mirror of
				https://github.com/gnss-sdr/gnss-sdr
				synced 2025-10-31 15:23:04 +00:00 
			
		
		
		
	Acquisition assistance is now working!
git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@353 64b25241-fba3-4117-9849-534c7e92360d
This commit is contained in:
		
							
								
								
									
										6
									
								
								README
									
									
									
									
									
								
							
							
						
						
									
										6
									
								
								README
									
									
									
									
									
								
							| @@ -177,11 +177,15 @@ The default will be OSMOSDR_ROOT=/usr/local | ||||
|  | ||||
| $ cd gnss-sdr/build | ||||
|  | ||||
| - Configure and build the program: | ||||
| - Configure and build the program*: | ||||
|  | ||||
| $ cmake ../ | ||||
| $ make | ||||
|  | ||||
| *By default, cmake is configured to build the release version. If you want to build the debug version, please use: | ||||
|  | ||||
| cmake ../ -DCMAKE_BUILD_TYPE=Debug | ||||
|  | ||||
| - Move the executables to the install folder | ||||
|  | ||||
| $ make install | ||||
|   | ||||
							
								
								
									
										467
									
								
								conf/gnss-sdr_acq_assistance_test.conf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										467
									
								
								conf/gnss-sdr_acq_assistance_test.conf
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,467 @@ | ||||
| ; Default configuration file | ||||
| ; You can define your own receiver and invoke it by doing | ||||
| ; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf | ||||
| ; | ||||
|  | ||||
| [GNSS-SDR] | ||||
|  | ||||
| ;######### GLOBAL OPTIONS ################## | ||||
| ;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz]. | ||||
| GNSS-SDR.internal_fs_hz=2045950 | ||||
|  | ||||
| ;######### CONTROL_THREAD CONFIG ############ | ||||
| ControlThread.wait_for_flowgraph=false | ||||
|  | ||||
| ;######### SUPL RRLP GPS assistance configuration ##### | ||||
| GNSS-SDR.SUPL_gps_enabled=true | ||||
| GNSS-SDR.SUPL_read_gps_assistance_xml=false | ||||
| GNSS-SDR.SUPL_gps_ephemeris_server=supl.nokia.com | ||||
| GNSS-SDR.SUPL_gps_ephemeris_port=7275 | ||||
| GNSS-SDR.SUPL_gps_acquisition_server=supl.google.com | ||||
| GNSS-SDR.SUPL_gps_acquisition_port=7275 | ||||
| GNSS-SDR.SUPL_MCC=214 | ||||
| GNSS-SDR.SUPL_MNS=7 | ||||
| GNSS-SDR.SUPL_LAC=861 | ||||
| GNSS-SDR.SUPL_CI=40181 | ||||
|  | ||||
| ;######### SIGNAL_SOURCE CONFIG ############ | ||||
| ;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental) | ||||
| ;SignalSource.implementation=UHD_Signal_Source | ||||
| SignalSource.implementation=File_Signal_Source | ||||
|  | ||||
| ;#filename: path to file with the captured GNSS signal samples to be processed | ||||
| SignalSource.filename=/home/javier/signals/casa1_gn3s_d4.dat | ||||
|  | ||||
| ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. | ||||
| SignalSource.item_type=gr_complex | ||||
|  | ||||
| ;#sampling_frequency: Original Signal sampling frequency in [Hz]  | ||||
| SignalSource.sampling_frequency=2045950 | ||||
|  | ||||
| ;#freq: RF front-end center frequency in [Hz]  | ||||
| SignalSource.freq=1575420000 | ||||
|  | ||||
| ;#gain: Front-end Gain in [dB]  | ||||
| SignalSource.gain=0 | ||||
|  | ||||
| ;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0) | ||||
| SignalSource.subdevice=A:0 | ||||
|  | ||||
| ;#samples: Number of samples to be processed. Notice that 0 indicates the entire file. | ||||
| SignalSource.samples=0 | ||||
|  | ||||
| ;#repeat: Repeat the processing file. Disable this option in this version | ||||
| SignalSource.repeat=false | ||||
|  | ||||
| ;#dump: Dump the Signal source data to a file. Disable this option in this version | ||||
| SignalSource.dump=false | ||||
|  | ||||
| SignalSource.dump_filename=../data/signal_source.dat | ||||
|  | ||||
|  | ||||
| ;#enable_throttle_control: Enabling this option tells the signal source to keep the delay between samples in post processing. | ||||
| ; it helps to not overload the CPU, but the processing time will be longer.  | ||||
| SignalSource.enable_throttle_control=false | ||||
|  | ||||
|  | ||||
| ;######### SIGNAL_CONDITIONER CONFIG ############ | ||||
| ;## It holds blocks to change data type, filter and resample input data.  | ||||
|  | ||||
| ;#implementation: Use [Pass_Through] or [Signal_Conditioner] | ||||
| ;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks | ||||
| ;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks | ||||
| ;SignalConditioner.implementation=Signal_Conditioner | ||||
| SignalConditioner.implementation=Pass_Through | ||||
|  | ||||
| ;######### DATA_TYPE_ADAPTER CONFIG ############ | ||||
| ;## Changes the type of input data. Please disable it in this version. | ||||
| ;#implementation: [Pass_Through] disables this block | ||||
| DataTypeAdapter.implementation=Pass_Through | ||||
|  | ||||
| ;######### INPUT_FILTER CONFIG ############ | ||||
| ;## Filter the input data. Can be combined with frequency translation for IF signals | ||||
|  | ||||
| ;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter] | ||||
| ;#[Pass_Through] disables this block | ||||
| ;#[Fir_Filter] enables a FIR Filter | ||||
| ;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz. | ||||
|  | ||||
| ;InputFilter.implementation=Fir_Filter | ||||
| ;InputFilter.implementation=Freq_Xlating_Fir_Filter | ||||
| InputFilter.implementation=Pass_Through | ||||
|  | ||||
| ;#dump: Dump the filtered data to a file. | ||||
| InputFilter.dump=false | ||||
| InputFilter.dump_filename=../data/input_filter.dat | ||||
|  | ||||
| ;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.  | ||||
| ;#These options are based on parameters of gnuradio's function: gr_remez. | ||||
| ;#These function calculates the optimal (in the Chebyshev/minimax sense)  | ||||
| ;# FIR filter inpulse reponse given a set of band edges,  | ||||
| ;#the desired reponse on those bands, and the weight given to the error in those bands. | ||||
|  | ||||
| ;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version. | ||||
| InputFilter.input_item_type=gr_complex | ||||
|  | ||||
| ;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version. | ||||
| InputFilter.output_item_type=gr_complex | ||||
|  | ||||
| ;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version. | ||||
| InputFilter.taps_item_type=float | ||||
|  | ||||
| ;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time | ||||
| InputFilter.number_of_taps=5 | ||||
|  | ||||
| ;#number_of _bands: Number of frequency bands in the filter. | ||||
| InputFilter.number_of_bands=2  | ||||
|  | ||||
| ;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...]. | ||||
| ;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2) | ||||
| ;#The number of band_begin and band_end elements must match the number of bands | ||||
|  | ||||
| InputFilter.band1_begin=0.0 | ||||
| InputFilter.band1_end=0.45 | ||||
| InputFilter.band2_begin=0.55 | ||||
| InputFilter.band2_end=1.0 | ||||
|  | ||||
| ;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...]. | ||||
| ;#The number of ampl_begin and ampl_end elements must match the number of bands | ||||
|  | ||||
| InputFilter.ampl1_begin=1.0 | ||||
| InputFilter.ampl1_end=1.0 | ||||
| InputFilter.ampl2_begin=0.0 | ||||
| InputFilter.ampl2_end=0.0 | ||||
|  | ||||
| ;#band_error: weighting applied to each band (usually 1). | ||||
| ;#The number of band_error elements must match the number of bands | ||||
| InputFilter.band1_error=1.0 | ||||
| InputFilter.band2_error=1.0 | ||||
|  | ||||
