mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-01-19 05:33:02 +00:00
Updated all GPS and Galileo trackings for double floating point internal
computations and bug fixes in the carrier phase accumulator. (all, except Matlab-Simulink linked trackings)
This commit is contained in:
parent
19e1328fda
commit
c8f7e08127
@ -733,8 +733,8 @@ if(NOT ARMADILLO_FOUND)
|
||||
message(STATUS " Armadillo will be downloaded and built automatically ")
|
||||
message(STATUS " when doing 'make'. ")
|
||||
|
||||
set(armadillo_RELEASE 5.200.2)
|
||||
set(armadillo_MD5 "ef57ba4c473a3b67c672441a7face09e")
|
||||
set(armadillo_RELEASE 6.200.2)
|
||||
set(armadillo_MD5 "e07910be1a79b20fa2efe1006a274390")
|
||||
|
||||
ExternalProject_Add(
|
||||
armadillo-${armadillo_RELEASE}
|
||||
@ -781,12 +781,32 @@ endif(NOT ARMADILLO_FOUND)
|
||||
# GnuTLS - http://www.gnutls.org/
|
||||
################################################################################
|
||||
find_package(GnuTLS)
|
||||
if(NOT GNUTLS_FOUND)
|
||||
message(" The GnuTLS library has not been found.")
|
||||
message(" You can try to install it by typing:")
|
||||
find_library(GNUTLS_OPENSSL_LIBRARY NAMES gnutls-openssl libgnutls-openssl.so.27
|
||||
HINTS /usr/lib
|
||||
/usr/lib64
|
||||
/usr/local/lib
|
||||
/usr/local/lib64
|
||||
/opt/local/lib
|
||||
/usr/lib/x86_64-linux-gnu
|
||||
/usr/lib/aarch64-linux-gnu
|
||||
/usr/lib/arm-linux-gnueabihf
|
||||
/usr/lib/arm-linux-gnueabi
|
||||
/usr/lib/i386-linux-gnu
|
||||
)
|
||||
|
||||
if(NOT GNUTLS_OPENSSL_LIBRARY)
|
||||
message(STATUS "Looking for OpenSSL instead...")
|
||||
find_package(OpenSSL)
|
||||
if(OPENSSL_FOUND)
|
||||
set(GNUTLS_INCLUDE_DIR ${OPENSSL_INCLUDE_DIR})
|
||||
set(GNUTLS_LIBRARIES "")
|
||||
set(GNUTLS_OPENSSL_LIBRARY ${OPENSSL_SSL_LIBRARY})
|
||||
else(OPENSSL_FOUND)
|
||||
message(" The GnuTLS library with openssl compatibility enabled has not been found.")
|
||||
message(" You can try to install the required libraries by typing:")
|
||||
if(OS_IS_LINUX)
|
||||
if(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "Red Hat")
|
||||
message(" sudo yum install libgnutls-openssl-devel")
|
||||
message(" sudo yum install openssl-devel")
|
||||
else(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "Red Hat")
|
||||
message(" sudo apt-get install libgnutls-openssl-dev")
|
||||
endif(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "Red Hat")
|
||||
@ -794,8 +814,9 @@ if(NOT GNUTLS_FOUND)
|
||||
if(OS_IS_MACOSX)
|
||||
message(" sudo port install gnutls")
|
||||
endif(OS_IS_MACOSX)
|
||||
message(FATAL_ERROR "GnuTLS libraries are required to build gnss-sdr")
|
||||
endif(NOT GNUTLS_FOUND)
|
||||
message(FATAL_ERROR "GnuTLS libraries with openssl compatibility are required to build gnss-sdr")
|
||||
endif(OPENSSL_FOUND)
|
||||
endif(NOT GNUTLS_OPENSSL_LIBRARY)
|
||||
|
||||
|
||||
################################################################################
|
||||
@ -1085,9 +1106,9 @@ endif(ENABLE_GPROF)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${MY_CXX_FLAGS}")
|
||||
|
||||
if(OS_IS_LINUX)
|
||||
if(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "openSUSE")
|
||||
if(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "openSUSE" OR ${LINUX_DISTRIBUTION} MATCHES "ArchLinux")
|
||||
link_libraries(pthread)
|
||||
endif(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "openSUSE")
|
||||
endif(${LINUX_DISTRIBUTION} MATCHES "Fedora" OR ${LINUX_DISTRIBUTION} MATCHES "openSUSE" OR ${LINUX_DISTRIBUTION} MATCHES "ArchLinux")
|
||||
endif(OS_IS_LINUX)
|
||||
|
||||
|
||||
|
@ -7,7 +7,7 @@
|
||||
|
||||
;######### GLOBAL OPTIONS ##################
|
||||
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
|
||||
GNSS-SDR.internal_fs_hz=2600000
|
||||
GNSS-SDR.internal_fs_hz=4000000
|
||||
|
||||
;######### CONTROL_THREAD CONFIG ############
|
||||
ControlThread.wait_for_flowgraph=false
|
||||
@ -23,7 +23,7 @@ SignalSource.filename=/home/javier/ClionProjects/gnss-sim/build/signal_out.bin
|
||||
SignalSource.item_type=byte
|
||||
|
||||
;#sampling_frequency: Original Signal sampling frequency in [Hz]
|
||||
SignalSource.sampling_frequency=2600000
|
||||
SignalSource.sampling_frequency=4000000
|
||||
|
||||
;#freq: RF front-end center frequency in [Hz]
|
||||
SignalSource.freq=1575420000
|
||||
@ -127,7 +127,7 @@ InputFilter.grid_density=16
|
||||
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
|
||||
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
|
||||
|
||||
InputFilter.sampling_frequency=2600000
|
||||
InputFilter.sampling_frequency=4000000
|
||||
InputFilter.IF=0
|
||||
|
||||
|
||||
@ -150,10 +150,10 @@ Resampler.dump_filename=../data/resampler.dat
|
||||
Resampler.item_type=gr_complex
|
||||
|
||||
;#sample_freq_in: the sample frequency of the input signal
|
||||
Resampler.sample_freq_in=2600000
|
||||
Resampler.sample_freq_in=4000000
|
||||
|
||||
;#sample_freq_out: the desired sample frequency of the output signal
|
||||
Resampler.sample_freq_out=2600000
|
||||
Resampler.sample_freq_out=4000000
|
||||
|
||||
|
||||
;######### CHANNELS GLOBAL CONFIG ############
|
||||
@ -253,7 +253,7 @@ Tracking_1C.pll_bw_hz=15.0;
|
||||
Tracking_1C.dll_bw_hz=1.5;
|
||||
|
||||
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
|
||||
Tracking_1C.fll_bw_hz=10.0;
|
||||
Tracking_1C.fll_bw_hz=2.0;
|
||||
|
||||
;#order: PLL/DLL loop filter order [2] or [3]
|
||||
Tracking_1C.order=3;
|
||||
|
@ -211,7 +211,6 @@ int gps_l1_ca_observables_cc::general_work (int noutput_items, gr_vector_int &ni
|
||||
acc_phase_vec_rads=arma::vec(std::vector<double>(d_acc_carrier_phase_queue_rads[gnss_synchro_iter->second.Channel_ID].begin(), d_acc_carrier_phase_queue_rads[gnss_synchro_iter->second.Channel_ID].end()));
|
||||
dopper_vec_hz=arma::vec(std::vector<double>(d_carrier_doppler_queue_hz[gnss_synchro_iter->second.Channel_ID].begin(), d_carrier_doppler_queue_hz[gnss_synchro_iter->second.Channel_ID].end()));
|
||||
|
||||
|
||||
//std::cout<<"symbol_TOW_vec_s[0]="<<symbol_TOW_vec_s[0]<<std::endl;
|
||||
//std::cout<<"symbol_TOW_vec_s[GPS_L1_CA_HISTORY_DEEP-1]="<<symbol_TOW_vec_s[GPS_L1_CA_HISTORY_DEEP-1]<<std::endl;
|
||||
