mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-01-16 12:12:57 +00:00
Fixing some numerical problems
This commit is contained in:
parent
754e4436ee
commit
c9ff9759cc
@ -170,6 +170,7 @@ install(FILES
|
|||||||
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_common.h
|
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_common.h
|
||||||
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_avx_intrinsics.h
|
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_avx_intrinsics.h
|
||||||
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_sse3_intrinsics.h
|
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_sse3_intrinsics.h
|
||||||
|
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h
|
||||||
${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr.h
|
${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr.h
|
||||||
${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr_cpu.h
|
${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr_cpu.h
|
||||||
${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr_config_fixed.h
|
${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr_config_fixed.h
|
||||||
|
@ -0,0 +1,56 @@
|
|||||||
|
/*!
|
||||||
|
* \file volk_gnsssdr_neon_intrinsics.h
|
||||||
|
* \author Carles Fernandez, 2016. carles.fernandez(at)gmail.com
|
||||||
|
* \brief Holds NEON intrinsics of intrinsics.
|
||||||
|
* They can be used in VOLK_GNSSSDR kernels to avoid copy-paste
|
||||||
|
*
|
||||||
|
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||||
|
*
|
||||||
|
* This file is part of GNSS-SDR.
|
||||||
|
*
|
||||||
|
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef INCLUDED_VOLK_GNSSSDR_NEON_INTRINSICS_H_
|
||||||
|
#define INCLUDED_VOLK_GNSSSDR_NEON_INTRINSICS_H_
|
||||||
|
|
||||||
|
#include <arm_neon.h>
|
||||||
|
|
||||||
|
static inline float32x4_t vdivq_f32( float32x4_t num, float32x4_t den )
|
||||||
|
{
|
||||||
|
const float32x4_t q_inv0 = vrecpeq_f32( den );
|
||||||
|
const float32x4_t q_step0 = vrecpsq_f32( q_inv0, den );
|
||||||
|
|
||||||
|
const float32x4_t q_inv1 = vmulq_f32( q_step0, q_inv0 );
|
||||||
|
return vmulq_f32( num, q_inv1 );
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static inline float32x4_t vsqrtq_f32( float32x4_t q_x )
|
||||||
|
{
|
||||||
|
const float32x4_t q_step_0 = vrsqrteq_f32( q_x );
|
||||||
|
// step
|
||||||
|
const float32x4_t q_step_parm0 = vmulq_f32( q_x, q_step_0 );
|
||||||
|
const float32x4_t q_step_result0 = vrsqrtsq_f32( q_step_parm0, q_step_0 );
|
||||||
|
// step
|
||||||
|
const float32x4_t q_step_1 = vmulq_f32( q_step_0, q_step_result0 );
|
||||||
|
const float32x4_t q_step_parm1 = vmulq_f32( q_x, q_step_1 );
|
||||||
|
const float32x4_t q_step_result1 = vrsqrtsq_f32( q_step_parm1, q_step_1 );
|
||||||
|
// take the res
|
||||||
|
const float32x4_t q_step_2 = vmulq_f32( q_step_1, q_step_result1 );
|
||||||
|
// mul by x to get sqrt, not rsqrt
|
||||||
|
return vmulq_f32( q_x, q_step_2 );
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* INCLUDED_VOLK_GNSSSDR_NEON_INTRINSICS_H_ */
|
@ -57,6 +57,22 @@ static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_generic(lv_16sc_t* outVe
|
|||||||
#endif /* LV_HAVE_GENERIC */
|
#endif /* LV_HAVE_GENERIC */
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_GENERIC
|
||||||
|
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_generic_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
|
||||||
|
{
|
||||||
|
// phases must be normalized. Phase rotator expects a complex exponential input!
|
||||||
|
float rem_carrier_phase_in_rad = 0.345;
|
||||||
|
float phase_step_rad = 0.123;
|
||||||
|
lv_32fc_t phase[1];
|
||||||
|
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
|
||||||
|
lv_32fc_t phase_inc[1];
|
||||||
|
phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
|
||||||
|
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_generic_reload(outVector, inVector, phase_inc[0], phase, num_points);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* LV_HAVE_GENERIC */
|
||||||
|
|
||||||
|
|
||||||
#ifdef LV_HAVE_SSE3
|
#ifdef LV_HAVE_SSE3
|
||||||
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_a_sse3(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
|
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_a_sse3(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
|
||||||
{
|
{
|
||||||
@ -73,6 +89,22 @@ static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_a_sse3(lv_16sc_t* outVec
|
|||||||
#endif /* LV_HAVE_SSE3 */
|
#endif /* LV_HAVE_SSE3 */
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_SSE3
|
||||||
|
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_a_sse3_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
|
||||||
|
{
|
||||||
|
// phases must be normalized. Phase rotator expects a complex exponential input!
|
||||||
|
float rem_carrier_phase_in_rad = 0.345;
|
||||||
|
float phase_step_rad = 0.123;
|
||||||
|
lv_32fc_t phase[1];
|
||||||
|
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
|
||||||
|
lv_32fc_t phase_inc[1];
|
||||||
|
phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
|
||||||
|
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse3_reload(outVector, inVector, phase_inc[0], phase, num_points);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* LV_HAVE_SSE3 */
|
||||||
|
|
||||||
|
|
||||||
#ifdef LV_HAVE_SSE3
|
#ifdef LV_HAVE_SSE3
|
||||||
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_u_sse3(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
|
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_u_sse3(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
|
||||||
{
|
{
|
||||||
@ -89,6 +121,22 @@ static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_u_sse3(lv_16sc_t* outVec
|
|||||||
#endif /* LV_HAVE_SSE3 */
|
#endif /* LV_HAVE_SSE3 */
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_SSE3
|
||||||
|
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_u_sse3_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
|
||||||
|
{
|
||||||
|
// phases must be normalized. Phase rotator expects a complex exponential input!
|
||||||
|
float rem_carrier_phase_in_rad = 0.345;
|
||||||
|
float phase_step_rad = 0.123;
|
||||||
|
lv_32fc_t phase[1];
|
||||||
|
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
|
||||||
|
lv_32fc_t phase_inc[1];
|
||||||
|
phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
|
||||||
|
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse3_reload(outVector, inVector, phase_inc[0], phase, num_points);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* LV_HAVE_SSE3 */
|
||||||
|
|
||||||
|
|
||||||
#ifdef LV_HAVE_NEON
|
#ifdef LV_HAVE_NEON
|
||||||
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_neon(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
|
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_neon(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
|
||||||
{
|
{
|
||||||
@ -105,4 +153,20 @@ static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_neon(lv_16sc_t* outVecto
|
|||||||
#endif /* LV_HAVE_NEON */
|
#endif /* LV_HAVE_NEON */
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_NEON
|
||||||
|
static inline void volk_gnsssdr_16ic_rotatorpuppet_16ic_neon_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, unsigned int num_points)
|
||||||
|
{
|
||||||
|
// phases must be normalized. Phase rotator expects a complex exponential input!
|
||||||
|
float rem_carrier_phase_in_rad = 0.345;
|
||||||
|
float phase_step_rad = 0.123;
|
||||||
|
lv_32fc_t phase[1];
|
||||||
|
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), -sin(rem_carrier_phase_in_rad));
|
||||||
|
lv_32fc_t phase_inc[1];
|
||||||
|
phase_inc[0] = lv_cmake(cos(phase_step_rad), -sin(phase_step_rad));
|
||||||
|
volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon_reload(outVector, inVector, phase_inc[0], phase, num_points);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* LV_HAVE_NEON */
|
||||||
|
|
||||||
|
|
||||||
#endif /* INCLUDED_volk_gnsssdr_16ic_rotatorpuppet_16ic_H */
|
#endif /* INCLUDED_volk_gnsssdr_16ic_rotatorpuppet_16ic_H */
|
||||||
|
@ -61,6 +61,7 @@
|
|||||||
|
|
||||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||||
#include <math.h>
|
#include <math.h>
|
||||||
|
//#include <stdio.h>
|
||||||
|
|
||||||
|
|
||||||
#ifdef LV_HAVE_GENERIC
|
#ifdef LV_HAVE_GENERIC
|
||||||
@ -71,6 +72,56 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_generic(lv_16sc_t* ou
|
|||||||
lv_16sc_t tmp16;
|
lv_16sc_t tmp16;
|
||||||
lv_32fc_t tmp32;
|
lv_32fc_t tmp32;
|
||||||
for(i = 0; i < (unsigned int)(num_points); ++i)
|
for(i = 0; i < (unsigned int)(num_points); ++i)
|
||||||
|
{
|
||||||
|
tmp16 = *inVector++;
|
||||||
|
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
|
||||||
|
*outVector++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
|
||||||
|
(*phase) *= phase_inc;
|
||||||
|
// Regenerate phase
|
||||||
|
if (i % 512 == 0)
|
||||||
|
{
|
||||||
|