| ;#filter_type: one of "bandpass", "hilbert" or "differentiator"  | ||||
| InputFilter.filter_type=bandpass | ||||
|  | ||||
| ;#grid_density: determines how accurately the filter will be constructed. | ||||
| ;The minimum value is 16; higher values are slower to compute the filter. | ||||
| InputFilter.grid_density=16 | ||||
|  | ||||
| ;#The following options are used only in Freq_Xlating_Fir_Filter implementation. | ||||
| ;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz | ||||
|  | ||||
| ; 8183800/5 = 1 636760 | ||||
| ; 8183800/4 = 2 045950 | ||||
| ; 8183800/3 = 2 727933.33333333 | ||||
| InputFilter.sampling_frequency=8183800 | ||||
| InputFilter.IF=-38400 | ||||
|  | ||||
| InputFilter.decimation_factor=5 | ||||
|  | ||||
| ;######### RESAMPLER CONFIG ############ | ||||
| ;## Resamples the input data.  | ||||
|  | ||||
| ;#implementation: Use [Pass_Through] or [Direct_Resampler] | ||||
| ;#[Pass_Through] disables this block | ||||
| ;#[Direct_Resampler] enables a resampler that implements a nearest neigbourhood interpolation | ||||
| ;Resampler.implementation=Direct_Resampler | ||||
| Resampler.implementation=Pass_Through | ||||
|  | ||||
| ;#dump: Dump the resamplered data to a file. | ||||
| Resampler.dump=false | ||||
| ;#dump_filename: Log path and filename. | ||||
| Resampler.dump_filename=../data/resampler.dat | ||||
|  | ||||
| ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. | ||||
| Resampler.item_type=gr_complex | ||||
|  | ||||
| ;#sample_freq_in: the sample frequency of the input signal | ||||
| Resampler.sample_freq_in=8000000 | ||||
|  | ||||
| ;#sample_freq_out: the desired sample frequency of the output signal | ||||
| Resampler.sample_freq_out=2045950 | ||||
|  | ||||
|  | ||||
| ;######### CHANNELS GLOBAL CONFIG ############ | ||||
| ;#count: Number of available satellite channels. | ||||
| Channels.count=4 | ||||
| ;#in_acquisition: Number of channels simultaneously acquiring | ||||
| Channels.in_acquisition=1 | ||||
|  | ||||
| ;######### CHANNEL 0 CONFIG ############ | ||||
| ;#system: GPS, GLONASS, GALILEO, SBAS or COMPASS | ||||
| ;#if the option is disabled by default is assigned GPS | ||||
| Channel0.system=GPS | ||||
|  | ||||
| ;#signal:  | ||||
| ;# "1C" GPS L1 C/A | ||||
| ;# "1P" GPS L1 P | ||||
| ;# "1W" GPS L1 Z-tracking and similar (AS on) | ||||
| ;# "1Y" GPS L1 Y | ||||
| ;# "1M" GPS L1 M | ||||
| ;# "1N" GPS L1 codeless | ||||
| ;# "2C" GPS L2 C/A | ||||
| ;# "2D" GPS L2 L1(C/A)+(P2-P1) semi-codeless | ||||
| ;# "2S" GPS L2 L2C (M) | ||||
| ;# "2L" GPS L2 L2C (L) | ||||
| ;# "2X" GPS L2 L2C (M+L) | ||||
| ;# "2P" GPS L2 P | ||||
| ;# "2W" GPS L2 Z-tracking and similar (AS on) | ||||
| ;# "2Y" GPS L2 Y | ||||
| ;# "2M" GPS GPS L2 M | ||||
| ;# "2N" GPS L2 codeless | ||||
| ;# "5I" GPS L5 I | ||||
| ;# "5Q" GPS L5 Q | ||||
| ;# "5X" GPS L5 I+Q | ||||
| ;# "1C" GLONASS G1 C/A | ||||
| ;# "1P" GLONASS G1 P | ||||
| ;# "2C" GLONASS G2 C/A  (Glonass M) | ||||
| ;# "2P" GLONASS G2 P | ||||
| ;# "1A" GALILEO E1 A (PRS) | ||||
| ;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL) | ||||
| ;# "1C" GALILEO E1 C (no data) | ||||
| ;# "1X" GALILEO E1 B+C | ||||
| ;# "1Z" GALILEO E1 A+B+C | ||||
| ;# "5I" GALILEO E5a I (F/NAV OS) | ||||
| ;# "5Q" GALILEO E5a Q  (no data) | ||||
| ;# "5X" GALILEO E5a I+Q | ||||
| ;# "7I" GALILEO E5b I | ||||
| ;# "7Q" GALILEO E5b Q | ||||
| ;# "7X" GALILEO E5b I+Q | ||||
| ;# "8I" GALILEO E5 I | ||||
| ;# "8Q" GALILEO E5 Q | ||||
| ;# "8X" GALILEO E5 I+Q | ||||
| ;# "6A" GALILEO E6 A | ||||
| ;# "6B" GALILEO E6 B | ||||
| ;# "6C" GALILEO E6 C | ||||
| ;# "6X" GALILEO E6 B+C | ||||
| ;# "6Z" GALILEO E6 A+B+C | ||||
| ;# "1C" SBAS L1 C/A | ||||
| ;# "5I" SBAS L5 I | ||||
| ;# "5Q" SBAS L5 Q | ||||
| ;# "5X" SBAS L5 I+Q | ||||
| ;# "2I" COMPASS E2 I | ||||
| ;# "2Q" COMPASS E2 Q | ||||
| ;# "2X" COMPASS E2 IQ | ||||
| ;# "7I" COMPASS E5b I | ||||
| ;# "7Q" COMPASS E5b Q | ||||
| ;# "7X" COMPASS E5b IQ | ||||
| ;# "6I" COMPASS E6 I | ||||
| ;# "6Q" COMPASS E6 Q | ||||
| ;# "6X" COMPASS E6 IQ | ||||
| ;#if the option is disabled by default is assigned "1C" GPS L1 C/A | ||||
| Channel0.signal=1C | ||||
|  | ||||
| ;#satellite: Satellite PRN ID for this channel. Disable this option to random search | ||||
| Channel0.satellite=15 | ||||
| Channel0.repeat_satellite=false | ||||
|  | ||||
| ;######### CHANNEL 1 CONFIG ############ | ||||
|  | ||||
| Channel1.system=GPS | ||||
| Channel1.signal=1C | ||||
| Channel1.satellite=18 | ||||
| Channel1.repeat_satellite=false | ||||
|  | ||||
| ;######### CHANNEL 2 CONFIG ############ | ||||
|  | ||||
| Channel2.system=GPS | ||||
| Channel2.signal=1C | ||||
| Channel2.satellite=16 | ||||
| Channel2.repeat_satellite=false | ||||
|  | ||||
| ;######### CHANNEL 3 CONFIG ############ | ||||
|  | ||||
| Channel3.system=GPS | ||||
| Channel3.signal=1C | ||||
| Channel3.satellite=21 | ||||
| Channel3.repeat_satellite=false | ||||
|  | ||||
| ;######### CHANNEL 4 CONFIG ############ | ||||
|  | ||||
| Channel4.system=GPS | ||||
| Channel4.signal=1C | ||||
| Channel4.satellite=3 | ||||
| Channel4.repeat_satellite=false | ||||
|  | ||||
| ;######### CHANNEL 5 CONFIG ############ | ||||
|  | ||||
| Channel5.system=GPS | ||||
| Channel5.signal=1C | ||||
| ;Channel5.satellite=21 | ||||
| ;Channel5.repeat_satellite=false | ||||
|  | ||||
|  | ||||
| ;######### ACQUISITION GLOBAL CONFIG ############ | ||||
|  | ||||
| ;#dump: Enable or disable the acquisition internal data file logging [true] or [false]  | ||||
| Acquisition.dump=false | ||||
| ;#filename: Log path and filename | ||||
| Acquisition.dump_filename=./acq_dump.dat | ||||
| ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. | ||||
| Acquisition.item_type=gr_complex | ||||
| ;#if: Signal intermediate frequency in [Hz]  | ||||
| Acquisition.if=0 | ||||
|  | ||||
| Acquisition.doppler_min=-5000; | ||||
|  | ||||
| ;#sampled_ms: Signal block duration for the acquisition signal detection [ms] | ||||
| Acquisition.sampled_ms=1 | ||||
| ;#maximum dwells | ||||
| Acquisition.max_dwells=5 | ||||
|  | ||||
| ;######### ACQUISITION CHANNELS CONFIG ###### | ||||
|  | ||||
| ;######### ACQUISITION CH 0 CONFIG ############ | ||||
| ;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] | ||||
| Acquisition0.implementation=GPS_L1_CA_PCPS_Assisted_Acquisition | ||||
| ;#threshold: Acquisition threshold | ||||
| Acquisition0.threshold=30 | ||||
| ;#doppler_max: Maximum expected Doppler shift [Hz] | ||||
| Acquisition0.doppler_max=6000 | ||||
| ;#doppler_max: Doppler step in the grid search [Hz] | ||||
| Acquisition0.doppler_step=250 | ||||
| ;#repeat_satellite: Use only jointly with the satellte PRN ID option.  | ||||
|  | ||||
|  | ||||
| ;######### ACQUISITION CH 1 CONFIG ############ | ||||
| Acquisition1.implementation=GPS_L1_CA_PCPS_Assisted_Acquisition | ||||
| Acquisition1.threshold=30 | ||||
| Acquisition1.doppler_max=6000 | ||||
| Acquisition1.doppler_step=250 | ||||
|  | ||||
|  | ||||
| ;######### ACQUISITION CH 2 CONFIG ############ | ||||
| Acquisition2.implementation=GPS_L1_CA_PCPS_Assisted_Acquisition | ||||
| Acquisition2.threshold=30 | ||||
| Acquisition2.doppler_max=6000 | ||||
| Acquisition2.doppler_step=250 | ||||
|  | ||||
|  | ||||
| ;######### ACQUISITION CH 3 CONFIG ############ | ||||
| Acquisition3.implementation=GPS_L1_CA_PCPS_Assisted_Acquisition | ||||
| Acquisition3.threshold=30 | ||||
| Acquisition3.doppler_max=6000 | ||||
| Acquisition3.doppler_step=250 | ||||
|  | ||||
|  | ||||
| ;######### ACQUISITION CH 4 CONFIG ############ | ||||
| Acquisition4.implementation=GPS_L1_CA_PCPS_Assisted_Acquisition | ||||
| Acquisition4.threshold=20 | ||||