//std::cout<<"acc_phase_vec_rads="<<acc_phase_vec_rads<<std::endl;
|
||||
@ -223,52 +222,22 @@ int gps_l1_ca_observables_cc::general_work (int noutput_items, gr_vector_int &ni
|
||||
// arma::interp1(symbol_TOW_vec_s,dopper_vec_hz,desired_symbol_TOW,dopper_vec_interp_hz);
|
||||
// arma::interp1(symbol_TOW_vec_s,acc_phase_vec_rads,desired_symbol_TOW,acc_phase_vec_interp_rads);
|
||||
|
||||
// linear regression
|
||||
// Curve fitting to cuadratic function
|
||||
arma::mat A=arma::ones<arma::mat> (GPS_L1_CA_HISTORY_DEEP,2);
|
||||
A.col(1)=symbol_TOW_vec_s;
|
||||
arma::mat coef_acc_phase(1,2);
|
||||
//A.col(2)=symbol_TOW_vec_s % symbol_TOW_vec_s;
|
||||
arma::mat coef_acc_phase(1,3);
|
||||
coef_acc_phase=arma::pinv(A.t()*A)*A.t()*acc_phase_vec_rads;
|
||||
arma::mat coef_doppler(1,2);
|
||||
arma::mat coef_doppler(1,3);
|
||||
coef_doppler=arma::pinv(A.t()*A)*A.t()*dopper_vec_hz;
|
||||
arma::vec acc_phase_lin;
|
||||
arma::vec carrier_doppler_lin;
|
||||
acc_phase_lin=coef_acc_phase[0]+coef_acc_phase[1]*desired_symbol_TOW[0];
|
||||
carrier_doppler_lin=coef_doppler[0]+coef_doppler[1]*desired_symbol_TOW[0];
|
||||
acc_phase_lin=coef_acc_phase[0]+coef_acc_phase[1]*desired_symbol_TOW[0];//+coef_acc_phase[2]*desired_symbol_TOW[0]*desired_symbol_TOW[0];
|
||||
carrier_doppler_lin=coef_doppler[0]+coef_doppler[1]*desired_symbol_TOW[0];//+coef_doppler[2]*desired_symbol_TOW[0]*desired_symbol_TOW[0];
|
||||
//std::cout<<"acc_phase_vec_interp_rads="<<acc_phase_vec_interp_rads[0]<<std::endl;
|
||||
//std::cout<<"dopper_vec_interp_hz="<<dopper_vec_interp_hz[0]<<std::endl;
|
||||
|
||||
// if (std::isnan(acc_phase_vec_interp_rads[0]) != true and std::isnan(dopper_vec_interp_hz[0]) != true)
|
||||
// {
|
||||
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Carrier_phase_rads =acc_phase_lin[0];
|
||||
current_gnss_synchro[gnss_synchro_iter->second.Channel_ID].Carrier_Doppler_hz =carrier_doppler_lin[0];
|
||||
// }else{
|
||||
// std::cout<<"NaN detected in interpolation output, desired_symbol_TOW[0]= "<<desired_symbol_TOW[0]<<std::endl;
|
||||
// std::cout<<"symbol_TOW_vec_s[0]="<<symbol_TOW_vec_s[0]<<std::endl;
|
||||
// std::cout<<"symbol_TOW_vec_s[GPS_L1_CA_HISTORY_DEEP-1]="<<symbol_TOW_vec_s[GPS_L1_CA_HISTORY_DEEP-1]<<std::endl;
|
||||
//
|
||||
// for (int n=0;n<symbol_TOW_vec_s.size();n++)
|
||||
// {
|
||||
// if (std::isnan(symbol_TOW_vec_s[n])==true)
|
||||
// {
|
||||
// std::cout<<"NaN detected in symbol_TOW_vec_s index "<<n<<std::endl;
|
||||
// //std::cout<<"symbol_TOW_vec_s="<<symbol_TOW_vec_s<<std::endl;
|
||||
// //std::cout<<"acc_phase_vec_rads="<<acc_phase_vec_rads<<std::endl;
|
||||
// }
|
||||
// if (std::isnan(dopper_vec_hz[n])==true)
|
||||
// {
|
||||
// std::cout<<"NaN detected in dopper_vec_hz index "<<n<<std::endl;
|
||||
// //std::cout<<"symbol_TOW_vec_s="<<symbol_TOW_vec_s<<std::endl;
|
||||
// //std::cout<<"acc_phase_vec_rads="<<acc_phase_vec_rads<<std::endl;
|
||||
// }
|
||||
// if (std::isnan(acc_phase_vec_rads[n])==true)
|
||||
// {
|
||||
// std::cout<<"NaN detected in acc_phase_vec_rads index "<<n<<std::endl;
|
||||
// //std::cout<<"symbol_TOW_vec_s="<<symbol_TOW_vec_s<<std::endl;
|
||||
// //std::cout<<"acc_phase_vec_rads="<<acc_phase_vec_rads<<std::endl;
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// }
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -18,8 +18,9 @@
|
||||
|
||||
|
||||
if(ENABLE_CUDA)
|
||||
FIND_PACKAGE(CUDA REQUIRED)
|
||||
set(OPT_TRACKING_BLOCKS ${OPT_TRACKING_BLOCKS} gps_l1_ca_dll_pll_tracking_gpu_cc.cc)
|
||||
set(OPT_TRACKING_INCLUDES ${OPT_TRACKING_INCLUDES} ${CUDA_INCLUDE_DIRS})
|
||||
set(OPT_TRACKING_LIBRARIES ${OPT_TRACKING_LIBRARIES} ${CUDA_LIBRARIES})
|
||||
endif(ENABLE_CUDA)
|
||||
|
||||
set(TRACKING_GR_BLOCKS_SOURCES
|
||||
@ -48,8 +49,7 @@ include_directories(
|
||||
${Boost_INCLUDE_DIRS}
|
||||
${GNURADIO_RUNTIME_INCLUDE_DIRS}
|
||||
${VOLK_GNSSSDR_INCLUDE_DIRS}
|
||||
${CUDA_INCLUDE_DIRS}
|
||||
# ${CMAKE_SOURCE_DIR}/src/algorithms/tracking/libs/cudahelpers
|
||||
${OPT_TRACKING_INCLUDES}
|
||||
)
|
||||
|
||||
if(ENABLE_GENERIC_ARCH)
|
||||
@ -60,7 +60,8 @@ file(GLOB TRACKING_GR_BLOCKS_HEADERS "*.h")
|
||||
add_library(tracking_gr_blocks ${TRACKING_GR_BLOCKS_SOURCES} ${TRACKING_GR_BLOCKS_HEADERS})
|
||||
source_group(Headers FILES ${TRACKING_GR_BLOCKS_HEADERS})
|
||||
|
||||
target_link_libraries(tracking_gr_blocks tracking_lib ${GNURADIO_RUNTIME_LIBRARIES} gnss_sp_libs ${Boost_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${ORC_LIBRARIES} ${CUDA_LIBRARIES})
|
||||
target_link_libraries(tracking_gr_blocks tracking_lib ${GNURADIO_RUNTIME_LIBRARIES} gnss_sp_libs ${Boost_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${ORC_LIBRARIES} ${OPT_TRACKING_LIBRARIES})
|
||||
|
||||
if(NOT VOLK_GNSSSDR_FOUND)
|
||||
add_dependencies(tracking_gr_blocks volk_gnsssdr_module)
|
||||
endif(NOT VOLK_GNSSSDR_FOUND)
|
||||
|
@ -236,7 +236,7 @@ void galileo_e1_dll_pll_veml_tracking_cc::start_tracking()
|
||||
void galileo_e1_dll_pll_veml_tracking_cc::update_local_code()
|
||||
{
|
||||
double tcode_half_chips;
|
||||
float rem_code_phase_half_chips;
|
||||
double rem_code_phase_half_chips;
|
||||
int associated_chip_index;
|
||||
int code_length_half_chips = static_cast<int>(Galileo_E1_B_CODE_LENGTH_CHIPS) * 2;
|
||||
double code_phase_step_chips;
|
||||
@ -246,11 +246,11 @@ void galileo_e1_dll_pll_veml_tracking_cc::update_local_code()
|
||||
int epl_loop_length_samples;
|
||||
|
||||
// unified loop for VE, E, P, L, VL code vectors
|
||||
code_phase_step_chips = (static_cast<double>(d_code_freq_chips)) / (static_cast<double>(d_fs_in));
|
||||
code_phase_step_half_chips = (2.0 * static_cast<double>(d_code_freq_chips)) / (static_cast<double>(d_fs_in));
|
||||
code_phase_step_chips = d_code_freq_chips / (static_cast<double>(d_fs_in));
|
||||
code_phase_step_half_chips = (2.0 * d_code_freq_chips) / (static_cast<double>(d_fs_in));
|
||||
|
||||
rem_code_phase_half_chips = d_rem_code_phase_samples * (2*d_code_freq_chips / d_fs_in);
|
||||
tcode_half_chips = - static_cast<double>(rem_code_phase_half_chips);
|
||||
tcode_half_chips = - rem_code_phase_half_chips;
|
||||
|
||||
early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips);
