1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-09-27 22:58:24 +00:00

adding neon implementation

about x10 acceleration
This commit is contained in:
Carles Fernandez 2016-01-28 23:36:19 +01:00
parent d69e8e34f6
commit ccbdcf8788
2 changed files with 249 additions and 180 deletions

View File

@ -11,13 +11,13 @@
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_generic(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad=0.345;
float phase_step_rad = 0.123;
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.345;
float phase_step_rad = 0.123;
lv_32fc_t phase[1];
phase[0]=lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0]=lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_generic(outVector, inVector, phase_inc[0], phase, num_points);
}
@ -28,13 +28,13 @@ static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_generic(lv_16sc_t* outVe
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_a_sse2(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad=0.345;
float phase_step_rad = 0.123;
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.345;
float phase_step_rad = 0.123;
lv_32fc_t phase[1];
phase[0]=lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0]=lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse2(outVector, inVector, phase_inc[0], phase, num_points);
}
@ -44,13 +44,13 @@ static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_a_sse2(lv_16sc_t* outVec
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_u_sse2(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad=0.345;
float phase_step_rad = 0.123;
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.345;
float phase_step_rad = 0.123;
lv_32fc_t phase[1];
phase[0]=lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0]=lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse2(outVector, inVector, phase_inc[0], phase, num_points);
}
@ -60,13 +60,13 @@ static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_u_sse2(lv_16sc_t* outVec
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_neon(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
{
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad=0.345;
float phase_step_rad = 0.123;
// phases must be normalized. Phase rotator expects a complex exponential input!
float rem_carrier_phase_in_rad = 0.345;
float phase_step_rad = 0.123;
lv_32fc_t phase[1];
phase[0]=lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
lv_32fc_t phase_inc[1];
phase_inc[0]=lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon(outVector, inVector, phase_inc[0], phase, num_points);
}

View File

@ -38,7 +38,7 @@
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
#include <math.h>
#include <stdio.h>
#define ROTATOR_RELOAD 512
@ -58,14 +58,12 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_generic(lv_16sc_t* ou
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
*outVector++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
(*phase) *= phase_inc;
tmp32=(*phase);
//printf("[%i][%i] phase fc: %f,%f \n",i,j,lv_creal(tmp32),lv_cimag(tmp32));
}
}
for(i = 0; i < num_points % ROTATOR_RELOAD; ++i)
{
tmp16 = *inVector++;
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
tmp16 = *inVector++;
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
*outVector++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
(*phase) *= phase_inc;
}
@ -79,95 +77,94 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_generic(lv_16sc_t* ou
static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse2(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
{
const unsigned int sse_iters = num_points / 4;
__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
const unsigned int sse_iters = num_points / 4;
__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
const lv_16sc_t* _in_a = inVector;
__attribute__((aligned(32))) lv_32fc_t four_phase_rotations_32fc[4];
// debug
//__attribute__((aligned(16))) lv_16sc_t four_phase_rotations_16sc[4];
const lv_16sc_t* _in_a = inVector;
__attribute__((aligned(32))) lv_32fc_t four_phase_rotations_32fc[4];
// debug
//__attribute__((aligned(16))) lv_16sc_t four_phase_rotations_16sc[4];
// specify how many bits are used in the rotation (2^(N-1)) (it WILL increase the output signal range!)
__attribute__((aligned(32))) float rotator_amplitude_float[4] = { 4.0f, 4.0f, 4.0f, 4.0f };
__m128 _rotator_amplitude_reg = _mm_load_ps(rotator_amplitude_float);
// specify how many bits are used in the rotation (2^(N-1)) (it WILL increase the output signal range!)
__attribute__((aligned(32))) float rotator_amplitude_float[4] = { 4.0f, 4.0f, 4.0f, 4.0f };
__m128 _rotator_amplitude_reg = _mm_load_ps(rotator_amplitude_float);
//const lv_16sc_t* _in_b = in_b;
lv_16sc_t* _out = outVector;
//const lv_16sc_t* _in_b = in_b;
lv_16sc_t* _out = outVector;