| Acquisition4.doppler_max=6000 | ||||
| Acquisition4.doppler_step=250 | ||||
|  | ||||
|  | ||||
| ;######### ACQUISITION CH 5 CONFIG ############ | ||||
| Acquisition5.implementation=GPS_L1_CA_PCPS_Assisted_Acquisition | ||||
| Acquisition5.threshold=50 | ||||
| Acquisition5.doppler_max=6000 | ||||
| Acquisition5.doppler_step=250 | ||||
|  | ||||
|  | ||||
| ;######### ACQUISITION CH 6 CONFIG ############ | ||||
| Acquisition6.implementation=GPS_L1_CA_PCPS_Assisted_Acquisition | ||||
| Acquisition6.threshold=15 | ||||
| Acquisition6.doppler_max=10000 | ||||
| Acquisition6.doppler_step=250 | ||||
|  | ||||
|  | ||||
| ;######### ACQUISITION CH 7 CONFIG ############ | ||||
| Acquisition7.implementation=GPS_L1_CA_PCPS_Assisted_Acquisition | ||||
| Acquisition7.threshold=15 | ||||
| Acquisition7.doppler_max=10000 | ||||
| Acquisition7.doppler_step=250 | ||||
|  | ||||
|  | ||||
| ;######### ACQUISITION CH 8 CONFIG ############ | ||||
| Acquisition8.implementation=GPS_L1_CA_PCPS_Assisted_Acquisition | ||||
| Acquisition8.threshold=15 | ||||
| Acquisition8.doppler_max=10000 | ||||
| Acquisition8.doppler_step=250 | ||||
|  | ||||
|  | ||||
|  | ||||
| ;######### TRACKING GLOBAL CONFIG ############ | ||||
|  | ||||
| ;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] | ||||
| ;Tracking.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking | ||||
| Tracking.implementation=GPS_L1_CA_DLL_PLL_Optim_Tracking | ||||
| ;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version. | ||||
| Tracking.item_type=gr_complex | ||||
|  | ||||
| ;#sampling_frequency: Signal Intermediate Frequency in [Hz]  | ||||
| Tracking.if=0 | ||||
|  | ||||
| ;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]  | ||||
| Tracking.dump=false | ||||
|  | ||||
| ;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number. | ||||
| Tracking.dump_filename=./tracking_ch_ | ||||
|  | ||||
| ;#pll_bw_hz: PLL loop filter bandwidth [Hz] | ||||
| Tracking.pll_bw_hz=50.0; | ||||
|  | ||||
| ;#dll_bw_hz: DLL loop filter bandwidth [Hz] | ||||
| Tracking.dll_bw_hz=2.0; | ||||
|  | ||||
| ;#fll_bw_hz: FLL loop filter bandwidth [Hz] | ||||
| Tracking.fll_bw_hz=10.0; | ||||
|  | ||||
| ;#order: PLL/DLL loop filter order [2] or [3] | ||||
| Tracking.order=3; | ||||
|  | ||||
| ;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] | ||||
| Tracking.early_late_space_chips=0.5; | ||||
|  | ||||
| ;######### TELEMETRY DECODER CONFIG ############ | ||||
| ;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A. | ||||
| TelemetryDecoder.implementation=GPS_L1_CA_Telemetry_Decoder | ||||
| TelemetryDecoder.dump=false | ||||
|  | ||||
| ;######### OBSERVABLES CONFIG ############ | ||||
| ;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A. | ||||
| Observables.implementation=GPS_L1_CA_Observables | ||||
|  | ||||
| ;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]  | ||||
| Observables.dump=false | ||||
|  | ||||
| ;#dump_filename: Log path and filename. | ||||
| Observables.dump_filename=./observables.dat | ||||
|  | ||||
|  | ||||
| ;######### PVT CONFIG ############ | ||||
| ;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version. | ||||
| PVT.implementation=GPS_L1_CA_PVT | ||||
|  | ||||
| ;#averaging_depth: Number of PVT observations in the moving average algorithm | ||||
| PVT.averaging_depth=10 | ||||
|  | ||||
| ;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]  | ||||
| PVT.flag_averaging=true | ||||
|  | ||||
| ;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms] | ||||
| PVT.output_rate_ms=100 | ||||
|  | ||||
| ;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms. | ||||
| PVT.display_rate_ms=500 | ||||
|  | ||||
| ;# RINEX, KML, and NMEA output configuration | ||||
|  | ||||
| ;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump. | ||||
| PVT.dump_filename=./PVT | ||||
|  | ||||
| ;#nmea_dump_filename: NMEA log path and filename | ||||
| PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea; | ||||
|  | ||||
| ;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one) | ||||
| PVT.flag_nmea_tty_port=true; | ||||
|  | ||||
| ;#nmea_dump_devname: serial device descriptor for NMEA logging | ||||
| PVT.nmea_dump_devname=/dev/pts/4 | ||||
|  | ||||
|  | ||||
| ;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]  | ||||
| PVT.dump=false | ||||
|  | ||||
| ;######### OUTPUT_FILTER CONFIG ############ | ||||
| ;# Receiver output filter: Leave this block disabled in this version | ||||
| OutputFilter.implementation=Null_Sink_Output_Filter | ||||
| OutputFilter.filename=data/gnss-sdr.dat | ||||
| OutputFilter.item_type=gr_complex | ||||
| @@ -62,7 +62,8 @@ GpsL1CaPcpsAssistedAcquisition::GpsL1CaPcpsAssistedAcquisition( | ||||
|     fs_in_ = configuration->property("GNSS-SDR.internal_fs_hz", 2048000); | ||||
|     if_ = configuration->property(role + ".ifreq", 0); | ||||
|     dump_ = configuration->property(role + ".dump", false); | ||||
|     shift_resolution_ = configuration->property(role + ".doppler_max", 15); | ||||
|     doppler_max_ = configuration->property(role + ".doppler_max", 5000); | ||||
|     doppler_min_ = configuration->property(role + ".doppler_min", -5000); | ||||
|     sampled_ms_ = configuration->property(role + ".sampled_ms", 1); | ||||
|     max_dwells_= configuration->property(role + ".max_dwells", 1); | ||||
|     dump_filename_ = configuration->property(role + ".dump_filename", | ||||
| @@ -78,7 +79,7 @@ GpsL1CaPcpsAssistedAcquisition::GpsL1CaPcpsAssistedAcquisition( | ||||
|     { | ||||
|         item_size_ = sizeof(gr_complex); | ||||
|         acquisition_cc_ = pcps_make_assisted_acquisition_cc(max_dwells_,sampled_ms_, | ||||
|                 shift_resolution_, if_, fs_in_, vector_length_, queue_, | ||||
|         		doppler_max_, doppler_min_, if_, fs_in_, vector_length_, queue_, | ||||
|                 dump_, dump_filename_); | ||||
|  | ||||
|     } | ||||
|   | ||||
| @@ -133,9 +133,9 @@ private: | ||||
|     //unsigned int satellite_; | ||||
|     unsigned int channel_; | ||||
|     float threshold_; | ||||
|     unsigned int doppler_max_; | ||||
|     int doppler_max_; | ||||
|     unsigned int doppler_step_; | ||||
|     unsigned int shift_resolution_; | ||||
|     int doppler_min_; | ||||
|     unsigned int sampled_ms_; | ||||
|     int max_dwells_; | ||||
|     long fs_in_; | ||||
|   | ||||
| @@ -34,4 +34,5 @@ include_directories( | ||||
| ) | ||||
|  | ||||
| add_library(acq_gr_blocks ${ACQ_GR_BLOCKS_SOURCES}) | ||||
| target_link_libraries(acq_gr_blocks ${GR_FFT_LIBRARIES} ${VOLK_LIBRARIES})  | ||||
| target_link_libraries(acq_gr_blocks gnss_system_parameters ${GR_FFT_LIBRARIES} ${VOLK_LIBRARIES}) | ||||
|  | ||||
|   | ||||
| @@ -1,9 +1,8 @@ | ||||
| /*! | ||||
|  * \file pcps_acquisition_cc.cc | ||||
|  * \brief This class implements a Parallel Code Phase Search Acquisition | ||||
|  * \file pcps_assisted_acquisition_cc.cc | ||||
|  * \brief This class implements a Parallel Code Phase Search Acquisition with assistance and multi-dwells | ||||
|  * \authors <ul> | ||||
|  *          <li> Javier Arribas, 2011. jarribas(at)cttc.es | ||||
|  *          <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com | ||||
|  *          <li> Javier Arribas, 2013. jarribas(at)cttc.es | ||||
|  *          </ul> | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
| @@ -34,77 +33,95 @@ | ||||
| #include "pcps_assisted_acquisition_cc.h" | ||||
| #include "gnss_signal_processing.h" | ||||
| #include "control_message_factory.h" | ||||
| #include "gps_acq_assist.h" | ||||
| #include <gnuradio/gr_io_signature.h> | ||||
| #include <sstream> | ||||
| #include <glog/log_severity.h> | ||||