|
||||
very_early_late_spc_samples = round(d_very_early_late_spc_chips / code_phase_step_chips);
|
||||
@ -310,10 +310,14 @@ galileo_e1_dll_pll_veml_tracking_cc::~galileo_e1_dll_pll_veml_tracking_cc()
|
||||
int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||
{
|
||||
float carr_error_hz;
|
||||
float carr_error_filt_hz;
|
||||
float code_error_chips;
|
||||
float code_error_filt_chips;
|
||||
double carr_error_hz;
|
||||
carr_error_hz=0.0;
|
||||
double carr_error_filt_hz;
|
||||
carr_error_filt_hz=0.0;
|
||||
double code_error_chips;
|
||||
code_error_chips=0.0;
|
||||
double code_error_filt_chips;
|
||||
code_error_filt_chips=0.0;
|
||||
|
||||
if (d_enable_tracking == true)
|
||||
{
|
||||
@ -323,7 +327,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
|
||||
* Signal alignment (skip samples until the incoming signal is aligned with local replica)
|
||||
*/
|
||||
int samples_offset;
|
||||
float acq_trk_shif_correction_samples;
|
||||
double acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
|
||||
@ -372,7 +376,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
|
||||
// New code Doppler frequency estimation
|
||||
d_code_freq_chips = Galileo_E1_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E1_CODE_CHIP_RATE_HZ) / Galileo_E1_FREQ_HZ);
|
||||
//carrier phase accumulator for (K) Doppler estimation
|
||||
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
|
||||
d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
|
||||
//remnant carrier phase to prevent overflow in the code NCO
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
|
||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
|
||||
@ -383,7 +387,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
|
||||
// Code discriminator filter
|
||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
|
||||
//Code phase accumulator
|
||||
float code_error_filt_secs;
|
||||
double code_error_filt_secs;
|
||||
code_error_filt_secs = (Galileo_E1_CODE_PERIOD * code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds]
|
||||
//code_error_filt_secs=T_prn_seconds*code_error_filt_chips*T_chip_seconds*static_cast<float>(d_fs_in); //[seconds]
|
||||
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
|
||||
@ -395,7 +399,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
|
||||
double T_prn_samples;
|
||||
double K_blk_samples;
|
||||
// Compute the next buffer lenght based in the new period of the PRN sequence and the code phase error estimation
|
||||
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
|
||||
T_chip_seconds = 1.0 / d_code_freq_chips;
|
||||
T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS;
|
||||
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
|
||||
@ -460,9 +464,9 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
|
||||
|
||||
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
|
||||
current_synchro_data.Code_phase_secs = 0;
|
||||
current_synchro_data.Carrier_phase_rads = static_cast<double>(d_acc_carrier_phase_rad);
|
||||
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
|
||||
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
|
||||
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
@ -547,19 +551,28 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vect
|
||||
// PRN start sample stamp
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
|
||||
// accumulated carrier phase
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(float));
|
||||
tmp_float=d_acc_carrier_phase_rad;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
// carrier and code frequency
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(float));
|
||||
tmp_float=d_carrier_doppler_hz;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
tmp_float=d_code_freq_chips;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
//PLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(float));
|
||||
tmp_float=carr_error_hz;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
tmp_float=carr_error_filt_hz;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
//DLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(float));
|
||||
tmp_float=code_error_chips;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
tmp_float=code_error_filt_chips;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
// CN0 and carrier lock test
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(float));
|
||||
tmp_float=d_CN0_SNV_dB_Hz;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
tmp_float=d_carrier_lock_test;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_float = d_rem_code_phase_samples;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
|
@ -126,8 +126,8 @@ private:
|
||||
long d_if_freq;
|
||||
long d_fs_in;
|
||||
|
||||
float d_early_late_spc_chips;
|
||||
float d_very_early_late_spc_chips;
|
||||
double d_early_late_spc_chips;
|
||||
double d_very_early_late_spc_chips;
|
||||
|
||||
gr_complex* d_ca_code;
|
||||
|
||||
@ -146,22 +146,22 @@ private:
|
||||
|
||||
// remaining code phase and carrier phase between tracking loops
|
||||
double d_rem_code_phase_samples;
|
||||
float d_rem_carr_phase_rad;
|
||||
double d_rem_carr_phase_rad;
|
||||
|
||||
// PLL and DLL filter library
|
||||
Tracking_2nd_DLL_filter d_code_loop_filter;
|
||||
Tracking_2nd_PLL_filter d_carrier_loop_filter;
|
||||
|
||||
// acquisition
|
||||
float d_acq_code_phase_samples;
|
||||
float d_acq_carrier_doppler_hz;
|
||||
double d_acq_code_phase_samples;
|
||||
double d_acq_carrier_doppler_hz;
|
||||
|
||||
// correlator
|
||||
Correlator d_correlator;
|
||||
|
||||
// tracking vars
|
||||
double d_code_freq_chips;
|
||||
float d_carrier_doppler_hz;
|
||||
double d_carrier_doppler_hz;
|
||||
double d_acc_carrier_phase_rad;
|
||||
double d_acc_code_phase_secs;
|
||||
|
||||
@ -175,9 +175,9 @@ private:
|
||||
// CN0 estimation and lock detector
|
||||
int d_cn0_estimation_counter;
|
||||
gr_complex* d_Prompt_buffer;
|
||||
float d_carrier_lock_test;
|
||||
float d_CN0_SNV_dB_Hz;
|
||||
float d_carrier_lock_threshold;
|
||||
double d_carrier_lock_test;
|
||||
double d_CN0_SNV_dB_Hz;
|
||||
double d_carrier_lock_threshold;
|
||||
int d_carrier_lock_fail_counter;
|
||||
|
||||
