1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 04:30:33 +00:00

Avoid pointer arithmetics

This commit is contained in:
Carles Fernandez 2019-06-29 12:55:39 +02:00
parent dd53f81b1a
commit d6714e35a1
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
6 changed files with 112 additions and 112 deletions

View File

@ -53,7 +53,7 @@ void galileo_e1_code_gen_int(gsl::span<int> _dest, std::array<char, 3> _Signal,
{ {
for (char i : GALILEO_E1_B_PRIMARY_CODE[prn]) for (char i : GALILEO_E1_B_PRIMARY_CODE[prn])
{ {
hex_to_binary_converter(&_dest[index], i); hex_to_binary_converter(_dest.subspan(index, 4), i);
index += 4; index += 4;
} }
} }
@ -61,7 +61,7 @@ void galileo_e1_code_gen_int(gsl::span<int> _dest, std::array<char, 3> _Signal,
{ {
for (char i : GALILEO_E1_C_PRIMARY_CODE[prn]) for (char i : GALILEO_E1_C_PRIMARY_CODE[prn])
{ {
hex_to_binary_converter(&_dest[index], i); hex_to_binary_converter(_dest.subspan(index, 4), i);
index += 4; index += 4;
} }
} }
@ -175,7 +175,7 @@ void galileo_e1_code_gen_float_sampled(gsl::span<float> _dest, std::array<char,
_codeLength = _samplesPerChip * GALILEO_E1_B_CODE_LENGTH_CHIPS; _codeLength = _samplesPerChip * GALILEO_E1_B_CODE_LENGTH_CHIPS;
_signal_E1 = new float[_codeLength]; _signal_E1 = new float[_codeLength];
gsl::span<float> _signal_E1_span(_signal_E1, _codeLength);
if (_cboc == true) if (_cboc == true)
{ {
galileo_e1_gen_float(gsl::span<float>(_signal_E1, _codeLength), gsl::span<int>(primary_code_E1_chips, static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS)), _Signal); // generate cboc 12 samples per chip galileo_e1_gen_float(gsl::span<float>(_signal_E1, _codeLength), gsl::span<int>(primary_code_E1_chips, static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS)), _Signal); // generate cboc 12 samples per chip
@ -183,11 +183,12 @@ void galileo_e1_code_gen_float_sampled(gsl::span<float> _dest, std::array<char,
else else
{ {
auto* _signal_E1_int = static_cast<int32_t*>(volk_gnsssdr_malloc(_codeLength * sizeof(int32_t), volk_gnsssdr_get_alignment())); auto* _signal_E1_int = static_cast<int32_t*>(volk_gnsssdr_malloc(_codeLength * sizeof(int32_t), volk_gnsssdr_get_alignment()));
gsl::span<int32_t> _signal_E1_int_span(_signal_E1_int, _codeLength);
galileo_e1_sinboc_11_gen_int(gsl::span<int32_t>(_signal_E1_int, _codeLength), gsl::span<int>(primary_code_E1_chips, static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS))); // generate sinboc(1,1) 2 samples per chip galileo_e1_sinboc_11_gen_int(gsl::span<int32_t>(_signal_E1_int, _codeLength), gsl::span<int>(primary_code_E1_chips, static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS))); // generate sinboc(1,1) 2 samples per chip
for (uint32_t ii = 0; ii < _codeLength; ++ii) for (uint32_t ii = 0; ii < _codeLength; ++ii)
{ {
