1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 04:30:33 +00:00

Add work on noncoherent acquisition

This commit is contained in:
Carles Fernandez 2018-07-10 07:45:49 +02:00
parent 6b67037fed
commit dad0ba32ad
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
2 changed files with 76 additions and 28 deletions

View File

@ -97,7 +97,7 @@ pcps_acquisition::pcps_acquisition(const Acq_Conf& conf_) : gr::block("pcps_acqu
if (acq_parameters.bit_transition_flag) if (acq_parameters.bit_transition_flag)
{ {
d_fft_size *= 2; d_fft_size *= 2;
acq_parameters.max_dwells = 1; //Activation of acq_parameters.bit_transition_flag invalidates the value of acq_parameters.max_dwells acq_parameters.max_dwells = 1; // Activation of acq_parameters.bit_transition_flag invalidates the value of acq_parameters.max_dwells
} }
d_fft_codes = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment())); d_fft_codes = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
@ -128,6 +128,15 @@ pcps_acquisition::pcps_acquisition(const Acq_Conf& conf_) : gr::block("pcps_acqu
d_dump_number = 0; d_dump_number = 0;
d_dump_channel = acq_parameters.dump_channel; d_dump_channel = acq_parameters.dump_channel;
samplesPerChip = acq_parameters.samples_per_chip; samplesPerChip = acq_parameters.samples_per_chip;
// todo: CFAR statistic not available for non-coherent integration
if (acq_parameters.max_dwells == 1)
{
d_use_CFAR_algorithm_flag = acq_parameters.use_CFAR_algorithm_flag;
}
else
{
d_use_CFAR_algorithm_flag = false;
}
} }
@ -427,17 +436,49 @@ void pcps_acquisition::dump_results(int effective_fft_size)
} }
} }
float pcps_acquisition::first_vs_second_peak_statistics(uint32_t& indext, int& doppler)
float pcps_acquisition::max_to_input_power_statistic(uint32_t& indext, int& doppler, float input_power)
{ {
float firstPeak = 0.0; float grid_maximum = 0.0;
int index_doppler = 0; int index_doppler = 0;
uint32_t tmp_intex_t = 0; uint32_t tmp_intex_t = 0;
uint32_t index_time = 0; uint32_t index_time = 0;
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
// Look for correlation peaks in the results ============================== // Look for correlation peaks in the results ==============================
// Find the highest peak and compare it to the second highest peak // Find the highest peak and compare it to the second highest peak
// The second peak is chosen not closer than 1 chip to the highest peak // The second peak is chosen not closer than 1 chip to the highest peak
//--- Find the correlation peak and the carrier frequency -------------- //--- Find the correlation peak and the carrier frequency --------------
for (int i = 0; i < d_num_doppler_bins; i++)
{
volk_gnsssdr_32f_index_max_32u(&tmp_intex_t, d_magnitude_grid[i], d_fft_size);
if (d_magnitude_grid[i][tmp_intex_t] > grid_maximum)
{
grid_maximum = d_magnitude_grid[i][tmp_intex_t];
index_doppler = i;
index_time = tmp_intex_t;
}
}
indext = index_time;
doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * index_doppler;
float magt = grid_maximum / (fft_normalization_factor * fft_normalization_factor);
return magt / input_power;
}
float pcps_acquisition::first_vs_second_peak_statistic(uint32_t& indext, int& doppler)
{
// Look for correlation peaks in the results
// Find the highest peak and compare it to the second highest peak
// The second peak is chosen not closer than 1 chip to the highest peak
float firstPeak = 0.0;
int index_doppler = 0;
uint32_t tmp_intex_t = 0;
uint32_t index_time = 0;
// Find the correlation peak and the carrier frequency
for (int i = 0; i < d_num_doppler_bins; i++) for (int i = 0; i < d_num_doppler_bins; i++)
{ {
volk_gnsssdr_32f_index_max_32u(&tmp_intex_t, d_magnitude_grid[i], d_fft_size); volk_gnsssdr_32f_index_max_32u(&tmp_intex_t, d_magnitude_grid[i], d_fft_size);
@ -451,12 +492,11 @@ float pcps_acquisition::first_vs_second_peak_statistics(uint32_t& indext, int& d
indext = index_time; indext = index_time;
doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * index_doppler; doppler = -static_cast<int>(acq_parameters.doppler_max) + d_doppler_step * index_doppler;
// -- - Find 1 chip wide code phase exclude range around the peak // Find 1 chip wide code phase exclude range around the peak
//uint32_t samplesPerChip = ceil(GPS_L1_CA_CHIP_PERIOD * static_cast<float>(this->d_fs_in));
int32_t excludeRangeIndex1 = index_time - samplesPerChip; int32_t excludeRangeIndex1 = index_time - samplesPerChip;
int32_t excludeRangeIndex2 = index_time + samplesPerChip; int32_t excludeRangeIndex2 = index_time + samplesPerChip;
// -- - Correct code phase exclude range if the range includes array boundaries // Correct code phase exclude range if the range includes array boundaries
if (excludeRangeIndex1 < 0) if (excludeRangeIndex1 < 0)
{ {
excludeRangeIndex1 = d_fft_size + excludeRangeIndex1; excludeRangeIndex1 = d_fft_size + excludeRangeIndex1;
@ -476,11 +516,11 @@ float pcps_acquisition::first_vs_second_peak_statistics(uint32_t& indext, int& d
} }
while (idx != excludeRangeIndex2); while (idx != excludeRangeIndex2);
//--- Find the second highest correlation peak in the same freq. bin --- // Find the second highest correlation peak in the same freq. bin ---
volk_gnsssdr_32f_index_max_32u(&tmp_intex_t, d_tmp_buffer, d_fft_size); volk_gnsssdr_32f_index_max_32u(&tmp_intex_t, d_tmp_buffer, d_fft_size);
float secondPeak = d_tmp_buffer[tmp_intex_t]; float secondPeak = d_tmp_buffer[tmp_intex_t];