// control vars
|
||||
|
@ -387,7 +387,7 @@ int Galileo_E1_Tcp_Connector_Tracking_cc::general_work (int noutput_items, gr_ve
|
||||
// New code Doppler frequency estimation
|
||||
d_code_freq_chips = Galileo_E1_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E1_CODE_CHIP_RATE_HZ) / Galileo_E1_FREQ_HZ);
|
||||
//carrier phase accumulator for (K) doppler estimation
|
||||
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI*d_carrier_doppler_hz*Galileo_E1_CODE_PERIOD;
|
||||
d_acc_carrier_phase_rad -= GPS_TWO_PI*d_carrier_doppler_hz*Galileo_E1_CODE_PERIOD;
|
||||
//remnant carrier phase to prevent overflow in the code NCO
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI*d_carrier_doppler_hz*Galileo_E1_CODE_PERIOD;
|
||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
|
||||
|
@ -217,18 +217,18 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::start_tracking()
|
||||
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
|
||||
|
||||
long int acq_trk_diff_samples;
|
||||
float acq_trk_diff_seconds;
|
||||
double acq_trk_diff_seconds;
|
||||
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);//-d_vector_length;
|
||||
LOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
|
||||
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
|
||||
//doppler effect
|
||||
// Fd=(C/(C+Vr))*F
|
||||
float radial_velocity;
|
||||
double radial_velocity;
|
||||
radial_velocity = (Galileo_E5a_FREQ_HZ + d_acq_carrier_doppler_hz)/Galileo_E5a_FREQ_HZ;
|
||||
// new chip and prn sequence periods based on acq Doppler
|
||||
float T_chip_mod_seconds;
|
||||
float T_prn_mod_seconds;
|
||||
float T_prn_mod_samples;
|
||||
double T_chip_mod_seconds;
|
||||
double T_prn_mod_seconds;
|
||||
double T_prn_mod_samples;
|
||||
d_code_freq_chips = radial_velocity * Galileo_E5a_CODE_CHIP_RATE_HZ;
|
||||
T_chip_mod_seconds = 1/d_code_freq_chips;
|
||||
T_prn_mod_seconds = T_chip_mod_seconds * Galileo_E5a_CODE_LENGTH_CHIPS;
|
||||
@ -236,13 +236,13 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::start_tracking()
|
||||
|
||||
d_current_prn_length_samples = round(T_prn_mod_samples);
|
||||
|
||||
float T_prn_true_seconds = Galileo_E5a_CODE_LENGTH_CHIPS / Galileo_E5a_CODE_CHIP_RATE_HZ;
|
||||
float T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
|
||||
float T_prn_diff_seconds;
|
||||
double T_prn_true_seconds = Galileo_E5a_CODE_LENGTH_CHIPS / Galileo_E5a_CODE_CHIP_RATE_HZ;
|
||||
double T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
|
||||
double T_prn_diff_seconds;
|
||||
T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
|
||||
float N_prn_diff;
|
||||
double N_prn_diff;
|
||||
N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
||||
float corrected_acq_phase_samples, delay_correction_samples;
|
||||
double corrected_acq_phase_samples, delay_correction_samples;
|
||||
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<float>(d_fs_in)), T_prn_true_samples);
|
||||
if (corrected_acq_phase_samples < 0)
|
||||
{
|
||||
@ -358,7 +358,7 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::update_local_code()
|
||||
int epl_loop_length_samples;
|
||||
|
||||
// unified loop for E, P, L code vectors
|
||||
code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
|
||||
code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||
rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
|
||||
tcode_chips = -rem_code_phase_chips;
|
||||
|
||||
@ -383,7 +383,7 @@ void Galileo_E5a_Dll_Pll_Tracking_cc::update_local_code()
|
||||
void Galileo_E5a_Dll_Pll_Tracking_cc::update_local_carrier()
|
||||
{
|
||||
float sin_f, cos_f;
|
||||
float phase_step_rad = static_cast<float>(2 * GALILEO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
|
||||
float phase_step_rad = static_cast<float>(2.0 * GALILEO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in));
|
||||
int phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
|
||||
int phase_rad_i = gr::fxpt::float_to_fixed(d_rem_carr_phase_rad);
|
||||
|
||||
@ -400,10 +400,10 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||
{
|
||||
// process vars
|
||||
float carr_error_hz;
|
||||
float carr_error_filt_hz;
|
||||
float code_error_chips;
|
||||
float code_error_filt_chips;
|
||||
double carr_error_hz;
|
||||
double carr_error_filt_hz;
|
||||
double code_error_chips;
|
||||
double code_error_filt_chips;
|
||||
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
|
||||
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; //block output streams pointer
|
||||
|
||||
@ -451,7 +451,7 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
||||
case 1:
|
||||
{
|
||||
int samples_offset;
|
||||
float acq_trk_shif_correction_samples;
|
||||
double acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
|
||||
@ -561,11 +561,11 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
||||
{
|
||||
if (d_secondary_lock == true)
|
||||
{
|
||||
carr_error_hz = pll_four_quadrant_atan(d_Prompt) / static_cast<float>(GALILEO_PI) * 2;
|
||||
carr_error_hz = pll_four_quadrant_atan(d_Prompt) / GALILEO_PI * 2.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
carr_error_hz = pll_cloop_two_quadrant_atan(d_Prompt) / static_cast<float>(GALILEO_PI) * 2;
|
||||
carr_error_hz = pll_cloop_two_quadrant_atan(d_Prompt) / GALILEO_PI * 2.0;
|
||||
}
|
||||
|
||||
// Carrier discriminator filter
|
||||
@ -576,10 +576,10 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
||||
d_code_freq_chips = Galileo_E5a_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E5a_CODE_CHIP_RATE_HZ) / Galileo_E5a_FREQ_HZ);
|
||||
}
|
||||
//carrier phase accumulator for (K) doppler estimation
|
||||
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + 2*GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
|
||||
d_acc_carrier_phase_rad -= 2*GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
|
||||
//remanent carrier phase to prevent overflow in the code NCO
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + 2*GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
|
||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, 2*GALILEO_PI);
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + 2.0*GALILEO_PI * d_carrier_doppler_hz * GALILEO_E5a_CODE_PERIOD;
