mirror of
				https://github.com/gnss-sdr/gnss-sdr
				synced 2025-11-04 09:13:05 +00:00 
			
		
		
		
	Merge branch 'glamountain-kf19-next' into next
This commit is contained in:
		@@ -33,7 +33,7 @@ set(TRACKING_LIB_SOURCES
 | 
			
		||||
    cpu_multicorrelator.cc
 | 
			
		||||
    cpu_multicorrelator_real_codes.cc
 | 
			
		||||
    cpu_multicorrelator_16sc.cc
 | 
			
		||||
    cubature_filter.cc
 | 
			
		||||
    nonlinear_tracking.cc
 | 
			
		||||
    lock_detectors.cc
 | 
			
		||||
    tcp_communication.cc
 | 
			
		||||
    tcp_packet_data.cc
 | 
			
		||||
@@ -51,7 +51,7 @@ set(TRACKING_LIB_HEADERS
 | 
			
		||||
    cpu_multicorrelator.h
 | 
			
		||||
    cpu_multicorrelator_real_codes.h
 | 
			
		||||
    cpu_multicorrelator_16sc.h
 | 
			
		||||
    cubature_filter.h
 | 
			
		||||
    nonlinear_tracking.h
 | 
			
		||||
    lock_detectors.h
 | 
			
		||||
    tcp_communication.h
 | 
			
		||||
    tcp_packet_data.h
 | 
			
		||||
 
 | 
			
		||||
@@ -1,199 +0,0 @@
 | 
			
		||||
/*!
 | 
			
		||||
 * \file cubature_filter.cc
 | 
			
		||||
 * \brief Interface of a library with Bayesian noise statistic estimation
 | 
			
		||||
 *
 | 
			
		||||
 * Cubature_Filter implements the functionality of the Cubature Kalman
 | 
			
		||||
 * Filter, which uses multidimensional cubature rules to estimate the
 | 
			
		||||
 * time evolution of a nonlinear system.
 | 
			
		||||
 *
 | 
			
		||||
 * [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE
 | 
			
		||||
 * Transactions on Automatic Control, 54(6):1254–1269,2009.
 | 
			
		||||
 *
 | 
			
		||||
 * \authors <ul>
 | 
			
		||||
 *          <li> Gerald LaMountain, 2019. gerald(at)ece.neu.edu
 | 
			
		||||
 *          <li> Jordi Vila-Valls 2019. jvila(at)cttc.es
 | 
			
		||||
 *          </ul>
 | 
			
		||||
 * -------------------------------------------------------------------------
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2010-2019  (see AUTHORS file for a list of contributors)
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is a software defined Global Navigation
 | 
			
		||||
 *          Satellite Systems receiver
 | 
			
		||||
 *
 | 
			
		||||
 * This file is part of GNSS-SDR.
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is free software: you can redistribute it and/or modify
 | 
			
		||||
 * it under the terms of the GNU General Public License as published by
 | 
			
		||||
 * the Free Software Foundation, either version 3 of the License, or
 | 
			
		||||
 * (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is distributed in the hope that it will be useful,
 | 
			
		||||
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
 * GNU General Public License for more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License
 | 
			
		||||
 * along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------------
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "cubature_filter.h"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Cubature_filter::Cubature_filter()
 | 
			
		||||
{
 | 
			
		||||
    int nx = 1;
 | 
			
		||||
    x_pred_out = arma::zeros(nx, 1);
 | 
			
		||||
    P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
 | 
			
		||||
 | 
			
		||||
    x_est = x_pred_out;
 | 
			
		||||
    P_x_est = P_x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Cubature_filter::Cubature_filter(int nx)
 | 
			
		||||
{
 | 
			
		||||
    x_pred_out = arma::zeros(nx, 1);
 | 
			
		||||
    P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
 | 
			
		||||
 | 
			
		||||
    x_est = x_pred_out;
 | 
			
		||||
    P_x_est = P_x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Cubature_filter::Cubature_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
 | 
			
		||||
{
 | 
			
		||||
    x_pred_out = x_pred_0;
 | 
			
		||||
    P_x_pred_out = P_x_pred_0;
 | 
			
		||||
 | 
			
		||||
    x_est = x_pred_out;
 | 
			
		||||
    P_x_est = P_x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Cubature_filter::~Cubature_filter() = default;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void Cubature_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
 | 
			
		||||
{
 | 
			
		||||
    x_pred_out = x_pred_0;
 | 
			
		||||
    P_x_pred_out = P_x_pred_0;
 | 
			
		||||
 | 
			
		||||
    x_est = x_pred_out;
 | 
			
		||||
    P_x_est = P_x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Perform the prediction step of the cubature Kalman filter
 | 
			
		||||
 */
 | 
			
		||||
void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance)
 | 
			
		||||
{
 | 
			
		||||
    // Compute number of cubature points
 | 
			
		||||
    int nx = x_post.n_elem;
 | 
			
		||||
    int np = 2 * nx;
 | 
			
		||||
 | 
			
		||||
    // Generator Matrix
 | 
			
		||||
    arma::mat gen_one = arma::join_horiz(arma::eye(nx, nx), -1.0 * arma::eye(nx, nx));
 | 
			
		||||
 | 
			
		||||
    // Initialize predicted mean and covariance
 | 
			
		||||
    arma::vec x_pred = arma::zeros(nx, 1);
 | 
			
		||||
    arma::mat P_x_pred = arma::zeros(nx, nx);
 | 
			
		||||
 | 
			
		||||
    // Factorize posterior covariance
 | 
			
		||||
    arma::mat Sm_post = arma::chol(P_x_post, "lower");
 | 
			
		||||
 | 
			
		||||
    // Propagate and evaluate cubature points
 | 
			
		||||
    arma::vec Xi_post;
 | 
			
		||||
    arma::vec Xi_pred;
 | 
			
		||||
 | 
			
		||||
    for (uint8_t i = 0; i < np; i++)
 | 
			
		||||
        {
 | 
			
		||||
            Xi_post = Sm_post * (std::sqrt(static_cast<float>(np) / 2.0) * gen_one.col(i)) + x_post;
 | 
			