_signal_E1[ii] = static_cast<float>(_signal_E1_int[ii]); _signal_E1_span[ii] = static_cast<float>(_signal_E1_int_span[ii]);
} }
volk_gnsssdr_free(_signal_E1_int); volk_gnsssdr_free(_signal_E1_int);
} }
@ -205,24 +206,24 @@ void galileo_e1_code_gen_float_sampled(gsl::span<float> _dest, std::array<char,
if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag) if (_galileo_signal.rfind("1C") != std::string::npos && _galileo_signal.length() >= 2 && _secondary_flag)
{ {
auto* _signal_E1C_secondary = new float[static_cast<int32_t>(GALILEO_E1_C_SECONDARY_CODE_LENGTH) * _samplesPerCode]; auto* _signal_E1C_secondary = new float[static_cast<int32_t>(GALILEO_E1_C_SECONDARY_CODE_LENGTH) * _samplesPerCode];
gsl::span<float> _signal_E1C_secondary_span(_signal_E1C_secondary, static_cast<int32_t>(GALILEO_E1_C_SECONDARY_CODE_LENGTH) * _samplesPerCode);
for (uint32_t i = 0; i < static_cast<uint32_t>(GALILEO_E1_C_SECONDARY_CODE_LENGTH); i++) for (uint32_t i = 0; i < static_cast<uint32_t>(GALILEO_E1_C_SECONDARY_CODE_LENGTH); i++)
{ {
for (unsigned k = 0; k < _samplesPerCode; k++) for (unsigned k = 0; k < _samplesPerCode; k++)
{ {
_signal_E1C_secondary[i * _samplesPerCode + k] = _signal_E1[k] * (GALILEO_E1_C_SECONDARY_CODE.at(i) == '0' ? 1.0f : -1.0f); _signal_E1C_secondary_span[i * _samplesPerCode + k] = _signal_E1_span[k] * (GALILEO_E1_C_SECONDARY_CODE.at(i) == '0' ? 1.0f : -1.0f);
} }
} }
_samplesPerCode *= static_cast<int32_t>(GALILEO_E1_C_SECONDARY_CODE_LENGTH); _samplesPerCode *= static_cast<int32_t>(GALILEO_E1_C_SECONDARY_CODE_LENGTH);
delete[] _signal_E1; delete[] _signal_E1;
_signal_E1 = _signal_E1C_secondary; _signal_E1 = _signal_E1C_secondary_span.data();
} }
for (uint32_t i = 0; i < _samplesPerCode; i++) for (uint32_t i = 0; i < _samplesPerCode; i++)
{ {
_dest[(i + delay) % _samplesPerCode] = _signal_E1[i]; _dest[(i + delay) % _samplesPerCode] = _signal_E1_span[i];
} }
delete[] _signal_E1; delete[] _signal_E1;
@ -245,12 +246,12 @@ void galileo_e1_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, s
} }
auto* real_code = static_cast<float*>(volk_gnsssdr_malloc(_samplesPerCode * sizeof(float), volk_gnsssdr_get_alignment())); auto* real_code = static_cast<float*>(volk_gnsssdr_malloc(_samplesPerCode * sizeof(float), volk_gnsssdr_get_alignment()));
gsl::span<float> real_code_span(real_code, _samplesPerCode);
galileo_e1_code_gen_float_sampled(gsl::span<float>(real_code, _samplesPerCode), _Signal, _cboc, _prn, _fs, _chip_shift, _secondary_flag); galileo_e1_code_gen_float_sampled(real_code_span, _Signal, _cboc, _prn, _fs, _chip_shift, _secondary_flag);
for (uint32_t ii = 0; ii < _samplesPerCode; ++ii) for (uint32_t ii = 0; ii < _samplesPerCode; ++ii)
{ {
_dest[ii] = std::complex<float>(real_code[ii], 0.0f); _dest[ii] = std::complex<float>(real_code_span[ii], 0.0f);
} }
volk_gnsssdr_free(real_code); volk_gnsssdr_free(real_code);
} }