|
||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, 2.0*GALILEO_PI);
|
||||
|
||||
// ################## DLL ##########################################################
|
||||
if (d_integration_counter == d_current_ti_ms)
|
||||
@ -600,7 +600,7 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
||||
double T_prn_samples;
|
||||
double K_blk_samples;
|
||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
||||
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
|
||||
T_chip_seconds = 1.0 / d_code_freq_chips;
|
||||
T_prn_seconds = T_chip_seconds * Galileo_E5a_CODE_LENGTH_CHIPS;
|
||||
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + d_code_error_filt_secs * static_cast<double>(d_fs_in);
|
||||
@ -694,9 +694,9 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
||||
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + static_cast<double>(d_current_prn_length_samples) + static_cast<double>(d_rem_code_phase_samples)) / static_cast<double>(d_fs_in);
|
||||
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
|
||||
current_synchro_data.Code_phase_secs = 0;
|
||||
current_synchro_data.Carrier_phase_rads = static_cast<double>(d_acc_carrier_phase_rad);
|
||||
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
|
||||
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
|
||||
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_tracking = false;
|
||||
|
||||
|
||||
@ -781,6 +781,7 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
||||
}
|
||||
try
|
||||
{
|
||||
|
||||
// EPR
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
|
||||
@ -789,31 +790,33 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
|
||||
d_dump_file.write(reinterpret_cast<char*>(&prompt_I), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&prompt_Q), sizeof(float));
|
||||
// PRN start sample stamp
|
||||
//tmp_float=(float)d_sample_counter;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
|
||||
// accumulated carrier phase
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(double));
|
||||
|
||||
// carrier and code frequency
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
|
||||
|
||||
//PLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(double));
|
||||
|
||||
//DLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(double));
|
||||
|
||||
// CN0 and carrier lock test
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
|
||||
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_float = d_rem_code_phase_samples;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
tmp_double = d_rem_code_phase_samples;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
|
||||
}
|
||||
catch (std::ifstream::failure e)
|
||||
{
|
||||
|
@ -137,10 +137,10 @@ private:
|
||||
long d_fs_in;
|
||||
|
||||
double d_early_late_spc_chips;
|
||||
float d_dll_bw_hz;
|
||||
float d_pll_bw_hz;
|
||||
float d_dll_bw_init_hz;
|
||||
float d_pll_bw_init_hz;
|
||||
double d_dll_bw_hz;
|
||||
double d_pll_bw_hz;
|
||||
double d_dll_bw_init_hz;
|
||||
double d_pll_bw_init_hz;
|
||||
|
||||
gr_complex* d_codeQ;
|
||||
gr_complex* d_codeI;
|
||||
@ -160,26 +160,26 @@ private:
|
||||
float tmp_P;
|
||||
float tmp_L;
|
||||
// remaining code phase and carrier phase between tracking loops
|
||||
float d_rem_code_phase_samples;
|
||||
float d_rem_carr_phase_rad;
|
||||
double d_rem_code_phase_samples;
|
||||
double d_rem_carr_phase_rad;
|
||||
|
||||
// PLL and DLL filter library
|
||||
Tracking_2nd_DLL_filter d_code_loop_filter;
|
||||
Tracking_2nd_PLL_filter d_carrier_loop_filter;
|
||||
|
||||
// acquisition
|
||||
float d_acq_code_phase_samples;
|
||||
float d_acq_carrier_doppler_hz;
|
||||
double d_acq_code_phase_samples;
|
||||
double d_acq_carrier_doppler_hz;
|
||||
// correlator
|
||||
Correlator d_correlator;
|
||||
|
||||
// tracking vars
|
||||
float d_code_freq_chips;
|
||||
float d_carrier_doppler_hz;
|
||||
float d_acc_carrier_phase_rad;
|
||||
float d_code_phase_samples;
|
||||
float d_acc_code_phase_secs;
|
||||
float d_code_error_filt_secs;
|
||||
double d_code_freq_chips;
|
||||
double d_carrier_doppler_hz;
|
||||
double d_acc_carrier_phase_rad;
|
||||
double d_code_phase_samples;
|
||||
double d_acc_code_phase_secs;
|
||||
double d_code_error_filt_secs;
|
||||
|
||||
//PRN period in samples
|
||||
int d_current_prn_length_samples;
|
||||
@ -191,9 +191,9 @@ private:
|
||||
// CN0 estimation and lock detector
|
||||
int d_cn0_estimation_counter;
|
||||
gr_complex* d_Prompt_buffer;
|
||||
float d_carrier_lock_test;
|
||||
float d_CN0_SNV_dB_Hz;
|
||||
float d_carrier_lock_threshold;
|
||||
double d_carrier_lock_test;
|
||||
double d_CN0_SNV_dB_Hz;
|
||||
double d_carrier_lock_threshold;
|
||||
int d_carrier_lock_fail_counter;
|
||||
|
||||
// control vars
|
||||
|
@ -253,7 +253,7 @@ void galileo_volk_e1_dll_pll_veml_tracking_cc::start_tracking()
|
||||
void galileo_volk_e1_dll_pll_veml_tracking_cc::update_local_code()
|
||||
{
|
||||
double tcode_half_chips;
|
||||
float rem_code_phase_half_chips;
|
||||
double rem_code_phase_half_chips;
|
||||
int code_length_half_chips = static_cast<int>(Galileo_E1_B_CODE_LENGTH_CHIPS) * 2;
|
||||
double code_phase_step_chips;
|
||||
double code_phase_step_half_chips;
|
||||
@ -262,11 +262,11 @@ void galileo_volk_e1_dll_pll_veml_tracking_cc::update_local_code()
|
||||
int epl_loop_length_samples;
|
||||
|
||||
// unified loop for VE, E, P, L, VL code vectors
|
||||
code_phase_step_chips = (static_cast<double>(d_code_freq_chips)) / (static_cast<double>(d_fs_in));
|
||||
code_phase_step_half_chips = (2.0 * static_cast<double>(d_code_freq_chips)) / (static_cast<double>(d_fs_in));
|
||||
code_phase_step_chips = (d_code_freq_chips) / (static_cast<double>(d_fs_in));
|
||||
code_phase_step_half_chips = (2.0 * d_code_freq_chips) / (static_cast<double>(d_fs_in));
|
||||
|
||||
rem_code_phase_half_chips = d_rem_code_phase_samples * (2*d_code_freq_chips / d_fs_in);
|
||||
tcode_half_chips = - static_cast<double>(rem_code_phase_half_chips);
|
||||
tcode_half_chips = - rem_code_phase_half_chips;
|
||||
|
||||
early_late_spc_samples = round(d_early_late_spc_chips / code_phase_step_chips);
|
||||
very_early_late_spc_samples = round(d_very_early_late_spc_chips / code_phase_step_chips);