		||||
            Xi_pred = (*transition_fcn)(Xi_post);
 | 
			
		||||
 | 
			
		||||
            x_pred = x_pred + Xi_pred;
 | 
			
		||||
            P_x_pred = P_x_pred + Xi_pred * Xi_pred.t();
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    // Estimate predicted state and error covariance
 | 
			
		||||
    x_pred = x_pred / static_cast<float>(np);
 | 
			
		||||
    P_x_pred = P_x_pred / static_cast<float>(np) - x_pred * x_pred.t() + noise_covariance;
 | 
			
		||||
 | 
			
		||||
    // Store predicted state and error covariance
 | 
			
		||||
    x_pred_out = x_pred;
 | 
			
		||||
    P_x_pred_out = P_x_pred;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Perform the update step of the cubature Kalman filter
 | 
			
		||||
 */
 | 
			
		||||
void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance)
 | 
			
		||||
{
 | 
			
		||||
    // Compute number of cubature points
 | 
			
		||||
    int nx = x_pred.n_elem;
 | 
			
		||||
    int nz = z_upd.n_elem;
 | 
			
		||||
    int np = 2 * nx;
 | 
			
		||||
 | 
			
		||||
    // Generator Matrix
 | 
			
		||||
    arma::mat gen_one = arma::join_horiz(arma::eye(nx, nx), -1.0 * arma::eye(nx, nx));
 | 
			
		||||
 | 
			
		||||
    // Evaluate predicted measurement and covariances
 | 
			
		||||
    arma::mat z_pred = arma::zeros(nz, 1);
 | 
			
		||||
    arma::mat P_zz_pred = arma::zeros(nz, nz);
 | 
			
		||||
    arma::mat P_xz_pred = arma::zeros(nx, nz);
 | 
			
		||||
 | 
			
		||||
    // Factorize predicted covariance
 | 
			
		||||
    arma::mat Sm_pred = arma::chol(P_x_pred, "lower");
 | 
			
		||||
 | 
			
		||||
    // Propagate and evaluate cubature points
 | 
			
		||||
    arma::vec Xi_pred;
 | 
			
		||||
    arma::vec Zi_pred;
 | 
			
		||||
    for (uint8_t i = 0; i < np; i++)
 | 
			
		||||
        {
 | 
			
		||||
            Xi_pred = Sm_pred * (std::sqrt(static_cast<float>(np) / 2.0) * gen_one.col(i)) + x_pred;
 | 
			
		||||
            Zi_pred = (*measurement_fcn)(Xi_pred);
 | 
			
		||||
 | 
			
		||||
            z_pred = z_pred + Zi_pred;
 | 
			
		||||
            P_zz_pred = P_zz_pred + Zi_pred * Zi_pred.t();
 | 
			
		||||
            P_xz_pred = P_xz_pred + Xi_pred * Zi_pred.t();
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    // Estimate measurement covariance and cross covariances
 | 
			
		||||
    z_pred = z_pred / static_cast<float>(np);
 | 
			
		||||
    P_zz_pred = P_zz_pred / static_cast<float>(np) - z_pred * z_pred.t() + noise_covariance;
 | 
			
		||||
    P_xz_pred = P_xz_pred / static_cast<float>(np) - x_pred * z_pred.t();
 | 
			
		||||
 | 
			
		||||
    // Estimate cubature Kalman gain
 | 
			
		||||
    arma::mat W_k = P_xz_pred * arma::inv(P_zz_pred);
 | 
			
		||||
 | 
			
		||||
    // Estimate and store the updated state and error covariance
 | 
			
		||||
    x_est = x_pred + W_k * (z_upd - z_pred);
 | 
			
		||||
    P_x_est = P_x_pred - W_k * P_zz_pred * W_k.t();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
arma::mat Cubature_filter::get_x_pred() const
 | 
			
		||||
{
 | 
			
		||||
    return x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
arma::mat Cubature_filter::get_P_x_pred() const
 | 
			
		||||
{
 | 
			
		||||
    return P_x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
arma::mat Cubature_filter::get_x_est() const
 | 
			
		||||
{
 | 
			
		||||
    return x_est;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
arma::mat Cubature_filter::get_P_x_est() const
 | 
			
		||||
{
 | 
			
		||||
    return P_x_est;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										390
									
								
								src/algorithms/tracking/libs/nonlinear_tracking.cc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										390
									
								
								src/algorithms/tracking/libs/nonlinear_tracking.cc
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,390 @@
 | 
			
		||||
/*!
 | 
			
		||||
 * \file cubature_filter.cc
 | 
			
		||||
 * \brief Interface of a library for nonlinear tracking algorithms
 | 
			
		||||
 *
 | 
			
		||||
 * Cubature_Filter implements the functionality of the Cubature Kalman
 | 
			
		||||
 * Filter, which uses multidimensional cubature rules to estimate the
 | 
			
		||||
 * time evolution of a nonlinear system. Unscented_filter implements
 | 
			
		||||
 * an Unscented Kalman Filter which uses Unscented Transform rules to
 | 
			
		||||
 * perform a similar estimation.
 | 
			
		||||
 *
 | 
			
		||||
 * [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE
 | 
			
		||||
 * Transactions on Automatic Control, 54(6):1254–1269,2009.
 | 
			
		||||
 *
 | 
			
		||||
 * \authors <ul>
 | 
			
		||||
 *          <li> Gerald LaMountain, 2019. gerald(at)ece.neu.edu
 | 
			
		||||
 *          <li> Jordi Vila-Valls 2019. jvila(at)cttc.es
 | 
			
		||||
 *          </ul>
 | 
			
		||||
 * -------------------------------------------------------------------------
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2010-2019  (see AUTHORS file for a list of contributors)
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is a software defined Global Navigation
 | 
			
		||||
 *          Satellite Systems receiver
 | 
			
		||||
 *
 | 
			
		||||
 * This file is part of GNSS-SDR.
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is free software: you can redistribute it and/or modify
 | 
			