__m128 fc_reg1, fc_reg2;
__m128i sc_reg1, sc_reg2; // is __m128i defined in xmmintrin.h?
__m128 fc_reg1, fc_reg2;
__m128i sc_reg1, sc_reg2; // is __m128i defined in xmmintrin.h?
for(unsigned int number = 0; number < sse_iters; number++)
{
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
a = _mm_load_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
//b = _mm_loadu_si128((__m128i*)_in_b);
for(unsigned int number = 0; number < sse_iters; number++)
{
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
a = _mm_load_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
//b = _mm_loadu_si128((__m128i*)_in_b);
// compute next four 16ic complex exponential values for phase rotation
// compute next four 16ic complex exponential values for phase rotation
// compute next four float complex rotations
four_phase_rotations_32fc[0]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[1]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[2]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[3]=*phase;
(*phase) *= phase_inc;
//convert the rotations to integers
fc_reg1 = _mm_load_ps((float*)&four_phase_rotations_32fc[0]);
// compute next four float complex rotations
four_phase_rotations_32fc[0]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[1]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[2]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[3]=*phase;
(*phase) *= phase_inc;
//convert the rotations to integers
fc_reg1 = _mm_load_ps((float*)&four_phase_rotations_32fc[0]);
// disable next line for 1 bit rotation (equivalent to a square wave NCO)
fc_reg1 = _mm_mul_ps (fc_reg1, _rotator_amplitude_reg);
// disable next line for 1 bit rotation (equivalent to a square wave NCO)
fc_reg1 = _mm_mul_ps (fc_reg1, _rotator_amplitude_reg);
fc_reg2 = _mm_load_ps((float*)&four_phase_rotations_32fc[2]);
sc_reg1 = _mm_cvtps_epi32(fc_reg1);
sc_reg2 = _mm_cvtps_epi32(fc_reg2);
b = _mm_packs_epi32(sc_reg1, sc_reg2);
fc_reg2 = _mm_load_ps((float*)&four_phase_rotations_32fc[2]);
sc_reg1 = _mm_cvtps_epi32(fc_reg1);
sc_reg2 = _mm_cvtps_epi32(fc_reg2);
b = _mm_packs_epi32(sc_reg1, sc_reg2);
// debug
//_mm_store_si128((__m128i*)four_phase_rotations_16sc, b);
//printf("phase fc: %f,%f phase sc: %i,%i \n",lv_creal(four_phase_rotations_32fc[0]),lv_cimag(four_phase_rotations_32fc[0]),lv_creal(four_phase_rotations_16sc[0]),lv_cimag(four_phase_rotations_16sc[0]));
// debug
//_mm_store_si128((__m128i*)four_phase_rotations_16sc, b);
//printf("phase fc: %f,%f phase sc: %i,%i \n",lv_creal(four_phase_rotations_32fc[0]),lv_cimag(four_phase_rotations_32fc[0]),lv_creal(four_phase_rotations_16sc[0]),lv_cimag(four_phase_rotations_16sc[0]));
// multiply the input vector times the rotations
c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
// multiply the input vector times the rotations
c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
real = _mm_subs_epi16 (c, c_sr);
real = _mm_and_si128 (real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0, a3.r*b3.r- a3.i*b3.i
c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
real = _mm_subs_epi16 (c, c_sr);
real = _mm_and_si128 (real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0, a3.r*b3.r- a3.i*b3.i
b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
imag = _mm_adds_epi16(imag1, imag2);
imag = _mm_and_si128 (imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
imag = _mm_adds_epi16(imag1, imag2);
imag = _mm_and_si128 (imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
result = _mm_or_si128 (real, imag);
result = _mm_or_si128 (real, imag);
// normalize the rotations
// TODO
// normalize the rotations
// TODO
// store results
_mm_store_si128((__m128i*)_out, result);
// store results
_mm_store_si128((__m128i*)_out, result);
_in_a += 4;
_out += 4;
}
for (unsigned int i = sse_iters * 4; i < num_points; ++i)
{
*_out++ = *_in_a++ * (*phase);
(*phase) *= phase_inc;
}
_in_a += 4;
_out += 4;
}
for (unsigned int i = sse_iters * 4; i < num_points; ++i)
{
*_out++ = *_in_a++ * (*phase);
(*phase) *= phase_inc;
}
}
#endif /* LV_HAVE_SSE2 */
@ -177,128 +174,200 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse2(lv_16sc_t* out
static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse2(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
{
const unsigned int sse_iters = num_points / 4;
__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
const unsigned int sse_iters = num_points / 4;
__m128i a,b,c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
const lv_16sc_t* _in_a = inVector;
__attribute__((aligned(32))) lv_32fc_t four_phase_rotations_32fc[4];
// debug
//__attribute__((aligned(16))) lv_16sc_t four_phase_rotations_16sc[4];
const lv_16sc_t* _in_a = inVector;
__attribute__((aligned(32))) lv_32fc_t four_phase_rotations_32fc[4];
// debug
//__attribute__((aligned(16))) lv_16sc_t four_phase_rotations_16sc[4];
// specify how many bits are used in the rotation (2^(N-1)) (it WILL increase the output signal range!)
__attribute__((aligned(32))) float rotator_amplitude_float[4] = { 4.0f, 4.0f, 4.0f, 4.0f };
__m128 _rotator_amplitude_reg = _mm_load_ps(rotator_amplitude_float);
// specify how many bits are used in the rotation (2^(N-1)) (it WILL increase the output signal range!)