|
||||
@ -287,9 +287,9 @@ void galileo_volk_e1_dll_pll_veml_tracking_cc::update_local_carrier()
|
||||
{
|
||||
float phase_rad, phase_step_rad;
|
||||
// Compute the carrier phase step for the K-1 carrier doppler estimation
|
||||
phase_step_rad = static_cast<float>(GPS_TWO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
|
||||
phase_step_rad = static_cast<float> (GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in));
|
||||
// Initialize the carrier phase with the remanent carrier phase of the K-2 loop
|
||||
phase_rad = d_rem_carr_phase_rad;
|
||||
phase_rad = static_cast<float> (d_rem_carr_phase_rad);
|
||||
|
||||
//HERE YOU CAN CHOOSE THE DESIRED VOLK IMPLEMENTATION
|
||||
//volk_gnsssdr_s32f_x2_update_local_carrier_32fc_manual(d_carr_sign, phase_rad, phase_step_rad, d_current_prn_length_samples, "generic");
|
||||
@ -340,10 +340,10 @@ galileo_volk_e1_dll_pll_veml_tracking_cc::~galileo_volk_e1_dll_pll_veml_tracking
|
||||
int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||
{
|
||||
float carr_error_hz;
|
||||
float carr_error_filt_hz;
|
||||
float code_error_chips;
|
||||
float code_error_filt_chips;
|
||||
double carr_error_hz;
|
||||
double carr_error_filt_hz;
|
||||
double code_error_chips;
|
||||
double code_error_filt_chips;
|
||||
|
||||
if (d_enable_tracking == true)
|
||||
{
|
||||
@ -353,7 +353,7 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
|
||||
* Signal alignment (skip samples until the incoming signal is aligned with local replica)
|
||||
*/
|
||||
int samples_offset;
|
||||
float acq_trk_shif_correction_samples;
|
||||
double acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
|
||||
@ -419,7 +419,7 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
|
||||
// New code Doppler frequency estimation
|
||||
d_code_freq_chips = Galileo_E1_CODE_CHIP_RATE_HZ + ((d_carrier_doppler_hz * Galileo_E1_CODE_CHIP_RATE_HZ) / Galileo_E1_FREQ_HZ);
|
||||
//carrier phase accumulator for (K) Doppler estimation
|
||||
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
|
||||
d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
|
||||
//remnant carrier phase to prevent overflow in the code NCO
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * Galileo_E1_CODE_PERIOD;
|
||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
|
||||
@ -430,7 +430,7 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
|
||||
// Code discriminator filter
|
||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
|
||||
//Code phase accumulator
|
||||
float code_error_filt_secs;
|
||||
double code_error_filt_secs;
|
||||
code_error_filt_secs = (Galileo_E1_CODE_PERIOD * code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds]
|
||||
//code_error_filt_secs=T_prn_seconds*code_error_filt_chips*T_chip_seconds*static_cast<float>(d_fs_in); //[seconds]
|
||||
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
|
||||
@ -442,7 +442,7 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
|
||||
double T_prn_samples;
|
||||
double K_blk_samples;
|
||||
// Compute the next buffer lenght based in the new period of the PRN sequence and the code phase error estimation
|
||||
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
|
||||
T_chip_seconds = 1.0 / d_code_freq_chips;
|
||||
T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS;
|
||||
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
|
||||
@ -507,9 +507,9 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
|
||||
|
||||
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
|
||||
current_synchro_data.Code_phase_secs = 0;
|
||||
current_synchro_data.Carrier_phase_rads = static_cast<double>(d_acc_carrier_phase_rad);
|
||||
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
|
||||
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
|
||||
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
@ -594,19 +594,28 @@ int galileo_volk_e1_dll_pll_veml_tracking_cc::general_work (int noutput_items,gr
|
||||
// PRN start sample stamp
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
|
||||
// accumulated carrier phase
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(float));
|
||||
tmp_float=d_acc_carrier_phase_rad;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
// carrier and code frequency
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(float));
|
||||
tmp_float=d_carrier_doppler_hz;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
tmp_float=d_code_freq_chips;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
//PLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(float));
|
||||
tmp_float=carr_error_hz;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
tmp_float=carr_error_filt_hz;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
//DLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(float));
|
||||
tmp_float=code_error_chips;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
tmp_float=code_error_filt_chips;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
// CN0 and carrier lock test
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(float));
|
||||
tmp_float=d_CN0_SNV_dB_Hz;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
tmp_float=d_carrier_lock_test;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_float = d_rem_code_phase_samples;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
|
@ -126,8 +126,8 @@ private:
|
||||
long d_if_freq;
|
||||
long d_fs_in;
|
||||
|
||||
float d_early_late_spc_chips;
|
||||
float d_very_early_late_spc_chips;
|
||||
double d_early_late_spc_chips;
|
||||
double d_very_early_late_spc_chips;
|
||||
|
||||
gr_complex* d_ca_code;
|
||||
|
||||
@ -162,22 +162,22 @@ private:
|
||||
|
||||
// remaining code phase and carrier phase between tracking loops
|
||||
double d_rem_code_phase_samples;
|
||||
float d_rem_carr_phase_rad;
|
||||
double d_rem_carr_phase_rad;
|
||||
|
||||
// PLL and DLL filter library
|
||||
Tracking_2nd_DLL_filter d_code_loop_filter;
|
||||
Tracking_2nd_PLL_filter d_carrier_loop_filter;
|
||||
|
||||
// acquisition
|
||||
float d_acq_code_phase_samples;
|
||||
float d_acq_carrier_doppler_hz;
|
||||
double d_acq_code_phase_samples;
|
||||
double d_acq_carrier_doppler_hz;