		||||
 * it under the terms of the GNU General Public License as published by
 | 
			
		||||
 * the Free Software Foundation, either version 3 of the License, or
 | 
			
		||||
 * (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is distributed in the hope that it will be useful,
 | 
			
		||||
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
 * GNU General Public License for more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License
 | 
			
		||||
 * along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------------
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "nonlinear_tracking.h"
 | 
			
		||||
 | 
			
		||||
/***************** CUBATURE KALMAN FILTER *****************/
 | 
			
		||||
 | 
			
		||||
Cubature_filter::Cubature_filter()
 | 
			
		||||
{
 | 
			
		||||
    int nx = 1;
 | 
			
		||||
    x_pred_out = arma::zeros(nx, 1);
 | 
			
		||||
    P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
 | 
			
		||||
 | 
			
		||||
    x_est = x_pred_out;
 | 
			
		||||
    P_x_est = P_x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Cubature_filter::Cubature_filter(int nx)
 | 
			
		||||
{
 | 
			
		||||
    x_pred_out = arma::zeros(nx, 1);
 | 
			
		||||
    P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
 | 
			
		||||
 | 
			
		||||
    x_est = x_pred_out;
 | 
			
		||||
    P_x_est = P_x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Cubature_filter::Cubature_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
 | 
			
		||||
{
 | 
			
		||||
    x_pred_out = x_pred_0;
 | 
			
		||||
    P_x_pred_out = P_x_pred_0;
 | 
			
		||||
 | 
			
		||||
    x_est = x_pred_out;
 | 
			
		||||
    P_x_est = P_x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Cubature_filter::~Cubature_filter() = default;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void Cubature_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
 | 
			
		||||
{
 | 
			
		||||
    x_pred_out = x_pred_0;
 | 
			
		||||
    P_x_pred_out = P_x_pred_0;
 | 
			
		||||
 | 
			
		||||
    x_est = x_pred_out;
 | 
			
		||||
    P_x_est = P_x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Perform the prediction step of the cubature Kalman filter
 | 
			
		||||
 */
 | 
			
		||||
void Cubature_filter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance)
 | 
			
		||||
{
 | 
			
		||||
    // Compute number of cubature points
 | 
			
		||||
    int nx = x_post.n_elem;
 | 
			
		||||
    int np = 2 * nx;
 | 
			
		||||
 | 
			
		||||
    // Generator Matrix
 | 
			
		||||
    arma::mat gen_one = arma::join_horiz(arma::eye(nx, nx), -1.0 * arma::eye(nx, nx));
 | 
			
		||||
 | 
			
		||||
    // Initialize predicted mean and covariance
 | 
			
		||||
    arma::vec x_pred = arma::zeros(nx, 1);
 | 
			
		||||
    arma::mat P_x_pred = arma::zeros(nx, nx);
 | 
			
		||||
 | 
			
		||||
    // Factorize posterior covariance
 | 
			
		||||
    arma::mat Sm_post = arma::chol(P_x_post, "lower");
 | 
			
		||||
 | 
			
		||||
    // Propagate and evaluate cubature points
 | 
			
		||||
    arma::vec Xi_post;
 | 
			
		||||
    arma::vec Xi_pred;
 | 
			
		||||
 | 
			
		||||
    for (uint8_t i = 0; i < np; i++)
 | 
			
		||||
        {
 | 
			
		||||
            Xi_post = Sm_post * (std::sqrt(static_cast<float>(np) / 2.0) * gen_one.col(i)) + x_post;
 | 
			
		||||
            Xi_pred = (*transition_fcn)(Xi_post);
 | 
			
		||||
 | 
			
		||||
            x_pred = x_pred + Xi_pred;
 | 
			
		||||
            P_x_pred = P_x_pred + Xi_pred * Xi_pred.t();
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    // Compute predicted mean and error covariance
 | 
			
		||||
    x_pred = x_pred / static_cast<float>(np);
 | 
			
		||||
    P_x_pred = P_x_pred / static_cast<float>(np) - x_pred * x_pred.t() + noise_covariance;
 | 
			
		||||
 | 
			
		||||
    // Store predicted mean and error covariance
 | 
			
		||||
    x_pred_out = x_pred;
 | 
			
		||||
    P_x_pred_out = P_x_pred;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Perform the update step of the cubature Kalman filter
 | 
			
		||||
 */
 | 
			
		||||
void Cubature_filter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance)
 | 
			
		||||
{
 | 
			
		||||
    // Compute number of cubature points
 | 
			
		||||
    int nx = x_pred.n_elem;
 | 
			
		||||
    int nz = z_upd.n_elem;
 | 
			
		||||
    int np = 2 * nx;
 | 
			
		||||
 | 
			
		||||
    // Generator Matrix
 | 
			
		||||
    arma::mat gen_one = arma::join_horiz(arma::eye(nx, nx), -1.0 * arma::eye(nx, nx));
 | 
			
		||||
 | 
			
		||||
    // Initialize estimated predicted measurement and covariances
 | 
			
		||||
    arma::mat z_pred = arma::zeros(nz, 1);
 | 
			
		||||
    arma::mat P_zz_pred = arma::zeros(nz, nz);
 | 
			
		||||
    arma::mat P_xz_pred = arma::zeros(nx, nz);
 | 
			
		||||
 | 
			
		||||
    // Factorize predicted covariance
 | 
			
		||||
    arma::mat Sm_pred = arma::chol(P_x_pred, "lower");
 | 
			
		||||
 | 
			
		||||
    // Propagate and evaluate cubature points
 | 
			
		||||
    arma::vec Xi_pred;
 | 
			
		||||
    arma::vec Zi_pred;
 | 
			
		||||
    for (uint8_t i = 0; i < np; i++)
 | 
			
		||||
        {
 | 
			
		||||
            Xi_pred = Sm_pred * (std::sqrt(static_cast<float>(np) / 2.0) * gen_one.col(i)) + x_pred;
 | 
			
