diff --git a/src/algorithms/tracking/adapters/CMakeLists.txt b/src/algorithms/tracking/adapters/CMakeLists.txt index c1d680861..e57529c96 100644 --- a/src/algorithms/tracking/adapters/CMakeLists.txt +++ b/src/algorithms/tracking/adapters/CMakeLists.txt @@ -33,6 +33,7 @@ set(TRACKING_ADAPTER_SOURCES galileo_e5a_dll_pll_tracking.cc gps_l2_m_dll_pll_tracking.cc galileo_e1_de_tracking.cc + galileo_e1_prs_de_tracking.cc ${OPT_TRACKING_ADAPTERS} ) diff --git a/src/algorithms/tracking/adapters/galileo_e1_prs_de_tracking.cc b/src/algorithms/tracking/adapters/galileo_e1_prs_de_tracking.cc new file mode 100644 index 000000000..43be26652 --- /dev/null +++ b/src/algorithms/tracking/adapters/galileo_e1_prs_de_tracking.cc @@ -0,0 +1,191 @@ +/*! + * \file galileo_e1_prs_de_tracking.h + * \brief Adapts a double estimator tracking loop block + * to a TrackingInterface for Galileo E1 signals including PRS + * \author Cillian O'Driscoll, 2015. cillian.odriscoll(at)gmail.com + * + * ------------------------------------------------------------------------- + * + * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) + * + * GNSS-SDR is a software defined Global Navigation + * Satellite Systems receiver + * + * This file is part of GNSS-SDR. + * + * GNSS-SDR is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * GNSS-SDR is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNSS-SDR. If not, see . + * + * ------------------------------------------------------------------------- + */ + +#include "galileo_e1_prs_de_tracking.h" +#include +#include "GPS_L1_CA.h" +#include "Galileo_E1.h" +#include "configuration_interface.h" +#include "spirent_prs_code_generator.h" + + +using google::LogMessage; + +GalileoE1PrsDeTracking::GalileoE1PrsDeTracking( + ConfigurationInterface* configuration, std::string role, + unsigned int in_streams, unsigned int out_streams, + boost::shared_ptr queue) : + role_(role), in_streams_(in_streams), out_streams_(out_streams), + queue_(queue) +{ + DLOG(INFO) << "role " << role; + //################# CONFIGURATION PARAMETERS ######################## + int fs_in; + int vector_length; + int f_if; + bool dump; + std::string dump_filename; + std::string item_type; + std::string default_item_type = "gr_complex"; + float pll_bw_hz; + float dll_bw_hz; + float sll_bw_hz; + float early_late_code_space_chips; + float early_late_subcarrier_space_chips; + bool aid_subcarrier_with_carrier; + bool aid_code_with_subcarrier; + + item_type = configuration->property(role + ".item_type", default_item_type); + fs_in = configuration->property("GNSS-SDR.internal_fs_hz", 2048000); + f_if = configuration->property(role + ".if", 0); + dump = configuration->property(role + ".dump", false); + pll_bw_hz = configuration->property(role + ".pll_bw_hz", 15.0); + sll_bw_hz = configuration->property(role + ".sll_bw_hz", 2.0); + dll_bw_hz = configuration->property(role + ".dll_bw_hz", 0.5); + early_late_code_space_chips = configuration->property(role + ".early_late_code_space_chips", 0.5); + early_late_subcarrier_space_chips = configuration->property(role + ".early_late_subcarrier_space_cycles", 0.125); + aid_subcarrier_with_carrier = configuration->property(role + ".aid_subcarrier_with_carrier", false ); + aid_code_with_subcarrier = configuration->property(role + ".aid_code_with_subcarrier", false ); + + std::string default_code_type = "Spirent"; + std::string code_type = configuration->property(role + ".prs_code_type", default_code_type ); + + std::string default_dump_filename = "./track_de_"; + dump_filename = configuration->property(role + ".dump_filename", + default_dump_filename); //unused! + vector_length = std::round(fs_in / (Galileo_E1_CODE_CHIP_RATE_HZ / Galileo_E1_B_CODE_LENGTH_CHIPS)); + + boost::shared_ptr< LongCodeInterface > code_gen; + + if( not code_type.compare("Spirent") )// anything other than zero means not a match + { + code_gen = boost::shared_ptr< LongCodeInterface >( + new SpirentPrsCodeGenerator( 1, true ) ); + + if( code_gen == 0 ) + { + LOG(ERROR) << "Unable to create a SpirentPrsCodeGenerator"; + } + } + else + { + LOG(ERROR) << code_type << " unknown PRS code type"; + } + + //################# MAKE TRACKING GNURadio object ################### + if (item_type.compare("gr_complex") == 0) + { + item_size_ = sizeof(gr_complex); + tracking_ = galileo_e1_prs_de_make_tracking_cc( + f_if, + fs_in, + vector_length, + queue_, + dump, + dump_filename, + pll_bw_hz, + dll_bw_hz, + sll_bw_hz, + early_late_code_space_chips, + early_late_subcarrier_space_chips, + aid_subcarrier_with_carrier, + aid_code_with_subcarrier, + code_gen); + } + else + { + item_size_ = sizeof(gr_complex); + LOG(WARNING) << item_type << " unknown tracking item type."; + } + + channel_ = 0; + channel_internal_queue_ = 0; + + DLOG(INFO) << "tracking(" << tracking_->unique_id() << ")"; +} + +GalileoE1PrsDeTracking::~GalileoE1PrsDeTracking() +{} + +void GalileoE1PrsDeTracking::start_tracking() +{ + tracking_->start_tracking(); +} + +/* + * Set tracking channel unique ID + */ +void GalileoE1PrsDeTracking::set_channel(unsigned int channel) +{ + channel_ = channel; + tracking_->set_channel(channel); +} + +/* + * Set tracking channel internal queue + */ +void GalileoE1PrsDeTracking::set_channel_queue( + concurrent_queue *channel_internal_queue) +{ + channel_internal_queue_ = channel_internal_queue; + + tracking_->set_channel_queue(channel_internal_queue_); + +} + +void GalileoE1PrsDeTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) +{ + tracking_->set_gnss_synchro(p_gnss_synchro); +} + +void GalileoE1PrsDeTracking::connect(gr::top_block_sptr top_block) +{ + if(top_block) { /* top_block is not null */}; + //nothing to connect, now the tracking uses gr_sync_decimator +} + +void GalileoE1PrsDeTracking::disconnect(gr::top_block_sptr top_block) +{ + if(top_block) { /* top_block is not null */}; + //nothing to disconnect, now the tracking uses gr_sync_decimator +} + +gr::basic_block_sptr GalileoE1PrsDeTracking::get_left_block() +{ + return tracking_; +} + +gr::basic_block_sptr GalileoE1PrsDeTracking::get_right_block() +{ + return tracking_; +} + + diff --git a/src/algorithms/tracking/adapters/galileo_e1_prs_de_tracking.h b/src/algorithms/tracking/adapters/galileo_e1_prs_de_tracking.h new file mode 100644 index 000000000..e5f197b4d --- /dev/null +++ b/src/algorithms/tracking/adapters/galileo_e1_prs_de_tracking.h @@ -0,0 +1,116 @@ +/*! + * \file galileo_e1_prs_de_tracking.h + * \brief Adapts a double estimator tracking loop block + * to a TrackingInterface for Galileo E1 signals inclding PRS + * \author Cillian O'Driscoll, 2015. cillian.odriscoll(at)gmail.com + * + * + * ------------------------------------------------------------------------- + * + * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) + * + * GNSS-SDR is a software defined Global Navigation + * Satellite Systems receiver + * + * This file is part of GNSS-SDR. + * + * GNSS-SDR is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * GNSS-SDR is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNSS-SDR. If not, see . + * + * ------------------------------------------------------------------------- + */ + +#ifndef GNSS_SDR_GALILEO_E1_PRS_DE_TRACKING_H_ +#define GNSS_SDR_GALILEO_E1_PRS_DE_TRACKING_H_ + +#include +#include +#include "tracking_interface.h" +#include "galileo_e1_prs_de_tracking_cc.h" + + +class ConfigurationInterface; + +/*! + * \brief This class Adapts a DLL+PLL VEML (Very Early Minus Late) tracking + * loop block to a TrackingInterface for Galileo E1 signals + */ +class GalileoE1PrsDeTracking : public TrackingInterface +{ + +public: + + GalileoE1PrsDeTracking(ConfigurationInterface* configuration, + std::string role, + unsigned int in_streams, + unsigned int out_streams, + boost::shared_ptr queue); + + virtual ~GalileoE1PrsDeTracking(); + + std::string role() + { + return role_; + } + + //! Returns "Galileo_E1_DE_Tracking" + std::string implementation() + { + return "Galileo_E1_PRS_DE_Tracking"; + } + size_t item_size() + { + return item_size_; + } + + void connect(gr::top_block_sptr top_block); + void disconnect(gr::top_block_sptr top_block); + gr::basic_block_sptr get_left_block(); + gr::basic_block_sptr get_right_block(); + + + /*! + * \brief Set tracking channel unique ID + */ + void set_channel(unsigned int channel); + + /*! + * \brief Set acquisition/tracking common Gnss_Synchro object pointer + * to efficiently exchange synchronization data between acquisition and + * tracking blocks + */ + void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro); + + /*! + * \brief Set tracking channel internal queue + */ + void set_channel_queue(concurrent_queue *channel_internal_queue); + + void start_tracking(); + +private: + + galileo_e1_prs_de_tracking_cc_sptr tracking_; + size_t item_size_; + + unsigned int channel_; + + std::string role_; + unsigned int in_streams_; + unsigned int out_streams_; + boost::shared_ptr queue_; + concurrent_queue *channel_internal_queue_; +}; + +#endif // GNSS_SDR_GALILEO_E1_PRS_DE_TRACKING_H_ + diff --git a/src/algorithms/tracking/gnuradio_blocks/CMakeLists.txt b/src/algorithms/tracking/gnuradio_blocks/CMakeLists.txt index 38449252d..d000909c5 100644 --- a/src/algorithms/tracking/gnuradio_blocks/CMakeLists.txt +++ b/src/algorithms/tracking/gnuradio_blocks/CMakeLists.txt @@ -35,7 +35,8 @@ set(TRACKING_GR_BLOCKS_SOURCES gps_l2_m_dll_pll_tracking_cc.cc gps_l1_ca_dll_pll_c_aid_tracking_cc.cc galileo_e1_de_tracking_cc.cc - ${OPT_TRACKING_BLOCKS} + galileo_e1_prs_de_tracking_cc.cc + ${OPT_TRACKING_BLOCKS} ) include_directories( diff --git a/src/algorithms/tracking/gnuradio_blocks/galileo_e1_prs_de_tracking_cc.cc b/src/algorithms/tracking/gnuradio_blocks/galileo_e1_prs_de_tracking_cc.cc new file mode 100644 index 000000000..1af8e49fe --- /dev/null +++ b/src/algorithms/tracking/gnuradio_blocks/galileo_e1_prs_de_tracking_cc.cc @@ -0,0 +1,1230 @@ +/*! + * \file galileo_e1_prs_de_tracking_cc.cc + * \brief Implementation of a code DLL + carrier PLL VEML (Very Early + * Minus Late) tracking block for Galileo E1 signals + * \author Luis Esteve, 2012. luis(at)epsilon-formacion.com + * + * Code DLL + carrier PLL according to the algorithms described in: + * [1] K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen, + * A Software-Defined GPS and Galileo Receiver. A Single-Frequency + * Approach, Birkhauser, 2007 + * + * ------------------------------------------------------------------------- + * + * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) + * + * GNSS-SDR is a software defined Global Navigation + * Satellite Systems receiver + * + * This file is part of GNSS-SDR. + * + * GNSS-SDR is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * GNSS-SDR is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNSS-SDR. If not, see . + * + * ------------------------------------------------------------------------- + */ + +#include "galileo_e1_prs_de_tracking_cc.h" +#include +#include +#include +#include +#include +#include +#include // fixed point sine and cosine +#include +#include "gnss_synchro.h" +#include "galileo_e1_signal_processing.h" +#include "tracking_discriminators.h" +#include "lock_detectors.h" +#include "Galileo_E1.h" +#include "control_message_factory.h" +#include "fxpt64.h" + + + +/*! + * \todo Include in definition header file + */ +#define CN0_ESTIMATION_SAMPLES 20 +#define MINIMUM_VALID_CN0 25 +#define MAXIMUM_LOCK_FAIL_COUNTER 50 +#define CARRIER_LOCK_THRESHOLD 0.85 + + +using google::LogMessage; + +galileo_e1_prs_de_tracking_cc_sptr +galileo_e1_prs_de_make_tracking_cc( + long if_freq, + long fs_in, + unsigned int vector_length, + boost::shared_ptr queue, + bool dump, + std::string dump_filename, + float pll_bw_hz, + float dll_bw_hz, + float sll_bw_hz, + float early_late_code_space_chips, + float early_late_subcarrier_space_cycles, + bool aid_subcarrier_with_carrier, + bool aid_code_with_subcarrier, + LongCodeInterface_sptr prs_code_gen) +{ + return galileo_e1_prs_de_tracking_cc_sptr(new galileo_e1_prs_de_tracking_cc(if_freq, + fs_in, vector_length, queue, dump, dump_filename, pll_bw_hz, dll_bw_hz, + sll_bw_hz, early_late_code_space_chips, early_late_subcarrier_space_cycles, + aid_subcarrier_with_carrier, aid_code_with_subcarrier, prs_code_gen)); +} + + +void galileo_e1_prs_de_tracking_cc::forecast (int noutput_items, + gr_vector_int &ninput_items_required) +{ + ninput_items_required[0] = static_cast(d_vector_length) * 2; //set the required available samples in each call +} + + +galileo_e1_prs_de_tracking_cc::galileo_e1_prs_de_tracking_cc( + long if_freq, + long fs_in, + unsigned int vector_length, + boost::shared_ptr queue, + bool dump, + std::string dump_filename, + float pll_bw_hz, + float dll_bw_hz, + float sll_bw_hz, + float early_late_code_space_chips, + float early_late_subcarrier_space_cycles, + bool aid_subcarrier_with_carrier, + bool aid_code_with_subcarrier, + LongCodeInterface_sptr prs_code_gen): + gr::block("galileo_e1_prs_de_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)), + gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) +{ + // Create the gnss_message input port + message_port_register_in( GNSS_MESSAGE_PORT_ID ); + set_msg_handler( GNSS_MESSAGE_PORT_ID, + boost::bind( &galileo_e1_prs_de_tracking_cc::handle_gnss_message, this, _1 ) ); + + d_prs_code_gen = prs_code_gen; + + this->set_relative_rate(1.0/vector_length); + // initialize internal vars + d_queue = queue; + d_dump = dump; + d_if_freq = if_freq; + d_fs_in = fs_in; + d_vector_length = vector_length; + d_dump_filename = dump_filename; + d_code_loop_filter = Tracking_loop_filter(Galileo_E1_CODE_PERIOD, dll_bw_hz, 1, false); + d_subcarrier_loop_filter = Tracking_loop_filter(Galileo_E1_CODE_PERIOD, sll_bw_hz, 1, false); + d_carrier_loop_filter = Tracking_loop_filter(Galileo_E1_CODE_PERIOD, pll_bw_hz, 3, false); + d_aid_subcarrier_with_carrier = aid_subcarrier_with_carrier; + d_aid_code_with_subcarrier = aid_code_with_subcarrier; + + // Initialize tracking ========================================== + + + // Correlator spacing + d_early_late_code_spc_chips = early_late_code_space_chips; // Define early-late offset (in chips) + d_early_late_subcarrier_spc_cycles = early_late_subcarrier_space_cycles; // Define very-early-late offset (in chips) + + // Initialization of local code replica + // Get space for a vector with the code replica sampled 1x/chip + d_e1b_code = static_cast(volk_malloc((Galileo_E1_B_CODE_LENGTH_CHIPS + 2) * sizeof(gr_complex), volk_get_alignment())); + + // for the prs: + // Store about 400 ms worth of chips: + d_size_prs_code = static_cast< unsigned int>( std::ceil( 0.4 * Galileo_E1_A_CODE_CHIP_RATE_HZ ) ); + d_prs_code = static_cast< gr_complex*>(volk_malloc( d_size_prs_code*sizeof( gr_complex ), volk_get_alignment() ) ); + d_start_index_prs_code = 0; + + d_early_code= static_cast(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment())); + d_prompt_code = static_cast(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment())); + d_late_code = static_cast(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment())); + d_early_subcarrier = static_cast(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment())); + d_prompt_subcarrier = static_cast(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment())); + d_late_subcarrier = static_cast(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment())); + d_carr_sign = static_cast(volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment())); + + d_early_code_prs= static_cast(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment())); + d_prompt_code_prs = static_cast(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment())); + d_late_code_prs = static_cast(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment())); + d_early_subcarrier_prs = static_cast(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment())); + d_prompt_subcarrier_prs = static_cast(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment())); + d_late_subcarrier_prs = static_cast(volk_malloc(2 * d_vector_length * sizeof(gr_complex), volk_get_alignment())); + d_carr_sign = static_cast(volk_malloc(2*d_vector_length * sizeof(gr_complex), volk_get_alignment())); + + // correlator outputs (scalar) + d_Prompt_Subcarrier_Early_Code = static_cast(volk_malloc(sizeof(gr_complex), volk_get_alignment())); + d_Prompt_Subcarrier_Prompt_Code = static_cast(volk_malloc(sizeof(gr_complex), volk_get_alignment())); + d_Prompt_Subcarrier_Late_Code = static_cast(volk_malloc(sizeof(gr_complex), volk_get_alignment())); + d_Prompt_Code_Early_Subcarrier = static_cast(volk_malloc(sizeof(gr_complex), volk_get_alignment())); + d_Prompt_Code_Late_Subcarrier = static_cast(volk_malloc(sizeof(gr_complex), volk_get_alignment())); + + // correlator outputs (scalar) + d_Prompt_Subcarrier_Early_Code_prs = static_cast(volk_malloc(sizeof(gr_complex), volk_get_alignment())); + d_Prompt_Subcarrier_Prompt_Code_prs = static_cast(volk_malloc(sizeof(gr_complex), volk_get_alignment())); + d_Prompt_Subcarrier_Late_Code_prs = static_cast(volk_malloc(sizeof(gr_complex), volk_get_alignment())); + d_Prompt_Code_Early_Subcarrier_prs = static_cast(volk_malloc(sizeof(gr_complex), volk_get_alignment())); + d_Prompt_Code_Late_Subcarrier_prs= static_cast(volk_malloc(sizeof(gr_complex), volk_get_alignment())); + + //--- Initializations ------------------------------ + // Initial code frequency basis of NCO + d_code_freq_chips = static_cast(Galileo_E1_CODE_CHIP_RATE_HZ); + d_subcarrier_freq_cycles = static_cast(Galileo_E1_CODE_CHIP_RATE_HZ); + + d_code_freq_chips_prs = static_cast(Galileo_E1_A_CODE_CHIP_RATE_HZ); + d_subcarrier_freq_cycles_prs = static_cast(Galileo_E1_A_SUB_CARRIER_RATE_HZ); + // Residual code phase (in chips) + d_rem_code_phase_samples = 0.0; + d_rem_subcarrier_phase_samples = 0.0; + d_code_phase_chips = 0.0; + d_subcarrier_phase_halfcycles = 0.0; + + d_rem_code_phase_samples_prs = 0.0; + d_rem_subcarrier_phase_samples_prs = 0.0; + d_code_phase_chips_prs = 0.0; + d_subcarrier_phase_halfcycles_prs = 0.0; + + // Residual carrier phase + d_rem_carr_phase_rad = 0.0; + d_rem_carr_phase_rad_prs = 0.0; + + // sample synchronization + d_sample_counter = 0; + //d_sample_counter_seconds = 0; + d_acq_sample_stamp = 0; + + d_enable_tracking = false; + d_pull_in = false; + d_last_seg = 0; + d_prs_tracking_enabled = false; + d_prs_code_initialized = false; + + d_current_prn_length_samples = static_cast(d_vector_length); + + // CN0 estimation and lock detector buffers + d_cn0_estimation_counter = 0; + d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES]; + d_carrier_lock_test = 1; + d_CN0_SNV_dB_Hz = 0; + d_carrier_lock_fail_counter = 0; + d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD; + + systemName["E"] = std::string("Galileo"); + *d_Prompt_Subcarrier_Early_Code = gr_complex(0,0); + *d_Prompt_Subcarrier_Prompt_Code = gr_complex(0,0); + *d_Prompt_Subcarrier_Late_Code = gr_complex(0,0); + *d_Prompt_Code_Early_Subcarrier = gr_complex(0,0); + *d_Prompt_Code_Late_Subcarrier = gr_complex(0,0); + + *d_Prompt_Subcarrier_Early_Code_prs = gr_complex(0,0); + *d_Prompt_Subcarrier_Prompt_Code_prs = gr_complex(0,0); + *d_Prompt_Subcarrier_Late_Code_prs = gr_complex(0,0); + *d_Prompt_Code_Early_Subcarrier_prs = gr_complex(0,0); + *d_Prompt_Code_Late_Subcarrier_prs = gr_complex(0,0); + + d_channel_internal_queue = 0; + d_acquisition_gnss_synchro = 0; + d_channel = 0; + d_acq_code_phase_samples = 0.0; + d_acq_carrier_doppler_hz = 0.0; + d_carrier_doppler_hz = 0.0; + d_acc_carrier_phase_rad = 0.0; + d_acc_code_phase_secs = 0.0; +} + +void galileo_e1_prs_de_tracking_cc::start_tracking() +{ + d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; + d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; + d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; + + // DLL/PLL filter initialization + d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz); // initialize the carrier filter + float code_doppler_chips = d_acq_carrier_doppler_hz *( Galileo_E1_CODE_CHIP_RATE_HZ) / Galileo_E1_FREQ_HZ; + + float init_freq = ( d_aid_subcarrier_with_carrier ? 0.0 : code_doppler_chips ); + d_subcarrier_loop_filter.initialize(init_freq); // initialize the carrier filter + init_freq = ( d_aid_code_with_subcarrier ? 0.0 : code_doppler_chips ); + d_code_loop_filter.initialize(init_freq); // initialize the code filter + + // generate local reference ALWAYS starting at chip 1 (1 samples per chip) + galileo_e1_prn_gen_complex_sampled(&d_e1b_code[1], + d_acquisition_gnss_synchro->Signal, + d_acquisition_gnss_synchro->PRN, + Galileo_E1_CODE_CHIP_RATE_HZ, + 0); + // Fill head and tail + d_e1b_code[0] = d_e1b_code[static_cast(Galileo_E1_B_CODE_LENGTH_CHIPS+1)]; + d_e1b_code[static_cast(Galileo_E1_B_CODE_LENGTH_CHIPS + 2)] = d_e1b_code[1]; + + d_carrier_lock_fail_counter = 0; + d_rem_code_phase_samples = 0.0; + d_rem_subcarrier_phase_samples = 0.0; + d_rem_carr_phase_rad = 0; + d_acc_carrier_phase_rad = 0; + + d_acc_code_phase_secs = 0; + d_carrier_doppler_hz = d_acq_carrier_doppler_hz; + d_current_prn_length_samples = d_vector_length; + + std::string sys_ = &d_acquisition_gnss_synchro->System; + sys = sys_.substr(0, 1); + + // DEBUG OUTPUT + std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl; + LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; + + // enable tracking + d_pull_in = true; + d_enable_tracking = true; + + LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz + << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples; +} + + +void galileo_e1_prs_de_tracking_cc::update_local_code() +{ + double tcode_chips; + double tsubcarrier_phase_halfcyles; + float rem_code_phase_chips; + int associated_chip_index; + int associated_subcarrier_index; + int code_length_chips = static_cast(Galileo_E1_B_CODE_LENGTH_CHIPS); + double code_phase_step_chips; + double subcarrier_phase_step_halfcycles; + double early_late_subcarrier_spc_halfcycles; + double subcarrier_freq_halfcycles; + + double chips_to_halfcycles = Galileo_E1_SUB_CARRIER_A_RATE_HZ / + Galileo_E1_CODE_CHIP_RATE_HZ * 2.0; + + + subcarrier_freq_halfcycles = d_subcarrier_freq_cycles * chips_to_halfcycles; + + code_phase_step_chips = (static_cast(d_code_freq_chips)) / (static_cast(d_fs_in)); + subcarrier_phase_step_halfcycles = subcarrier_freq_halfcycles/ (static_cast(d_fs_in)); + + rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in); + tcode_chips = - static_cast(rem_code_phase_chips) + 1.0; + + + tsubcarrier_phase_halfcyles = static_cast(d_subcarrier_phase_halfcycles); + + early_late_subcarrier_spc_halfcycles = d_early_late_subcarrier_spc_cycles * chips_to_halfcycles; + + int64_t early_code_phase_fxp = double_to_fxpt64( tcode_chips + d_early_late_code_spc_chips ); + int64_t prompt_code_phase_fxp = double_to_fxpt64( tcode_chips ); + int64_t late_code_phase_fxp = double_to_fxpt64( tcode_chips - d_early_late_code_spc_chips); + + int64_t early_subcarrier_phase_fxp = double_to_fxpt64( + tsubcarrier_phase_halfcyles + early_late_subcarrier_spc_halfcycles ); + int64_t prompt_subcarrier_phase_fxp = double_to_fxpt64( + tsubcarrier_phase_halfcyles ); + int64_t late_subcarrier_phase_fxp = double_to_fxpt64( + tsubcarrier_phase_halfcyles - early_late_subcarrier_spc_halfcycles ); + + int64_t code_phase_step_fxp = double_to_fxpt64( code_phase_step_chips ); + int64_t subcarrier_phase_step_fxp = double_to_fxpt64( subcarrier_phase_step_halfcycles ); + + for (int i = 0; i < d_current_prn_length_samples; i++) + { + d_early_code[i] = d_e1b_code[ (early_code_phase_fxp >> 32 )]; + d_prompt_code[i] = d_e1b_code[ (prompt_code_phase_fxp >> 32 )]; + d_late_code[i] = d_e1b_code[ (late_code_phase_fxp >> 32 )]; + + d_early_subcarrier[i] = (1.0 - 2.0*( (early_subcarrier_phase_fxp>>32)&0x01 ) ); + d_prompt_subcarrier[i] = (1.0 - 2.0*( (prompt_subcarrier_phase_fxp>>32)&0x01 ) ); + d_late_subcarrier[i] = (1.0 - 2.0*( (late_subcarrier_phase_fxp>>32)&0x01 ) ); + + early_code_phase_fxp += code_phase_step_fxp; + prompt_code_phase_fxp += code_phase_step_fxp; + late_code_phase_fxp += code_phase_step_fxp; + + early_subcarrier_phase_fxp += subcarrier_phase_step_fxp; + prompt_subcarrier_phase_fxp += subcarrier_phase_step_fxp; + late_subcarrier_phase_fxp += subcarrier_phase_step_fxp; + + } +} + + +void galileo_e1_prs_de_tracking_cc::update_local_code_prs() +{ + double tcode_chips; + double tsubcarrier_phase_halfcyles; + float rem_code_phase_chips; + int associated_chip_index; + int associated_subcarrier_index; + int code_length_chips = static_cast(Galileo_E1_B_CODE_LENGTH_CHIPS); + double code_phase_step_chips; + double subcarrier_phase_step_halfcycles; + double early_late_subcarrier_spc_halfcycles; + double subcarrier_freq_halfcycles; + + + double chips_to_halfcycles = Galileo_E1_A_SUB_CARRIER_RATE_HZ / + Galileo_E1_A_CODE_CHIP_RATE_HZ * 2.0; + + + subcarrier_freq_halfcycles = d_subcarrier_freq_cycles_prs * 2.0; + + code_phase_step_chips = (static_cast(d_code_freq_chips_prs)) / (static_cast(d_fs_in)); + subcarrier_phase_step_halfcycles = subcarrier_freq_halfcycles/ (static_cast(d_fs_in)); + + // Update the local PRS code if necessary: + uint64_t last_code_phase_store = d_start_index_prs_code + d_size_prs_code; + + uint64_t last_code_phase_required = static_cast< uint64_t >( + d_code_phase_chips_prs + code_phase_step_chips*d_current_prn_length_samples ); + + if( !d_prs_code_initialized || ( last_code_phase_required > last_code_phase_store - 2 ) ) + { + // Make sure we go back at least 2 chips: + d_start_index_prs_code = ( d_code_phase_chips_prs < 2.0 ? + static_cast( std::floor( d_code_phase_chips_prs ) ) + d_prs_code_gen->get_code_length() - 2 : + static_cast( std::floor( d_code_phase_chips_prs) ) - 2 ); + + DLOG(INFO) << "Updating the PRS code: starting chip: " << d_start_index_prs_code + << " for code phase: " << std::fixed << d_code_phase_chips_prs + << " given code length: " << d_prs_code_gen->get_code_length() + << " Code freq: " << d_code_freq_chips_prs + << " Size prs code: " << d_size_prs_code + << " Timestamp: " << static_cast< double >( d_sample_counter) / static_cast( d_fs_in ); + d_prs_code_gen->get_chips(d_start_index_prs_code, d_size_prs_code, d_prs_code_shorts ); + + for( unsigned int ii = 0; ii < d_size_prs_code; ++ii ) + { + d_prs_code[ii] = gr_complex( 1.0-2.0*static_cast( d_prs_code_shorts[ii] ), 0.0f ); + } + + d_prs_code_initialized = true; + + std::cout << "PRS (" << d_acquisition_gnss_synchro->PRN << ")" + << " Start index: " << d_start_index_prs_code + << " First 12 chips:"; + for( unsigned int ii = 0; ii < 12; ++ii ) + { + std::cout << " " << d_prs_code[ii]; + } + std::cout << std::endl; + } + + uint64_t int_code_phase = static_cast< uint64_t >( std::floor( d_code_phase_chips_prs ) ); + double frac_code_phase = std::fmod( d_code_phase_chips_prs, 1.0 ); + tcode_chips = frac_code_phase + static_cast< double >( int_code_phase - d_start_index_prs_code ); + //tcode_chips = d_code_phase_chips_prs - static_cast< double >( d_start_index_prs_code ); + + // Add 1/4 of a cyle here to account for cosine phasing: + tsubcarrier_phase_halfcyles = static_cast(d_subcarrier_phase_halfcycles_prs) + 0.5; + + early_late_subcarrier_spc_halfcycles = d_early_late_subcarrier_spc_cycles * 2.0; + + int64_t early_code_phase_fxp = double_to_fxpt64( tcode_chips + d_early_late_code_spc_chips ); + int64_t prompt_code_phase_fxp = double_to_fxpt64( tcode_chips ); + int64_t late_code_phase_fxp = double_to_fxpt64( tcode_chips - d_early_late_code_spc_chips); + + int64_t early_subcarrier_phase_fxp = double_to_fxpt64( + tsubcarrier_phase_halfcyles + early_late_subcarrier_spc_halfcycles ); + int64_t prompt_subcarrier_phase_fxp = double_to_fxpt64( + tsubcarrier_phase_halfcyles ); + int64_t late_subcarrier_phase_fxp = double_to_fxpt64( + tsubcarrier_phase_halfcyles - early_late_subcarrier_spc_halfcycles ); + + int64_t code_phase_step_fxp = double_to_fxpt64( code_phase_step_chips ); + int64_t subcarrier_phase_step_fxp = double_to_fxpt64( subcarrier_phase_step_halfcycles ); + + for (int i = 0; i < d_current_prn_length_samples; i++) + { + d_early_code_prs[i] = d_prs_code[ (early_code_phase_fxp >> 32 )]; + d_prompt_code_prs[i] = d_prs_code[ (prompt_code_phase_fxp >> 32 )]; + d_late_code_prs[i] = d_prs_code[ (late_code_phase_fxp >> 32 )]; + + d_early_subcarrier_prs[i] = (1.0 - 2.0*( (early_subcarrier_phase_fxp>>32)&0x01 ) ); + d_prompt_subcarrier_prs[i] = (1.0 - 2.0*( (prompt_subcarrier_phase_fxp>>32)&0x01 ) ); + d_late_subcarrier_prs[i] = (1.0 - 2.0*( (late_subcarrier_phase_fxp>>32)&0x01 ) ); + + early_code_phase_fxp += code_phase_step_fxp; + prompt_code_phase_fxp += code_phase_step_fxp; + late_code_phase_fxp += code_phase_step_fxp; + + early_subcarrier_phase_fxp += subcarrier_phase_step_fxp; + prompt_subcarrier_phase_fxp += subcarrier_phase_step_fxp; + late_subcarrier_phase_fxp += subcarrier_phase_step_fxp; + + } + + // Check for propagation: + //double code_phase_at_end = d_code_phase_chips_prs + d_current_prn_length_samples*code_phase_step_chips; + + //double fxp_code_phase_at_end = static_cast< double >( prompt_code_phase_fxp ) * + //std::pow( 2, -32 ); + + //std::cerr << "PRN: " << d_acquisition_gnss_synchro->PRN + //<< "Timestamp : " << +} +void galileo_e1_prs_de_tracking_cc::update_local_carrier() +{ + float sin_f, cos_f; + float phase_step_rad = static_cast(2 * GALILEO_PI) * ( d_if_freq + d_carrier_doppler_hz ) / static_cast(d_fs_in); + int phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad); + int phase_rad_i = gr::fxpt::float_to_fixed(d_rem_carr_phase_rad); + + for(int i = 0; i < d_current_prn_length_samples; i++) + { + gr::fxpt::sincos(phase_rad_i, &sin_f, &cos_f); + d_carr_sign[i] = std::complex(cos_f, -sin_f); + phase_rad_i += phase_step_rad_i; + } +} + +galileo_e1_prs_de_tracking_cc::~galileo_e1_prs_de_tracking_cc() +{ + d_dump_file.close(); + + volk_free(d_early_code); + volk_free(d_prompt_code); + volk_free(d_late_code); + volk_free(d_early_subcarrier); + volk_free(d_prompt_subcarrier); + volk_free(d_late_subcarrier); + volk_free(d_carr_sign); + volk_free(d_Prompt_Subcarrier_Early_Code); + volk_free(d_Prompt_Subcarrier_Prompt_Code); + volk_free(d_Prompt_Subcarrier_Late_Code); + volk_free(d_Prompt_Code_Early_Subcarrier); + volk_free(d_Prompt_Code_Late_Subcarrier); + volk_free(d_e1b_code); + + volk_free(d_early_code_prs); + volk_free(d_prompt_code_prs); + volk_free(d_late_code_prs); + volk_free(d_early_subcarrier_prs); + volk_free(d_prompt_subcarrier_prs); + volk_free(d_late_subcarrier_prs); + volk_free(d_Prompt_Subcarrier_Early_Code_prs); + volk_free(d_Prompt_Subcarrier_Prompt_Code_prs); + volk_free(d_Prompt_Subcarrier_Late_Code_prs); + volk_free(d_Prompt_Code_Early_Subcarrier_prs); + volk_free(d_Prompt_Code_Late_Subcarrier_prs); + volk_free(d_prs_code); + delete[] d_Prompt_buffer; +} + + + +int galileo_e1_prs_de_tracking_cc::general_work (int noutput_items,gr_vector_int &ninput_items, + gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) +{ + float carr_error_hz = 0.0; + float carr_error_filt_hz = 0.0; + float code_error_chips = 0.0; + float subcarrier_error_cycles = 0.0; + float code_error_filt_chips = 0.0; + float subcarrier_error_filt_cycles = 0.0; + double integer_subcarrier_periods = 0.0; + float carr_error_hz_prs = 0.0; + float carr_error_filt_hz_prs = 0.0; + float code_error_chips_prs = 0.0; + float subcarrier_error_cycles_prs = 0.0; + float code_error_filt_chips_prs = 0.0; + float subcarrier_error_filt_cycles_prs = 0.0; + + // Block input data and block output stream pointers + const gr_complex* in = (gr_complex*) input_items[0]; + Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; + + // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder + Gnss_Synchro current_synchro_data; + + int next_prn_length_samples = d_current_prn_length_samples; + if (d_enable_tracking == true) + { + if (d_pull_in == true) + { + /* + * Signal alignment (skip samples until the incoming signal is aligned with local replica) + */ + int samples_offset; + float acq_trk_shif_correction_samples; + int acq_to_trk_delay_samples; + acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp; + acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast(acq_to_trk_delay_samples), static_cast(d_current_prn_length_samples)); + samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); + d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples + d_pull_in = false; + // Now update the code and carrier phase estimates: + d_code_phase_chips = 0.0; + d_rem_code_phase_samples = 0.0; + d_subcarrier_phase_halfcycles = 0.0; + + //std::cout<<" samples_offset="<(d_sample_counter) + static_cast(d_rem_code_phase_samples)) / static_cast(d_fs_in); + + // Generate local code and carrier replicas (using \hat{f}_d(k-1)) + update_local_code(); + //update_local_carrier(); + + gr_complex phase_as_complex( std::cos( d_rem_carr_phase_rad ), + -std::sin( d_rem_carr_phase_rad ) ); + + double carrier_doppler_inc_rad = 2.0*M_PI*(d_if_freq + d_carrier_doppler_hz )/d_fs_in; + + gr_complex phase_inc_as_complex( std::cos( carrier_doppler_inc_rad ), + -std::sin( carrier_doppler_inc_rad ) ); + + + // perform carrier wipe-off and compute Very Early, Early, Prompt, Late and Very Late correlation + d_correlator.Carrier_rotate_and_DE_volk(d_current_prn_length_samples, + in, + &phase_as_complex, + phase_inc_as_complex, + d_early_code, + d_prompt_code, + d_late_code, + d_early_subcarrier, + d_prompt_subcarrier, + d_late_subcarrier, + d_Prompt_Subcarrier_Early_Code, + d_Prompt_Subcarrier_Prompt_Code, + d_Prompt_Subcarrier_Late_Code, + d_Prompt_Code_Early_Subcarrier, + d_Prompt_Code_Late_Subcarrier ); + + // Now update the code and carrier phase estimates: + double chips_to_halfcycles = Galileo_E1_SUB_CARRIER_A_RATE_HZ / + Galileo_E1_CODE_CHIP_RATE_HZ * 2.0; + double T = static_cast( d_current_prn_length_samples ) / static_cast( d_fs_in ); + d_code_phase_chips += T*d_code_freq_chips; + d_code_phase_chips = std::fmod( d_code_phase_chips, Galileo_E1_B_CODE_LENGTH_CHIPS ); + d_carrier_phase_rad += T*2.0*M_PI*d_carrier_doppler_hz; + //int64_t subcarrier_inc_halfcycles_fxp = double_to_fxpt64( + //d_subcarrier_freq_cycles*chips_to_halfcycles/d_fs_in, 48 ); + + //int64_t subcarrier_delta_halfcycles_fxp = subcarrier_inc_halfcycles_fxp * d_current_prn_length_samples; + //// take out the integer part: + //subcarrier_delta_halfcycles_fxp &=0xFFFFFFFFFFFF; // 48 ones in LSB + + //d_subcarrier_phase_halfcycles += static_cast< double >( subcarrier_delta_halfcycles_fxp )*std::pow(2.0,-48.0); + d_subcarrier_phase_halfcycles += T*d_subcarrier_freq_cycles*chips_to_halfcycles; + integer_subcarrier_periods = std::floor( d_subcarrier_phase_halfcycles ); + d_subcarrier_phase_halfcycles = std::fmod( d_subcarrier_phase_halfcycles, 2.0 ); + double rem_subcarrier_phase_cycles = 1.0 - d_subcarrier_phase_halfcycles/2.0; + + if( rem_subcarrier_phase_cycles > 0.5 ){ + rem_subcarrier_phase_cycles -= 1.0; + } + + d_rem_subcarrier_phase_samples = rem_subcarrier_phase_cycles* + static_cast(d_fs_in)/Galileo_E1_SUB_CARRIER_A_RATE_HZ; + + double rem_code_phase_chips = Galileo_E1_B_CODE_LENGTH_CHIPS - d_code_phase_chips; + if( rem_code_phase_chips > Galileo_E1_B_CODE_LENGTH_CHIPS / 2.0 ) + { + rem_code_phase_chips = ( rem_code_phase_chips - Galileo_E1_B_CODE_LENGTH_CHIPS ); + } + + d_rem_code_phase_samples = rem_code_phase_chips * d_fs_in/Galileo_E1_CODE_CHIP_RATE_HZ; + + // PRS tracking + if( d_prs_tracking_enabled ){ + // Generate local code and carrier replicas (using \hat{f}_d(k-1)) + update_local_code_prs(); + //update_local_carrier(); + + phase_as_complex = gr_complex( std::cos( d_rem_carr_phase_rad_prs ), + -std::sin( d_rem_carr_phase_rad_prs ) ); + + carrier_doppler_inc_rad = 2.0*M_PI*(d_if_freq + d_carrier_doppler_hz_prs )/d_fs_in; + + phase_inc_as_complex = gr_complex( std::cos( carrier_doppler_inc_rad ), + -std::sin( carrier_doppler_inc_rad ) ); + + + // perform carrier wipe-off and compute Very Early, Early, Prompt, Late and Very Late correlation + d_correlator.Carrier_rotate_and_DE_volk(d_current_prn_length_samples, + in, + &phase_as_complex, + phase_inc_as_complex, + d_early_code_prs, + d_prompt_code_prs, + d_late_code_prs, + d_early_subcarrier_prs, + d_prompt_subcarrier_prs, + d_late_subcarrier_prs, + d_Prompt_Subcarrier_Early_Code_prs, + d_Prompt_Subcarrier_Prompt_Code_prs, + d_Prompt_Subcarrier_Late_Code_prs, + d_Prompt_Code_Early_Subcarrier_prs, + d_Prompt_Code_Late_Subcarrier_prs ); + + // Now update the code and carrier phase estimates: + double chips_to_halfcycles_prs = Galileo_E1_A_SUB_CARRIER_RATE_HZ / + Galileo_E1_A_CODE_CHIP_RATE_HZ * 2.0; + d_code_phase_chips_prs += T*d_code_freq_chips_prs; + d_code_phase_chips_prs = std::fmod( d_code_phase_chips_prs, d_prs_code_gen->get_code_length() ); + d_carrier_phase_rad_prs += T*2.0*M_PI*d_carrier_doppler_hz_prs; + + d_subcarrier_phase_halfcycles_prs += T*d_subcarrier_freq_cycles_prs*2.0; + d_subcarrier_phase_halfcycles_prs = std::fmod( d_subcarrier_phase_halfcycles_prs, 2.0 ); + double rem_subcarrier_phase_cycles_prs = 1.0 - d_subcarrier_phase_halfcycles_prs/2.0; + + if( rem_subcarrier_phase_cycles_prs > 0.5 ){ + rem_subcarrier_phase_cycles_prs -= 1.0; + } + + d_rem_subcarrier_phase_samples_prs = rem_subcarrier_phase_cycles_prs* + static_cast(d_fs_in)/Galileo_E1_A_SUB_CARRIER_RATE_HZ; + + } + + // check for samples consistency (this should be done before in the receiver / here only if the source is a file) + if (std::isnan((*d_Prompt_Subcarrier_Prompt_Code).real()) == true or + std::isnan((*d_Prompt_Subcarrier_Prompt_Code).imag()) == true ) // or std::isinf(in[i].real())==true or std::isinf(in[i].imag())==true) + { + const int samples_available = ninput_items[0]; + d_sample_counter = d_sample_counter + samples_available; + LOG(WARNING) << "Detected NaN samples at sample number " << d_sample_counter; + consume_each(samples_available); + + // make an output to not stop the rest of the processing blocks + current_synchro_data.Prompt_I = 0.0; + current_synchro_data.Prompt_Q = 0.0; + current_synchro_data.Tracking_timestamp_secs = static_cast(d_sample_counter) / static_cast(d_fs_in); + current_synchro_data.Carrier_phase_rads = 0.0; + current_synchro_data.Code_phase_secs = 0.0; + current_synchro_data.CN0_dB_hz = 0.0; + current_synchro_data.Flag_valid_tracking = false; + current_synchro_data.Flag_valid_pseudorange = false; + + *out[0] = current_synchro_data; + return 1; + } + + // consume the input samples: + d_sample_counter += d_current_prn_length_samples; + + // ################## PLL ########################################################## + // PLL discriminator + carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt_Subcarrier_Prompt_Code) / static_cast(GPS_TWO_PI); + // Carrier discriminator filter + carr_error_filt_hz = d_carrier_loop_filter.apply(carr_error_hz); + // New carrier Doppler frequency estimation + d_carrier_doppler_hz = carr_error_filt_hz; + + float code_doppler_chips = ((d_carrier_doppler_hz * Galileo_E1_CODE_CHIP_RATE_HZ) / Galileo_E1_FREQ_HZ); + + // New subcarrier Doppler frequency estimation: carrier + // aiding of the subcarrier: + if( d_aid_subcarrier_with_carrier ) + { + d_subcarrier_freq_cycles = Galileo_E1_CODE_CHIP_RATE_HZ + code_doppler_chips; + } + else + { + d_subcarrier_freq_cycles = Galileo_E1_CODE_CHIP_RATE_HZ; + } + //carrier phase accumulator for (K) Doppler estimation + d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD; + //remnant carrier phase to prevent overflow in the code NCO + d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD; + d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI); + + // ################## SLL ########################################################## + // SLL discriminator + subcarrier_error_cycles = dll_nc_e_minus_l_normalized( + *d_Prompt_Code_Early_Subcarrier, + *d_Prompt_Code_Late_Subcarrier); //[chips/Ti] + // normalise the SLL discriminator by the slope of the + // BOC(1,1) at the origin: + float corr_slope = 2.0; + subcarrier_error_cycles *= ( 1 - corr_slope*d_early_late_subcarrier_spc_cycles) / corr_slope; + // Subcarrier discriminator filter + subcarrier_error_filt_cycles = d_subcarrier_loop_filter.apply(subcarrier_error_cycles); //[chips/second] + d_subcarrier_freq_cycles += subcarrier_error_filt_cycles; + // Aiding the code tracking with the subcarrier: + if( d_aid_code_with_subcarrier ) + { + d_code_freq_chips = d_subcarrier_freq_cycles; + } + else if( d_aid_subcarrier_with_carrier ) + { + d_code_freq_chips = Galileo_E1_CODE_CHIP_RATE_HZ + code_doppler_chips; + } + else + { + d_code_freq_chips = Galileo_E1_CODE_CHIP_RATE_HZ; + } + + //Subcarrier phase accumulator + float subcarrier_error_filt_secs; + subcarrier_error_filt_secs = (Galileo_E1_CODE_PERIOD * subcarrier_error_filt_cycles) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds] + //code_error_filt_secs=T_prn_seconds*code_error_filt_chips*T_chip_seconds*static_cast(d_fs_in); //[seconds] + + // ################## DLL ########################################################## + // DLL discriminator + code_error_chips = dll_nc_e_minus_l_normalized( + *d_Prompt_Subcarrier_Early_Code, + *d_Prompt_Subcarrier_Late_Code); //[chips/Ti] + //Normalise the code phase error: + corr_slope = 1.0; + code_error_chips *= ( 1 - corr_slope*d_early_late_code_spc_chips) / corr_slope; + // Code discriminator filter + code_error_filt_chips = d_code_loop_filter.apply(code_error_chips); //[chips/second] + //Code phase accumulator + d_code_freq_chips += code_error_filt_chips; + float code_error_filt_secs; + code_error_filt_secs = (Galileo_E1_CODE_PERIOD * code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds] + //code_error_filt_secs=T_prn_seconds*code_error_filt_chips*T_chip_seconds*static_cast(d_fs_in); //[seconds] + d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs; + + // ################## PRS ########################################################## + // ################## PLL ########################################################## + // PLL discriminator + carr_error_hz_prs = pll_cloop_two_quadrant_atan(*d_Prompt_Subcarrier_Prompt_Code_prs) / static_cast(GPS_TWO_PI); + + // FOR NOW : Use E1b value + d_carrier_doppler_hz_prs = d_carrier_doppler_hz; + + + // ################## SLL ########################################################## + // SLL discriminator + subcarrier_error_cycles_prs = dll_nc_e_minus_l_normalized( + *d_Prompt_Code_Early_Subcarrier_prs, + *d_Prompt_Code_Late_Subcarrier_prs); //[chips/Ti] + // normalise the SLL discriminator by the slope of the + // BOC(1,1) at the origin: + corr_slope = 2.0; + subcarrier_error_cycles_prs *= ( 1 - corr_slope*d_early_late_subcarrier_spc_cycles) / corr_slope; + + // For now use the E1b values + d_subcarrier_freq_cycles_prs = d_subcarrier_freq_cycles + * Galileo_E1_A_SUB_CARRIER_RATE_HZ / Galileo_E1_SUB_CARRIER_A_RATE_HZ; + + // ################## DLL ########################################################## + // DLL discriminator + code_error_chips_prs = dll_nc_e_minus_l_normalized( + *d_Prompt_Subcarrier_Early_Code_prs, + *d_Prompt_Subcarrier_Late_Code_prs); //[chips/Ti] + //Normalise the code phase error: + corr_slope = 1.0; + code_error_chips_prs *= ( 1 - corr_slope*d_early_late_code_spc_chips) / corr_slope; + + // For now use the E1 values: + d_code_freq_chips_prs = d_code_freq_chips * Galileo_E1_A_CODE_CHIP_RATE_HZ / + Galileo_E1_CODE_CHIP_RATE_HZ; + + // ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### + // keep alignment parameters for the next input buffer + double T_chip_seconds; + double T_prn_seconds; + double T_prn_samples; + double K_blk_samples; + double T_sc_seconds; + double T_sc_prn_seconds; + double T_sc_prn_samples; + double K_sc_samples; + // Compute the next buffer lenght based in the new period of the PRN sequence and the code phase error estimation + T_chip_seconds = 1 / static_cast(d_code_freq_chips); + T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS; + T_prn_samples = T_prn_seconds * static_cast(d_fs_in); + K_blk_samples = T_prn_samples + d_rem_code_phase_samples; // + code_error_filt_secs * static_cast(d_fs_in); + + T_sc_seconds = 1 / static_cast(d_subcarrier_freq_cycles); + // THere is one subcarrier period per code chip: + T_sc_prn_seconds = T_sc_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS; + T_sc_prn_samples = T_sc_prn_seconds * static_cast(d_fs_in); + K_sc_samples = T_sc_prn_samples + d_rem_subcarrier_phase_samples; + + next_prn_length_samples = round(K_blk_samples); //round to a discrete samples + //d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample + + // ####### CN0 ESTIMATION AND LOCK DETECTORS ###### + if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES) + { + // fill buffer with prompt correlator output values + d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt_Subcarrier_Prompt_Code; + d_cn0_estimation_counter++; + } + else + { + d_cn0_estimation_counter = 0; + + // Code lock indicator + d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, Galileo_E1_B_CODE_LENGTH_CHIPS); + + // Carrier lock indicator + d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES); + + // Loss of lock detection + if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0) + { + d_carrier_lock_fail_counter++; + } + else + { + if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--; + } + if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER) + { + std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; + LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; + std::unique_ptr cmf(new ControlMessageFactory()); + if (d_queue != gr::msg_queue::sptr()) + { + d_queue->handle(cmf->GetQueueMessage(d_channel, 2)); + } + d_carrier_lock_fail_counter = 0; + d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine + } + } + + // ########### Output the tracking results to Telemetry block ########## + + current_synchro_data.Prompt_I = static_cast((*d_Prompt_Subcarrier_Prompt_Code).real()); + current_synchro_data.Prompt_Q = static_cast((*d_Prompt_Subcarrier_Prompt_Code).imag()); + + // Tracking_timestamp_secs is aligned with the NEXT PRN start sample (Hybridization problem!) + //compute remnant code phase samples BEFORE the Tracking timestamp + //d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample + //current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + + // (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples) / static_cast(d_fs_in); + + // Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??) + //current_synchro_data.Tracking_timestamp_secs = (static_cast(d_sample_counter) + static_cast(d_rem_code_phase_samples)) / static_cast(d_fs_in); + //compute remnant code phase samples AFTER the Tracking timestamp + //d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample + + //d_rem_subcarrier_phase_samples = K_sc_samples - d_current_prn_length_samples; //rounding error < 1 sample + // This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0 + current_synchro_data.Code_phase_secs = 0; + current_synchro_data.Carrier_phase_rads = static_cast(d_acc_carrier_phase_rad); + current_synchro_data.Carrier_Doppler_hz = static_cast(d_carrier_doppler_hz); + current_synchro_data.CN0_dB_hz = static_cast(d_CN0_SNV_dB_Hz); + current_synchro_data.Flag_valid_pseudorange = false; + *out[0] = current_synchro_data; + + // ########## DEBUG OUTPUT + /*! + * \todo The stop timer has to be moved to the signal source! + */ + // stream to collect cout calls to improve thread safety + std::stringstream tmp_str_stream; + if (floor(d_sample_counter / d_fs_in) != d_last_seg) + { + d_last_seg = floor(d_sample_counter / d_fs_in); + + if (d_channel == 0) + { + // debug: Second counter in channel 0 + tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush; + std::cout << tmp_str_stream.rdbuf() << std::flush; + } + + tmp_str_stream << "Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) + << ", Doppler=" << d_carrier_doppler_hz << " [Hz] CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl; + LOG(INFO) << tmp_str_stream.rdbuf() << std::flush; + //if (d_channel == 0 || d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock! + } + } + else + { + // ########## DEBUG OUTPUT (TIME ONLY for channel 0 when tracking is disabled) + /*! + * \todo The stop timer has to be moved to the signal source! + */ + // stream to collect cout calls to improve thread safety + std::stringstream tmp_str_stream; + if (floor(d_sample_counter / d_fs_in) != d_last_seg) + { + d_last_seg = floor(d_sample_counter / d_fs_in); + + if (d_channel == 0) + { + // debug: Second counter in channel 0 + tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush; + std::cout << tmp_str_stream.rdbuf() << std::flush; + } + } + *d_Prompt_Subcarrier_Early_Code = gr_complex(0,0); + *d_Prompt_Subcarrier_Prompt_Code = gr_complex(0,0); + *d_Prompt_Subcarrier_Late_Code = gr_complex(0,0); + *d_Prompt_Code_Early_Subcarrier = gr_complex(0,0); + *d_Prompt_Code_Late_Subcarrier = gr_complex(0,0); + Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output stream pointer + // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder + d_acquisition_gnss_synchro->Flag_valid_pseudorange = false; + *out[0] = *d_acquisition_gnss_synchro; + d_sample_counter += d_current_prn_length_samples; + } + + if(d_dump) + { + // Dump results to file + float prompt_I; + float prompt_Q; + float tmp_VE, tmp_E, tmp_P, tmp_L, tmp_VL; + float tmp_float; + double tmp_double; + prompt_I = (*d_Prompt_Subcarrier_Prompt_Code).real(); + prompt_Q = (*d_Prompt_Subcarrier_Prompt_Code).imag(); + tmp_VE = std::abs(*d_Prompt_Code_Early_Subcarrier); + tmp_E = std::abs(*d_Prompt_Subcarrier_Early_Code); + tmp_P = std::abs(*d_Prompt_Subcarrier_Prompt_Code); + tmp_L = std::abs(*d_Prompt_Subcarrier_Late_Code); + tmp_VL = std::abs(*d_Prompt_Code_Late_Subcarrier); + + try + { + // Dump correlators output + d_dump_file.write(reinterpret_cast(&tmp_VE), sizeof(float)); + d_dump_file.write(reinterpret_cast(&tmp_E), sizeof(float)); + d_dump_file.write(reinterpret_cast(&tmp_P), sizeof(float)); + d_dump_file.write(reinterpret_cast(&tmp_L), sizeof(float)); + d_dump_file.write(reinterpret_cast(&tmp_VL), sizeof(float)); + // PROMPT I and Q (to analyze navigation symbols) + d_dump_file.write(reinterpret_cast(&prompt_I), sizeof(float)); + d_dump_file.write(reinterpret_cast(&prompt_Q), sizeof(float)); + // PRN start sample stamp + d_dump_file.write(reinterpret_cast(&d_sample_counter), sizeof(unsigned long int)); + // accumulated carrier phase + tmp_float = static_cast(d_acc_carrier_phase_rad); + d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); + // carrier and code frequency + d_dump_file.write(reinterpret_cast(&d_carrier_doppler_hz), sizeof(float)); + tmp_float = static_cast( d_code_freq_chips ); + d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); + //PLL commands + d_dump_file.write(reinterpret_cast(&carr_error_hz), sizeof(float)); + d_dump_file.write(reinterpret_cast(&carr_error_filt_hz), sizeof(float)); + //DLL commands + d_dump_file.write(reinterpret_cast(&code_error_chips), sizeof(float)); + d_dump_file.write(reinterpret_cast(&code_error_filt_chips), sizeof(float)); + // SLL commands + d_dump_file.write(reinterpret_cast(&subcarrier_error_cycles), sizeof(float)); + d_dump_file.write(reinterpret_cast(&subcarrier_error_filt_cycles), sizeof(float)); + // CN0 and carrier lock test + d_dump_file.write(reinterpret_cast(&d_CN0_SNV_dB_Hz), sizeof(float)); + d_dump_file.write(reinterpret_cast(&d_carrier_lock_test), sizeof(float)); + // AUX vars (for debug purposes) + //tmp_float = d_rem_code_phase_samples/static_cast< float >( d_fs_in )*Galileo_E1_CODE_CHIP_RATE_HZ; + tmp_float = d_code_phase_chips; + d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); + //tmp_double = static_cast(d_sample_counter + d_current_prn_length_samples); + tmp_double = integer_subcarrier_periods; + d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double)); + //tmp_float = d_rem_subcarrier_phase_samples/static_cast( d_fs_in ) * Galileo_E1_CODE_CHIP_RATE_HZ; + tmp_float = d_subcarrier_phase_halfcycles/2.0; + d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); + + + // **************************************************************************** + // PRS Variables: + prompt_I = (*d_Prompt_Subcarrier_Prompt_Code_prs).real(); + prompt_Q = (*d_Prompt_Subcarrier_Prompt_Code_prs).imag(); + tmp_VE = std::abs(*d_Prompt_Code_Early_Subcarrier_prs); + tmp_E = std::abs(*d_Prompt_Subcarrier_Early_Code_prs); + tmp_P = std::abs(*d_Prompt_Subcarrier_Prompt_Code_prs); + tmp_L = std::abs(*d_Prompt_Subcarrier_Late_Code_prs); + tmp_VL = std::abs(*d_Prompt_Code_Late_Subcarrier_prs); + // Dump correlators output + d_dump_file.write(reinterpret_cast(&tmp_VE), sizeof(float)); + d_dump_file.write(reinterpret_cast(&tmp_E), sizeof(float)); + d_dump_file.write(reinterpret_cast(&tmp_P), sizeof(float)); + d_dump_file.write(reinterpret_cast(&tmp_L), sizeof(float)); + d_dump_file.write(reinterpret_cast(&tmp_VL), sizeof(float)); + // PROMPT I and Q (to analyze navigation symbols) + d_dump_file.write(reinterpret_cast(&prompt_I), sizeof(float)); + d_dump_file.write(reinterpret_cast(&prompt_Q), sizeof(float)); + // carrier and code frequency + d_dump_file.write(reinterpret_cast(&d_carrier_doppler_hz_prs), sizeof(float)); + tmp_float = static_cast(d_code_freq_chips_prs); + d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); + tmp_float = static_cast(d_subcarrier_freq_cycles_prs); + d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); + //PLL commands + d_dump_file.write(reinterpret_cast(&carr_error_hz_prs), sizeof(float)); + d_dump_file.write(reinterpret_cast(&carr_error_filt_hz_prs), sizeof(float)); + //DLL commands + d_dump_file.write(reinterpret_cast(&code_error_chips_prs), sizeof(float)); + d_dump_file.write(reinterpret_cast(&code_error_filt_chips_prs), sizeof(float)); + // SLL commands + d_dump_file.write(reinterpret_cast(&subcarrier_error_cycles_prs), sizeof(float)); + d_dump_file.write(reinterpret_cast(&subcarrier_error_filt_cycles_prs), sizeof(float)); + + d_dump_file.write(reinterpret_cast(&d_code_phase_chips_prs), sizeof(double)); + tmp_float = d_subcarrier_phase_halfcycles_prs/2.0; + d_dump_file.write(reinterpret_cast(&tmp_float), sizeof(float)); + } + catch (std::ifstream::failure e) + { + LOG(WARNING) << "Exception writing trk dump file " << e.what() << std::endl; + } + } + consume_each(d_current_prn_length_samples); // this is required for gr_block derivates + //d_sample_counter += d_current_prn_length_samples; //count for the processed samples + d_current_prn_length_samples = next_prn_length_samples; + //std::cout<<"Galileo tracking output at sample "<(d_channel)); + d_dump_filename.append(".dat"); + d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit); + d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); + LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str(); + } + catch (std::ifstream::failure e) + { + LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what() << std::endl; + } + } + } +} + + + +void galileo_e1_prs_de_tracking_cc::set_channel_queue(concurrent_queue *channel_internal_queue) +{ + d_channel_internal_queue = channel_internal_queue; +} + + + +void galileo_e1_prs_de_tracking_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) +{ + d_acquisition_gnss_synchro = p_gnss_synchro; + // Gnss_Satellite(satellite.get_system(), satellite.get_PRN()); + //DLOG(INFO) << "Tracking code phase set to " << d_acq_code_phase_samples; + //DLOG(INFO) << "Tracking carrier doppler set to " << d_acq_carrier_doppler_hz; + //DLOG(INFO) << "Tracking Satellite set to " << d_satellite; +} + +void galileo_e1_prs_de_tracking_cc::start_tracking_prs() +{ + + // Initialise the code/phase and subcarrier estimates: + double time_since_tow = static_cast< double >( d_sample_counter ) / + static_cast( d_fs_in ) - d_timestamp_last_tow; + + double code_periods_since_tow = std::floor( time_since_tow / Galileo_E1_CODE_PERIOD + 0.5); + + double curr_tow = d_last_tow + code_periods_since_tow*Galileo_E1_CODE_PERIOD + + //std::fmod( d_code_phase_chips, Galileo_E1_B_CODE_LENGTH_CHIPS ) / Galileo_E1_CODE_CHIP_RATE_HZ; + d_rem_code_phase_samples / static_cast( d_fs_in ); + + // Handle week rollover: + if( curr_tow > 604800.0 ){ + curr_tow -= 604800.0; + } + + d_code_phase_chips_prs = std::fmod( curr_tow * Galileo_E1_A_CODE_CHIP_RATE_HZ, + d_prs_code_gen->get_code_length() ); + + + d_subcarrier_phase_halfcycles_prs = std::fmod( curr_tow, + 1.0/Galileo_E1_A_SUB_CARRIER_RATE_HZ ) * 2.0 * Galileo_E1_A_SUB_CARRIER_RATE_HZ; + + d_rem_carr_phase_rad_prs = d_rem_carr_phase_rad + M_PI/2.0; + + d_code_freq_chips_prs = d_code_freq_chips * Galileo_E1_A_CODE_CHIP_RATE_HZ / + Galileo_E1_CODE_CHIP_RATE_HZ; + + d_subcarrier_freq_cycles_prs = d_subcarrier_freq_cycles * Galileo_E1_A_SUB_CARRIER_RATE_HZ / + Galileo_E1_SUB_CARRIER_A_RATE_HZ; + + d_carrier_doppler_hz_prs = d_carrier_doppler_hz; + + + // Initialise the filters: + // TODO: + + + std::string sys_ = &d_acquisition_gnss_synchro->System; + sys = sys_.substr(0, 1); + + // DEBUG OUTPUT + std::cout << "PRS tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl; + LOG(INFO) << "Starting tracking of PRS for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; + + DLOG(INFO) << "Starting params: current TOW estimate: " << curr_tow + << " Code phase " << d_code_phase_chips_prs << " chips." + << " Subcarrier Phase " << ( d_subcarrier_phase_halfcycles_prs*2.0 ) << " cycles" + << " Last TOW: " << d_last_tow << " @ " << d_timestamp_last_tow + << " Correction: " << (curr_tow - d_last_tow); + // enable tracking + d_prs_tracking_enabled = true; + d_prs_code_gen->set_prn( d_acquisition_gnss_synchro->PRN ); + + + LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz_prs + << " PULL-IN Code Phase [samples]=" << d_code_phase_chips_prs; +} + +void galileo_e1_prs_de_tracking_cc::handle_gnss_message( pmt::pmt_t msg ) +{ + std::string telem_msg = gnss_message::get_message( msg ); + + std::stringstream log_str(""); + + log_str << "Received message " << telem_msg + << " with timestamp: " << gnss_message::get_timestamp( msg ); + + pmt::pmt_t not_found; + + if( gnss_message::get_message( msg ) == "TOW_ACQUIRED" ){ + d_tow_received = true; + d_last_tow = pmt::to_double( pmt::dict_ref( msg, pmt::mp( "TOW" ), not_found ) ) ; + log_str << ". TOW: " << d_last_tow; + d_timestamp_last_tow = gnss_message::get_timestamp( msg ); + + if( !d_prs_tracking_enabled ) + { + log_str << ". Enabling PRS tracking."; + start_tracking_prs(); + } + } + + LOG(INFO) << log_str.str(); + + +} diff --git a/src/algorithms/tracking/gnuradio_blocks/galileo_e1_prs_de_tracking_cc.h b/src/algorithms/tracking/gnuradio_blocks/galileo_e1_prs_de_tracking_cc.h new file mode 100644 index 000000000..2279595e6 --- /dev/null +++ b/src/algorithms/tracking/gnuradio_blocks/galileo_e1_prs_de_tracking_cc.h @@ -0,0 +1,268 @@ +/*! + * \file galileo_e1_prs_de_tracking_cc.h + * \brief Implementation of Double Estimator tracking for Galileo E1 PRS + * \author Cillian O'Driscoll, 2015. cillian.odriscoll(at)gmail.com + * + * ------------------------------------------------------------------------- + * + * Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors) + * + * GNSS-SDR is a software defined Global Navigation + * Satellite Systems receiver + * + * This file is part of GNSS-SDR. + * + * GNSS-SDR is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * GNSS-SDR is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNSS-SDR. If not, see . + * + * ------------------------------------------------------------------------- + */ + +#ifndef GNSS_SDR_GALILEO_E1_PRS_DE_TRACKING_CC_H +#define GNSS_SDR_GALILEO_E1_PRS_DE_TRACKING_CC_H + +#include +#include +#include +#include +#include +#include +#include +#include +#include "concurrent_queue.h" +#include "gnss_synchro.h" +#include "tracking_loop_filter.h" +#include "correlator.h" +#include "gnss_message.h" +#include "long_code_interface.h" // for prs code gen + +class galileo_e1_prs_de_tracking_cc; + +typedef boost::shared_ptr galileo_e1_prs_de_tracking_cc_sptr; + +galileo_e1_prs_de_tracking_cc_sptr +galileo_e1_prs_de_make_tracking_cc(long if_freq, + long fs_in, unsigned + int vector_length, + boost::shared_ptr queue, + bool dump, + std::string dump_filename, + float pll_bw_hz, + float dll_bw_hz, + float sll_bw_hz, + float early_late_code_space_chips, + float early_late_subcarrier_space_cycles, + bool aid_subcarrier_with_carrier, + bool aid_code_with_subcarrier, + LongCodeInterface_sptr prs_code_gen); + +/*! + * \brief This class implements a double estimator tracking block for Galileo E1 signals + */ +class galileo_e1_prs_de_tracking_cc: public gr::block +{ +public: + ~galileo_e1_prs_de_tracking_cc(); + + void set_channel(unsigned int channel); + void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro); + void start_tracking(); + void set_channel_queue(concurrent_queue *channel_internal_queue); + + /*! + * \brief Code DLL + carrier PLL according to the algorithms described in: + * K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen, + * A Software-Defined GPS and Galileo Receiver. A Single-Frequency Approach, + * Birkhauser, 2007 + */ + int general_work (int noutput_items, gr_vector_int &ninput_items, + gr_vector_const_void_star &input_items, gr_vector_void_star &output_items); + + void forecast (int noutput_items, gr_vector_int &ninput_items_required); +private: + void start_tracking_prs(); + + friend galileo_e1_prs_de_tracking_cc_sptr + galileo_e1_prs_de_make_tracking_cc(long if_freq, + long fs_in, unsigned + int vector_length, + boost::shared_ptr queue, + bool dump, + std::string dump_filename, + float pll_bw_hz, + float dll_bw_hz, + float sll_bw_hz, + float early_late_code_space_chips, + float early_late_subcarrier_space_cycles, + bool aid_subcarrier_with_carrier, + bool aid_code_with_subcarrier, + LongCodeInterface_sptr prs_code_gen); + + galileo_e1_prs_de_tracking_cc(long if_freq, + long fs_in, unsigned + int vector_length, + boost::shared_ptr queue, + bool dump, + std::string dump_filename, + float pll_bw_hz, + float dll_bw_hz, + float sll_bw_hz, + float early_late_code_space_chips, + float early_late_subcarrier_space_cycles, + bool aid_subcarrier_with_carrier, + bool aid_code_with_subcarrier, + LongCodeInterface_sptr prs_code_gen); + + void update_local_code(); + void update_local_code_prs(); + + void update_local_carrier(); + + // tracking configuration vars + boost::shared_ptr d_queue; + concurrent_queue *d_channel_internal_queue; + unsigned int d_vector_length; + bool d_dump; + + Gnss_Synchro* d_acquisition_gnss_synchro; + unsigned int d_channel; + int d_last_seg; + long d_if_freq; + long d_fs_in; + + bool d_aid_subcarrier_with_carrier; + bool d_aid_code_with_subcarrier; + + float d_early_late_code_spc_chips; + float d_early_late_subcarrier_spc_cycles; + + LongCodeInterface_sptr d_prs_code_gen; + gr_complex* d_e1b_code; + gr_complex* d_prs_code; + std::vector< short > d_prs_code_shorts; + uint64_t d_start_index_prs_code; + unsigned int d_size_prs_code; + bool d_prs_code_initialized; + + + gr_complex* d_early_code; + gr_complex* d_prompt_code; + gr_complex* d_late_code; + gr_complex* d_early_subcarrier; + gr_complex* d_prompt_subcarrier; + gr_complex* d_late_subcarrier; + gr_complex* d_carr_sign; + + + gr_complex* d_early_code_prs; + gr_complex* d_prompt_code_prs; + gr_complex* d_late_code_prs; + gr_complex* d_early_subcarrier_prs; + gr_complex* d_prompt_subcarrier_prs; + gr_complex* d_late_subcarrier_prs; + + gr_complex *d_Prompt_Subcarrier_Early_Code; + gr_complex *d_Prompt_Subcarrier_Prompt_Code; + gr_complex *d_Prompt_Subcarrier_Late_Code; + gr_complex *d_Prompt_Code_Early_Subcarrier; + gr_complex *d_Prompt_Code_Late_Subcarrier; + + gr_complex *d_Prompt_Subcarrier_Early_Code_prs; + gr_complex *d_Prompt_Subcarrier_Prompt_Code_prs; + gr_complex *d_Prompt_Subcarrier_Late_Code_prs; + gr_complex *d_Prompt_Code_Early_Subcarrier_prs; + gr_complex *d_Prompt_Code_Late_Subcarrier_prs; + + // remaining code phase and carrier phase between tracking loops + double d_rem_code_phase_samples; + double d_rem_subcarrier_phase_samples; + float d_rem_carr_phase_rad; + + double d_rem_code_phase_samples_prs; + double d_rem_subcarrier_phase_samples_prs; + float d_rem_carr_phase_rad_prs; + + // PLL and DLL filter library + Tracking_loop_filter d_code_loop_filter; + Tracking_loop_filter d_subcarrier_loop_filter; + Tracking_loop_filter d_carrier_loop_filter; + + Tracking_loop_filter d_code_loop_filter_prs; + Tracking_loop_filter d_subcarrier_loop_filter_prs; + Tracking_loop_filter d_carrier_loop_filter_prs; + + // acquisition + float d_acq_code_phase_samples; + float d_acq_carrier_doppler_hz; + + // correlator + Correlator d_correlator; + + // tracking vars + double d_code_freq_chips; + double d_code_phase_chips; + double d_subcarrier_freq_cycles; + double d_subcarrier_phase_halfcycles; + float d_carrier_doppler_hz; + double d_carrier_phase_rad; + double d_acc_carrier_phase_rad; + double d_acc_code_phase_secs; + + double d_code_freq_chips_prs; + double d_code_phase_chips_prs; + double d_subcarrier_freq_cycles_prs; + double d_subcarrier_phase_halfcycles_prs; + float d_carrier_doppler_hz_prs; + double d_carrier_phase_rad_prs; + double d_acc_carrier_phase_rad_prs; + double d_acc_code_phase_secs_prs; + + //PRN period in samples + int d_current_prn_length_samples; + + //processing samples counters + unsigned long int d_sample_counter; + unsigned long int d_acq_sample_stamp; + + // CN0 estimation and lock detector + int d_cn0_estimation_counter; + gr_complex* d_Prompt_buffer; + float d_carrier_lock_test; + float d_CN0_SNV_dB_Hz; + float d_carrier_lock_threshold; + int d_carrier_lock_fail_counter; + + // control vars + bool d_enable_tracking; + bool d_pull_in; + + bool d_tow_received; + double d_last_tow; + double d_timestamp_last_tow; + + bool d_prs_tracking_enabled; + + + // file dump + std::string d_dump_filename; + std::ofstream d_dump_file; + + std::map systemName; + std::string sys; + + // Handler for gnss_messages: + void handle_gnss_message( pmt::pmt_t msg ); +}; + +#endif //GNSS_SDR_GALILEO_E1_PRS_DE_TRACKING_CC_H + diff --git a/src/core/receiver/gnss_block_factory.cc b/src/core/receiver/gnss_block_factory.cc index 842a3fc6f..8383d628e 100644 --- a/src/core/receiver/gnss_block_factory.cc +++ b/src/core/receiver/gnss_block_factory.cc @@ -88,6 +88,7 @@ #include "galileo_e5a_dll_pll_tracking.h" #include "gps_l2_m_dll_pll_tracking.h" #include "galileo_e1_de_tracking.h" +#include "galileo_e1_prs_de_tracking.h" #include "gps_l1_ca_telemetry_decoder.h" #include "gps_l2_m_telemetry_decoder.h" #include "galileo_e1b_telemetry_decoder.h" @@ -1650,6 +1651,12 @@ std::unique_ptr GNSSBlockFactory::GetTrkBlock( out_streams, queue)); block = std::move(block_); } + else if (implementation.compare("Galileo_E1_PRS_DE_Tracking") == 0) + { + std::unique_ptr block_(new GalileoE1PrsDeTracking(configuration.get(), role, in_streams, + out_streams, queue)); + block = std::move(block_); + } #if CUDA_GPU_ACCEL else if (implementation.compare("GPS_L1_CA_DLL_PLL_Tracking_GPU") == 0) { diff --git a/src/core/system_parameters/Galileo_E1.h b/src/core/system_parameters/Galileo_E1.h index 1e18be660..592e704a1 100644 --- a/src/core/system_parameters/Galileo_E1.h +++ b/src/core/system_parameters/Galileo_E1.h @@ -58,6 +58,8 @@ const double Galileo_E1_SUB_CARRIER_B_RATE_HZ = 6.138e6; //!< Galileo E1 sub-car const double Galileo_E1_B_CODE_LENGTH_CHIPS = 4092.0; //!< Galileo E1-B code length [chips] const double Galileo_E1_B_SYMBOL_RATE_BPS = 250.0; //!< Galileo E1-B symbol rate [bits/second] const double Galileo_E1_C_SECONDARY_CODE_LENGTH = 25.0; //!< Galileo E1-C secondary code length [chips] +const double Galileo_E1_A_CODE_CHIP_RATE_HZ = 2.5575e6; //!< Galileo E1-A code rate [chips/s] +const double Galileo_E1_A_SUB_CARRIER_RATE_HZ = 15.345e6; //!< Galileo E1-A subcarrier rate [Hz] const int Galileo_E1_NUMBER_OF_CODES = 50; const double GALILEO_STARTOFFSET_ms = 68.802; //[ms] Initial sign. travel time (this cannot go here)