//printf("Phase before regeneration %i: %f,%f Modulus: %f\n", n,lv_creal(*phase),lv_cimag(*phase), cabsf(*phase));
|
||||||
|
#ifdef __cplusplus
|
||||||
|
(*phase) /= std::abs((*phase));
|
||||||
|
#else
|
||||||
|
(*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
|
||||||
|
#endif
|
||||||
|
//printf("Phase after regeneration %i: %f,%f Modulus: %f\n", n,lv_creal(*phase),lv_cimag(*phase), cabsf(*phase));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* LV_HAVE_GENERIC */
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_GENERIC
|
||||||
|
|
||||||
|
static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_generic_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
|
||||||
|
{
|
||||||
|
unsigned int ROTATOR_RELOAD = 512;
|
||||||
|
unsigned int n = 0;
|
||||||
|
unsigned int j = 0;
|
||||||
|
lv_16sc_t tmp16;
|
||||||
|
lv_32fc_t tmp32;
|
||||||
|
for (; n < num_points / ROTATOR_RELOAD; n++)
|
||||||
|
{
|
||||||
|
for (j = 0; j < ROTATOR_RELOAD; j++)
|
||||||
|
{
|
||||||
|
tmp16 = *inVector++;
|
||||||
|
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
|
||||||
|
*outVector++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
|
||||||
|
(*phase) *= phase_inc;
|
||||||
|
}
|
||||||
|
// Regenerate phase
|
||||||
|
//printf("Phase before regeneration %i: %f,%f Modulus: %f\n", n,lv_creal(*phase),lv_cimag(*phase), cabsf(*phase));
|
||||||
|
#ifdef __cplusplus
|
||||||
|
(*phase) /= std::abs((*phase));
|
||||||
|
#else
|
||||||
|
(*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
|
||||||
|
#endif
|
||||||
|
//printf("Phase after regeneration %i: %f,%f Modulus: %f\n", n,lv_creal(*phase),lv_cimag(*phase), cabsf(*phase));
|
||||||
|
}
|
||||||
|
for (j = 0; j < num_points % ROTATOR_RELOAD; j++)
|
||||||
{
|
{
|
||||||
tmp16 = *inVector++;
|
tmp16 = *inVector++;
|
||||||
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
|
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
|
||||||
@ -130,6 +181,168 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse3(lv_16sc_t* out
|
|||||||
//next two samples
|
//next two samples
|
||||||
_in += 2;
|
_in += 2;
|
||||||
a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
|
__builtin_prefetch(_in + 8);
|
||||||
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
|
||||||
|
|
||||||
|
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
|
||||||
|
// store four output samples
|
||||||
|
result = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
|
||||||
|
_mm_store_si128((__m128i*)_out, result);
|
||||||
|
|
||||||
|
// Regenerate phase
|
||||||
|
if ((number % 512) == 0)
|
||||||
|
{
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
|
||||||
|
tmp2 = _mm_hadd_ps(tmp1, tmp1);
|
||||||
|
tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
|
||||||
|
tmp2 = _mm_sqrt_ps(tmp1);
|
||||||
|
two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
|
||||||
|
}
|
||||||
|
|
||||||
|
//next two samples
|
||||||
|
_in += 2;
|
||||||
|
_out += 4;
|
||||||
|
}
|
||||||
|
|
||||||
|
_mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg);
|
||||||
|
(*phase) = two_phase_acc[0];
|
||||||
|
|
||||||
|
for (unsigned int i = sse_iters * 4; i < num_points; ++i)
|
||||||
|
{
|
||||||
|
tmp16 = *_in++;
|
||||||
|
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
|
||||||
|
*_out++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
|
||||||
|
(*phase) *= phase_inc;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* LV_HAVE_SSE3 */
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_SSE3
|
||||||
|
#include <pmmintrin.h>
|
||||||
|
|
||||||
|
static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse3_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
|
||||||
|
{
|
||||||
|
const unsigned int sse_iters = num_points / 4;
|
||||||
|
const unsigned int ROTATOR_RELOAD = 512;
|
||||||
|
__m128 a, b, two_phase_acc_reg, two_phase_inc_reg;
|
||||||
|
__m128i c1, c2, result;
|
||||||
|
__attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
|
||||||
|
two_phase_inc[0] = phase_inc * phase_inc;
|
||||||
|
two_phase_inc[1] = phase_inc * phase_inc;
|
||||||
|
two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
|
||||||
|
__attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
|
||||||
|
two_phase_acc[0] = (*phase);
|
||||||
|
two_phase_acc[1] = (*phase) * phase_inc;
|
||||||
|
two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc);
|
||||||
|
|
||||||
|
const lv_16sc_t* _in = inVector;
|
||||||
|
|
||||||
|
lv_16sc_t* _out = outVector;
|
||||||
|
|
||||||
|
__m128 yl, yh, tmp1, tmp2, tmp3;
|
||||||
|
lv_16sc_t tmp16;
|
||||||
|
lv_32fc_t tmp32;
|
||||||
|
|
||||||
|
for (unsigned int n = 0; n < sse_iters / ROTATOR_RELOAD; n++)
|
||||||
|
{
|
||||||
|
for (unsigned int j = 0; j < ROTATOR_RELOAD; j++)
|
||||||
|
{
|
||||||
|
a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
|
||||||
|
|
||||||
|
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
|
||||||
|
//next two samples
|
||||||
|
_in += 2;
|
||||||
|
a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
|
__builtin_prefetch(_in + 8);
|
||||||
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
|
||||||
|
|
||||||
|
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
|
||||||
|
// store four output samples
|
||||||
|
result = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
|
||||||
|
_mm_store_si128((__m128i*)_out, result);
|
||||||
|
|
||||||
|
//next two samples
|
||||||
|
_in += 2;
|
||||||
|
_out += 4;
|
||||||
|
}
|
||||||
|
// Regenerate phase
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
|
||||||
|
tmp2 = _mm_hadd_ps(tmp1, tmp1);
|
||||||
|
tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
|
||||||
|
tmp2 = _mm_sqrt_ps(tmp1);
|
||||||
|
two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (unsigned int j = 0; j < sse_iters % ROTATOR_RELOAD; j++)
|
||||||
|
{
|
||||||
|
a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
|
||||||
|
|
||||||
|
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
|
||||||
|
//next two samples
|
||||||
|
_in += 2;
|
||||||
|
a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
|
__builtin_prefetch(_in + 8);
|
||||||
//complex 32fc multiplication b=a*two_phase_acc_reg
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
@ -171,6 +384,7 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_a_sse3(lv_16sc_t* out
|
|||||||
#endif /* LV_HAVE_SSE3 */
|
#endif /* LV_HAVE_SSE3 */
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#ifdef LV_HAVE_SSE3
|
#ifdef LV_HAVE_SSE3
|
||||||
#include <pmmintrin.h>
|
#include <pmmintrin.h>
|
||||||
|
|
||||||
@ -241,6 +455,16 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse3(lv_16sc_t* out
|
|||||||
result = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
|
result = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
|
||||||
_mm_storeu_si128((__m128i*)_out, result);
|
_mm_storeu_si128((__m128i*)_out, result);
|
||||||
|
|
||||||
|
// Regenerate phase
|
||||||
|
if ((number % 512) == 0)
|
||||||
|
{
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
|
||||||
|
tmp2 = _mm_hadd_ps(tmp1, tmp1);
|
||||||
|
tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
|
||||||
|
tmp2 = _mm_sqrt_ps(tmp1);
|
||||||
|
two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
|
||||||
|
}
|
||||||
|
|
||||||
//next two samples
|
//next two samples
|
||||||
_in += 2;
|
_in += 2;
|
||||||
_out += 4;
|
_out += 4;
|
||||||
@ -261,6 +485,156 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse3(lv_16sc_t* out
|
|||||||
#endif /* LV_HAVE_SSE3 */
|
#endif /* LV_HAVE_SSE3 */
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_SSE3
|
||||||
|
#include <pmmintrin.h>
|
||||||
|
|
||||||
|
static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_u_sse3_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
|
||||||
|
{
|
||||||
|
const unsigned int sse_iters = num_points / 4;
|
||||||
|
unsigned int ROTATOR_RELOAD = 512;
|
||||||
|
__m128 a, b, two_phase_acc_reg, two_phase_inc_reg;
|
||||||
|
__m128i c1, c2, result;
|
||||||
|
__attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
|
||||||
|
two_phase_inc[0] = phase_inc * phase_inc;
|
||||||
|
two_phase_inc[1] = phase_inc * phase_inc;
|
||||||
|
two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
|
||||||
|
__attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
|
||||||
|
two_phase_acc[0] = (*phase);
|
||||||
|
two_phase_acc[1] = (*phase) * phase_inc;
|
||||||
|
two_phase_acc_reg = _mm_load_ps((float*) two_phase_acc);
|
||||||
|
|
||||||
|
const lv_16sc_t* _in = inVector;
|
||||||
|
|
||||||
|
lv_16sc_t* _out = outVector;
|
||||||
|
|
||||||
|
__m128 yl, yh, tmp1, tmp2, tmp3;
|
||||||
|
lv_16sc_t tmp16;
|
||||||
|
lv_32fc_t tmp32;
|
||||||
|
|
||||||
|
for (unsigned int n = 0; n < sse_iters / ROTATOR_RELOAD; n++)
|
||||||
|
{
|
||||||
|
for (unsigned int j = 0; j < ROTATOR_RELOAD; j++)
|
||||||
|
{
|
||||||
|
a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
|
||||||
|
|
||||||
|
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
|
||||||
|
//next two samples