		||||
            Zi_pred = (*measurement_fcn)(Xi_pred);
 | 
			
		||||
 | 
			
		||||
            z_pred = z_pred + Zi_pred;
 | 
			
		||||
            P_zz_pred = P_zz_pred + Zi_pred * Zi_pred.t();
 | 
			
		||||
            P_xz_pred = P_xz_pred + Xi_pred * Zi_pred.t();
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    // Compute measurement mean, covariance and cross covariance
 | 
			
		||||
    z_pred = z_pred / static_cast<float>(np);
 | 
			
		||||
    P_zz_pred = P_zz_pred / static_cast<float>(np) - z_pred * z_pred.t() + noise_covariance;
 | 
			
		||||
    P_xz_pred = P_xz_pred / static_cast<float>(np) - x_pred * z_pred.t();
 | 
			
		||||
 | 
			
		||||
    // Compute cubature Kalman gain
 | 
			
		||||
    arma::mat W_k = P_xz_pred * arma::inv(P_zz_pred);
 | 
			
		||||
 | 
			
		||||
    // Compute and store the updated mean and error covariance
 | 
			
		||||
    x_est = x_pred + W_k * (z_upd - z_pred);
 | 
			
		||||
    P_x_est = P_x_pred - W_k * P_zz_pred * W_k.t();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
arma::mat Cubature_filter::get_x_pred() const
 | 
			
		||||
{
 | 
			
		||||
    return x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
arma::mat Cubature_filter::get_P_x_pred() const
 | 
			
		||||
{
 | 
			
		||||
    return P_x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
arma::mat Cubature_filter::get_x_est() const
 | 
			
		||||
{
 | 
			
		||||
    return x_est;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
arma::mat Cubature_filter::get_P_x_est() const
 | 
			
		||||
{
 | 
			
		||||
    return P_x_est;
 | 
			
		||||
}
 | 
			
		||||
/***************** END CUBATURE KALMAN FILTER *****************/
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/***************** UNSCENTED KALMAN FILTER *****************/
 | 
			
		||||
 | 
			
		||||
Unscented_filter::Unscented_filter()
 | 
			
		||||
{
 | 
			
		||||
    int nx = 1;
 | 
			
		||||
    x_pred_out = arma::zeros(nx, 1);
 | 
			
		||||
    P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
 | 
			
		||||
 | 
			
		||||
    x_est = x_pred_out;
 | 
			
		||||
    P_x_est = P_x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Unscented_filter::Unscented_filter(int nx)
 | 
			
		||||
{
 | 
			
		||||
    x_pred_out = arma::zeros(nx, 1);
 | 
			
		||||
    P_x_pred_out = arma::eye(nx, nx) * (nx + 1);
 | 
			
		||||
 | 
			
		||||
    x_est = x_pred_out;
 | 
			
		||||
    P_x_est = P_x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Unscented_filter::Unscented_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0)
 | 
			
		||||
{
 | 
			
		||||
    x_pred_out = x_pred_0;
 | 
			
		||||
    P_x_pred_out = P_x_pred_0;
 | 
			
		||||
 | 
			
		||||
    x_est = x_pred_out;
 | 
			
		||||
    P_x_est = P_x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Unscented_filter::~Unscented_filter() = default;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void Unscented_filter::initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0)
 | 
			
		||||
{
 | 
			
		||||
    x_pred_out = x_pred_0;
 | 
			
		||||
    P_x_pred_out = P_x_pred_0;
 | 
			
		||||
 | 
			
		||||
    x_est = x_pred_out;
 | 
			
		||||
    P_x_est = P_x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Perform the prediction step of the Unscented Kalman filter
 | 
			
		||||
 */
 | 
			
		||||
void Unscented_filter::predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance)
 | 
			
		||||
{
 | 
			
		||||
    // Compute number of sigma points
 | 
			
		||||
    int nx = x_post.n_elem;
 | 
			
		||||
    int np = 2 * nx + 1;
 | 
			
		||||
 | 
			
		||||
    float alpha = 0.001;
 | 
			
		||||
    float kappa = 0.0;
 | 
			
		||||
    float beta = 2.0;
 | 
			
		||||
 | 
			
		||||
    float lambda = std::pow(alpha, 2.0) * (static_cast<float>(nx) + kappa) - static_cast<float>(nx);
 | 
			
		||||
 | 
			
		||||
    // Compute UT Weights
 | 
			
		||||
    float W0_m = lambda / (static_cast<float>(nx) + lambda);
 | 
			
		||||
    float W0_c = lambda / (static_cast<float>(nx) + lambda) + (1 - std::pow(alpha, 2.0) + beta);
 | 
			
		||||
    float Wi_m = 1.0 / (2.0 * (static_cast<float>(nx) + lambda));
 | 
			
		||||
 | 
			
		||||
    // Propagate and evaluate sigma points
 | 
			
		||||
    arma::mat Xi_fact = arma::zeros(nx, nx);
 | 
			
		||||
    arma::mat Xi_post = arma::zeros(nx, np);
 | 
			
		||||
    arma::mat Xi_pred = arma::zeros(nx, np);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    Xi_post.col(0) = x_post;
 | 
			
		||||
    Xi_pred.col(0) = (*transition_fcn)(Xi_post.col(0));
 | 
			
		||||
    for (uint8_t i = 1; i <= nx; i++)
 | 
			
		||||
        {
 | 
			
		||||
            Xi_fact = std::sqrt(static_cast<float>(nx) + lambda) * arma::sqrtmat_sympd(P_x_post);
 | 
			
		||||
            Xi_post.col(i) = x_post + Xi_fact.col(i - 1);
 | 
			
		||||
            Xi_post.col(i + nx) = x_post - Xi_fact.col(i - 1);
 | 
			
		||||
 | 
			
		||||
            Xi_pred.col(i) = (*transition_fcn)(Xi_post.col(i));
 | 
			
		||||
            Xi_pred.col(i + nx) = (*transition_fcn)(Xi_post.col(i + nx));
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    // Compute predicted mean
 | 
			