View File

@ -109,8 +109,8 @@ void galileo_e5_a_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest,
const int32_t _codeFreqBasis = GALILEO_E5A_CODE_CHIP_RATE_HZ; const int32_t _codeFreqBasis = GALILEO_E5A_CODE_CHIP_RATE_HZ;
auto* _code = new std::complex<float>[_codeLength](); auto* _code = new std::complex<float>[_codeLength]();
gsl::span<std::complex<float>> _code_span(_code, _codeLength);
galileo_e5_a_code_gen_complex_primary(gsl::span<std::complex<float>>(_code, _codeLength), _prn, _Signal); galileo_e5_a_code_gen_complex_primary(_code_span, _prn, _Signal);
_samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) / (static_cast<double>(_codeFreqBasis) / static_cast<double>(_codeLength))); _samplesPerCode = static_cast<uint32_t>(static_cast<double>(_fs) / (static_cast<double>(_codeFreqBasis) / static_cast<double>(_codeLength)));
@ -122,14 +122,14 @@ void galileo_e5_a_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest,
if (posix_memalign(reinterpret_cast<void**>(&_resampled_signal), 16, _samplesPerCode * sizeof(gr_complex)) == 0) if (posix_memalign(reinterpret_cast<void**>(&_resampled_signal), 16, _samplesPerCode * sizeof(gr_complex)) == 0)
{ {
}; };
resampler(gsl::span<std::complex<float>>(_code, _codeLength), gsl::span<std::complex<float>>(_resampled_signal, _samplesPerCode), _codeFreqBasis, _fs); // resamples code to fs resampler(_code_span, gsl::span<std::complex<float>>(_resampled_signal, _samplesPerCode), _codeFreqBasis, _fs); // resamples code to fs
delete[] _code; delete[] _code;
_code = _resampled_signal; _code = _resampled_signal;
} }
for (uint32_t i = 0; i < _samplesPerCode; i++) for (uint32_t i = 0; i < _samplesPerCode; i++)
{ {
_dest[(i + delay) % _samplesPerCode] = _code[i]; _dest[(i + delay) % _samplesPerCode] = _code_span[i];
} }
if (_fs != _codeFreqBasis) if (_fs != _codeFreqBasis)
{ {