| #include <glog/logging.h> | ||||
| #include <volk/volk.h> | ||||
| #include "nco_lib.h" | ||||
| #include "concurrent_map.h" | ||||
|  | ||||
| extern concurrent_map<Gps_Acq_Assist> global_gps_acq_assist_map; | ||||
|  | ||||
| using google::LogMessage; | ||||
|  | ||||
| pcps_assisted_acquisition_cc_sptr pcps_make_assisted_acquisition_cc( | ||||
|         int max_dwells, unsigned int sampled_ms, unsigned int doppler_max, long freq, | ||||
|         long fs_in, int samples_per_ms, gr_msg_queue_sptr queue, bool dump, | ||||
|         std::string dump_filename) | ||||
| 		int max_dwells, unsigned int sampled_ms, int doppler_max, int doppler_min, long freq, | ||||
| 		long fs_in, int samples_per_ms, gr_msg_queue_sptr queue, bool dump, | ||||
| 		std::string dump_filename) | ||||
| { | ||||
|  | ||||
|     return pcps_assisted_acquisition_cc_sptr( | ||||
|             new pcps_assisted_acquisition_cc(max_dwells, sampled_ms, doppler_max, freq, | ||||
|                     fs_in, samples_per_ms, queue, dump, dump_filename)); | ||||
| 	return pcps_assisted_acquisition_cc_sptr( | ||||
| 			new pcps_assisted_acquisition_cc(max_dwells, sampled_ms, doppler_max, doppler_min, freq, | ||||
| 					fs_in, samples_per_ms, queue, dump, dump_filename)); | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
| pcps_assisted_acquisition_cc::pcps_assisted_acquisition_cc( | ||||
|         int max_dwells, unsigned int sampled_ms, unsigned int doppler_max, long freq, | ||||
|         long fs_in, int samples_per_ms, gr_msg_queue_sptr queue, bool dump, | ||||
|         std::string dump_filename) : | ||||
|         gr_block("pcps_assisted_acquisition_cc", | ||||
|         gr_make_io_signature(1, 1, sizeof(gr_complex)), | ||||
|         gr_make_io_signature(0, 0, sizeof(gr_complex))) | ||||
| 		int max_dwells, unsigned int sampled_ms, int doppler_max, int doppler_min, long freq, | ||||
| 		long fs_in, int samples_per_ms, gr_msg_queue_sptr queue, bool dump, | ||||
| 		std::string dump_filename) : | ||||
| 		gr_block("pcps_assisted_acquisition_cc", | ||||
| 				gr_make_io_signature(1, 1, sizeof(gr_complex)), | ||||
| 				gr_make_io_signature(0, 0, sizeof(gr_complex))) | ||||
| { | ||||
|     d_sample_counter = 0;    // SAMPLE COUNTER | ||||
|     d_active = false; | ||||
|     d_queue = queue; | ||||
|     d_freq = freq; | ||||
|     d_fs_in = fs_in; | ||||
|     d_samples_per_ms = samples_per_ms; | ||||
|     d_sampled_ms = sampled_ms; | ||||
|     d_doppler_max = doppler_max; | ||||
|     d_fft_size = d_sampled_ms * d_samples_per_ms; | ||||
|     // HS Acquisition | ||||
|     d_max_dwells= max_dwells; | ||||
|     d_gnuradio_forecast_samples=d_fft_size*d_max_dwells; | ||||
|     d_mag = 0; | ||||
|     d_input_power = 0.0; | ||||
| 	d_sample_counter = 0;    // SAMPLE COUNTER | ||||
| 	d_active = false; | ||||
| 	d_queue = queue; | ||||
| 	d_freq = freq; | ||||
| 	d_fs_in = fs_in; | ||||
| 	d_samples_per_ms = samples_per_ms; | ||||
| 	d_sampled_ms = sampled_ms; | ||||
| 	d_config_doppler_max = doppler_max; | ||||
| 	d_config_doppler_min=doppler_min; | ||||
| 	d_fft_size = d_sampled_ms * d_samples_per_ms; | ||||
| 	// HS Acquisition | ||||
| 	d_max_dwells= max_dwells; | ||||
| 	d_gnuradio_forecast_samples=d_fft_size*4; | ||||
| 	d_input_power = 0.0; | ||||
| 	d_state=0; | ||||
| 	d_disable_assist=false; | ||||
| 	//todo: do something if posix_memalign fails | ||||
| 	if (posix_memalign((void**)&d_carrier, 16, d_fft_size * sizeof(gr_complex)) == 0){}; | ||||
| 	if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){}; | ||||
|  | ||||
|     //todo: do something if posix_memalign fails | ||||
|     if (posix_memalign((void**)&d_carrier, 16, d_fft_size * sizeof(gr_complex)) == 0){}; | ||||
|     if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){}; | ||||
| 	// Direct FFT | ||||
| 	d_fft_if = new gr::fft::fft_complex(d_fft_size, true); | ||||
|  | ||||
|     // Direct FFT | ||||
|     d_fft_if = new gr::fft::fft_complex(d_fft_size, true); | ||||
| 	// Inverse FFT | ||||
| 	d_ifft = new gr::fft::fft_complex(d_fft_size, false); | ||||
|  | ||||
|     // Inverse FFT | ||||
|     d_ifft = new gr::fft::fft_complex(d_fft_size, false); | ||||
|  | ||||
|     // For dumping samples into a file | ||||
|     d_dump = dump; | ||||
|     d_dump_filename = dump_filename; | ||||
| 	// For dumping samples into a file | ||||
| 	d_dump = dump; | ||||
| 	d_dump_filename = dump_filename; | ||||
| } | ||||
|  | ||||
| void pcps_assisted_acquisition_cc::set_doppler_step(unsigned int doppler_step) | ||||
| { | ||||
| 	d_doppler_step = doppler_step; | ||||
| } | ||||
|  | ||||
|  | ||||
| void pcps_assisted_acquisition_cc::free_grid_memory() | ||||
| { | ||||
| 	for (int i=0;i<d_num_doppler_points;i++) | ||||
| 	{ | ||||
| 		delete[] d_grid_data[i]; | ||||
| 		delete[] d_grid_doppler_wipeoffs[i]; | ||||
| 	} | ||||
| 	delete d_grid_data; | ||||
| } | ||||
| pcps_assisted_acquisition_cc::~pcps_assisted_acquisition_cc() | ||||
| { | ||||
|     free(d_carrier); | ||||
|     free(d_fft_codes); | ||||
|     delete d_ifft; | ||||
|     delete d_fft_if; | ||||
|     if (d_dump) | ||||
|         { | ||||
|             d_dump_file.close(); | ||||
|         } | ||||
| 	free(d_carrier); | ||||
| 	free(d_fft_codes); | ||||
| 	delete d_ifft; | ||||
| 	delete d_fft_if; | ||||
| 	if (d_dump) | ||||
| 	{ | ||||
| 		d_dump_file.close(); | ||||
| 	} | ||||
| } | ||||
|  | ||||
|  | ||||
| @@ -118,194 +135,315 @@ void pcps_assisted_acquisition_cc::set_local_code(std::complex<float> * code) | ||||
|  | ||||
| void pcps_assisted_acquisition_cc::init() | ||||
| { | ||||
|     d_gnss_synchro->Acq_delay_samples = 0.0; | ||||
|     d_gnss_synchro->Acq_doppler_hz = 0.0; | ||||
|     d_gnss_synchro->Acq_samplestamp_samples = 0; | ||||
|     d_mag = 0.0; | ||||
|     d_input_power = 0.0; | ||||
| 	d_gnss_synchro->Acq_delay_samples = 0.0; | ||||
| 	d_gnss_synchro->Acq_doppler_hz = 0.0; | ||||
| 	d_gnss_synchro->Acq_samplestamp_samples = 0; | ||||
| 	d_input_power = 0.0; | ||||
|  | ||||
|     d_fft_if->execute(); // We need the FFT of local code | ||||
| 	d_state=0; | ||||
|  | ||||
| 	d_fft_if->execute(); // We need the FFT of local code | ||||
|  | ||||
| 	//Conjugate the local code | ||||
| 	volk_32fc_conjugate_32fc_a(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size); | ||||
|  | ||||
|     //Conjugate the local code | ||||
|     for (unsigned int i = 0; i < d_fft_size; i++) | ||||
|     { | ||||
|         d_fft_codes[i] = std::complex<float>(conj(d_fft_if->get_outbuf()[i])); | ||||
|     } | ||||
| } | ||||
|  | ||||
|  | ||||
| void pcps_assisted_acquisition_cc::forecast (int noutput_items, | ||||
|         gr_vector_int &ninput_items_required) | ||||
| 		gr_vector_int &ninput_items_required) | ||||
| { | ||||
|     ninput_items_required[0] = d_gnuradio_forecast_samples ; //set the required available samples in each call | ||||
| 	ninput_items_required[0] = d_gnuradio_forecast_samples ; //set the required available samples in each call | ||||
| } | ||||
|  | ||||
|  | ||||
| int pcps_assisted_acquisition_cc::general_work(int noutput_items, | ||||
|         gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, | ||||
|         gr_vector_void_star &output_items) | ||||
| void pcps_assisted_acquisition_cc::get_assistance() | ||||
| { | ||||
| 	Gps_Acq_Assist gps_acq_assisistance; | ||||
| 	if (global_gps_acq_assist_map.read(this->d_gnss_synchro->PRN,gps_acq_assisistance)==true) | ||||
| 	{ | ||||
| 		//TODO: use the LO tolerance here | ||||
| 		if (gps_acq_assisistance.dopplerUncertainty>=1000) | ||||
| 		{ | ||||