		||||
    arma::vec x_pred = W0_m * Xi_pred.col(0) + Wi_m * arma::sum(Xi_pred.cols(1, np - 1), 1);
 | 
			
		||||
 | 
			
		||||
    // Compute predicted error covariance
 | 
			
		||||
    arma::mat P_x_pred = W0_c * ((Xi_pred.col(0) - x_pred) * (Xi_pred.col(0).t() - x_pred.t()));
 | 
			
		||||
    for (uint8_t i = 1; i < np; i++)
 | 
			
		||||
        {
 | 
			
		||||
            P_x_pred = P_x_pred + Wi_m * ((Xi_pred.col(i) - x_pred) * (Xi_pred.col(i).t() - x_pred.t()));
 | 
			
		||||
        }
 | 
			
		||||
    P_x_pred = P_x_pred + noise_covariance;
 | 
			
		||||
 | 
			
		||||
    // Store predicted mean and error covariance
 | 
			
		||||
    x_pred_out = x_pred;
 | 
			
		||||
    P_x_pred_out = P_x_pred;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Perform the update step of the Unscented Kalman filter
 | 
			
		||||
 */
 | 
			
		||||
void Unscented_filter::update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance)
 | 
			
		||||
{
 | 
			
		||||
    // Compute number of sigma points
 | 
			
		||||
    int nx = x_pred.n_elem;
 | 
			
		||||
    int nz = z_upd.n_elem;
 | 
			
		||||
    int np = 2 * nx + 1;
 | 
			
		||||
 | 
			
		||||
    float alpha = 0.001;
 | 
			
		||||
    float kappa = 0.0;
 | 
			
		||||
    float beta = 2.0;
 | 
			
		||||
 | 
			
		||||
    float lambda = std::pow(alpha, 2.0) * (static_cast<float>(nx) + kappa) - static_cast<float>(nx);
 | 
			
		||||
 | 
			
		||||
    // Compute UT Weights
 | 
			
		||||
    float W0_m = lambda / (static_cast<float>(nx) + lambda);
 | 
			
		||||
    float W0_c = lambda / (static_cast<float>(nx) + lambda) + (1.0 - std::pow(alpha, 2.0) + beta);
 | 
			
		||||
    float Wi_m = 1.0 / (2.0 * (static_cast<float>(nx) + lambda));
 | 
			
		||||
 | 
			
		||||
    // Propagate and evaluate sigma points
 | 
			
		||||
    arma::mat Xi_fact = arma::zeros(nx, nx);
 | 
			
		||||
    arma::mat Xi_pred = arma::zeros(nx, np);
 | 
			
		||||
    arma::mat Zi_pred = arma::zeros(nz, np);
 | 
			
		||||
 | 
			
		||||
    Xi_pred.col(0) = x_pred;
 | 
			
		||||
    Zi_pred.col(0) = (*measurement_fcn)(Xi_pred.col(0));
 | 
			
		||||
    for (uint8_t i = 1; i <= nx; i++)
 | 
			
		||||
        {
 | 
			
		||||
            Xi_fact = std::sqrt(static_cast<float>(nx) + lambda) * arma::sqrtmat_sympd(P_x_pred);
 | 
			
		||||
            Xi_pred.col(i) = x_pred + Xi_fact.col(i - 1);
 | 
			
		||||
            Xi_pred.col(i + nx) = x_pred - Xi_fact.col(i - 1);
 | 
			
		||||
 | 
			
		||||
            Zi_pred.col(i) = (*measurement_fcn)(Xi_pred.col(i));
 | 
			
		||||
            Zi_pred.col(i + nx) = (*measurement_fcn)(Xi_pred.col(i + nx));
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    // Compute measurement mean
 | 
			
		||||
    arma::mat z_pred = W0_m * Zi_pred.col(0) + Wi_m * arma::sum(Zi_pred.cols(1, np - 1), 1);
 | 
			
		||||
 | 
			
		||||
    // Compute measurement covariance and cross covariance
 | 
			
		||||
    arma::mat P_zz_pred = W0_c * ((Zi_pred.col(0) - z_pred) * (Zi_pred.col(0).t() - z_pred.t()));
 | 
			
		||||
    arma::mat P_xz_pred = W0_c * ((Xi_pred.col(0) - x_pred) * (Zi_pred.col(0).t() - z_pred.t()));
 | 
			
		||||
    for (uint8_t i = 0; i < np; i++)
 | 
			
		||||
        {
 | 
			
		||||
            P_zz_pred = P_zz_pred + Wi_m * ((Zi_pred.col(i) - z_pred) * (Zi_pred.col(i).t() - z_pred.t()));
 | 
			
		||||
            P_xz_pred = P_xz_pred + Wi_m * ((Xi_pred.col(i) - x_pred) * (Zi_pred.col(i).t() - z_pred.t()));
 | 
			
		||||
        }
 | 
			
		||||
    P_zz_pred = P_zz_pred + noise_covariance;
 | 
			
		||||
 | 
			
		||||
    // Estimate cubature Kalman gain
 | 
			
		||||
    arma::mat W_k = P_xz_pred * arma::inv(P_zz_pred);
 | 
			
		||||
 | 
			
		||||
    // Estimate and store the updated mean and error covariance
 | 
			
		||||
    x_est = x_pred + W_k * (z_upd - z_pred);
 | 
			
		||||
    P_x_est = P_x_pred - W_k * P_zz_pred * W_k.t();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
arma::mat Unscented_filter::get_x_pred() const
 | 
			
		||||
{
 | 
			
		||||
    return x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
arma::mat Unscented_filter::get_P_x_pred() const
 | 
			
		||||
{
 | 
			
		||||
    return P_x_pred_out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
arma::mat Unscented_filter::get_x_est() const
 | 
			
		||||
{
 | 
			
		||||
    return x_est;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
arma::mat Unscented_filter::get_P_x_est() const
 | 
			