|
||||
|
||||
// correlator
|
||||
Correlator d_correlator;
|
||||
|
||||
// tracking vars
|
||||
double d_code_freq_chips;
|
||||
float d_carrier_doppler_hz;
|
||||
double d_carrier_doppler_hz;
|
||||
double d_acc_carrier_phase_rad;
|
||||
double d_acc_code_phase_secs;
|
||||
|
||||
@ -191,9 +191,9 @@ private:
|
||||
// CN0 estimation and lock detector
|
||||
int d_cn0_estimation_counter;
|
||||
gr_complex* d_Prompt_buffer;
|
||||
float d_carrier_lock_test;
|
||||
float d_CN0_SNV_dB_Hz;
|
||||
float d_carrier_lock_threshold;
|
||||
double d_carrier_lock_test;
|
||||
double d_CN0_SNV_dB_Hz;
|
||||
double d_carrier_lock_threshold;
|
||||
int d_carrier_lock_fail_counter;
|
||||
|
||||
// control vars
|
||||
|
@ -315,7 +315,7 @@ void Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::update_local_carrier()
|
||||
phase += phase_step;
|
||||
}
|
||||
d_rem_carr_phase = fmod(phase, GPS_TWO_PI);
|
||||
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + phase;
|
||||
d_acc_carrier_phase_rad -= d_acc_carrier_phase_rad + phase;
|
||||
}
|
||||
|
||||
|
||||
@ -439,6 +439,7 @@ int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vecto
|
||||
if (d_FLL_wait == 1)
|
||||
{
|
||||
d_Prompt_prev = *d_Prompt;
|
||||
d_FLL_discriminator_hz=0.0;
|
||||
d_FLL_wait = 0;
|
||||
}
|
||||
else
|
||||
@ -454,7 +455,7 @@ int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vecto
|
||||
/*
|
||||
* DLL and FLL+PLL filter and get current carrier Doppler and code frequency
|
||||
*/
|
||||
carr_nco_hz = d_carrier_loop_filter.get_carrier_error(0.0, PLL_discriminator_hz, GPS_L1_CA_CODE_PERIOD);
|
||||
carr_nco_hz = d_carrier_loop_filter.get_carrier_error(d_FLL_discriminator_hz, PLL_discriminator_hz, correlation_time_s);
|
||||
d_carrier_doppler_hz = d_if_freq + carr_nco_hz;
|
||||
|
||||
d_code_freq_hz = GPS_L1_CA_CODE_RATE_HZ + (((d_carrier_doppler_hz + d_if_freq) * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
||||
@ -528,9 +529,7 @@ int Gps_L1_Ca_Dll_Fll_Pll_Tracking_cc::general_work (int noutput_items, gr_vecto
|
||||
double T_prn_samples;
|
||||
double K_blk_samples;
|
||||
T_chip_seconds = 1 / static_cast<double>(d_code_freq_hz);
|
||||
T_chip_seconds=GPS_L1_CA_CHIP_PERIOD;
|
||||
//T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_seconds = GPS_L1_CA_CODE_PERIOD;
|
||||
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_samples = T_prn_seconds * d_fs_in;
|
||||
|
||||
float code_error_filt_samples;
|
||||
|
@ -102,7 +102,7 @@ gps_l1_ca_dll_pll_artemisa_tracking_cc::gps_l1_ca_dll_pll_artemisa_tracking_cc(
|
||||
d_fs_in = fs_in;
|
||||
d_vector_length = vector_length;
|
||||
d_dump_filename = dump_filename;
|
||||
d_current_prn_length_samples = static_cast<int>(d_vector_length);
|
||||
d_correlation_length_samples = static_cast<int>(d_vector_length);
|
||||
|
||||
// Initialize tracking ==========================================
|
||||
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
|
||||
@ -128,7 +128,7 @@ gps_l1_ca_dll_pll_artemisa_tracking_cc::gps_l1_ca_dll_pll_artemisa_tracking_cc(
|
||||
d_local_code_shift_chips[1]=0.0;
|
||||
d_local_code_shift_chips[2]=d_early_late_spc_chips;
|
||||
|
||||
multicorrelator_cpu.init(2*d_current_prn_length_samples,d_n_correlator_taps);
|
||||
multicorrelator_cpu.init(2*d_correlation_length_samples,d_n_correlator_taps);
|
||||
|
||||
//--- Perform initializations ------------------------------
|
||||
// define initial code frequency basis of NCO
|
||||
@ -202,7 +202,7 @@ void gps_l1_ca_dll_pll_artemisa_tracking_cc::start_tracking()
|
||||
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
|
||||
|
||||
d_current_prn_length_samples = round(T_prn_mod_samples);
|
||||
d_correlation_length_samples = round(T_prn_mod_samples);
|
||||
|
||||
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
|
||||
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
|
||||
@ -291,6 +291,7 @@ int gps_l1_ca_dll_pll_artemisa_tracking_cc::general_work (int noutput_items, gr_
|
||||
double code_error_filt_chips=0.0;
|
||||
double code_error_filt_secs_Ti=0.0;
|
||||
double CURRENT_INTEGRATION_TIME_S;
|
||||
double CORRECTED_INTEGRATION_TIME_S;
|
||||
double dll_code_error_secs_Ti=0.0;
|
||||
double carr_phase_error_secs_Ti=0.0;
|
||||
double old_d_rem_code_phase_samples;
|
||||
@ -303,9 +304,9 @@ int gps_l1_ca_dll_pll_artemisa_tracking_cc::general_work (int noutput_items, gr_
|
||||
double acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<double>(acq_to_trk_delay_samples), static_cast<double>(d_current_prn_length_samples));
|
||||
acq_trk_shif_correction_samples = d_correlation_length_samples - fmod(static_cast<double>(acq_to_trk_delay_samples), static_cast<double>(d_correlation_length_samples));
|
||||
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
||||
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
|
||||
d_sample_counter += samples_offset; //count for the processed samples
|
||||
d_pull_in = false;
|
||||
// Fill the acquisition data
|
||||
current_synchro_data = *d_acquisition_gnss_synchro;
|
||||
@ -320,16 +321,10 @@ int gps_l1_ca_dll_pll_artemisa_tracking_cc::general_work (int noutput_items, gr_
|
||||
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
|
||||
// perform carrier wipe-off and compute Early, Prompt and Late correlation
|
||||
multicorrelator_cpu.set_input_output_vectors(d_correlator_outs,in);
|
||||
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad,d_carrier_phase_step_rad,d_rem_code_phase_chips,d_code_phase_step_chips,d_current_prn_length_samples);
|
||||
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad,d_carrier_phase_step_rad,d_rem_code_phase_chips,d_code_phase_step_chips,d_correlation_length_samples);
|
||||
|
||||
// UPDATE INTEGRATION TIME
|
||||
CURRENT_INTEGRATION_TIME_S=(static_cast<double>(d_current_prn_length_samples)/static_cast<double>(d_fs_in));
|
||||
// UPDATE REMNANT CARRIER PHASE
|
||||
//remnant carrier phase [rad]
|
||||
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S,GPS_TWO_PI);
|
||||
// UPDATE CARRIER PHASE ACCUULATOR
|
||||
//carrier phase accumulator prior to update the PLL estimators (accumulated carrier in this loop depends on the old estimations!)