View File

@ -54,105 +54,105 @@ void complex_exp_gen_conj(gsl::span<std::complex<float>> _dest, double _f, doubl
} }
void hex_to_binary_converter(int32_t* _dest, char _from) void hex_to_binary_converter(gsl::span<int32_t> _dest, char _from)
{ {
switch (_from) switch (_from)
{ {
case '0': case '0':
*(_dest) = 1; _dest[0] = 1;
*(_dest + 1) = 1; _dest[1] = 1;
*(_dest + 2) = 1; _dest[2] = 1;
*(_dest + 3) = 1; _dest[3] = 1;
break; break;
case '1': case '1':
*(_dest) = 1; _dest[0] = 1;
*(_dest + 1) = 1; _dest[1] = 1;
*(_dest + 2) = 1; _dest[2] = 1;
*(_dest + 3) = -1; _dest[3] = -1;
break; break;
case '2': case '2':
*(_dest) = 1; _dest[0] = 1;
*(_dest + 1) = 1; _dest[1] = 1;
*(_dest + 2) = -1; _dest[2] = -1;
*(_dest + 3) = 1; _dest[3] = 1;
break; break;
case '3': case '3':
*(_dest) = 1; _dest[0] = 1;
*(_dest + 1) = 1; _dest[1] = 1;
*(_dest + 2) = -1; _dest[2] = -1;
*(_dest + 3) = -1; _dest[3] = -1;
break; break;
case '4': case '4':
*(_dest) = 1; _dest[0] = 1;
*(_dest + 1) = -1; _dest[1] = -1;
*(_dest + 2) = 1; _dest[2] = 1;
*(_dest + 3) = 1; _dest[3] = 1;
break; break;
case '5': case '5':
*(_dest) = 1; _dest[0] = 1;
*(_dest + 1) = -1; _dest[1] = -1;
*(_dest + 2) = 1; _dest[2] = 1;
*(_dest + 3) = -1; _dest[3] = -1;
break; break;
case '6': case '6':
*(_dest) = 1; _dest[0] = 1;
*(_dest + 1) = -1; _dest[1] = -1;
*(_dest + 2) = -1; _dest[2] = -1;
*(_dest + 3) = 1; _dest[3] = 1;
break; break;
case '7': case '7':
*(_dest) = 1; _dest[0] = 1;
*(_dest + 1) = -1; _dest[1] = -1;
*(_dest + 2) = -1; _dest[2] = -1;
*(_dest + 3) = -1; _dest[3] = -1;
break; break;
case '8': case '8':
*(_dest) = -1; _dest[0] = -1;
*(_dest + 1) = 1; _dest[1] = 1;
*(_dest + 2) = 1; _dest[2] = 1;
*(_dest + 3) = 1; _dest[3] = 1;
break; break;
case '9': case '9':
*(_dest) = -1; _dest[0] = -1;
*(_dest + 1) = 1; _dest[1] = 1;
*(_dest + 2) = 1; _dest[2] = 1;
*(_dest + 3) = -1; _dest[3] = -1;
break; break;
case 'A': case 'A':
*(_dest) = -1; _dest[0] = -1;
*(_dest + 1) = 1; _dest[1] = 1;
*(_dest + 2) = -1; _dest[2] = -1;
*(_dest + 3) = 1; _dest[3] = 1;
break; break;
case 'B': case 'B':
*(_dest) = -1; _dest[0] = -1;
*(_dest + 1) = 1; _dest[1] = 1;
*(_dest + 2) = -1; _dest[2] = -1;
*(_dest + 3) = -1; _dest[3] = -1;
break; break;
case 'C': case 'C':
*(_dest) = -1; _dest[0] = -1;
*(_dest + 1) = -1; _dest[1] = -1;
*(_dest + 2) = 1; _dest[2] = 1;
*(_dest + 3) = 1; _dest[3] = 1;
break; break;
case 'D': case 'D':
*(_dest) = -1; _dest[0] = -1;
*(_dest + 1) = -1; _dest[1] = -1;
*(_dest + 2) = 1; _dest[2] = 1;
*(_dest + 3) = -1; _dest[3] = -1;
break; break;
case 'E': case 'E':
*(_dest) = -1; _dest[0] = -1;
*(_dest + 1) = -1; _dest[1] = -1;
*(_dest + 2) = -1; _dest[2] = -1;
*(_dest + 3) = 1; _dest[3] = 1;
break; break;
case 'F': case 'F':
*(_dest) = -1; _dest[0] = -1;
*(_dest + 1) = -1; _dest[1] = -1;
*(_dest + 2) = -1; _dest[2] = -1;
*(_dest + 3) = -1; _dest[3] = -1;
break; break;
} }
} }