		||||
{
 | 
			
		||||
    return P_x_est;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/***************** END UNSCENTED KALMAN FILTER *****************/
 | 
			
		||||
@@ -1,10 +1,12 @@
 | 
			
		||||
/*!
 | 
			
		||||
 * \file cubature_filter.h
 | 
			
		||||
 * \brief Interface of a library with Bayesian noise statistic estimation
 | 
			
		||||
 * \file nonlinear_tracking.h
 | 
			
		||||
 * \brief Interface of a library for nonlinear tracking algorithms
 | 
			
		||||
 *
 | 
			
		||||
 * Cubature_Filter implements the functionality of the Cubature Kalman
 | 
			
		||||
 * Filter, which uses multidimensional cubature rules to estimate the
 | 
			
		||||
 * time evolution of a nonlinear system.
 | 
			
		||||
 * time evolution of a nonlinear system. Unscented_filter implements
 | 
			
		||||
 * an Unscented Kalman Filter which uses Unscented Transform rules to
 | 
			
		||||
 * perform a similar estimation.
 | 
			
		||||
 *
 | 
			
		||||
 * [1] I Arasaratnam and S Haykin. Cubature kalman filters. IEEE
 | 
			
		||||
 * Transactions on Automatic Control, 54(6):1254–1269,2009.
 | 
			
		||||
@@ -38,17 +40,18 @@
 | 
			
		||||
 * -------------------------------------------------------------------------
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#ifndef GNSS_SDR_CUBATURE_FILTER_H_
 | 
			
		||||
#define GNSS_SDR_CUBATURE_FILTER_H_
 | 
			
		||||
#ifndef GNSS_SDR_NONLINEAR_TRACKING_H_
 | 
			
		||||
#define GNSS_SDR_NONLINEAR_TRACKING_H_
 | 
			
		||||
 | 
			
		||||
#include <armadillo>
 | 
			
		||||
#include <gnuradio/gr_complex.h>
 | 
			
		||||
 | 
			
		||||
// Abstract model function
 | 
			
		||||
class Model_Function{
 | 
			
		||||
    public:
 | 
			
		||||
        Model_Function() {};
 | 
			
		||||
        virtual arma::vec operator() (arma::vec input) = 0;
 | 
			
		||||
class Model_Function
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
    Model_Function(){};
 | 
			
		||||
    virtual arma::vec operator()(arma::vec input) = 0;
 | 
			
		||||
    virtual ~Model_Function() = default;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
@@ -81,4 +84,33 @@ private:
 | 
			
		||||
    arma::mat P_x_est;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class Unscented_filter
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
    // Constructors and destructors
 | 
			
		||||
    Unscented_filter();
 | 
			
		||||
    Unscented_filter(int nx);
 | 
			
		||||
    Unscented_filter(const arma::vec& x_pred_0, const arma::mat& P_x_pred_0);
 | 
			
		||||
    ~Unscented_filter();
 | 
			
		||||
 | 
			
		||||
    // Reinitialization function
 | 
			
		||||
    void initialize(const arma::mat& x_pred_0, const arma::mat& P_x_pred_0);
 | 
			
		||||
 | 
			
		||||
    // Prediction and estimation
 | 
			
		||||
    void predict_sequential(const arma::vec& x_post, const arma::mat& P_x_post, Model_Function* transition_fcn, const arma::mat& noise_covariance);
 | 
			
		||||
    void update_sequential(const arma::vec& z_upd, const arma::vec& x_pred, const arma::mat& P_x_pred, Model_Function* measurement_fcn, const arma::mat& noise_covariance);
 | 
			
		||||
 | 
			
		||||
    // Getters
 | 
			
		||||
    arma::mat get_x_pred() const;
 | 
			
		||||
    arma::mat get_P_x_pred() const;
 | 
			
		||||
    arma::mat get_x_est() const;
 | 
			
		||||
    arma::mat get_P_x_est() const;
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
    arma::vec x_pred_out;
 | 
			
		||||
    arma::mat P_x_pred_out;
 | 
			
		||||
    arma::vec x_est;
 | 
			
		||||
    arma::mat P_x_est;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
@@ -800,6 +800,7 @@ if(NOT ENABLE_PACKAGING AND NOT ENABLE_FPGA)
 | 
			
		||||
        ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_real_codes_test.cc
 | 
			
		||||
        ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/bayesian_estimation_test.cc
 | 
			
		||||
        ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/cubature_filter_test.cc
 | 
			
		||||
        ${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/tracking/unscented_filter_test.cc
 | 
			
		||||
    )
 | 
			
		||||
    if(${FILESYSTEM_FOUND})
 | 
			
		||||
        target_compile_definitions(trk_test PRIVATE -DHAS_STD_FILESYSTEM=1)
 | 
			
		||||
 
 | 
			
		||||
@@ -100,6 +100,7 @@ DECLARE_string(log_dir);
 | 
			
		||||
 | 
			
		||||
#include "unit-tests/signal-processing-blocks/tracking/bayesian_estimation_test.cc"
 | 
			
		||||
#include "unit-tests/signal-processing-blocks/tracking/cubature_filter_test.cc"
 | 
			
		||||
#include "unit-tests/signal-processing-blocks/tracking/unscented_filter_test.cc"
 | 
			
		||||
#include "unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_real_codes_test.cc"
 | 
			
		||||
#include "unit-tests/signal-processing-blocks/tracking/cpu_multicorrelator_test.cc"
 | 
			
		||||
#include "unit-tests/signal-processing-blocks/tracking/galileo_e1_dll_pll_veml_tracking_test.cc"
 | 
			
		||||
 
 | 
			
		||||
@@ -28,12 +28,13 @@
 | 
			
		||||
 * -------------------------------------------------------------------------
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "cubature_filter.h"
 | 
			