| 			d_doppler_max=gps_acq_assisistance.d_Doppler0+gps_acq_assisistance.dopplerUncertainty*2; | ||||
| 			d_doppler_min=gps_acq_assisistance.d_Doppler0-gps_acq_assisistance.dopplerUncertainty*2; | ||||
| 		}else{ | ||||
| 			d_doppler_max=gps_acq_assisistance.d_Doppler0+1000; | ||||
| 			d_doppler_min=gps_acq_assisistance.d_Doppler0-1000; | ||||
| 		} | ||||
| 		this->d_disable_assist=false; | ||||
| 		std::cout<<"Acq assist ENABLED for GPS SV "<<this->d_gnss_synchro->PRN<<" (Doppler max,Doppler min)=(" | ||||
| 				<<d_doppler_max<<","<<d_doppler_min<<")"<<std::endl; | ||||
| 	}else{ | ||||
| 		this->d_disable_assist=true; | ||||
| 		std::cout<<"Acq assist DISABLED for GPS SV "<<this->d_gnss_synchro->PRN<<std::endl; | ||||
| 	} | ||||
| } | ||||
| void pcps_assisted_acquisition_cc::reset_grid() | ||||
| { | ||||
| 	d_well_count=0; | ||||
| 	for (int i=0;i<d_num_doppler_points;i++) | ||||
| 	{ | ||||
| 		for (unsigned int j=0;j<d_fft_size;j++) | ||||
| 		{ | ||||
| 			d_grid_data[i][j]=0.0; | ||||
| 		} | ||||
| 	} | ||||
| } | ||||
| void pcps_assisted_acquisition_cc::redefine_grid() | ||||
| { | ||||
| 	if (this->d_disable_assist==true) | ||||
| 	{ | ||||
| 		d_doppler_max=d_config_doppler_max; | ||||
| 		d_doppler_min=d_config_doppler_min; | ||||
| 	} | ||||
| 	// Create the search grid array | ||||
| 	d_num_doppler_points=floor(std::abs(d_doppler_max-d_doppler_min)/d_doppler_step); | ||||
|  | ||||
| 	d_grid_data=new float*[d_num_doppler_points]; | ||||
| 	for (int i=0;i<d_num_doppler_points;i++) | ||||
| 	{ | ||||
| 		d_grid_data[i]=new float[d_fft_size]; | ||||
| 	} | ||||
|  | ||||
| 	// create the carrier Doppler wipeoff signals | ||||
| 	int doppler_hz; | ||||
|     float phase_step_rad; | ||||
|     d_grid_doppler_wipeoffs=new gr_complex*[d_num_doppler_points]; | ||||
| 	for (int doppler_index=0;doppler_index<d_num_doppler_points;doppler_index++) | ||||
| 		{ | ||||
|  | ||||
| 		doppler_hz=d_doppler_min+d_doppler_step*doppler_index; | ||||
| 		// doppler search steps | ||||
| 		// compute the carrier doppler wipe-off signal and store it | ||||
| 	    phase_step_rad = (float)GPS_TWO_PI*doppler_hz / (float)d_fs_in; | ||||
|  | ||||
| 	    d_grid_doppler_wipeoffs[doppler_index]=new gr_complex[d_fft_size]; | ||||
| 	    fxp_nco(d_grid_doppler_wipeoffs[doppler_index], d_fft_size,0, phase_step_rad); | ||||
| 	} | ||||
| } | ||||
|  | ||||
| double pcps_assisted_acquisition_cc::search_maximum() | ||||
| { | ||||
| 	float magt = 0.0; | ||||
| 	float fft_normalization_factor; | ||||
| 	int index_doppler = 0; | ||||
| 	unsigned int tmp_intex_t; | ||||
| 	unsigned int index_time = 0; | ||||
|  | ||||
| 	for (int i=0;i<d_num_doppler_points;i++) | ||||
| 	{ | ||||
| 		volk_32f_index_max_16u_a(&tmp_intex_t,d_grid_data[i],d_fft_size); | ||||
| 		if (d_grid_data[i][tmp_intex_t] > magt) | ||||
| 		{ | ||||
| 			magt = d_grid_data[i][index_time]; | ||||
| 			index_doppler = i; | ||||
| 			index_time = tmp_intex_t; | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	// Normalize the maximum value to correct the scale factor introduced by FFTW | ||||
| 	fft_normalization_factor = (float)d_fft_size * (float)d_fft_size; | ||||
| 	magt = magt / (fft_normalization_factor * fft_normalization_factor); | ||||
|  | ||||
| 	// 5- Compute the test statistics and compare to the threshold | ||||
| 	d_test_statistics = 2 * d_fft_size * magt /(d_input_power*d_well_count); | ||||
|  | ||||
| 	// 4- record the maximum peak and the associated synchronization parameters | ||||
| 	d_gnss_synchro->Acq_delay_samples = (double)index_time; | ||||
| 	d_gnss_synchro->Acq_doppler_hz = (double)(index_doppler*d_doppler_step+d_doppler_min); | ||||
| 	d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; | ||||
|  | ||||
| 	// Record results to file if required | ||||
| 	if (d_dump) | ||||
| 	{ | ||||
| 		std::stringstream filename; | ||||
| 		std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write | ||||
| 		filename.str(""); | ||||
| 		filename << "../data/test_statistics_" << d_gnss_synchro->System | ||||
| 				<<"_" << d_gnss_synchro->Signal << "_sat_" | ||||
| 				<< d_gnss_synchro->PRN << "_doppler_" <<  d_gnss_synchro->Acq_doppler_hz << ".dat"; | ||||
| 		d_dump_file.open(filename.str().c_str(), std::ios::out | ||||
| 				| std::ios::binary); | ||||
| 		d_dump_file.write((char*)d_grid_data[index_doppler], n); //write directly |abs(x)|^2 in this Doppler bin? | ||||
| 		d_dump_file.close(); | ||||
| 	} | ||||
|  | ||||
| 	return d_test_statistics; | ||||
| } | ||||
|  | ||||
| float pcps_assisted_acquisition_cc::estimate_input_power(gr_vector_const_void_star &input_items) | ||||
| { | ||||
| 	const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer | ||||
| 	// 1- Compute the input signal power estimation | ||||
| 	float* p_tmp_vector; | ||||
| 	if (posix_memalign((void**)&p_tmp_vector, 16, d_fft_size * sizeof(float)) == 0){}; | ||||
| 	volk_32fc_magnitude_squared_32f_u(p_tmp_vector, in, d_fft_size); | ||||
|  | ||||
| 	const float* p_const_tmp_vector=p_tmp_vector; | ||||
| 	float power; | ||||
| 	volk_32f_accumulator_s32f_a(&power, p_const_tmp_vector, d_fft_size); | ||||
| 	free(p_tmp_vector); | ||||
| 	return ( power / (float)d_fft_size); | ||||
| } | ||||
|  | ||||
| int pcps_assisted_acquisition_cc::compute_and_accumulate_grid(gr_vector_const_void_star &input_items) | ||||
| { | ||||
| 	// initialize acquisition algorithm | ||||
| 	const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer | ||||
|  | ||||
| 	DLOG(INFO) << "Channel: " << d_channel | ||||
| 			<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN | ||||
| 			<< " ,sample stamp: " << d_sample_counter << ", threshold: " | ||||
| 			<< d_threshold << ", doppler_max: " << d_doppler_max | ||||
| 			<< ", doppler_step: " << d_doppler_step; | ||||
|  | ||||
| 	// 2- Doppler frequency search loop | ||||
| 	float* p_tmp_vector; | ||||
| 	if (posix_memalign((void**)&p_tmp_vector, 16, d_fft_size * sizeof(float)) == 0){}; | ||||
|  | ||||
| 	for (int doppler_index=0;doppler_index<d_num_doppler_points;doppler_index++) | ||||
| 		{ | ||||
| 		// doppler search steps | ||||
| 		// Perform the carrier wipe-off | ||||
| 		volk_32fc_x2_multiply_32fc_u(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size); | ||||
| 		// 3- Perform the FFT-based convolution  (parallel time search) | ||||
| 		// Compute the FFT of the carrier wiped--off incoming signal | ||||
| 		d_fft_if->execute(); | ||||
|  | ||||
| 		// Multiply carrier wiped--off, Fourier transformed incoming signal | ||||
| 		// with the local FFT'd code reference using SIMD operations with VOLK library | ||||
| 		volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size); | ||||
|  | ||||
| 		// compute the inverse FFT | ||||
| 		d_ifft->execute(); | ||||
|  | ||||
| 		// save the grid matrix delay file | ||||
| 		volk_32fc_magnitude_squared_32f_a(p_tmp_vector, d_ifft->get_outbuf(), d_fft_size); | ||||
| 		const float*  old_vector=d_grid_data[doppler_index]; | ||||
| 		volk_32f_x2_add_32f_a(d_grid_data[doppler_index],old_vector,p_tmp_vector,d_fft_size); | ||||
|  | ||||
| 	} | ||||
| 	free(p_tmp_vector); | ||||
| 	return d_fft_size; | ||||
| } | ||||
| int pcps_assisted_acquisition_cc::general_work(int noutput_items, | ||||
| 		gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, | ||||
| 		gr_vector_void_star &output_items) | ||||
| { | ||||
|     /* | ||||
|      * By J.Arribas and L.Esteve | ||||
|      * Acquisition strategy (Kay Borre book + CFAR threshold): | ||||
|      * 1. Compute the input signal power estimation | ||||
|      * 2. Doppler serial search loop | ||||
|      * 3. Perform the FFT-based circular convolution (parallel time search) | ||||