|
||||||
|
_in += 2;
|
||||||
|
a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
|
__builtin_prefetch(_in + 8);
|
||||||
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
|
||||||
|
|
||||||
|
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
|
||||||
|
// store four output samples
|
||||||
|
result = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
|
||||||
|
_mm_storeu_si128((__m128i*)_out, result);
|
||||||
|
|
||||||
|
//next two samples
|
||||||
|
_in += 2;
|
||||||
|
_out += 4;
|
||||||
|
}
|
||||||
|
// Regenerate phase
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
|
||||||
|
tmp2 = _mm_hadd_ps(tmp1, tmp1);
|
||||||
|
tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
|
||||||
|
tmp2 = _mm_sqrt_ps(tmp1);
|
||||||
|
two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (unsigned int j = 0; j < sse_iters % ROTATOR_RELOAD; j++)
|
||||||
|
{
|
||||||
|
a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
c1 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
|
||||||
|
|
||||||
|
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
|
||||||
|
//next two samples
|
||||||
|
_in += 2;
|
||||||
|
a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
|
__builtin_prefetch(_in + 8);
|
||||||
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(a, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
a = _mm_shuffle_ps(a, a, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(a, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
b = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
c2 = _mm_cvtps_epi32(b); // convert from 32fc to 32ic
|
||||||
|
|
||||||
|
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
|
||||||
|
// store four output samples
|
||||||
|
result = _mm_packs_epi32(c1, c2);// convert from 32ic to 16ic
|
||||||
|
_mm_storeu_si128((__m128i*)_out, result);
|
||||||
|
|
||||||
|
//next two samples
|
||||||
|
_in += 2;
|
||||||
|
_out += 4;
|
||||||
|
}
|
||||||
|
|
||||||
|
_mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg);
|
||||||
|
(*phase) = two_phase_acc[0];
|
||||||
|
|
||||||
|
for (unsigned int i = sse_iters * 4; i < num_points; ++i)
|
||||||
|
{
|
||||||
|
tmp16 = *_in++;
|
||||||
|
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
|
||||||
|
*_out++ = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
|
||||||
|
(*phase) *= phase_inc;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* LV_HAVE_SSE3 */
|
||||||
|
|
||||||
|
|
||||||
#ifdef LV_HAVE_NEON
|
#ifdef LV_HAVE_NEON
|
||||||
#include <arm_neon.h>
|
#include <arm_neon.h>
|
||||||
|
|
||||||
@ -271,6 +645,10 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon(lv_16sc_t* outVe
|
|||||||
lv_16sc_t tmp16_;
|
lv_16sc_t tmp16_;
|
||||||
lv_32fc_t tmp32_;
|
lv_32fc_t tmp32_;
|
||||||
|
|
||||||
|
float arg_phase0 = cargf(*phase);
|
||||||
|
float arg_phase_inc = cargf(phase_inc);
|
||||||
|
float phase_est = 0.0;
|
||||||
|
|
||||||
const lv_16sc_t* _in = inVector;
|
const lv_16sc_t* _in = inVector;
|
||||||
lv_16sc_t* _out = outVector;
|
lv_16sc_t* _out = outVector;
|
||||||
|
|
||||||
@ -351,6 +729,24 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon(lv_16sc_t* outVe
|
|||||||
/* store the four complex results */
|
/* store the four complex results */
|
||||||
vst2_s16((int16_t*)_out, tmp16);
|
vst2_s16((int16_t*)_out, tmp16);
|
||||||
_out += 4;
|
_out += 4;
|
||||||
|
// Regenerate phase
|
||||||
|
if ((i % 512) == 0)
|
||||||
|
{
|
||||||
|
//printf("Computed phase: %f\n", cos(cargf(lv_cmake(_phase_real[0],_phase_imag[0]))));
|
||||||
|
phase_est = arg_phase0 + (i + 1) * 4 * arg_phase_inc;
|
||||||
|
//printf("Estimated phase: %f\n\n", cos(phase_est));
|
||||||
|
|
||||||
|
*phase = lv_cmake(cos(phase_est), sin(phase_est));
|
||||||
|
phase2 = (lv_32fc_t)(*phase) * phase_inc;
|
||||||
|
phase3 = phase2 * phase_inc;
|
||||||
|
phase4 = phase3 * phase_inc;
|
||||||
|
|
||||||
|
__VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
|
||||||
|
__VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
|
||||||
|
|
||||||
|
_phase_real = vld1q_f32(____phase_real);
|
||||||
|
_phase_imag = vld1q_f32(____phase_imag);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
vst1q_f32((float32_t*)__phase_real, _phase_real);
|
vst1q_f32((float32_t*)__phase_real, _phase_real);
|
||||||
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
|
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
|
||||||
@ -368,4 +764,190 @@ static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon(lv_16sc_t* outVe
|
|||||||
|
|
||||||
#endif /* LV_HAVE_NEON */
|
#endif /* LV_HAVE_NEON */
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_NEON
|
||||||
|
#include <arm_neon.h>
|
||||||
|
|
||||||
|
static inline void volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_neon_reload(lv_16sc_t* outVector, const lv_16sc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
|
||||||
|
{
|
||||||
|
unsigned int i = 0;
|
||||||
|
const unsigned int neon_iters = num_points / 4;
|
||||||
|
const unsigned int ROTATOR_RELOAD = 512;
|
||||||
|
|
||||||
|
lv_16sc_t tmp16_;
|
||||||
|
lv_32fc_t tmp32_;
|
||||||
|
|
||||||
|
float arg_phase0 = cargf(*phase);
|
||||||
|
float arg_phase_inc = cargf(phase_inc);
|
||||||
|
float phase_est = 0.0;
|
||||||
|
|
||||||
|
const lv_16sc_t* _in = inVector;
|
||||||
|
lv_16sc_t* _out = outVector;
|
||||||
|
|
||||||
|
lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc;
|
||||||
|
__VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) };
|
||||||
|
__VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) };
|
||||||
|
|
||||||
|
float32x4_t _phase4_real = vld1q_f32(__phase4_real);
|
||||||
|
float32x4_t _phase4_imag = vld1q_f32(__phase4_imag);
|
||||||
|
|
||||||
|
lv_32fc_t phase2 = (lv_32fc_t)(*phase) * phase_inc;
|
||||||
|
lv_32fc_t phase3 = phase2 * phase_inc;
|
||||||
|
lv_32fc_t phase4 = phase3 * phase_inc;
|
||||||
|
|
||||||
|
__VOLK_ATTR_ALIGNED(16) float32_t __phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
|
||||||
|
__VOLK_ATTR_ALIGNED(16) float32_t __phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
|
||||||
|
|
||||||
|
float32x4_t _phase_real = vld1q_f32(__phase_real);
|
||||||
|
float32x4_t _phase_imag = vld1q_f32(__phase_imag);
|
||||||
|
|
||||||
|
float32x4_t half = vdupq_n_f32(0.5f);
|
||||||
|
int16x4x2_t tmp16;
|
||||||
|
int32x4x2_t tmp32i;
|
||||||
|
float32x4x2_t tmp32f, tmp_real, tmp_imag;
|
||||||
|
float32x4_t sign, PlusHalf, Round;
|
||||||
|
|
||||||
|
if (neon_iters > 0)
|
||||||
|
{
|
||||||
|
for (unsigned int n = 0; n < neon_iters / ROTATOR_RELOAD; n++)
|
||||||
|
{
|
||||||
|
for (unsigned int j = 0; j < ROTATOR_RELOAD; j++)
|
||||||
|
{
|
||||||
|
/* load 4 complex numbers (int 16 bits each component) */
|
||||||
|
tmp16 = vld2_s16((int16_t*)_in);
|
||||||
|
__builtin_prefetch(_in + 8);
|
||||||
|
_in += 4;
|
||||||
|
|
||||||
|
/* promote them to int 32 bits */
|
||||||
|
tmp32i.val[0] = vmovl_s16(tmp16.val[0]);
|
||||||
|
tmp32i.val[1] = vmovl_s16(tmp16.val[1]);
|
||||||
|
|
||||||
|
/* promote them to float 32 bits */
|
||||||
|
tmp32f.val[0] = vcvtq_f32_s32(tmp32i.val[0]);
|
||||||
|
tmp32f.val[1] = vcvtq_f32_s32(tmp32i.val[1]);
|
||||||
|
|
||||||
|
/* complex multiplication of four complex samples (float 32 bits each component) */
|
||||||
|
tmp_real.val[0] = vmulq_f32(tmp32f.val[0], _phase_real);
|
||||||
|
tmp_real.val[1] = vmulq_f32(tmp32f.val[1], _phase_imag);
|
||||||
|
tmp_imag.val[0] = vmulq_f32(tmp32f.val[0], _phase_imag);
|
||||||
|
tmp_imag.val[1] = vmulq_f32(tmp32f.val[1], _phase_real);
|
||||||
|
|
||||||
|
tmp32f.val[0] = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
|
||||||
|
tmp32f.val[1] = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
|
||||||
|
|
||||||
|
/* downcast results to int32 */
|
||||||
|
/* in __aarch64__ we can do that with vcvtaq_s32_f32(ret1); vcvtaq_s32_f32(ret2); */
|
||||||
|
sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[0]), 31)));
|
||||||
|
PlusHalf = vaddq_f32(tmp32f.val[0], half);
|
||||||
|
Round = vsubq_f32(PlusHalf, sign);
|
||||||
|
tmp32i.val[0] = vcvtq_s32_f32(Round);
|
||||||
|
|
||||||
|
sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[1]), 31)));
|
||||||
|
PlusHalf = vaddq_f32(tmp32f.val[1], half);
|
||||||
|
Round = vsubq_f32(PlusHalf, sign);
|
||||||
|
tmp32i.val[1] = vcvtq_s32_f32(Round);
|
||||||
|
|
||||||
|
/* downcast results to int16 */
|
||||||
|
tmp16.val[0] = vqmovn_s32(tmp32i.val[0]);
|
||||||
|
tmp16.val[1] = vqmovn_s32(tmp32i.val[1]);
|
||||||
|
|
||||||
|
/* compute next four phases */
|
||||||
|
tmp_real.val[0] = vmulq_f32(_phase_real, _phase4_real);
|
||||||
|
tmp_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag);
|
||||||
|
tmp_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag);
|
||||||
|
tmp_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real);
|
||||||
|
|
||||||
|
_phase_real = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
|
||||||
|
_phase_imag = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