		||||
#include "nonlinear_tracking.h"
 | 
			
		||||
#include <armadillo>
 | 
			
		||||
#include <gtest/gtest.h>
 | 
			
		||||
#include <random>
 | 
			
		||||
 | 
			
		||||
#define CUBATURE_TEST_N_TRIALS 1000
 | 
			
		||||
#define CUBATURE_TEST_TOLERANCE 0.01
 | 
			
		||||
 | 
			
		||||
class Transition_Model : public Model_Function
 | 
			
		||||
{
 | 
			
		||||
@@ -127,8 +128,8 @@ TEST(CubatureFilterComputationTest, CubatureFilterTest)
 | 
			
		||||
            kf_x_pre = kf_F * kf_x_post;
 | 
			
		||||
            kf_P_x_pre = kf_F * kf_P_x_post * kf_F.t() + kf_Q;
 | 
			
		||||
 | 
			
		||||
            EXPECT_TRUE(arma::approx_equal(ckf_x_pre, kf_x_pre, "absdiff", 0.01));
 | 
			
		||||
            EXPECT_TRUE(arma::approx_equal(ckf_P_x_pre, kf_P_x_pre, "absdiff", 0.01));
 | 
			
		||||
            EXPECT_TRUE(arma::approx_equal(ckf_x_pre, kf_x_pre, "absdiff", CUBATURE_TEST_TOLERANCE));
 | 
			
		||||
            EXPECT_TRUE(arma::approx_equal(ckf_P_x_pre, kf_P_x_pre, "absdiff", CUBATURE_TEST_TOLERANCE));
 | 
			
		||||
 | 
			
		||||
            // Update Step
 | 
			
		||||
            kf_H = arma::randu<arma::mat>(ny, nx);
 | 
			
		||||
@@ -151,8 +152,8 @@ TEST(CubatureFilterComputationTest, CubatureFilterTest)
 | 
			
		||||
            kf_x_post = kf_x_pre + kf_K * (kf_y - kf_H * kf_x_pre);
 | 
			
		||||
            kf_P_x_post = (arma::eye(nx, nx) - kf_K * kf_H) * kf_P_x_pre;
 | 
			
		||||
 | 
			
		||||
            EXPECT_TRUE(arma::approx_equal(ckf_x_post, kf_x_post, "absdiff", 0.01));
 | 
			
		||||
            EXPECT_TRUE(arma::approx_equal(ckf_P_x_post, kf_P_x_post, "absdiff", 0.01));
 | 
			
		||||
            EXPECT_TRUE(arma::approx_equal(ckf_x_post, kf_x_post, "absdiff", CUBATURE_TEST_TOLERANCE));
 | 
			
		||||
            EXPECT_TRUE(arma::approx_equal(ckf_P_x_post, kf_P_x_post, "absdiff", CUBATURE_TEST_TOLERANCE));
 | 
			
		||||
 | 
			
		||||
            delete transition_function;
 | 
			
		||||
            delete measurement_function;
 | 
			
		||||
 
 | 
			
		||||
@@ -0,0 +1,161 @@
 | 
			
		||||
/*!
 | 
			
		||||
 * \file unscented_filter_test.cc
 | 
			
		||||
 * \brief  This file implements numerical accuracy test for the CKF library.
 | 
			
		||||
 * \author Gerald LaMountain, 2019. gerald(at)ece.neu.edu
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------------
 | 
			
		||||
 *
 | 
			
		||||
 * Copyright (C) 2010-2019  (see AUTHORS file for a list of contributors)
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is a software defined Global Navigation
 | 
			
		||||
 *          Satellite Systems receiver
 | 
			
		||||
 *
 | 
			
		||||
 * This file is part of GNSS-SDR.
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is free software: you can redistribute it and/or modify
 | 
			
		||||
 * it under the terms of the GNU General Public License as published by
 | 
			
		||||
 * the Free Software Foundation, either version 3 of the License, or
 | 
			
		||||
 * (at your option) any later version.
 | 
			
		||||
 *
 | 
			
		||||
 * GNSS-SDR is distributed in the hope that it will be useful,
 | 
			
		||||
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
			
		||||
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
			
		||||
 * GNU General Public License for more details.
 | 
			
		||||
 *
 | 
			
		||||
 * You should have received a copy of the GNU General Public License
 | 
			
		||||
 * along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
 | 
			
		||||
 *
 | 
			
		||||
 * -------------------------------------------------------------------------
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "nonlinear_tracking.h"
 | 
			
		||||
#include <armadillo>
 | 
			
		||||
#include <gtest/gtest.h>
 | 
			
		||||
#include <random>
 | 
			
		||||
 | 
			
		||||
#define UNSCENTED_TEST_N_TRIALS 10
 | 
			
		||||
#define UNSCENTED_TEST_TOLERANCE 10
 | 
			
		||||
 | 
			
		||||
class Transition_Model_UKF : public Model_Function
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
    Transition_Model_UKF(arma::mat kf_F) { coeff_mat = kf_F; };
 | 
			
		||||
    virtual arma::vec operator()(arma::vec input) { return coeff_mat * input; };
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
    arma::mat coeff_mat;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class Measurement_Model_UKF : public Model_Function
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
    Measurement_Model_UKF(arma::mat kf_H) { coeff_mat = kf_H; };
 | 
			
		||||
    virtual arma::vec operator()(arma::vec input) { return coeff_mat * input; };
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
    arma::mat coeff_mat;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
TEST(UnscentedFilterComputationTest, UnscentedFilterTest)
 | 
			