|      * 4. Record the maximum peak and the associated synchronization parameters | ||||
|      * 5. Compute the test statistics and compare to the threshold | ||||
|      * 6. Declare positive or negative acquisition using a message queue | ||||
|      */ | ||||
|  | ||||
| 	/*! | ||||
| 	 * TODO: 	High sensitivity acquisition algorithm: | ||||
| 	 * 			0. Define search grid with assistance information. Reset grid matrix | ||||
| 	 * 			1. Perform the FFT acqusition doppler and delay grid | ||||
| 	 * 			2. accumulate the search grid matrix (#doppler_bins x #fft_size) | ||||
| 	 * 			3. compare maximum to threshold and decide positive or negative | ||||
| 	 * 			4. positive: stop. negative: if dwell_count< max_dwells -> dwell_count++ and goto 1, else -> negative acquisition: stop. | ||||
| 	 * 			State Mechine: | ||||
| 	 * 			S0. StandBy. If d_active==1 -> S1 | ||||
| 	 * 			S1. GetAssist. Define search grid with assistance information. Reset grid matrix -> S2 | ||||
| 	 * 			S2. ComputeGrid. Perform the FFT acqusition doppler and delay grid. | ||||
| 	 * 				Accumulate the search grid matrix (#doppler_bins x #fft_size) | ||||
| 	 * 				Compare maximum to threshold and decide positive or negative | ||||
| 	 * 				If T>=gamma -> S4 else | ||||
| 	 * 				If d_well_count<max_dwells -> S2 | ||||
| 	 * 				else if !disable_assist -> S3 | ||||
| 	 * 				else -> S5. | ||||
| 	 * 			S3. RedefineGrid. Open the grid search to unasisted acquisition. Reset counters and grid. -> S2 | ||||
| 	 * 			S4. Positive_Acq: Send message and stop acq -> S0 | ||||
| 	 * 			S5. Negative_Acq: Send message and stop acq -> S0 | ||||
| 	 */ | ||||
|     if (!d_active) | ||||
|         { | ||||
|             d_sample_counter += d_fft_size * noutput_items; // sample counter | ||||
|             consume_each(noutput_items); | ||||
|         } | ||||
|     else | ||||
|         { | ||||
|             // initialize acquisition algorithm | ||||
|             int doppler; | ||||
|             unsigned int indext = 0; | ||||
|             float magt = 0.0; | ||||
|             float tmp_magt = 0.0; | ||||
|             const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer | ||||
|             bool positive_acquisition = false; | ||||
|             int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL | ||||
|             //aux vars | ||||
|             unsigned int i; | ||||
|             float fft_normalization_factor; | ||||
|  | ||||
|             d_sample_counter += d_fft_size; // sample counter | ||||
| 	switch (d_state) | ||||
| 	{ | ||||
| 	case 0: // S0. StandBy | ||||
| 		if (d_active==true) d_state=1; | ||||
| 		d_sample_counter += ninput_items[0]; // sample counter | ||||
| 		consume_each(ninput_items[0]); | ||||
| 		break; | ||||
| 	case 1: // S1. GetAssist | ||||
| 		get_assistance(); | ||||
| 		redefine_grid(); | ||||
| 		reset_grid(); | ||||
| 		d_sample_counter += ninput_items[0]; // sample counter | ||||
| 		consume_each(ninput_items[0]); | ||||
| 		d_state=2; | ||||
| 		break; | ||||
| 	case 2: // S2. ComputeGrid | ||||
| 		int consumed_samples; | ||||
| 		consumed_samples=compute_and_accumulate_grid(input_items); | ||||
| 		d_well_count++; | ||||
| 		if (d_well_count>=d_max_dwells) | ||||
| 		{ | ||||
| 			d_state=3; | ||||
| 		} | ||||
| 		d_sample_counter+=consumed_samples; | ||||
| 		consume_each(consumed_samples); | ||||
| 		break; | ||||
| 	case 3: // Compute test statistics and decide | ||||
| 		d_input_power=estimate_input_power(input_items); | ||||
| 		d_test_statistics=search_maximum(); | ||||
| 		if (d_test_statistics > d_threshold) | ||||
| 		{ | ||||
| 			d_state=5; | ||||
| 		}else{ | ||||
| 			if (d_disable_assist==false) | ||||
| 			{ | ||||
| 				d_disable_assist=true; | ||||
| 				std::cout<<"Acq assist DISABLED for GPS SV "<<this->d_gnss_synchro->PRN<<std::endl; | ||||
| 				d_state=4; | ||||
| 			}else{ | ||||
| 				d_state=6; | ||||
| 			} | ||||
| 		} | ||||
| 		d_sample_counter += ninput_items[0]; // sample counter | ||||
| 		consume_each(ninput_items[0]); | ||||
| 		break; | ||||
| 	case 4: // RedefineGrid | ||||
| 		free_grid_memory(); | ||||
| 		redefine_grid(); | ||||
| 		reset_grid(); | ||||
| 		d_sample_counter += ninput_items[0]; // sample counter | ||||
| 		consume_each(ninput_items[0]); | ||||
| 		d_state=2; | ||||
| 		break; | ||||
| 	case 5: // Positive_Acq | ||||
| 		DLOG(INFO) << "positive acquisition"; | ||||
| 		DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; | ||||
| 		DLOG(INFO) << "sample_stamp " << d_sample_counter; | ||||
| 		DLOG(INFO) << "test statistics value " << d_test_statistics; | ||||
| 		DLOG(INFO) << "test statistics threshold " << d_threshold; | ||||
| 		DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; | ||||
| 		DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; | ||||
| 		DLOG(INFO) << "input signal power " << d_input_power; | ||||
|  | ||||
|             //restart acquisition variables | ||||
|             d_gnss_synchro->Acq_delay_samples = 0.0; | ||||
|             d_gnss_synchro->Acq_doppler_hz = 0.0; | ||||
|             d_mag = 0.0; | ||||
|             d_input_power = 0.0; | ||||
| 		d_active = false; | ||||
| 		// Send message to channel queue //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL | ||||
| 		d_channel_internal_queue->push(1); // 1-> positive acquisition | ||||
| 		free_grid_memory(); | ||||
| 		// consume samples to not block the GNU Radio flowgraph | ||||
| 		d_sample_counter += ninput_items[0]; // sample counter | ||||
| 		consume_each(ninput_items[0]); | ||||
| 		d_state=0; | ||||
| 		break; | ||||
| 	case 6: // Negative_Acq | ||||
| 		DLOG(INFO) << "negative acquisition"; | ||||
| 		DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; | ||||
| 		DLOG(INFO) << "sample_stamp " << d_sample_counter; | ||||
| 		DLOG(INFO) << "test statistics value " << d_test_statistics; | ||||
| 		DLOG(INFO) << "test statistics threshold " << d_threshold; | ||||
| 		DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; | ||||
| 		DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; | ||||
| 		DLOG(INFO) << "input signal power " << d_input_power; | ||||
|  | ||||
|             DLOG(INFO) << "Channel: " << d_channel | ||||
|                     << " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN | ||||
|                     << " ,sample stamp: " << d_sample_counter << ", threshold: " | ||||
|                     << d_threshold << ", doppler_max: " << d_doppler_max | ||||
|                     << ", doppler_step: " << d_doppler_step; | ||||
| 		d_active = false; | ||||
| 		// Send message to channel queue //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL | ||||
| 		d_channel_internal_queue->push(2); // 2-> negative acquisition | ||||
| 		free_grid_memory(); | ||||
| 		// consume samples to not block the GNU Radio flowgraph | ||||
| 		d_sample_counter += ninput_items[0]; // sample counter | ||||
| 		consume_each(ninput_items[0]); | ||||
| 		d_state=0; | ||||
| 		break; | ||||
| 	default: | ||||
| 		d_state=0; | ||||
| 		break; | ||||
| 	} | ||||
|  | ||||
|             // 1- Compute the input signal power estimation | ||||
|             for (i = 0; i < d_fft_size; i++) | ||||
|                 { | ||||
|                     d_input_power += std::norm(in[i]); | ||||
|                 } | ||||
|             d_input_power = d_input_power / (float)d_fft_size; | ||||
|  | ||||
|             // 2- Doppler frequency search loop | ||||
|             for (doppler = (int)(-d_doppler_max); doppler < (int)d_doppler_max; doppler += d_doppler_step) | ||||
|                 { | ||||
