}
top_block_ = gr::make_top_block("GNSSFlowgraph");
@ -478,7 +494,6 @@ void GNSSFlowgraph::init()
set_signals_list();
set_channels_state();
applied_actions_ = 0;
std::vector<std::shared_ptr<ChannelInterface>> channels_(channels_count_);
DLOG(INFO) << "Blocks instantiated. " << channels_count_ << " channels.";
}
@ -610,7 +625,6 @@ void GNSSFlowgraph::set_signals_list()
}
void GNSSFlowgraph::set_channels_state()
{
max_acq_channels_ = (configuration_->property("Channels.in_acquisition", channels_count_));

View File

@ -115,6 +115,8 @@ private:
// using the configuration parameters (number of channels and max channels in acquisition)
bool connected_;
bool running_;
int sources_count_;
unsigned int channels_count_;
unsigned int acq_channels_count_;
unsigned int max_acq_channels_;
@ -122,12 +124,15 @@ private:
std::string config_file_;
std::shared_ptr<ConfigurationInterface> configuration_;
std::shared_ptr<GNSSBlockFactory> block_factory_;
std::shared_ptr<std::vector<std::shared_ptr<GNSSBlockInterface>>> blocks_ = std::make_shared<std::vector<std::shared_ptr<GNSSBlockInterface>>>();
std::shared_ptr<GNSSBlockInterface> sig_source_;
std::shared_ptr<GNSSBlockInterface> sig_conditioner_;
//std::shared_ptr<std::vector<std::shared_ptr<GNSSBlockInterface>>> blocks_ = std::make_shared<std::vector<std::shared_ptr<GNSSBlockInterface>>>();
std::vector<std::shared_ptr<GNSSBlockInterface>> sig_source_;
std::vector<std::shared_ptr<GNSSBlockInterface>> sig_conditioner_;
std::shared_ptr<GNSSBlockInterface> observables_;
std::shared_ptr<GNSSBlockInterface> pvt_;
std::shared_ptr<GNSSBlockInterface> output_filter_;
std::vector<std::shared_ptr<ChannelInterface>> channels_;
gr::top_block_sptr top_block_;
boost::shared_ptr<gr::msg_queue> queue_;