|
||||||
|
|
||||||
|
/* store the four complex results */
|
||||||
|
vst2_s16((int16_t*)_out, tmp16);
|
||||||
|
_out += 4;
|
||||||
|
}
|
||||||
|
// Regenerate phase
|
||||||
|
//printf("Computed phase: %f\n", cos(cargf(lv_cmake(_phase_real[0],_phase_imag[0]))));
|
||||||
|
phase_est = arg_phase0 + (n + 1) * ROTATOR_RELOAD * 4 * arg_phase_inc;
|
||||||
|
//printf("Estimated phase: %f\n\n", cos(phase_est));
|
||||||
|
*phase = lv_cmake(cos(phase_est), sin(phase_est));
|
||||||
|
phase2 = (lv_32fc_t)(*phase) * phase_inc;
|
||||||
|
phase3 = phase2 * phase_inc;
|
||||||
|
phase4 = phase3 * phase_inc;
|
||||||
|
|
||||||
|
__VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
|
||||||
|
__VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
|
||||||
|
|
||||||
|
_phase_real = vld1q_f32(____phase_real);
|
||||||
|
_phase_imag = vld1q_f32(____phase_imag);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (unsigned int j = 0; j < neon_iters % ROTATOR_RELOAD; j++)
|
||||||
|
{
|
||||||
|
/* load 4 complex numbers (int 16 bits each component) */
|
||||||
|
tmp16 = vld2_s16((int16_t*)_in);
|
||||||
|
__builtin_prefetch(_in + 8);
|
||||||
|
_in += 4;
|
||||||
|
|
||||||
|
/* promote them to int 32 bits */
|
||||||
|
tmp32i.val[0] = vmovl_s16(tmp16.val[0]);
|
||||||
|
tmp32i.val[1] = vmovl_s16(tmp16.val[1]);
|
||||||
|
|
||||||
|
/* promote them to float 32 bits */
|
||||||
|
tmp32f.val[0] = vcvtq_f32_s32(tmp32i.val[0]);
|
||||||
|
tmp32f.val[1] = vcvtq_f32_s32(tmp32i.val[1]);
|
||||||
|
|
||||||
|
/* complex multiplication of four complex samples (float 32 bits each component) */
|
||||||
|
tmp_real.val[0] = vmulq_f32(tmp32f.val[0], _phase_real);
|
||||||
|
tmp_real.val[1] = vmulq_f32(tmp32f.val[1], _phase_imag);
|
||||||
|
tmp_imag.val[0] = vmulq_f32(tmp32f.val[0], _phase_imag);
|
||||||
|
tmp_imag.val[1] = vmulq_f32(tmp32f.val[1], _phase_real);
|
||||||
|
|
||||||
|
tmp32f.val[0] = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
|
||||||
|
tmp32f.val[1] = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
|
||||||
|
|
||||||
|
/* downcast results to int32 */
|
||||||
|
/* in __aarch64__ we can do that with vcvtaq_s32_f32(ret1); vcvtaq_s32_f32(ret2); */
|
||||||
|
sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[0]), 31)));
|
||||||
|
PlusHalf = vaddq_f32(tmp32f.val[0], half);
|
||||||
|
Round = vsubq_f32(PlusHalf, sign);
|
||||||
|
tmp32i.val[0] = vcvtq_s32_f32(Round);
|
||||||
|
|
||||||
|
sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[1]), 31)));
|
||||||
|
PlusHalf = vaddq_f32(tmp32f.val[1], half);
|
||||||
|
Round = vsubq_f32(PlusHalf, sign);
|
||||||
|
tmp32i.val[1] = vcvtq_s32_f32(Round);
|
||||||
|
|
||||||
|
/* downcast results to int16 */
|
||||||
|
tmp16.val[0] = vqmovn_s32(tmp32i.val[0]);
|
||||||
|
tmp16.val[1] = vqmovn_s32(tmp32i.val[1]);
|
||||||
|
|
||||||
|
/* compute next four phases */
|
||||||
|
tmp_real.val[0] = vmulq_f32(_phase_real, _phase4_real);
|
||||||
|
tmp_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag);
|
||||||
|
tmp_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag);
|
||||||
|
tmp_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real);
|
||||||
|
|
||||||
|
_phase_real = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
|
||||||
|
_phase_imag = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
|
||||||
|
|
||||||
|
/* store the four complex results */
|
||||||
|
vst2_s16((int16_t*)_out, tmp16);
|
||||||
|
_out += 4;
|
||||||
|
}
|
||||||
|
|
||||||
|
vst1q_f32((float32_t*)__phase_real, _phase_real);
|
||||||
|
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
|
||||||
|
|
||||||
|
(*phase) = lv_cmake((float32_t)__phase_real[0], (float32_t)__phase_imag[0]);
|
||||||
|
}
|
||||||
|
for(i = 0; i < neon_iters % 4; ++i)
|
||||||
|
{
|
||||||
|
tmp16_ = *_in++;
|
||||||
|
tmp32_ = lv_cmake((float32_t)lv_creal(tmp16_), (float32_t)lv_cimag(tmp16_)) * (*phase);
|
||||||
|
*_out++ = lv_cmake((int16_t)rintf(lv_creal(tmp32_)), (int16_t)rintf(lv_cimag(tmp32_)));
|
||||||
|
(*phase) *= phase_inc;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* LV_HAVE_NEON */
|
||||||
|
|
||||||
#endif /* INCLUDED_volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_H */
|
#endif /* INCLUDED_volk_gnsssdr_16ic_s32fc_x2_rotator_16ic_H */
|
||||||
|
@ -94,7 +94,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, con
|
|||||||
|
|
||||||
if (sse_iters > 0)
|
if (sse_iters > 0)
|
||||||
{
|
{
|
||||||
__m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl, realcacc, imagcacc, result;
|
__m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl, realcacc, imagcacc;
|
||||||
__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
||||||
|
|
||||||
realcacc = _mm_setzero_si128();
|
realcacc = _mm_setzero_si128();
|
||||||
@ -105,8 +105,6 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, con
|
|||||||
|
|
||||||
for(unsigned int number = 0; number < sse_iters; number++)
|
for(unsigned int number = 0; number < sse_iters; number++)
|
||||||
{
|
{
|
||||||
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
|
|
||||||
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1]
|
|
||||||
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
|
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
|
||||||
a = _mm_load_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
a = _mm_load_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
||||||
__builtin_prefetch(_in_a + 8);
|
__builtin_prefetch(_in_a + 8);
|
||||||
@ -115,7 +113,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, con
|
|||||||
c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
|
c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
|
||||||
|
|
||||||
c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
|
c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
|
||||||
real = _mm_subs_epi16(c,c_sr);
|
real = _mm_subs_epi16(c, c_sr);
|
||||||
|
|
||||||
b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
|
b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
|
||||||
a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
|
a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
|
||||||
@ -123,7 +121,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, con
|
|||||||
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
|
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
|
||||||
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
|
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
|
||||||
|
|
||||||
imag = _mm_adds_epi16(imag1, imag2); //with saturation aritmetic!
|
imag = _mm_adds_epi16(imag1, imag2); //with saturation arithmetic!
|
||||||
|
|
||||||
realcacc = _mm_adds_epi16(realcacc, real);
|
realcacc = _mm_adds_epi16(realcacc, real);
|
||||||
imagcacc = _mm_adds_epi16(imagcacc, imag);
|
imagcacc = _mm_adds_epi16(imagcacc, imag);
|
||||||
@ -135,9 +133,9 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, con
|
|||||||
realcacc = _mm_and_si128(realcacc, mask_real);
|
realcacc = _mm_and_si128(realcacc, mask_real);
|
||||||
imagcacc = _mm_and_si128(imagcacc, mask_imag);
|
imagcacc = _mm_and_si128(imagcacc, mask_imag);
|
||||||
|
|
||||||
result = _mm_or_si128(realcacc, imagcacc);
|
a = _mm_or_si128(realcacc, imagcacc);
|
||||||
|
|
||||||
_mm_store_si128((__m128i*)dotProductVector,result); // Store the results back into the dot product vector
|
_mm_store_si128((__m128i*)dotProductVector, a); // Store the results back into the dot product vector
|
||||||
|
|
||||||
for (int i = 0; i < 4; ++i)
|
for (int i = 0; i < 4; ++i)
|
||||||
{
|
{
|
||||||
@ -202,7 +200,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_u_sse2(lv_16sc_t* out, con
|
|||||||
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
|
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
|
||||||
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
|
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
|
||||||
|
|
||||||
imag = _mm_adds_epi16(imag1, imag2); //with saturation aritmetic!
|
imag = _mm_adds_epi16(imag1, imag2); //with saturation arithmetic!
|
||||||
|
|
||||||
realcacc = _mm_adds_epi16(realcacc, real);
|
realcacc = _mm_adds_epi16(realcacc, real);
|
||||||
imagcacc = _mm_adds_epi16(imagcacc, imag);
|
imagcacc = _mm_adds_epi16(imagcacc, imag);
|
||||||
@ -245,46 +243,57 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_neon(lv_16sc_t* out, const
|
|||||||
|
|
||||||
lv_16sc_t* a_ptr = (lv_16sc_t*) in_a;
|
lv_16sc_t* a_ptr = (lv_16sc_t*) in_a;
|
||||||
lv_16sc_t* b_ptr = (lv_16sc_t*) in_b;
|
lv_16sc_t* b_ptr = (lv_16sc_t*) in_b;
|
||||||
// for 2-lane vectors, 1st lane holds the real part,
|
*out = lv_cmake((int16_t)0, (int16_t)0);
|
||||||
// 2nd lane holds the imaginary part
|
|
||||||
int16x4x2_t a_val, b_val, c_val, accumulator;
|
|
||||||
int16x4x2_t tmp_real, tmp_imag;
|
|
||||||
__VOLK_ATTR_ALIGNED(16) lv_16sc_t accum_result[4];
|
|
||||||
accumulator.val[0] = vdup_n_s16(0);
|
|
||||||
accumulator.val[1] = vdup_n_s16(0);
|
|
||||||
|
|
||||||
for(number = 0; number < quarter_points; ++number)