// 5- Compute the test statistics and compare to the threshold // Compute the test statistics and compare to the threshold
return firstPeak / secondPeak; return firstPeak / secondPeak;
} }
@ -510,36 +550,37 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
<< " ,sample stamp: " << samp_count << ", threshold: " << " ,sample stamp: " << samp_count << ", threshold: "
<< d_threshold << ", doppler_max: " << acq_parameters.doppler_max << d_threshold << ", doppler_max: " << acq_parameters.doppler_max
<< ", doppler_step: " << d_doppler_step << ", doppler_step: " << d_doppler_step
<< ", use_CFAR_algorithm_flag: " << (acq_parameters.use_CFAR_algorithm_flag ? "true" : "false"); << ", use_CFAR_algorithm_flag: " << (d_use_CFAR_algorithm_flag ? "true" : "false");
lk.unlock(); lk.unlock();
if (acq_parameters.use_CFAR_algorithm_flag)
if (d_use_CFAR_algorithm_flag)
{ {
// 1- (optional) Compute the input signal power estimation // Compute the input signal power estimation
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size); volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size); volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= static_cast<float>(d_fft_size); d_input_power /= static_cast<float>(d_fft_size);
} }
// 2- Doppler frequency search loop
// Doppler frequency grid loop
if (!d_step_two) if (!d_step_two)
{ {
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++) for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{ {
// Remove doppler // Remove Doppler
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size); volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search) // Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal // Compute the FFT of the carrier wiped--off incoming signal
d_fft_if->execute(); d_fft_if->execute();
// Multiply carrier wiped--off, Fourier transformed incoming signal // Multiply carrier wiped--off, Fourier transformed incoming signal with the local FFT'd code reference
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size); volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT // Compute the inverse FFT
d_ifft->execute(); d_ifft->execute();
// compute squared magnitude (and accumulate in case of non-coherent integration) // Compute squared magnitude (and accumulate in case of non-coherent integration)
size_t offset = (acq_parameters.bit_transition_flag ? effective_fft_size : 0); size_t offset = (acq_parameters.bit_transition_flag ? effective_fft_size : 0);
if (d_num_noncoherent_integrations_counter == 1) if (d_num_noncoherent_integrations_counter == 1)
{ {
@ -556,15 +597,19 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
memcpy(grid_.colptr(doppler_index), d_magnitude_grid[doppler_index], sizeof(float) * effective_fft_size); memcpy(grid_.colptr(doppler_index), d_magnitude_grid[doppler_index], sizeof(float) * effective_fft_size);
} }
} }
// 5- Compute the test statistics and compare to the threshold
float computed_statistic = first_vs_second_peak_statistics(indext, doppler); // Compute the test statistic
if (d_test_statistics < computed_statistic or !acq_parameters.bit_transition_flag) if (d_use_CFAR_algorithm_flag)
{ {
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % acq_parameters.samples_per_code); d_test_statistics = max_to_input_power_statistic(indext, doppler, d_input_power);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = samp_count;
d_test_statistics = computed_statistic;
} }
else
{
d_test_statistics = first_vs_second_peak_statistic(indext, doppler);
}
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % acq_parameters.samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = samp_count;
} }
else else
{ {
@ -592,7 +637,7 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size); volk_gnsssdr_32f_index_max_32u(&indext, d_magnitude, effective_fft_size);
magt = d_magnitude[indext]; magt = d_magnitude[indext];
if (acq_parameters.use_CFAR_algorithm_flag) if (d_use_CFAR_algorithm_flag)
{ {
// Normalize the maximum value to correct the scale factor introduced by FFTW // Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor); magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
@ -602,7 +647,7 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
{ {
d_mag = magt; d_mag = magt;
if (!acq_parameters.use_CFAR_algorithm_flag) if (!d_use_CFAR_algorithm_flag)
{ {
// Search grid noise floor approximation for this doppler line // Search grid noise floor approximation for this doppler line
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size); volk_32f_accumulator_s32f(&d_input_power, d_magnitude, effective_fft_size);
@ -635,6 +680,7 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
} }
} }
} }
lk.lock(); lk.lock();
if (!acq_parameters.bit_transition_flag) if (!acq_parameters.bit_transition_flag)
{ {

View File

@ -95,13 +95,15 @@ private:
void dump_results(int effective_fft_size); void dump_results(int effective_fft_size);
float first_vs_second_peak_statistics(uint32_t& indext, int& doppler); float first_vs_second_peak_statistic(uint32_t& indext, int& doppler);
float max_to_input_power_statistic(uint32_t& indext, int& doppler, float input_power);
Acq_Conf acq_parameters; Acq_Conf acq_parameters;
bool d_active; bool d_active;
bool d_worker_active; bool d_worker_active;
bool d_cshort; bool d_cshort;
bool d_step_two; bool d_step_two;
bool d_use_CFAR_algorithm_flag;
int d_positive_acq; int d_positive_acq;
float d_threshold; float d_threshold;
float d_mag; float d_mag;