|                     // doppler search steps | ||||
|                     // Perform the carrier wipe-off | ||||
|                     complex_exp_gen_conj(d_carrier, d_freq + doppler, d_fs_in, d_fft_size); | ||||
|  | ||||
|                     volk_32fc_x2_multiply_32fc_u(d_fft_if->get_inbuf(), in, d_carrier, d_fft_size); | ||||
|                     // 3- Perform the FFT-based convolution  (parallel time search) | ||||
|                     // Compute the FFT of the carrier wiped--off incoming signal | ||||
|                     d_fft_if->execute(); | ||||
|  | ||||
|                     // Multiply carrier wiped--off, Fourier transformed incoming signal | ||||
|                     // with the local FFT'd code reference using SIMD operations with VOLK library | ||||
|                     volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size); | ||||
|  | ||||
|                     // compute the inverse FFT | ||||
|                     d_ifft->execute(); | ||||
|  | ||||
|                     // Search maximum | ||||
|                     indext = 0; | ||||
|                     magt = 0; | ||||
|                     fft_normalization_factor = (float)d_fft_size * (float)d_fft_size; | ||||
|                     for (i = 0; i < d_fft_size; i++) | ||||
|                         { | ||||
|                             tmp_magt = std::norm(d_ifft->get_outbuf()[i]); | ||||
|                             if (tmp_magt > magt) | ||||
|                                 { | ||||
|                                     magt = tmp_magt; | ||||
|                                     indext = i; | ||||
|                                 } | ||||
|                         } | ||||
|                     // Normalize the maximum value to correct the scale factor introduced by FFTW | ||||
|                     magt = magt / (fft_normalization_factor * fft_normalization_factor); | ||||
|  | ||||
|                     // 4- record the maximum peak and the associated synchronization parameters | ||||
|                     if (d_mag < magt) | ||||
|                         { | ||||
|                             d_mag = magt; | ||||
|                             d_gnss_synchro->Acq_delay_samples = (double)indext; | ||||
|                             d_gnss_synchro->Acq_doppler_hz = (double)doppler; | ||||
|                         } | ||||
|  | ||||
|                     // Record results to file if required | ||||
|                     if (d_dump) | ||||
|                         { | ||||
|                             std::stringstream filename; | ||||
|                             std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write | ||||
|                             filename.str(""); | ||||
|                             filename << "../data/test_statistics_" << d_gnss_synchro->System | ||||
|                                     <<"_" << d_gnss_synchro->Signal << "_sat_" | ||||
|                                     << d_gnss_synchro->PRN << "_doppler_" <<  doppler << ".dat"; | ||||
|                             d_dump_file.open(filename.str().c_str(), std::ios::out | ||||
|                                     | std::ios::binary); | ||||
|                             d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin? | ||||
|                             d_dump_file.close(); | ||||
|                         } | ||||
|                 } | ||||
|  | ||||
|             // 5- Compute the test statistics and compare to the threshold | ||||
|             d_test_statistics = 2 * d_fft_size * d_mag / d_input_power; | ||||
|  | ||||
|             // 6- Declare positive or negative acquisition using a message queue | ||||
|             if (d_test_statistics > d_threshold) | ||||
|                 { | ||||
|                     positive_acquisition = true; | ||||
|                     d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; | ||||
|                     DLOG(INFO) << "positive acquisition"; | ||||
|                     DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; | ||||
|                     DLOG(INFO) << "sample_stamp " << d_sample_counter; | ||||
|                     DLOG(INFO) << "test statistics value " << d_test_statistics; | ||||
|                     DLOG(INFO) << "test statistics threshold " << d_threshold; | ||||
|                     DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; | ||||
|                     DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; | ||||
|                     DLOG(INFO) << "magnitude " << d_mag; | ||||
|                     DLOG(INFO) << "input signal power " << d_input_power; | ||||
|                 } | ||||
|             else | ||||
|                 { | ||||
|                     DLOG(INFO) << "negative acquisition"; | ||||
|                     DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; | ||||
|                     DLOG(INFO) << "sample_stamp " << d_sample_counter; | ||||
|                     DLOG(INFO) << "test statistics value " << d_test_statistics; | ||||
|                     DLOG(INFO) << "test statistics threshold " << d_threshold; | ||||
|                     DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples; | ||||
|                     DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz; | ||||
|                     DLOG(INFO) << "magnitude " << d_mag; | ||||
|                     DLOG(INFO) << "input signal power " << d_input_power; | ||||
|                 } | ||||
|  | ||||
|             d_active = false; | ||||
|  | ||||
|             if (positive_acquisition) | ||||
|                 { | ||||
|                     acquisition_message = 1; | ||||
|                 } | ||||
|             else | ||||
|                 { | ||||
|                     acquisition_message = 2; | ||||
|                 } | ||||
|             d_channel_internal_queue->push(acquisition_message); | ||||
|             consume_each(1); | ||||
|         } | ||||
|     return 0; | ||||
| 	return 0; | ||||
| } | ||||
|   | ||||
| @@ -1,6 +1,6 @@ | ||||
| /*! | ||||
|  * \file pcps_assisted_acquisition_cc.h | ||||
|  * \brief This class implements a Parallel Code Phase Search Acquisition | ||||
|  * \brief This class implements a Parallel Code Phase Search Acquisition with assistance and multi-dwells | ||||
|  * | ||||
|  *  Acquisition strategy (Kay Borre book + CFAR threshold). | ||||
|  *  <ol> | ||||
| @@ -17,8 +17,7 @@ | ||||
|  * Approach", Birkha user, 2007. pp 81-84 | ||||
|  * | ||||
|  * \authors <ul> | ||||
|  *          <li> Javier Arribas, 2011. jarribas(at)cttc.es | ||||
|  *          <li> Luis Esteve, 2012. luis(at)epsilon-formacion.com | ||||
|  *          <li> Javier Arribas, 2013. jarribas(at)cttc.es | ||||
|  *          </ul> | ||||
|  * | ||||
|  * ------------------------------------------------------------------------- | ||||
| @@ -65,7 +64,7 @@ typedef boost::shared_ptr<pcps_assisted_acquisition_cc> | ||||
| pcps_assisted_acquisition_cc_sptr; | ||||
| pcps_assisted_acquisition_cc_sptr | ||||
| pcps_make_assisted_acquisition_cc(int max_dwells, unsigned int sampled_ms, | ||||
|         unsigned int doppler_max, long freq, long fs_in, int samples_per_ms, | ||||
|         int doppler_max, int doppler_min, long freq, long fs_in, int samples_per_ms, | ||||
|         gr_msg_queue_sptr queue, bool dump, std::string dump_filename); | ||||
|  | ||||
| /*! | ||||
| @@ -80,18 +79,26 @@ class pcps_assisted_acquisition_cc: public gr_block | ||||
| private: | ||||
| 	friend pcps_assisted_acquisition_cc_sptr | ||||
| 	pcps_make_assisted_acquisition_cc(int max_dwells, unsigned int sampled_ms, | ||||