|
if (quarter_points > 0)
|
||||||
{
|
{
|
||||||
a_val = vld2_s16((int16_t*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
|
// for 2-lane vectors, 1st lane holds the real part,
|
||||||
b_val = vld2_s16((int16_t*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
|
// 2nd lane holds the imaginary part
|
||||||
__builtin_prefetch(a_ptr + 8);
|
int16x4x2_t a_val, b_val, c_val, accumulator;
|
||||||
__builtin_prefetch(b_ptr + 8);
|
int16x4x2_t tmp_real, tmp_imag;
|
||||||
|
__VOLK_ATTR_ALIGNED(16) lv_16sc_t accum_result[4];
|
||||||
|
accumulator.val[0] = vdup_n_s16(0);
|
||||||
|
accumulator.val[1] = vdup_n_s16(0);
|
||||||
|
lv_16sc_t dotProduct = lv_cmake((int16_t)0, (int16_t)0);
|
||||||
|
|
||||||
// multiply the real*real and imag*imag to get real result
|
for(number = 0; number < quarter_points; ++number)
|
||||||
// a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
|
{
|
||||||
tmp_real.val[0] = vmul_s16(a_val.val[0], b_val.val[0]);
|
a_val = vld2_s16((int16_t*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
|
||||||
// a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i
|
b_val = vld2_s16((int16_t*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
|
||||||
tmp_real.val[1] = vmul_s16(a_val.val[1], b_val.val[1]);
|
__builtin_prefetch(a_ptr + 8);
|
||||||
|
__builtin_prefetch(b_ptr + 8);
|
||||||
|
|
||||||
// Multiply cross terms to get the imaginary result
|
// multiply the real*real and imag*imag to get real result
|
||||||
// a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i
|
// a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
|
||||||
tmp_imag.val[0] = vmul_s16(a_val.val[0], b_val.val[1]);
|
tmp_real.val[0] = vmul_s16(a_val.val[0], b_val.val[0]);
|
||||||
// a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
|
// a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i
|
||||||
tmp_imag.val[1] = vmul_s16(a_val.val[1], b_val.val[0]);
|
tmp_real.val[1] = vmul_s16(a_val.val[1], b_val.val[1]);
|
||||||
|
|
||||||
c_val.val[0] = vsub_s16(tmp_real.val[0], tmp_real.val[1]);
|
// Multiply cross terms to get the imaginary result
|
||||||
c_val.val[1] = vadd_s16(tmp_imag.val[0], tmp_imag.val[1]);
|
// a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i
|
||||||
|
tmp_imag.val[0] = vmul_s16(a_val.val[0], b_val.val[1]);
|
||||||
|
// a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
|
||||||
|
tmp_imag.val[1] = vmul_s16(a_val.val[1], b_val.val[0]);
|
||||||
|
|
||||||
accumulator.val[0] = vadd_s16(accumulator.val[0], c_val.val[0]);
|
c_val.val[0] = vqsub_s16(tmp_real.val[0], tmp_real.val[1]);
|
||||||
accumulator.val[1] = vadd_s16(accumulator.val[1], c_val.val[1]);
|
c_val.val[1] = vqadd_s16(tmp_imag.val[0], tmp_imag.val[1]);
|
||||||
|
|
||||||
a_ptr += 4;
|
accumulator.val[0] = vqadd_s16(accumulator.val[0], c_val.val[0]);
|
||||||
b_ptr += 4;
|
accumulator.val[1] = vqadd_s16(accumulator.val[1], c_val.val[1]);
|
||||||
|
|
||||||
|
a_ptr += 4;
|
||||||
|
b_ptr += 4;
|
||||||
|
}
|
||||||
|
|
||||||
|
vst2_s16((int16_t*)accum_result, accumulator);
|
||||||
|
for (unsigned int i = 0; i < 4; ++i)
|
||||||
|
{
|
||||||
|
dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(accum_result[i])), sat_adds16i(lv_cimag(dotProduct), lv_cimag(accum_result[i])));
|
||||||
|
}
|
||||||
|
|
||||||
|
*out = dotProduct;
|
||||||
}
|
}
|
||||||
|
|
||||||
vst2_s16((int16_t*)accum_result, accumulator);
|
|
||||||
*out = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
|
|
||||||
|
|
||||||
// tail case
|
// tail case
|
||||||
for(number = quarter_points * 4; number < num_points; ++number)
|
for(number = quarter_points * 4; number < num_points; ++number)
|
||||||
{
|
{
|
||||||
|
@ -84,6 +84,25 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_generic(lv_16sc_t* resu
|
|||||||
#endif /*LV_HAVE_GENERIC*/
|
#endif /*LV_HAVE_GENERIC*/
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_GENERIC
|
||||||
|
|
||||||
|
static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_generic_sat(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points)
|
||||||
|
{
|
||||||
|
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||||
|
{
|
||||||
|
result[n_vec] = lv_cmake(0,0);
|
||||||
|
for (unsigned int n = 0; n < num_points; n++)
|
||||||
|
{
|
||||||
|
lv_16sc_t tmp = lv_cmake(sat_adds16i(sat_muls16i(lv_creal(in_common[n]), lv_creal(in_a[n_vec][n])), - sat_muls16i(lv_cimag(in_common[n]), lv_cimag(in_a[n_vec][n]))),
|
||||||
|
sat_adds16i(sat_muls16i(lv_creal(in_common[n]), lv_cimag(in_a[n_vec][n])), sat_muls16i(lv_cimag(in_common[n]), lv_creal(in_a[n_vec][n]))));
|
||||||
|
result[n_vec] = lv_cmake(sat_adds16i(lv_creal(result[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(result[n_vec]), lv_cimag(tmp)));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /*LV_HAVE_GENERIC*/
|
||||||
|
|
||||||
|
|
||||||
#ifdef LV_HAVE_SSE2
|
#ifdef LV_HAVE_SSE2
|
||||||
#include <emmintrin.h>
|
#include <emmintrin.h>
|
||||||
|
|
||||||
@ -318,11 +337,11 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_neon(lv_16sc_t* result,
|
|||||||
// a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
|
// a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
|
||||||
tmp_imag.val[1] = vmul_s16(a_val.val[1], b_val.val[0]);
|
tmp_imag.val[1] = vmul_s16(a_val.val[1], b_val.val[0]);
|
||||||
|
|
||||||
c_val.val[0] = vsub_s16(tmp_real.val[0], tmp_real.val[1]);
|
c_val.val[0] = vqsub_s16(tmp_real.val[0], tmp_real.val[1]);
|
||||||
c_val.val[1] = vadd_s16(tmp_imag.val[0], tmp_imag.val[1]);
|
c_val.val[1] = vqadd_s16(tmp_imag.val[0], tmp_imag.val[1]);
|
||||||
|
|
||||||
accumulator[n_vec].val[0] = vadd_s16(accumulator[n_vec].val[0], c_val.val[0]);
|
accumulator[n_vec].val[0] = vqadd_s16(accumulator[n_vec].val[0], c_val.val[0]);
|
||||||
accumulator[n_vec].val[1] = vadd_s16(accumulator[n_vec].val[1], c_val.val[1]);
|
accumulator[n_vec].val[1] = vqadd_s16(accumulator[n_vec].val[1], c_val.val[1]);
|
||||||
}
|
}
|
||||||
_in_common += 4;
|
_in_common += 4;
|
||||||
}
|
}
|
||||||
@ -398,8 +417,8 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_neon_vma(lv_16sc_t* res
|
|||||||
tmp.val[0] = vmls_s16(tmp.val[0], a_val.val[1], b_val.val[1]);
|
tmp.val[0] = vmls_s16(tmp.val[0], a_val.val[1], b_val.val[1]);
|
||||||
tmp.val[1] = vmla_s16(tmp.val[1], a_val.val[0], b_val.val[1]);
|
tmp.val[1] = vmla_s16(tmp.val[1], a_val.val[0], b_val.val[1]);
|
||||||
|
|
||||||
accumulator[n_vec].val[0] = vadd_s16(accumulator[n_vec].val[0], tmp.val[0]);
|
accumulator[n_vec].val[0] = vqadd_s16(accumulator[n_vec].val[0], tmp.val[0]);
|
||||||
accumulator[n_vec].val[1] = vadd_s16(accumulator[n_vec].val[1], tmp.val[1]);
|
accumulator[n_vec].val[1] = vqadd_s16(accumulator[n_vec].val[1], tmp.val[1]);
|
||||||
}
|
}
|
||||||
_in_common += 4;
|
_in_common += 4;
|
||||||
}
|
}
|
||||||
|
@ -63,6 +63,30 @@ static inline void volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic_generic(lv_16sc_t*
|
|||||||
|
|
||||||
#endif /* Generic */
|
#endif /* Generic */
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_GENERIC
|
||||||
|
static inline void volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic_generic_sat(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
|
||||||
|
{
|
||||||
|
int num_a_vectors = 3;
|
||||||
|
lv_16sc_t** in_a = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
|
||||||
|
for(unsigned int n = 0; n < num_a_vectors; n++)
|
||||||
|
{
|
||||||
|
in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
|
||||||
|
memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points);
|
||||||
|
}
|
||||||
|
|
||||||
|
volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_generic_sat(result, local_code, (const lv_16sc_t**) in_a, num_a_vectors, num_points);
|
||||||
|
|
||||||
|
for(unsigned int n = 0; n < num_a_vectors; n++)
|
||||||
|
{
|
||||||
|
volk_gnsssdr_free(in_a[n]);
|
||||||
|
}
|
||||||
|
volk_gnsssdr_free(in_a);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* Generic */
|
||||||
|
|
||||||
|
|
||||||
#ifdef LV_HAVE_SSE2
|
#ifdef LV_HAVE_SSE2
|
||||||
static inline void volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic_a_sse2(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
|
static inline void volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic_a_sse2(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
|
||||||
{
|
{
|
||||||
|
@ -43,6 +43,7 @@
|
|||||||
*
|
*
|
||||||
* Rotates and multiplies the reference complex vector with an arbitrary number of other complex vectors,
|
* Rotates and multiplies the reference complex vector with an arbitrary number of other complex vectors,
|
||||||
* accumulates the results and stores them in the output vector.
|
* accumulates the results and stores them in the output vector.
|
||||||
|
* The rotation is done at a fixed rate per sample, from an initial \p phase offset.
|
||||||
* This function can be used for Doppler wipe-off and multiple correlator.
|
* This function can be used for Doppler wipe-off and multiple correlator.