		||||
{
 | 
			
		||||
    Unscented_filter kf_unscented;
 | 
			
		||||
 | 
			
		||||
    arma::vec kf_x;
 | 
			
		||||
    arma::mat kf_P_x;
 | 
			
		||||
 | 
			
		||||
    arma::vec kf_x_pre;
 | 
			
		||||
    arma::mat kf_P_x_pre;
 | 
			
		||||
 | 
			
		||||
    arma::vec ukf_x_pre;
 | 
			
		||||
    arma::mat ukf_P_x_pre;
 | 
			
		||||
 | 
			
		||||
    arma::vec kf_x_post;
 | 
			
		||||
    arma::mat kf_P_x_post;
 | 
			
		||||
 | 
			
		||||
    arma::vec ukf_x_post;
 | 
			
		||||
    arma::mat ukf_P_x_post;
 | 
			
		||||
 | 
			
		||||
    arma::mat kf_F;
 | 
			
		||||
    arma::mat kf_H;
 | 
			
		||||
 | 
			
		||||
    arma::mat kf_Q;
 | 
			
		||||
    arma::mat kf_R;
 | 
			
		||||
 | 
			
		||||
    arma::vec eta;
 | 
			
		||||
    arma::vec nu;
 | 
			
		||||
 | 
			
		||||
    arma::vec kf_y;
 | 
			
		||||
    arma::mat kf_P_y;
 | 
			
		||||
    arma::mat kf_K;
 | 
			
		||||
 | 
			
		||||
    Model_Function* transition_function;
 | 
			
		||||
    Model_Function* measurement_function;
 | 
			
		||||
 | 
			
		||||
    //--- Perform initializations ------------------------------
 | 
			
		||||
 | 
			
		||||
    std::random_device r;
 | 
			
		||||
    std::default_random_engine e1(r());
 | 
			
		||||
    std::normal_distribution<float> normal_dist(0, 5);
 | 
			
		||||
    std::uniform_real_distribution<float> uniform_dist(0.1, 5.0);
 | 
			
		||||
 | 
			
		||||
    uint8_t nx = 0;
 | 
			
		||||
    uint8_t ny = 0;
 | 
			
		||||
 | 
			
		||||
    for (uint16_t k = 0; k < UNSCENTED_TEST_N_TRIALS; k++)
 | 
			
		||||
        {
 | 
			
		||||
            nx = std::rand() % 5 + 1;
 | 
			
		||||
            ny = std::rand() % 5 + 1;
 | 
			
		||||
 | 
			
		||||
            kf_x = arma::randn<arma::vec>(nx, 1);
 | 
			
		||||
 | 
			
		||||
            kf_P_x_post = 5.0 * arma::diagmat(arma::randu<arma::vec>(nx, 1));
 | 
			
		||||
            kf_x_post = arma::mvnrnd(kf_x, kf_P_x_post);
 | 
			
		||||
 | 
			
		||||
            kf_unscented.initialize(kf_x_post, kf_P_x_post);
 | 
			
		||||
 | 
			
		||||
            // Prediction Step
 | 
			
		||||
            kf_F = arma::randu<arma::mat>(nx, nx);
 | 
			
		||||
            kf_Q = arma::diagmat(arma::randu<arma::vec>(nx, 1));
 | 
			
		||||
 | 
			
		||||
            transition_function = new Transition_Model_UKF(kf_F);
 | 
			
		||||
            arma::mat ttx = (*transition_function)(kf_x_post);
 | 
			
		||||
 | 
			
		||||
            kf_unscented.predict_sequential(kf_x_post, kf_P_x_post, transition_function, kf_Q);
 | 
			
		||||
 | 
			
		||||
            ukf_x_pre = kf_unscented.get_x_pred();
 | 
			
		||||
            ukf_P_x_pre = kf_unscented.get_P_x_pred();
 | 
			
		||||
 | 
			
		||||
            kf_x_pre = kf_F * kf_x_post;
 | 
			
		||||
            kf_P_x_pre = kf_F * kf_P_x_post * kf_F.t() + kf_Q;
 | 
			
		||||
 | 
			
		||||
            EXPECT_TRUE(arma::approx_equal(ukf_x_pre, kf_x_pre, "absdiff", UNSCENTED_TEST_TOLERANCE));
 | 
			
		||||
            EXPECT_TRUE(arma::approx_equal(ukf_P_x_pre, kf_P_x_pre, "absdiff", UNSCENTED_TEST_TOLERANCE));
 | 
			
		||||
 | 
			
		||||
            // Update Step
 | 
			
		||||
            kf_H = arma::randu<arma::mat>(ny, nx);
 | 
			
		||||
            kf_R = arma::diagmat(arma::randu<arma::vec>(ny, 1));
 | 
			
		||||
 | 
			
		||||
            eta = arma::mvnrnd(arma::zeros<arma::vec>(nx, 1), kf_Q);
 | 
			
		||||
            nu = arma::mvnrnd(arma::zeros<arma::vec>(ny, 1), kf_R);
 | 
			
		||||
 | 
			
		||||
            kf_y = kf_H * (kf_F * kf_x + eta) + nu;
 | 
			
		||||
 | 
			
		||||
            measurement_function = new Measurement_Model_UKF(kf_H);
 | 
			
		||||
            kf_unscented.update_sequential(kf_y, kf_x_pre, kf_P_x_pre, measurement_function, kf_R);
 | 
			
		||||
 | 
			
		||||
            ukf_x_post = kf_unscented.get_x_est();
 | 
			
		||||
            ukf_P_x_post = kf_unscented.get_P_x_est();
 | 
			
		||||
 | 
			
		||||
            kf_P_y = kf_H * kf_P_x_pre * kf_H.t() + kf_R;
 | 
			
		||||
            kf_K = (kf_P_x_pre * kf_H.t()) * arma::inv(kf_P_y);
 | 
			
		||||
 | 
			
		||||
            kf_x_post = kf_x_pre + kf_K * (kf_y - kf_H * kf_x_pre);
 | 
			
		||||
            kf_P_x_post = (arma::eye(nx, nx) - kf_K * kf_H) * kf_P_x_pre;
 | 
			
		||||
 | 
			
		||||
            EXPECT_TRUE(arma::approx_equal(ukf_x_post, kf_x_post, "absdiff", UNSCENTED_TEST_TOLERANCE));
 | 
			
		||||
            EXPECT_TRUE(arma::approx_equal(ukf_P_x_post, kf_P_x_post, "absdiff", UNSCENTED_TEST_TOLERANCE));
 | 
			
		||||
 | 
			
		||||
            delete transition_function;
 | 
			
		||||
            delete measurement_function;
 | 
			
		||||
        }
 | 
			
		||||
}
 | 
			
		||||
		Reference in New Issue
	
	Block a user