View File

@ -63,7 +63,7 @@ void complex_exp_gen_conj(gsl::span<std::complex<float>> _dest, double _f, doubl
* to binary (the output are 4 ints with +1 or -1 values). * to binary (the output are 4 ints with +1 or -1 values).
* *
*/ */
void hex_to_binary_converter(int32_t* _dest, char _from); void hex_to_binary_converter(gsl::span<int32_t> _dest, char _from);
/*! /*!
* \brief This function resamples a sequence of float values. * \brief This function resamples a sequence of float values.

View File

@ -56,15 +56,15 @@ void gps_l2c_m_code(gsl::span<int32_t> _dest, uint32_t _prn)
void gps_l2c_m_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _prn) void gps_l2c_m_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _prn)
{ {
auto* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS];
gsl::span<int32_t> _code_span(_code, GPS_L2_M_CODE_LENGTH_CHIPS);
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
gps_l2c_m_code(gsl::span<int32_t>(_code, GPS_L2_M_CODE_LENGTH_CHIPS), _prn); gps_l2c_m_code(_code_span, _prn);
} }
for (int32_t i = 0; i < GPS_L2_M_CODE_LENGTH_CHIPS; i++) for (int32_t i = 0; i < GPS_L2_M_CODE_LENGTH_CHIPS; i++)
{ {
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[i], 0.0); _dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[i], 0.0);
} }
delete[] _code; delete[] _code;
@ -74,15 +74,15 @@ void gps_l2c_m_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _
void gps_l2c_m_code_gen_float(gsl::span<float> _dest, uint32_t _prn) void gps_l2c_m_code_gen_float(gsl::span<float> _dest, uint32_t _prn)
{ {
auto* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS];
gsl::span<int32_t> _code_span(_code, GPS_L2_M_CODE_LENGTH_CHIPS);
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
gps_l2c_m_code(gsl::span<int32_t>(_code, GPS_L2_M_CODE_LENGTH_CHIPS), _prn); gps_l2c_m_code(_code_span, _prn);
} }
for (int32_t i = 0; i < GPS_L2_M_CODE_LENGTH_CHIPS; i++) for (int32_t i = 0; i < GPS_L2_M_CODE_LENGTH_CHIPS; i++)
{ {
_dest[i] = 1.0 - 2.0 * static_cast<float>(_code[i]); _dest[i] = 1.0 - 2.0 * static_cast<float>(_code_span[i]);
} }
delete[] _code; delete[] _code;
@ -95,9 +95,10 @@ void gps_l2c_m_code_gen_float(gsl::span<float> _dest, uint32_t _prn)
void gps_l2c_m_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs) void gps_l2c_m_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs)
{ {
auto* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L2_M_CODE_LENGTH_CHIPS];
gsl::span<int32_t> _code_span(_code, GPS_L2_M_CODE_LENGTH_CHIPS);
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
gps_l2c_m_code(gsl::span<int32_t>(_code, GPS_L2_M_CODE_LENGTH_CHIPS), _prn); gps_l2c_m_code(_code_span, _prn);
} }
int32_t _samplesPerCode, _codeValueIndex; int32_t _samplesPerCode, _codeValueIndex;
@ -112,26 +113,22 @@ void gps_l2c_m_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, ui
_ts = 1.0 / static_cast<float>(_fs); // Sampling period in sec _ts = 1.0 / static_cast<float>(_fs); // Sampling period in sec
_tc = 1.0 / static_cast<float>(GPS_L2_M_CODE_RATE_HZ); // C/A chip period in sec _tc = 1.0 / static_cast<float>(GPS_L2_M_CODE_RATE_HZ); // C/A chip period in sec
//float aux;
for (int32_t i = 0; i < _samplesPerCode; i++) for (int32_t i = 0; i < _samplesPerCode; i++)
{ {
//=== Digitizing ======================================================= //=== Digitizing =======================================================
//--- Make index array to read L2C code values ------------------------- //--- Make index array to read L2C code values -------------------------
//TODO: Check this formula! Seems to start with an extra sample
_codeValueIndex = std::ceil((_ts * (static_cast<float>(i) + 1)) / _tc) - 1; _codeValueIndex = std::ceil((_ts * (static_cast<float>(i) + 1)) / _tc) - 1;
//aux = (_ts * (i + 1)) / _tc;
//_codeValueIndex = static_cast<int32_t>(static_cast<long>(aux)) - 1;
//--- Make the digitized version of the L2C code ----------------------- //--- Make the digitized version of the L2C code -----------------------
if (i == _samplesPerCode - 1) if (i == _samplesPerCode - 1)
{ {
//--- Correct the last index (due to number rounding issues) ----------- //--- Correct the last index (due to number rounding issues) -----------
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[_codeLength - 1], 0); _dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[_codeLength - 1], 0);
} }
else else
{ {
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[_codeValueIndex], 0); //repeat the chip -> upsample _dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[_codeValueIndex], 0); //repeat the chip -> upsample
} }
} }
delete[] _code; delete[] _code;