|
||||||
*
|
*
|
||||||
* <b>Dispatcher Prototype</b>
|
* <b>Dispatcher Prototype</b>
|
||||||
@ -71,7 +72,7 @@
|
|||||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||||
#include <volk_gnsssdr/saturation_arithmetic.h>
|
#include <volk_gnsssdr/saturation_arithmetic.h>
|
||||||
#include <math.h>
|
#include <math.h>
|
||||||
//#include <stdio.h>
|
#include <stdio.h>
|
||||||
|
|
||||||
#ifdef LV_HAVE_GENERIC
|
#ifdef LV_HAVE_GENERIC
|
||||||
|
|
||||||
@ -88,6 +89,19 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_generic(lv_16sc
|
|||||||
tmp16 = *in_common++; //if(n<10 || n >= 8108) printf("generic phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase));
|
tmp16 = *in_common++; //if(n<10 || n >= 8108) printf("generic phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase));
|
||||||
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
|
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
|
||||||
tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
|
tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
|
||||||
|
|
||||||
|
// Regenerate phase
|
||||||
|
if (n % 256 == 0)
|
||||||
|
{
|
||||||
|
//printf("Phase before regeneration %i: %f,%f Modulus: %f\n", n,lv_creal(*phase),lv_cimag(*phase), cabsf(*phase));
|
||||||
|
#ifdef __cplusplus
|
||||||
|
(*phase) /= std::abs((*phase));
|
||||||
|
#else
|
||||||
|
(*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
|
||||||
|
#endif
|
||||||
|
//printf("Phase after regeneration %i: %f,%f Modulus: %f\n", n,lv_creal(*phase),lv_cimag(*phase), cabsf(*phase));
|
||||||
|
}
|
||||||
|
|
||||||
(*phase) *= phase_inc;
|
(*phase) *= phase_inc;
|
||||||
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||||
{
|
{
|
||||||
@ -101,6 +115,60 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_generic(lv_16sc
|
|||||||
#endif /*LV_HAVE_GENERIC*/
|
#endif /*LV_HAVE_GENERIC*/
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_GENERIC
|
||||||
|
|
||||||
|
static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_generic_reload(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points)
|
||||||
|
{
|
||||||
|
lv_16sc_t tmp16;
|
||||||
|
lv_32fc_t tmp32;
|
||||||
|
const unsigned int ROTATOR_RELOAD = 256;
|
||||||
|
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||||
|
{
|
||||||
|
result[n_vec] = lv_cmake(0,0);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (unsigned int n = 0; n < num_points / ROTATOR_RELOAD; n++)
|
||||||
|
{
|
||||||
|
for (unsigned int j = 0; j < ROTATOR_RELOAD; j++)
|
||||||
|
{
|
||||||
|
tmp16 = *in_common++; //if(n<10 || n >= 8108) printf("generic phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase));
|
||||||
|
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
|
||||||
|
tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
|
||||||
|
(*phase) *= phase_inc;
|
||||||
|
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||||
|
{
|
||||||
|
lv_16sc_t tmp = tmp16 * in_a[n_vec][n * ROTATOR_RELOAD + j];
|
||||||
|
//lv_16sc_t tmp = lv_cmake(sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_creal(in_a[n_vec][n])), - sat_muls16i(lv_cimag(tmp16), lv_cimag(in_a[n_vec][n]))) , sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_cimag(in_a[n_vec][n])), sat_muls16i(lv_cimag(tmp16), lv_creal(in_a[n_vec][n]))));
|
||||||
|
result[n_vec] = lv_cmake(sat_adds16i(lv_creal(result[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(result[n_vec]), lv_cimag(tmp)));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/* Regenerate phase */
|
||||||
|
#ifdef __cplusplus
|
||||||
|
(*phase) /= std::abs((*phase));
|
||||||
|
#else
|
||||||
|
//(*phase) /= cabsf((*phase));
|
||||||
|
(*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
for (unsigned int j = 0; j < num_points % ROTATOR_RELOAD; j++)
|
||||||
|
{
|
||||||
|
tmp16 = *in_common++; //if(n<10 || n >= 8108) printf("generic phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase));
|
||||||
|
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
|
||||||
|
tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
|
||||||
|
(*phase) *= phase_inc;
|
||||||
|
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||||
|
{
|
||||||
|
lv_16sc_t tmp = tmp16 * in_a[n_vec][ (num_points / ROTATOR_RELOAD) * ROTATOR_RELOAD + j ];
|
||||||
|
//lv_16sc_t tmp = lv_cmake(sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_creal(in_a[n_vec][n])), - sat_muls16i(lv_cimag(tmp16), lv_cimag(in_a[n_vec][n]))) , sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_cimag(in_a[n_vec][n])), sat_muls16i(lv_cimag(tmp16), lv_creal(in_a[n_vec][n]))));
|
||||||
|
result[n_vec] = lv_cmake(sat_adds16i(lv_creal(result[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(result[n_vec]), lv_cimag(tmp)));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /*LV_HAVE_GENERIC*/
|
||||||
|
|
||||||
|
|
||||||
#ifdef LV_HAVE_SSE3
|
#ifdef LV_HAVE_SSE3
|
||||||
#include <pmmintrin.h>
|
#include <pmmintrin.h>
|
||||||
|
|
||||||
@ -169,6 +237,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc_
|
|||||||
//next two samples
|
//next two samples
|
||||||
_in_common += 2;
|
_in_common += 2;
|
||||||
pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
|
__builtin_prefetch(_in_common + 8);
|
||||||
//complex 32fc multiplication b=a*two_phase_acc_reg
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
@ -212,6 +281,15 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc_
|
|||||||
realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real);
|
realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real);
|
||||||
imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag);
|
imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag);
|
||||||
}
|
}
|
||||||
|
// Regenerate phase
|
||||||
|
if ((number % 128) == 0)
|
||||||
|
{
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
|
||||||
|
tmp2 = _mm_hadd_ps(tmp1, tmp1);
|
||||||
|
tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
|
||||||
|
tmp2 = _mm_sqrt_ps(tmp1);
|
||||||
|
two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||||
@ -233,6 +311,254 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc_
|
|||||||
free(realcacc);
|
free(realcacc);
|
||||||
free(imagcacc);
|
free(imagcacc);
|
||||||
|
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
|
||||||
|
tmp2 = _mm_hadd_ps(tmp1, tmp1);
|
||||||
|
tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
|
||||||
|
tmp2 = _mm_sqrt_ps(tmp1);
|
||||||
|
two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
|
||||||
|
|
||||||
|
_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
|
||||||
|
//(*phase) = lv_cmake((float*)two_phase_acc[0], (float*)two_phase_acc[1]);
|
||||||
|
(*phase) = two_phase_acc[0];
|
||||||
|
|
||||||
|
for(unsigned int n = sse_iters * 4; n < num_points; n++)
|
||||||
|
{
|
||||||
|
tmp16 = in_common[n]; //printf("a_sse phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase));
|
||||||
|
tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
|
||||||
|
tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
|
||||||
|
(*phase) *= phase_inc;
|
||||||
|
|
||||||
|
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||||
|
{
|
||||||
|
lv_16sc_t tmp = tmp16 * in_a[n_vec][n];
|
||||||
|
//lv_16sc_t tmp = lv_cmake(sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_creal(in_a[n_vec][n])), - sat_muls16i(lv_cimag(tmp16), lv_cimag(in_a[n_vec][n]))) , sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_cimag(in_a[n_vec][n])), sat_muls16i(lv_cimag(tmp16), lv_creal(in_a[n_vec][n]))));
|
||||||
|
_out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)),
|
||||||
|
sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp)));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif /* LV_HAVE_SSE3 */
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_SSE3
|
||||||
|
#include <pmmintrin.h>
|
||||||
|
|
||||||
|
static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3_reload(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points)
|
||||||
|
{
|
||||||
|
lv_16sc_t dotProduct = lv_cmake(0,0);
|
||||||
|
|
||||||
|
const unsigned int sse_iters = num_points / 4;
|
||||||
|
const unsigned int ROTATOR_RELOAD = 128;
|
||||||
|
|
||||||
|
const lv_16sc_t** _in_a = in_a;
|
||||||
|
const lv_16sc_t* _in_common = in_common;
|
||||||
|
lv_16sc_t* _out = result;
|
||||||
|
|
||||||
|
__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
||||||
|
|
||||||
|
//todo dyn mem reg
|
||||||
|
|
||||||
|
__m128i* realcacc;
|
||||||
|
__m128i* imagcacc;
|
||||||
|
|
||||||
|
realcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
|
||||||
|
imagcacc = (__m128i*)calloc(num_a_vectors, sizeof(__m128i)); //calloc also sets memory to 0
|
||||||
|
|
||||||
|
__m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl;
|
||||||
|
|
||||||
|
mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
|
||||||
|
mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
|
||||||
|
|
||||||
|
// phase rotation registers
|
||||||
|
__m128 pa, pb, two_phase_acc_reg, two_phase_inc_reg;
|
||||||
|
__m128i pc1, pc2;
|
||||||
|
__attribute__((aligned(16))) lv_32fc_t two_phase_inc[2];
|
||||||
|
two_phase_inc[0] = phase_inc * phase_inc;
|
||||||
|
two_phase_inc[1] = phase_inc * phase_inc;
|
||||||
|
two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
|
||||||
|
__attribute__((aligned(16))) lv_32fc_t two_phase_acc[2];
|
||||||
|
two_phase_acc[0] = (*phase);
|
||||||
|
two_phase_acc[1] = (*phase) * phase_inc;
|
||||||
|
two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc);
|
||||||
|
__m128 yl, yh, tmp1, tmp2, tmp3;
|
||||||
|
lv_16sc_t tmp16;
|
||||||
|
lv_32fc_t tmp32;
|
||||||
|
|
||||||
|
for (unsigned int number = 0; number < sse_iters / ROTATOR_RELOAD; ++number)
|
||||||
|
{
|
||||||
|
for (unsigned int j = 0; j < ROTATOR_RELOAD; j++)
|
||||||
|
{
|
||||||
|
// Phase rotation on operand in_common starts here:
|
||||||
|
//printf("generic phase %i: %f,%f\n", n*4,lv_creal(*phase),lv_cimag(*phase));
|
||||||
|
pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
|
||||||
|
|
||||||
|
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
|
||||||
|
//next two samples
|
||||||
|
_in_common += 2;
|
||||||
|
pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
|
__builtin_prefetch(_in_common + 8);
|
||||||
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
|
||||||
|
|
||||||
|
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
|
||||||
|
// store four rotated in_common samples in the register b
|
||||||
|
b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic
|
||||||
|
|
||||||
|
//next two samples
|
||||||
|
_in_common += 2;
|
||||||
|
|
||||||
|
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||||
|
{
|
||||||
|
a = _mm_load_si128((__m128i*)&(_in_a[n_vec][(number * ROTATOR_RELOAD + j) * 4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
||||||
|
|
||||||
|
c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
|
||||||
|
|
||||||
|
c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
|
||||||
|
real = _mm_subs_epi16(c, c_sr);
|
||||||
|
|
||||||
|
b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
|
||||||
|
a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
|
||||||
|
|
||||||
|
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
|
||||||
|
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
|
||||||
|
|
||||||
|
imag = _mm_adds_epi16(imag1, imag2);
|
||||||
|
|
||||||
|
realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real);
|
||||||
|
imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// regenerate phase
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
|
||||||
|
tmp2 = _mm_hadd_ps(tmp1, tmp1);
|
||||||
|
tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
|
||||||
|
tmp2 = _mm_sqrt_ps(tmp1);
|
||||||
|
two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (unsigned int j = 0; j < sse_iters % ROTATOR_RELOAD; j++)
|
||||||
|
{
|
||||||
|
pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
|
||||||
|
|
||||||
|
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