__attribute__((aligned(32))) float rotator_amplitude_float[4] = { 4.0f, 4.0f, 4.0f, 4.0f };
__m128 _rotator_amplitude_reg = _mm_load_ps(rotator_amplitude_float);
//const lv_16sc_t* _in_b = in_b;
lv_16sc_t* _out = outVector;
//const lv_16sc_t* _in_b = in_b;
lv_16sc_t* _out = outVector;
__m128 fc_reg1, fc_reg2;
__m128i sc_reg1, sc_reg2; // is __m128i defined in xmmintrin.h?
__m128 fc_reg1, fc_reg2;
__m128i sc_reg1, sc_reg2; // is __m128i defined in xmmintrin.h?
for(unsigned int number = 0; number < sse_iters; number++)
{
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
//b = _mm_loadu_si128((__m128i*)_in_b);
for(unsigned int number = 0; number < sse_iters; number++)
{
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
//b = _mm_loadu_si128((__m128i*)_in_b);
// compute next four 16ic complex exponential values for phase rotation
// compute next four 16ic complex exponential values for phase rotation
// compute next four float complex rotations
four_phase_rotations_32fc[0]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[1]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[2]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[3]=*phase;
(*phase) *= phase_inc;
//convert the rotations to integers
fc_reg1 = _mm_load_ps((float*)&four_phase_rotations_32fc[0]);
// compute next four float complex rotations
four_phase_rotations_32fc[0]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[1]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[2]=*phase;
(*phase) *= phase_inc;
four_phase_rotations_32fc[3]=*phase;
(*phase) *= phase_inc;
//convert the rotations to integers
fc_reg1 = _mm_load_ps((float*)&four_phase_rotations_32fc[0]);
// disable next line for 1 bit rotation (equivalent to a square wave NCO)
fc_reg1 = _mm_mul_ps (fc_reg1, _rotator_amplitude_reg);
// disable next line for 1 bit rotation (equivalent to a square wave NCO)
fc_reg1 = _mm_mul_ps (fc_reg1, _rotator_amplitude_reg);
fc_reg2 = _mm_load_ps((float*)&four_phase_rotations_32fc[2]);
sc_reg1 = _mm_cvtps_epi32(fc_reg1);
sc_reg2 = _mm_cvtps_epi32(fc_reg2);
b = _mm_packs_epi32(sc_reg1, sc_reg2);
fc_reg2 = _mm_load_ps((float*)&four_phase_rotations_32fc[2]);
sc_reg1 = _mm_cvtps_epi32(fc_reg1);
sc_reg2 = _mm_cvtps_epi32(fc_reg2);
b = _mm_packs_epi32(sc_reg1, sc_reg2);
// debug
//_mm_store_si128((__m128i*)four_phase_rotations_16sc, b);
//printf("phase fc: %f,%f phase sc: %i,%i \n",lv_creal(four_phase_rotations_32fc[0]),lv_cimag(four_phase_rotations_32fc[0]),lv_creal(four_phase_rotations_16sc[0]),lv_cimag(four_phase_rotations_16sc[0]));
// debug
//_mm_store_si128((__m128i*)four_phase_rotations_16sc, b);
//printf("phase fc: %f,%f phase sc: %i,%i \n",lv_creal(four_phase_rotations_32fc[0]),lv_cimag(four_phase_rotations_32fc[0]),lv_creal(four_phase_rotations_16sc[0]),lv_cimag(four_phase_rotations_16sc[0]));
// multiply the input vector times the rotations
c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
// multiply the input vector times the rotations
c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
real = _mm_subs_epi16 (c, c_sr);
real = _mm_and_si128 (real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0, a3.r*b3.r- a3.i*b3.i
c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
real = _mm_subs_epi16 (c, c_sr);
real = _mm_and_si128 (real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0, a3.r*b3.r- a3.i*b3.i
b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
imag = _mm_adds_epi16(imag1, imag2);
imag = _mm_and_si128 (imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
imag = _mm_adds_epi16(imag1, imag2);
imag = _mm_and_si128 (imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
result = _mm_or_si128 (real, imag);
result = _mm_or_si128 (real, imag);
// normalize the rotations
// TODO
// normalize the rotations
// TODO
// store results
_mm_storeu_si128((__m128i*)_out, result);
// store results
_mm_storeu_si128((__m128i*)_out, result);
_in_a += 4;
_out += 4;
}
for (unsigned int i = sse_iters * 4; i < num_points; ++i)
{
*_out++ = *_in_a++ * (*phase);
(*phase) *= phase_inc;
}
_in_a += 4;
_out += 4;
}
for (unsigned int i = sse_iters * 4; i < num_points; ++i)
{
*_out++ = *_in_a++ * (*phase);
(*phase) *= phase_inc;
}
}