View File

@ -174,15 +174,15 @@ void make_l5q(gsl::span<int32_t> _dest, int32_t prn)
void gps_l5i_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _prn) void gps_l5i_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _prn)
{ {
auto* _code = new int32_t[GPS_L5I_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L5I_CODE_LENGTH_CHIPS];
gsl::span<int32_t> _code_span(_code, GPS_L5I_CODE_LENGTH_CHIPS);
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
make_l5i(gsl::span<int32_t>(_code, GPS_L5I_CODE_LENGTH_CHIPS), _prn - 1); make_l5i(_code_span, _prn - 1);
} }
for (int32_t i = 0; i < GPS_L5I_CODE_LENGTH_CHIPS; i++) for (int32_t i = 0; i < GPS_L5I_CODE_LENGTH_CHIPS; i++)
{ {
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[i], 0.0); _dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[i], 0.0);
} }
delete[] _code; delete[] _code;
@ -192,15 +192,15 @@ void gps_l5i_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _pr
void gps_l5i_code_gen_float(gsl::span<float> _dest, uint32_t _prn) void gps_l5i_code_gen_float(gsl::span<float> _dest, uint32_t _prn)
{ {
auto* _code = new int32_t[GPS_L5I_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L5I_CODE_LENGTH_CHIPS];
gsl::span<int32_t> _code_span(_code, GPS_L5I_CODE_LENGTH_CHIPS);
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
make_l5i(gsl::span<int32_t>(_code, GPS_L5I_CODE_LENGTH_CHIPS), _prn - 1); make_l5i(_code_span, _prn - 1);
} }
for (int32_t i = 0; i < GPS_L5I_CODE_LENGTH_CHIPS; i++) for (int32_t i = 0; i < GPS_L5I_CODE_LENGTH_CHIPS; i++)
{ {
_dest[i] = 1.0 - 2.0 * static_cast<float>(_code[i]); _dest[i] = 1.0 - 2.0 * static_cast<float>(_code_span[i]);
} }
delete[] _code; delete[] _code;
@ -213,9 +213,10 @@ void gps_l5i_code_gen_float(gsl::span<float> _dest, uint32_t _prn)
void gps_l5i_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs) void gps_l5i_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs)
{ {
auto* _code = new int32_t[GPS_L5I_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L5I_CODE_LENGTH_CHIPS];
gsl::span<int32_t> _code_span(_code, GPS_L5I_CODE_LENGTH_CHIPS);
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
make_l5i(gsl::span<int32_t>(_code, GPS_L5I_CODE_LENGTH_CHIPS), _prn - 1); make_l5i(_code_span, _prn - 1);
} }
int32_t _samplesPerCode, _codeValueIndex; int32_t _samplesPerCode, _codeValueIndex;
@ -241,11 +242,11 @@ void gps_l5i_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint
if (i == _samplesPerCode - 1) if (i == _samplesPerCode - 1)
{ {
//--- Correct the last index (due to number rounding issues) ----------- //--- Correct the last index (due to number rounding issues) -----------
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[_codeLength - 1], 0.0); _dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[_codeLength - 1], 0.0);
} }
else else
{ {
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[_codeValueIndex], 0.0); // repeat the chip -> upsample _dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[_codeValueIndex], 0.0); // repeat the chip -> upsample
} }
} }
delete[] _code; delete[] _code;
@ -255,15 +256,15 @@ void gps_l5i_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint
void gps_l5q_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _prn) void gps_l5q_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _prn)
{ {
auto* _code = new int32_t[GPS_L5Q_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L5Q_CODE_LENGTH_CHIPS];
gsl::span<int32_t> _code_span(_code, GPS_L5Q_CODE_LENGTH_CHIPS);
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
make_l5q(gsl::span<int32_t>(_code, GPS_L5Q_CODE_LENGTH_CHIPS), _prn - 1); make_l5q(_code_span, _prn - 1);
} }
for (int32_t i = 0; i < GPS_L5Q_CODE_LENGTH_CHIPS; i++) for (int32_t i = 0; i < GPS_L5Q_CODE_LENGTH_CHIPS; i++)
{ {
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[i], 0.0); _dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[i], 0.0);
} }
delete[] _code; delete[] _code;
@ -273,15 +274,15 @@ void gps_l5q_code_gen_complex(gsl::span<std::complex<float>> _dest, uint32_t _pr
void gps_l5q_code_gen_float(gsl::span<float> _dest, uint32_t _prn) void gps_l5q_code_gen_float(gsl::span<float> _dest, uint32_t _prn)
{ {
auto* _code = new int32_t[GPS_L5Q_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L5Q_CODE_LENGTH_CHIPS];
gsl::span<int32_t> _code_span(_code, GPS_L5Q_CODE_LENGTH_CHIPS);
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
make_l5q(gsl::span<int32_t>(_code, GPS_L5Q_CODE_LENGTH_CHIPS), _prn - 1); make_l5q(_code_span, _prn - 1);
} }
for (int32_t i = 0; i < GPS_L5Q_CODE_LENGTH_CHIPS; i++) for (int32_t i = 0; i < GPS_L5Q_CODE_LENGTH_CHIPS; i++)
{ {
_dest[i] = 1.0 - 2.0 * static_cast<float>(_code[i]); _dest[i] = 1.0 - 2.0 * static_cast<float>(_code_span[i]);
} }
delete[] _code; delete[] _code;
@ -294,9 +295,10 @@ void gps_l5q_code_gen_float(gsl::span<float> _dest, uint32_t _prn)
void gps_l5q_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs) void gps_l5q_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint32_t _prn, int32_t _fs)
{ {
auto* _code = new int32_t[GPS_L5Q_CODE_LENGTH_CHIPS]; auto* _code = new int32_t[GPS_L5Q_CODE_LENGTH_CHIPS];
gsl::span<int32_t> _code_span(_code, GPS_L5Q_CODE_LENGTH_CHIPS);
if (_prn > 0 and _prn < 51) if (_prn > 0 and _prn < 51)
{ {
make_l5q(gsl::span<int32_t>(_code, GPS_L5Q_CODE_LENGTH_CHIPS), _prn - 1); make_l5q(_code_span, _prn - 1);
} }
int32_t _samplesPerCode, _codeValueIndex; int32_t _samplesPerCode, _codeValueIndex;
@ -323,11 +325,11 @@ void gps_l5q_code_gen_complex_sampled(gsl::span<std::complex<float>> _dest, uint
if (i == _samplesPerCode - 1) if (i == _samplesPerCode - 1)
{ {
//--- Correct the last index (due to number rounding issues) ----------- //--- Correct the last index (due to number rounding issues) -----------
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[_codeLength - 1], 0); _dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[_codeLength - 1], 0);
} }
else else
{ {
_dest[i] = std::complex<float>(1.0 - 2.0 * _code[_codeValueIndex], 0); // repeat the chip -> upsample _dest[i] = std::complex<float>(1.0 - 2.0 * _code_span[_codeValueIndex], 0); // repeat the chip -> upsample
} }
} }
delete[] _code; delete[] _code;