|
||||||
|
//next two samples
|
||||||
|
_in_common += 2;
|
||||||
|
pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
|
__builtin_prefetch(_in_common + 8);
|
||||||
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
|
||||||
|
|
||||||
|
//complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
||||||
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
||||||
|
tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
||||||
|
tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
||||||
|
two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
||||||
|
|
||||||
|
// store four rotated in_common samples in the register b
|
||||||
|
b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic
|
||||||
|
|
||||||
|
//next two samples
|
||||||
|
_in_common += 2;
|
||||||
|
|
||||||
|
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||||
|
{
|
||||||
|
a = _mm_load_si128((__m128i*)&(_in_a[n_vec][((sse_iters / ROTATOR_RELOAD) * ROTATOR_RELOAD + j) * 4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
||||||
|
|
||||||
|
c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
|
||||||
|
|
||||||
|
c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
|
||||||
|
real = _mm_subs_epi16(c, c_sr);
|
||||||
|
|
||||||
|
b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
|
||||||
|
a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
|
||||||
|
|
||||||
|
imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
|
||||||
|
imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
|
||||||
|
|
||||||
|
imag = _mm_adds_epi16(imag1, imag2);
|
||||||
|
|
||||||
|
realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real);
|
||||||
|
imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||||
|
{
|
||||||
|
realcacc[n_vec] = _mm_and_si128(realcacc[n_vec], mask_real);
|
||||||
|
imagcacc[n_vec] = _mm_and_si128(imagcacc[n_vec], mask_imag);
|
||||||
|
|
||||||
|
a = _mm_or_si128(realcacc[n_vec], imagcacc[n_vec]);
|
||||||
|
|
||||||
|
_mm_store_si128((__m128i*)dotProductVector, a); // Store the results back into the dot product vector
|
||||||
|
dotProduct = lv_cmake(0,0);
|
||||||
|
for (int i = 0; i < 4; ++i)
|
||||||
|
{
|
||||||
|
dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])),
|
||||||
|
sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i])));
|
||||||
|
}
|
||||||
|
_out[n_vec] = dotProduct;
|
||||||
|
}
|
||||||
|
|
||||||
|
free(realcacc);
|
||||||
|
free(imagcacc);
|
||||||
|
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
|
||||||
|
tmp2 = _mm_hadd_ps(tmp1, tmp1);
|
||||||
|
tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
|
||||||
|
tmp2 = _mm_sqrt_ps(tmp1);
|
||||||
|
two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
|
||||||
|
|
||||||
_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
|
_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
|
||||||
//(*phase) = lv_cmake((float*)two_phase_acc[0], (float*)two_phase_acc[1]);
|
//(*phase) = lv_cmake((float*)two_phase_acc[0], (float*)two_phase_acc[1]);
|
||||||
(*phase) = two_phase_acc[0];
|
(*phase) = two_phase_acc[0];
|
||||||
@ -303,7 +629,6 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_
|
|||||||
for(unsigned int number = 0; number < sse_iters; number++)
|
for(unsigned int number = 0; number < sse_iters; number++)
|
||||||
{
|
{
|
||||||
// Phase rotation on operand in_common starts here:
|
// Phase rotation on operand in_common starts here:
|
||||||
|
|
||||||
pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
__builtin_prefetch(_in_common + 8);
|
__builtin_prefetch(_in_common + 8);
|
||||||
//complex 32fc multiplication b=a*two_phase_acc_reg
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
@ -326,6 +651,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_
|
|||||||
//next two samples
|
//next two samples
|
||||||
_in_common += 2;
|
_in_common += 2;
|
||||||
pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
||||||
|
__builtin_prefetch(_in_common + 8);
|
||||||
//complex 32fc multiplication b=a*two_phase_acc_reg
|
//complex 32fc multiplication b=a*two_phase_acc_reg
|
||||||
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
||||||
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
||||||
@ -369,6 +695,15 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_
|
|||||||
realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real);
|
realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real);
|
||||||
imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag);
|
imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag);
|
||||||
}
|
}
|
||||||
|
// Regenerate phase
|
||||||
|
if ((number % 256) == 0)
|
||||||
|
{
|
||||||
|
tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
|
||||||
|
tmp2 = _mm_hadd_ps(tmp1, tmp1);
|
||||||
|
tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
|
||||||
|
tmp2 = _mm_sqrt_ps(tmp1);
|
||||||
|
two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||||
@ -393,7 +728,6 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_u_sse3(lv_16sc_
|
|||||||
_mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg);
|
_mm_storeu_ps((float*)two_phase_acc, two_phase_acc_reg);
|
||||||
(*phase) = two_phase_acc[0];
|
(*phase) = two_phase_acc[0];
|
||||||
|
|
||||||
|
|
||||||
for(unsigned int n = sse_iters * 4; n < num_points; n++)
|
for(unsigned int n = sse_iters * 4; n < num_points; n++)
|
||||||
{
|
{
|
||||||
tmp16 = in_common[n];
|
tmp16 = in_common[n];
|
||||||
@ -428,6 +762,9 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon(lv_16sc_t*
|
|||||||
if (neon_iters > 0)
|
if (neon_iters > 0)
|
||||||
{
|
{
|
||||||
lv_16sc_t dotProduct = lv_cmake(0,0);
|
lv_16sc_t dotProduct = lv_cmake(0,0);
|
||||||
|
float arg_phase0 = cargf(*phase);
|
||||||
|
float arg_phase_inc = cargf(phase_inc);
|
||||||
|
float phase_est;
|
||||||
|
|
||||||
lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc;
|
lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc;
|
||||||
__VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) };
|
__VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) };
|
||||||
@ -538,6 +875,22 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon(lv_16sc_t*
|
|||||||
accumulator[n_vec].val[0] = vqadd_s16(accumulator[n_vec].val[0], c_val.val[0]);
|
accumulator[n_vec].val[0] = vqadd_s16(accumulator[n_vec].val[0], c_val.val[0]);
|
||||||
accumulator[n_vec].val[1] = vqadd_s16(accumulator[n_vec].val[1], c_val.val[1]);
|
accumulator[n_vec].val[1] = vqadd_s16(accumulator[n_vec].val[1], c_val.val[1]);
|
||||||
}
|
}
|
||||||
|
// Regenerate phase
|
||||||
|
if ((number % 256) == 0)
|
||||||
|
{
|
||||||
|
phase_est = arg_phase0 + (number + 1) * 4 * arg_phase_inc;
|
||||||
|
|
||||||
|
*phase = lv_cmake(cos(phase_est), sin(phase_est));
|
||||||
|
phase2 = (lv_32fc_t)(*phase) * phase_inc;
|
||||||
|
phase3 = phase2 * phase_inc;
|
||||||
|
phase4 = phase3 * phase_inc;
|
||||||
|
|
||||||
|
__VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
|
||||||
|
__VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
|
||||||
|
|
||||||
|
_phase_real = vld1q_f32(____phase_real);
|
||||||
|
_phase_imag = vld1q_f32(____phase_imag);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
for (int n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
||||||
@ -577,6 +930,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon(lv_16sc_t*
|
|||||||
|
|
||||||
#ifdef LV_HAVE_NEON
|
#ifdef LV_HAVE_NEON
|
||||||
#include <arm_neon.h>
|
#include <arm_neon.h>
|
||||||
|
#include <volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h>
|
||||||
|
|
||||||
static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points)
|
static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const lv_16sc_t** in_a, int num_a_vectors, unsigned int num_points)
|
||||||
{
|
{
|
||||||
@ -592,7 +946,10 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16s
|
|||||||
if (neon_iters > 0)
|
if (neon_iters > 0)
|
||||||
{
|
{
|
||||||
lv_16sc_t dotProduct = lv_cmake(0,0);
|
lv_16sc_t dotProduct = lv_cmake(0,0);
|
||||||
|
float arg_phase0 = cargf(*phase);
|
||||||
|
float arg_phase_inc = cargf(phase_inc);
|
||||||
|
float phase_est;
|
||||||
|
//printf("arg phase0: %f", arg_phase0);
|
||||||
lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc;
|
lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc;
|
||||||
__VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) };
|
__VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) };
|
||||||
__VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) };
|
__VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) };
|
||||||
@ -677,6 +1034,37 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16s
|
|||||||
_phase_real = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]);
|
_phase_real = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]);
|
||||||
_phase_imag = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]);
|
_phase_imag = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]);
|
||||||
|
|
||||||
|
// Regenerate phase
|
||||||
|
if ((number % 256) == 0)
|
||||||
|
{
|
||||||
|
//printf("computed phase: %f\n", cos(cargf(lv_cmake(_phase_real[0],_phase_imag[0]))));
|
||||||
|
phase_est = arg_phase0 + (number + 1) * 4 * arg_phase_inc;
|
||||||
|
//printf("Estimated phase: %f\n\n", cos(phase_est));
|
||||||
|
|
||||||
|
*phase = lv_cmake(cos(phase_est), sin(phase_est));
|
||||||
|
phase2 = (lv_32fc_t)(*phase) * phase_inc;
|
||||||
|
phase3 = phase2 * phase_inc;
|
||||||
|
phase4 = phase3 * phase_inc;
|
||||||
|
|
||||||
|
__VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
|
||||||
|
__VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
|
||||||
|
|
||||||
|
_phase_real = vld1q_f32(____phase_real);
|
||||||
|
_phase_imag = vld1q_f32(____phase_imag);
|
||||||
|
|
||||||
|
// Round = vmulq_f32(_phase_real, _phase_real);
|
||||||
|
// Round = vmlaq_f32(Round, _phase_imag, _phase_imag);
|
||||||
|
// Round = vsqrtq_f32(Round);//printf("sqrt: %f \n", Round[0]);
|
||||||
|
//Round = vrsqrteq_f32(Round);printf("1/sqtr: %f \n",Round[0]);
|
||||||
|
//Round = vrecpeq_f32((Round);
|
||||||
|
// _phase_real = vdivq_f32(_phase_real, Round);
|
||||||
|
// _phase_imag = vdivq_f32(_phase_imag, Round);
|
||||||
|
//_phase_real = vmulq_f32(_phase_real, Round);
|
||||||
|
//_phase_imag = vmulq_f32(_phase_imag, Round);
|
||||||
|
//printf("After %i: %f,%f, %f\n\n", number, _phase_real[0], _phase_imag[0], sqrt(_phase_real[0]*_phase_real[0]+_phase_imag[0]*_phase_imag[0]));
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
vst1q_f32((float32_t*)__phase_real, _phase_real);
|
vst1q_f32((float32_t*)__phase_real, _phase_real);
|
||||||
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
|
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
|
||||||
|
|
||||||
@ -708,6 +1096,7 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16s
|
|||||||
_out[n_vec] = dotProduct;
|
_out[n_vec] = dotProduct;
|
||||||
}
|
}
|
||||||
free(accumulator);
|
free(accumulator);
|
||||||
|
|
||||||
vst1q_f32((float32_t*)__phase_real, _phase_real);
|
vst1q_f32((float32_t*)__phase_real, _phase_real);
|
||||||
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
|
vst1q_f32((float32_t*)__phase_imag, _phase_imag);
|
||||||
|
|
||||||
@ -731,3 +1120,4 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_neon_vma(lv_16s
|
|||||||
#endif /* LV_HAVE_NEON */
|
#endif /* LV_HAVE_NEON */
|
||||||
|
|
||||||
#endif /*INCLUDED_volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_H*/
|
#endif /*INCLUDED_volk_gnsssdr_16ic_x2_dot_prod_16ic_xn_H*/
|
||||||
|
|
||||||
|
@ -70,6 +70,36 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_generic(lv_
|
|||||||
#endif // Generic
|
#endif // Generic
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_GENERIC
|
||||||
|
static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_generic_reload(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
|
||||||
|
{
|
||||||
|
// phases must be normalized. Phase rotator expects a complex exponential input!