#endif /* LV_HAVE_SSE2 */
#ifdef LV_HAVE_NEON
#include <arm.neon.h>
#include <arm_neon.h>
static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
{
unsigned int i = 0;
int j = 0;
lv_16sc_t tmp16;
lv_32fc_t tmp32;
for(i = 0; i < (unsigned int)(num_points / ROTATOR_RELOAD); ++i)
const unsigned int neon_iters = num_points / 4;
lv_16sc_t tmp16_;
lv_32fc_t tmp32_;
const lv_16sc_t* _in = inVector;
lv_16sc_t* _out = outVector;
lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc;
float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) };
float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) };
float32x4_t _phase4_real = vld1q_f32(__phase4_real);
float32x4_t _phase4_imag = vld1q_f32(__phase4_imag);
lv_32fc_t phase2 = (lv_32fc_t)(*phase) * phase_inc;
lv_32fc_t phase3 = phase2 * phase_inc;
lv_32fc_t phase4 = phase3 * phase_inc;
float32_t __phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
float32_t __phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
float32x4_t _phase_real = vld1q_f32(__phase_real);
float32x4_t _phase_imag = vld1q_f32(__phase_imag);
float32x4_t half = vdupq_n_f32(0.5f);
int16x4x2_t tmp16;
int32x4x2_t tmp32i;
float32x4x2_t tmp32f, tmp_real, tmp_imag;
float32x4_t sign, PlusHalf, Round;
if (neon_iters > 0)
{
for(j = 0; j < ROTATOR_RELOAD; ++j)
for(; i < neon_iters; ++i)
{
tmp16 = *inVector++;
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
*outVector++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
(*phase) *= phase_inc;
tmp32=(*phase);
printf("[%i][%i] phase fc: %f,%f \n",i,j,lv_creal(tmp32),lv_cimag(tmp32));
/* load 4 complex numbers (int 16 bits each component) */
tmp16 = vld2_s16((int16_t*)_in); _in += 4;
/* promote them to int 32 bits */
tmp32i.val[0] = vmovl_s16(tmp16.val[0]);
tmp32i.val[1] = vmovl_s16(tmp16.val[1]);
/* promote them to float 32 bits */
tmp32f.val[0] = vcvtq_f32_s32(tmp32i.val[0]);
tmp32f.val[1] = vcvtq_f32_s32(tmp32i.val[1]);
/* complex multiplication of four complex samples (float 32 bits each component) */
tmp_real.val[0] = vmulq_f32(tmp32f.val[0], _phase_real);
tmp_real.val[1] = vmulq_f32(tmp32f.val[1], _phase_imag);
tmp_imag.val[0] = vmulq_f32(tmp32f.val[0], _phase_imag);
tmp_imag.val[1] = vmulq_f32(tmp32f.val[1], _phase_real);
tmp32f.val[0] = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
tmp32f.val[1] = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
/* downcast results to int32 */
/* in __aarch64__ we can do that with vcvtaq_s32_f32(ret1); vcvtaq_s32_f32(ret2); */
sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[0]), 31)));
PlusHalf = vaddq_f32(tmp32f.val[0], half);
Round = vsubq_f32(PlusHalf, sign);
tmp32i.val[0] = vcvtq_s32_f32(Round);
sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[1]), 31)));
PlusHalf = vaddq_f32(tmp32f.val[1], half);
Round = vsubq_f32(PlusHalf, sign);
tmp32i.val[1] = vcvtq_s32_f32(Round);
/* downcast results to int16 */
tmp16.val[0] = vqmovn_s32(tmp32i.val[0]);
tmp16.val[1] = vqmovn_s32(tmp32i.val[1]);
/* compute next four phases */
tmp_real.val[0] = vmulq_f32(_phase_real, _phase4_real);
tmp_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag);
tmp_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag);
tmp_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real);
_phase_real = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
_phase_imag = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
/* store the four complex results */
vst2_s16((int16_t*)_out, tmp16);
_out += 4;
}
vst1q_f32((float32_t*)__phase_real, _phase_real);
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
(*phase) = lv_cmake(__phase_real[3], __phase_imag[3]);
}
for(i = 0; i < num_points % ROTATOR_RELOAD; ++i)
for(i = 0; i < neon_iters % 4; ++i)
{
tmp16 = *inVector++;
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
*outVector++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
tmp16_ = *_in++;
tmp32_ = lv_cmake((float32_t)lv_creal(tmp16_), (float32_t)lv_cimag(tmp16_)) * (*phase);
*_out++ = lv_cmake((int16_t)rintf(lv_creal(tmp32_)), (int16_t)rintf(lv_cimag(tmp32_)));
(*phase) *= phase_inc;
}
}
#endif /* LV_HAVE_NEON */
#endif
#endif /* INCLUDED_volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_H */