| 			unsigned int doppler_max, long freq, long fs_in, | ||||
| 		    int doppler_max, int doppler_min, long freq, long fs_in, | ||||
| 			int samples_per_ms, gr_msg_queue_sptr queue, bool dump, | ||||
| 			std::string dump_filename); | ||||
|  | ||||
| 	pcps_assisted_acquisition_cc(int max_dwells, unsigned int sampled_ms, | ||||
| 			unsigned int doppler_max, long freq, long fs_in, | ||||
| 		    int doppler_max, int doppler_min, long freq, long fs_in, | ||||
| 			int samples_per_ms, gr_msg_queue_sptr queue, bool dump, | ||||
| 			std::string dump_filename); | ||||
|  | ||||
| 	void calculate_magnitudes(gr_complex* fft_begin, int doppler_shift, | ||||
| 			int doppler_offset); | ||||
|  | ||||
| 	int compute_and_accumulate_grid(gr_vector_const_void_star &input_items); | ||||
| 	float estimate_input_power(gr_vector_const_void_star &input_items); | ||||
| 	double search_maximum(); | ||||
| 	void get_assistance(); | ||||
| 	void reset_grid(); | ||||
| 	void redefine_grid(); | ||||
| 	void free_grid_memory(); | ||||
|  | ||||
| 	long d_fs_in; | ||||
| 	long d_freq; | ||||
| 	int d_samples_per_ms; | ||||
| @@ -100,27 +107,39 @@ private: | ||||
| 	int d_gnuradio_forecast_samples; | ||||
| 	float d_threshold; | ||||
| 	std::string d_satellite_str; | ||||
| 	unsigned int d_doppler_max; | ||||
| 	unsigned int d_doppler_step; | ||||
| 	int d_doppler_max; | ||||
| 	int d_doppler_min; | ||||
| 	int d_config_doppler_max; | ||||
| 	int d_config_doppler_min; | ||||
|  | ||||
| 	int d_num_doppler_points; | ||||
|     int d_doppler_step; | ||||
| 	unsigned int d_sampled_ms; | ||||
| 	unsigned int d_fft_size; | ||||
| 	unsigned long int d_sample_counter; | ||||
| 	gr_complex* d_carrier; | ||||
| 	gr_complex* d_fft_codes; | ||||
|  | ||||
| 	float** d_grid_data; | ||||
| 	gr_complex** d_grid_doppler_wipeoffs; | ||||
|  | ||||
| 	gr::fft::fft_complex* d_fft_if; | ||||
| 	gr::fft::fft_complex* d_ifft; | ||||
| 	Gnss_Synchro *d_gnss_synchro; | ||||
| 	unsigned int d_code_phase; | ||||
| 	float d_doppler_freq; | ||||
| 	float d_mag; | ||||
| 	float d_input_power; | ||||
| 	float d_test_statistics; | ||||
| 	gr_msg_queue_sptr d_queue; | ||||
| 	concurrent_queue<int> *d_channel_internal_queue; | ||||
| 	std::ofstream d_dump_file; | ||||
| 	int d_state; | ||||
| 	bool d_active; | ||||
| 	bool d_disable_assist; | ||||
| 	int d_well_count; | ||||
| 	bool d_dump; | ||||
| 	unsigned int d_channel; | ||||
|  | ||||
| 	std::string d_dump_filename; | ||||
|  | ||||
| public: | ||||
| @@ -144,7 +163,7 @@ public: | ||||
| 	  */ | ||||
| 	 unsigned int mag() | ||||
| 	 { | ||||
| 		 return d_mag; | ||||
| 		 return d_test_statistics; | ||||
| 	 } | ||||
|  | ||||
| 	 /*! | ||||
| @@ -200,10 +219,7 @@ public: | ||||
| 	  * \brief Set Doppler steps for the grid search | ||||
| 	  * \param doppler_step - Frequency bin of the search grid [Hz]. | ||||
| 	  */ | ||||
| 	 void set_doppler_step(unsigned int doppler_step) | ||||
| 	 { | ||||
| 		 d_doppler_step = doppler_step; | ||||
| 	 } | ||||
| 	 void set_doppler_step(unsigned int doppler_step); | ||||
|  | ||||
|  | ||||
| 	 /*! | ||||
|   | ||||
| @@ -66,6 +66,7 @@ FreqXlatingFirFilter::FreqXlatingFirFilter(ConfigurationInterface* configuration | ||||
|     if (dump_) | ||||
|         { | ||||
|             DLOG(INFO) << "Dumping output into file " << dump_filename_; | ||||
|             std::cout<<"Dumping output into file " << dump_filename_<<std::endl; | ||||
|             file_sink_ = gr_make_file_sink(item_size, dump_filename_.c_str()); | ||||
|         } | ||||
| } | ||||
|   | ||||
| @@ -509,7 +509,7 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec | ||||
|                             d_last_seg = floor(d_sample_counter / d_fs_in); | ||||
|                             std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl; | ||||
|                             std::cout << "Tracking CH " << d_channel <<  ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) | ||||
|                                                     << ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl; | ||||
|                                                     << ", Doppler="<<d_carrier_doppler_hz<<" [Hz] CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl; | ||||
|                             //std::cout<<"TRK CH "<<d_channel<<" Carrier_lock_test="<<d_carrier_lock_test<< std::endl; | ||||
|                             //if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock! | ||||
|                         } | ||||
| @@ -520,8 +520,8 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec | ||||
|                         { | ||||
|                             d_last_seg = floor(d_sample_counter / d_fs_in); | ||||
|                             std::cout << "Tracking CH " << d_channel <<  ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) | ||||
|                                                     << ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl; | ||||
|                             //std::cout<<"TRK CH "<<d_channel<<" Carrier_lock_test="<<d_carrier_lock_test<< std::endl; | ||||
|                                                      << ", Doppler="<<d_carrier_doppler_hz<<" [Hz] CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz]" << std::endl; | ||||
|                               //std::cout<<"TRK CH "<<d_channel<<" Carrier_lock_test="<<d_carrier_lock_test<< std::endl; | ||||
|                         } | ||||
|                 } | ||||
|         } | ||||
|   | ||||
| @@ -306,6 +306,7 @@ void gnss_sdr_supl_client::read_supl_data() | ||||
| 			gps_acq_iterator->second.d_TOW=(double)assist.acq_time; | ||||
| 			gps_acq_iterator->second.d_Doppler0=(double)e->doppler0; | ||||
| 			gps_acq_iterator->second.d_Doppler1=(double)e->doppler1; | ||||
| 			gps_acq_iterator->second.dopplerUncertainty=(double)e->d_win; | ||||
| 			gps_acq_iterator->second.Code_Phase=(double)e->code_ph; | ||||
| 			gps_acq_iterator->second.Code_Phase_int=(double)e->code_ph_int; | ||||
| 			gps_acq_iterator->second.Code_Phase_window=(double)e->code_ph_win; | ||||
|   | ||||
| @@ -388,7 +388,7 @@ void ControlThread::gps_acq_assist_data_collector() | ||||
|  | ||||
| 		// DEBUG MESSAGE | ||||
| 		std::cout << "Acquisition assistance record has arrived from SAT ID " | ||||
| 				<< gps_acq.i_satellite_PRN << std::endl; | ||||
| 				<< gps_acq.i_satellite_PRN << " with Doppler " << gps_acq.d_Doppler0<<" [Hz] "<<std::endl; | ||||
| 		// insert new acq record to the global ephemeris map | ||||
| 		if (global_gps_acq_assist_map.read(gps_acq.i_satellite_PRN,gps_acq_old)) | ||||
| 		{ | ||||
|   | ||||
| @@ -68,14 +68,18 @@ | ||||
| #include "gnuradio_block/direct_resampler_conditioner_cc_test.cc" | ||||
| #include "string_converter/string_converter_test.cc" | ||||
|  | ||||
| concurrent_queue<Gps_Ephemeris> global_gps_ephemeris_queue2; | ||||
|  | ||||
| concurrent_queue<Gps_Ephemeris> global_gps_ephemeris_queue; | ||||
| concurrent_queue<Gps_Iono> global_gps_iono_queue; | ||||
| concurrent_queue<Gps_Utc_Model> global_gps_utc_model_queue; | ||||
| concurrent_queue<Gps_Almanac> global_gps_almanac_queue; | ||||
| concurrent_queue<Gps_Acq_Assist> global_gps_acq_assist_queue; | ||||
|  | ||||
| concurrent_map<Gps_Ephemeris> global_gps_ephemeris_map; | ||||
| concurrent_map<Gps_Iono> global_gps_iono_map; | ||||
| concurrent_map<Gps_Utc_Model> global_gps_utc_model_map; | ||||
| concurrent_map<Gps_Almanac> global_gps_almanac_map; | ||||
| concurrent_map<Gps_Acq_Assist> global_gps_acq_assist_map; | ||||
|  | ||||
|  | ||||
| int main(int argc, char **argv) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Javier Arribas
					Javier Arribas