|
||||||
|
float rem_carrier_phase_in_rad = 0.345;
|
||||||
|
float phase_step_rad = 0.1;
|
||||||
|
lv_32fc_t phase[1];
|
||||||
|
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad));
|
||||||
|
lv_32fc_t phase_inc[1];
|
||||||
|
phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad));
|
||||||
|
|
||||||
|
int num_a_vectors = 3;
|
||||||
|
lv_16sc_t** in_a = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
|
||||||
|
for(unsigned int n = 0; n < num_a_vectors; n++)
|
||||||
|
{
|
||||||
|
in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
|
||||||
|
memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points);
|
||||||
|
}
|
||||||
|
volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_generic_reload(result, local_code, phase_inc[0], phase,(const lv_16sc_t**) in_a, num_a_vectors, num_points);
|
||||||
|
|
||||||
|
for(unsigned int n = 0; n < num_a_vectors; n++)
|
||||||
|
{
|
||||||
|
volk_gnsssdr_free(in_a[n]);
|
||||||
|
}
|
||||||
|
volk_gnsssdr_free(in_a);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // Generic
|
||||||
|
|
||||||
|
|
||||||
#ifdef LV_HAVE_SSE3
|
#ifdef LV_HAVE_SSE3
|
||||||
static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_a_sse3(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
|
static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_a_sse3(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
|
||||||
{
|
{
|
||||||
@ -101,6 +131,37 @@ static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_a_sse3(lv_1
|
|||||||
#endif // SSE3
|
#endif // SSE3
|
||||||
|
|
||||||
|
|
||||||
|
#ifdef LV_HAVE_SSE3
|
||||||
|
static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_a_sse3_reload(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
|
||||||
|
{
|
||||||
|
// phases must be normalized. Phase rotator expects a complex exponential input!
|
||||||
|
float rem_carrier_phase_in_rad = 0.345;
|
||||||
|
float phase_step_rad = 0.1;
|
||||||
|
lv_32fc_t phase[1];
|
||||||
|
phase[0] = lv_cmake(cos(rem_carrier_phase_in_rad), sin(rem_carrier_phase_in_rad));
|
||||||
|
lv_32fc_t phase_inc[1];
|
||||||
|
phase_inc[0] = lv_cmake(cos(phase_step_rad), sin(phase_step_rad));
|
||||||
|
|
||||||
|
int num_a_vectors = 3;
|
||||||
|
lv_16sc_t** in_a = (lv_16sc_t**)volk_gnsssdr_malloc(sizeof(lv_16sc_t*) * num_a_vectors, volk_gnsssdr_get_alignment());
|
||||||
|
for(unsigned int n = 0; n < num_a_vectors; n++)
|
||||||
|
{
|
||||||
|
in_a[n] = (lv_16sc_t*)volk_gnsssdr_malloc(sizeof(lv_16sc_t) * num_points, volk_gnsssdr_get_alignment());
|
||||||
|
memcpy((lv_16sc_t*)in_a[n], (lv_16sc_t*)in, sizeof(lv_16sc_t) * num_points);
|
||||||
|
}
|
||||||
|
|
||||||
|
volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn_a_sse3_reload(result, local_code, phase_inc[0], phase, (const lv_16sc_t**) in_a, num_a_vectors, num_points);
|
||||||
|
|
||||||
|
for(unsigned int n = 0; n < num_a_vectors; n++)
|
||||||
|
{
|
||||||
|
volk_gnsssdr_free(in_a[n]);
|
||||||
|
}
|
||||||
|
volk_gnsssdr_free(in_a);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // SSE3
|
||||||
|
|
||||||
|
|
||||||
#ifdef LV_HAVE_SSE3
|
#ifdef LV_HAVE_SSE3
|
||||||
static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_u_sse3(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
|
static inline void volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic_u_sse3(lv_16sc_t* result, const lv_16sc_t* local_code, const lv_16sc_t* in, unsigned int num_points)
|
||||||
{
|
{
|
||||||
|
@ -58,6 +58,9 @@ std::vector<volk_gnsssdr_test_case_t> init_test_list(volk_gnsssdr_test_params_t
|
|||||||
// some others need more iterations ***** ADDED BY GNSS-SDR
|
// some others need more iterations ***** ADDED BY GNSS-SDR
|
||||||
volk_gnsssdr_test_params_t test_params_more_iters = volk_gnsssdr_test_params_t(test_params.tol(), test_params.scalar(),
|
volk_gnsssdr_test_params_t test_params_more_iters = volk_gnsssdr_test_params_t(test_params.tol(), test_params.scalar(),
|
||||||
test_params.vlen(), 100000, test_params.benchmark_mode(), test_params.kernel_regex());
|
test_params.vlen(), 100000, test_params.benchmark_mode(), test_params.kernel_regex());
|
||||||
|
// ... or more tolerance ***** ADDED BY GNSS-SDR
|
||||||
|
volk_gnsssdr_test_params_t test_params_int16 = volk_gnsssdr_test_params_t(16, test_params.scalar(),
|
||||||
|
test_params.vlen(), test_params.iter(), test_params.benchmark_mode(), test_params.kernel_regex());
|
||||||
|
|
||||||
std::vector<volk_gnsssdr_test_case_t> test_cases = boost::assign::list_of
|
std::vector<volk_gnsssdr_test_case_t> test_cases = boost::assign::list_of
|
||||||
|
|
||||||
@ -77,11 +80,11 @@ std::vector<volk_gnsssdr_test_case_t> init_test_list(volk_gnsssdr_test_params_t
|
|||||||
(VOLK_INIT_TEST(volk_gnsssdr_16ic_x2_dot_prod_16ic, test_params))
|
(VOLK_INIT_TEST(volk_gnsssdr_16ic_x2_dot_prod_16ic, test_params))
|
||||||
(VOLK_INIT_TEST(volk_gnsssdr_16ic_x2_multiply_16ic, test_params_more_iters))
|
(VOLK_INIT_TEST(volk_gnsssdr_16ic_x2_multiply_16ic, test_params_more_iters))
|
||||||
(VOLK_INIT_TEST(volk_gnsssdr_16ic_convert_32fc, test_params_more_iters))
|
(VOLK_INIT_TEST(volk_gnsssdr_16ic_convert_32fc, test_params_more_iters))
|
||||||
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_rotatorpuppet_16ic, volk_gnsssdr_16ic_s32fc_x2_rotator_16ic, test_params))
|
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_rotatorpuppet_16ic, volk_gnsssdr_16ic_s32fc_x2_rotator_16ic, test_params_int1))
|
||||||
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_resamplerpuppet_16ic, volk_gnsssdr_16ic_resampler_16ic, test_params))
|
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_resamplerpuppet_16ic, volk_gnsssdr_16ic_resampler_16ic, test_params))
|
||||||
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_resamplerxnpuppet_16ic, volk_gnsssdr_16ic_xn_resampler_16ic_xn, test_params))
|
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_resamplerxnpuppet_16ic, volk_gnsssdr_16ic_xn_resampler_16ic_xn, test_params))
|
||||||
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_dot_prod_16ic_xn, test_params))
|
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_dot_prod_16ic_xn, test_params))
|
||||||
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn, test_params))
|
(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn, test_params_int16))
|
||||||
;
|
;
|
||||||
|
|
||||||
return test_cases;
|
return test_cases;
|
||||||
|
@ -76,10 +76,10 @@ void load_random_data(void *data, volk_gnsssdr_type_t type, unsigned int n)
|
|||||||
else ((uint32_t *)data)[i] = (uint32_t) scaled_rand;
|
else ((uint32_t *)data)[i] = (uint32_t) scaled_rand;
|
||||||
break;
|
break;
|
||||||
case 2:
|
case 2:
|
||||||
// 16 bits dot product saturates very fast even with moderate length vectors
|
// 16 bit multiplication saturates very fast
|
||||||
// we produce here only 4 bits input range
|
// we produce here only 3 bits input range
|
||||||
if(type.is_signed) ((int16_t *)data)[i] = (int16_t)((int16_t) scaled_rand % 16);
|
if(type.is_signed) ((int16_t *)data)[i] = (int16_t)((int16_t) scaled_rand % 8);
|
||||||
else ((uint16_t *)data)[i] = (uint16_t) (int16_t)((int16_t) scaled_rand % 16);
|
else ((uint16_t *)data)[i] = (uint16_t) (int16_t)((int16_t) scaled_rand % 8);
|
||||||
break;
|
break;
|
||||||
case 1:
|
case 1:
|
||||||
if(type.is_signed) ((int8_t *)data)[i] = (int8_t) scaled_rand;
|
if(type.is_signed) ((int8_t *)data)[i] = (int8_t) scaled_rand;
|
||||||
|
Loading…
Reference in New Issue
Block a user