diff --git a/src/utils/matlab/plot_acq_grid_gsoc_glonass.m b/src/utils/matlab/plot_acq_grid_gsoc_glonass.m new file mode 100644 index 000000000..527cfd630 --- /dev/null +++ b/src/utils/matlab/plot_acq_grid_gsoc_glonass.m @@ -0,0 +1,98 @@ +% /*! +% * \file plot_acq_grid_gsoc.m +% * \brief Read GNSS-SDR Acquisition dump binary file using the provided +% function and plot acquisition grid of acquisition statistic of PRN sat +% +% This function analyzes a experiment performed by Luis Esteve in the framework +% of the Google Summer of Code (GSoC) 2012, with the collaboration of Javier Arribas +% and Carles Fernández, related to the extension of GNSS-SDR to Galileo. +% +% * \author Luis Esteve, 2012. luis(at)epsilon-formacion.com +% * ------------------------------------------------------------------------- +% * +% * Copyright (C) 2010-2011 (see AUTHORS file for a list of contributors) +% * +% * GNSS-SDR is a software defined Global Navigation +% * Satellite Systems receiver +% * +% * This file is part of GNSS-SDR. +% * +% * GNSS-SDR is free software: you can redistribute it and/or modify +% * it under the terms of the GNU General Public License as published by +% * the Free Software Foundation, either version 3 of the License, or +% * at your option) any later version. +% * +% * GNSS-SDR is distributed in the hope that it will be useful, +% * but WITHOUT ANY WARRANTY; without even the implied warranty of +% * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +% * GNU General Public License for more details. +% * +% * You should have received a copy of the GNU General Public License +% * along with GNSS-SDR. If not, see . +% * +% * ------------------------------------------------------------------------- +% */ + +function plot_acq_grid_gsoc_glonass(sat) + +file=['acquisition_R_1G_sat_' num2str(sat) '_doppler_0.dat']; + +sampling_freq_Hz=62316000 +Doppler_max_Hz = 10000 +Doppler_min_Hz = -10000 +Doppler_step_Hz = 250 + + +% read files + +x=read_complex_binary (file); + +l_y=length(x); + +Doppler_axes=Doppler_min_Hz:Doppler_step_Hz:Doppler_max_Hz; + +l_x=length(Doppler_axes); + +acq_grid = zeros(l_x,l_y); + +index=0; + +for k=Doppler_min_Hz:Doppler_step_Hz:Doppler_max_Hz + index=index+1; + filename=['acquisition_R_1G_sat_' num2str(sat) '_doppler_' num2str(k) '.dat']; + acq_grid(index,:)=abs(read_complex_binary (filename)); + end + + acq_grid = acq_grid.^2; + +maximum_correlation_peak = max(max(acq_grid)) + +[fila,col]=find(acq_grid==max(max(acq_grid))); + +delay_error_sps = col -1 + +Doppler_error_Hz = Doppler_axes(fila) + +noise_grid=acq_grid; +delay_span=floor(3*sampling_freq_Hz/(0.511e6)); +Doppler_span=floor(500/Doppler_step_Hz); +noise_grid(fila-Doppler_span:fila+Doppler_span,col-delay_span:col+delay_span)=0; + +n=numel(noise_grid)-(2*delay_span+1)*(2*Doppler_span+1); + +noise_floor= sum(sum(noise_grid))/n + +Gain_dbs = 10*log10(maximum_correlation_peak/noise_floor) + + +%% Plot 3D FULL RESOLUTION + + +[X,Y] = meshgrid(Doppler_axes,1:1:l_y); +figure; +surf(X,Y,acq_grid'); + +xlabel('Doppler(Hz)');ylabel('Code Delay(samples)');title(['GLRT statistic of Glonass Parallel Code Phase Search Acquisition. Local replica: L1 cboc PRN ' num2str(sat)]); + + +end