|
||||
d_acc_carrier_phase_cycles -= d_carrier_doppler_hz*CURRENT_INTEGRATION_TIME_S;
|
||||
CURRENT_INTEGRATION_TIME_S=(static_cast<double>(d_correlation_length_samples)/static_cast<double>(d_fs_in));
|
||||
|
||||
// ################## PLL ##########################################################
|
||||
// Update PLL discriminator [rads/Ti -> Secs/Ti]
|
||||
@ -351,7 +346,8 @@ int gps_l1_ca_dll_pll_artemisa_tracking_cc::general_work (int noutput_items, gr_
|
||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips_Ti); //input [chips/Ti] -> output [chips/second]
|
||||
code_error_filt_secs_Ti = code_error_filt_chips*CURRENT_INTEGRATION_TIME_S/d_code_freq_chips; // [s/Ti]
|
||||
// DLL code error estimation [s/Ti]
|
||||
dll_code_error_secs_Ti=-code_error_filt_secs_Ti+d_pll_to_dll_assist_secs_Ti;
|
||||
// TODO: PLL carrier aid to DLL is disabled. Re-enable it and measure performance
|
||||
dll_code_error_secs_Ti=-code_error_filt_secs_Ti;//+d_pll_to_dll_assist_secs_Ti;
|
||||
|
||||
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
|
||||
// keep alignment parameters for the next input buffer
|
||||
@ -364,9 +360,20 @@ int gps_l1_ca_dll_pll_artemisa_tracking_cc::general_work (int noutput_items, gr_
|
||||
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples - dll_code_error_secs_Ti * static_cast<double>(d_fs_in);
|
||||
d_current_prn_length_samples = round(K_blk_samples); //round to a discrete samples
|
||||
|
||||
d_correlation_length_samples = round(K_blk_samples); //round to a discrete samples
|
||||
old_d_rem_code_phase_samples=d_rem_code_phase_samples;
|
||||
d_rem_code_phase_samples = K_blk_samples - static_cast<double>(d_current_prn_length_samples); //rounding error < 1 sample
|
||||
d_rem_code_phase_samples = K_blk_samples - static_cast<double>(d_correlation_length_samples); //rounding error < 1 sample
|
||||
|
||||
|
||||
// UPDATE REMNANT CARRIER PHASE
|
||||
CORRECTED_INTEGRATION_TIME_S=(static_cast<double>(d_correlation_length_samples)/static_cast<double>(d_fs_in));
|
||||
//remnant carrier phase [rad]
|
||||
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S,GPS_TWO_PI);
|
||||
// UPDATE CARRIER PHASE ACCUULATOR
|
||||
//carrier phase accumulator prior to update the PLL estimators (accumulated carrier in this loop depends on the old estimations!)
|
||||
d_acc_carrier_phase_cycles -= d_carrier_doppler_hz*CORRECTED_INTEGRATION_TIME_S;
|
||||
|
||||
|
||||
//################### PLL COMMANDS #################################################
|
||||
//carrier phase step (NCO phase increment per sample) [rads/sample]
|
||||
@ -530,7 +537,7 @@ int gps_l1_ca_dll_pll_artemisa_tracking_cc::general_work (int noutput_items, gr_
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_double = d_rem_code_phase_samples;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
|
||||
tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
}
|
||||
catch (const std::ifstream::failure* e)
|
||||
@ -539,9 +546,9 @@ int gps_l1_ca_dll_pll_artemisa_tracking_cc::general_work (int noutput_items, gr_
|
||||
}
|
||||
}
|
||||
|
||||
consume_each(d_current_prn_length_samples); // this is necessary in gr::block derivates
|
||||
d_sample_counter += d_current_prn_length_samples; //count for the processed samples
|
||||
//LOG(INFO)<<"GPS tracking output end on CH="<<this->d_channel << " SAMPLE STAMP="<<d_sample_counter<<std::endl;
|
||||
consume_each(d_correlation_length_samples); // this is necessary in gr::block derivates
|
||||
d_sample_counter += d_correlation_length_samples; //count for the processed samples
|
||||
|
||||
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
|
||||
}
|
||||
|
||||
|
@ -152,8 +152,8 @@ private:
|
||||
double d_code_phase_samples;
|
||||
double d_pll_to_dll_assist_secs_Ti;
|
||||
|
||||
//PRN period in samples
|
||||
int d_current_prn_length_samples;
|
||||
//Integration period in samples
|
||||
int d_correlation_length_samples;
|
||||
|
||||
//processing samples counters
|
||||
unsigned long int d_sample_counter;
|
||||
|
@ -183,29 +183,29 @@ void Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::start_tracking()
|
||||
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
|
||||
|
||||
long int acq_trk_diff_samples;
|
||||
float acq_trk_diff_seconds;
|
||||
double acq_trk_diff_seconds;
|
||||
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
|
||||
LOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
|
||||
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
|
||||
//doppler effect
|
||||
// Fd=(C/(C+Vr))*F
|
||||
float radial_velocity;
|
||||
double radial_velocity;
|
||||
radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
|
||||
// new chip and prn sequence periods based on acq Doppler
|
||||
float T_chip_mod_seconds;
|
||||
float T_prn_mod_seconds;
|
||||
float T_prn_mod_samples;
|
||||
double T_chip_mod_seconds;
|
||||
double T_prn_mod_seconds;
|
||||
double T_prn_mod_samples;
|
||||
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
|
||||
T_chip_mod_seconds = 1/d_code_freq_chips;
|
||||
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_mod_samples = T_prn_mod_seconds * static_cast<float>(d_fs_in);
|
||||
d_current_prn_length_samples = round(T_prn_mod_samples);
|
||||
|
||||
float T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
|
||||
float T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
|
||||
float T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
|
||||
float N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
||||
float corrected_acq_phase_samples, delay_correction_samples;
|
||||
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
|
||||
double T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
|
||||
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
|
||||
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
||||
double corrected_acq_phase_samples, delay_correction_samples;
|
||||
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<float>(d_fs_in)), T_prn_true_samples);
|
||||
if (corrected_acq_phase_samples < 0)
|
||||
{
|
||||
@ -338,10 +338,10 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
|
||||
{
|
||||
// stream to collect cout calls to improve thread safety
|
||||
std::stringstream tmp_str_stream;
|
||||
float carr_error_hz;
|
||||
float carr_error_filt_hz;
|
||||
float code_error_chips;
|
||||
float code_error_filt_chips;
|
||||
double carr_error_hz;
|
||||
double carr_error_filt_hz;
|
||||
double code_error_chips;
|
||||
double code_error_filt_chips;
|
||||
|
||||
if (d_enable_tracking == true)
|
||||
{
|
||||
@ -398,7 +398,7 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
|
||||
#endif
|
||||
// ################## PLL ##########################################################
|
||||
// PLL discriminator
|
||||
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / static_cast<float>(GPS_TWO_PI);
|
||||
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / GPS_TWO_PI;
|
||||
// Carrier discriminator filter
|
||||
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
|
||||
// New carrier Doppler frequency estimation
|
||||
@ -406,7 +406,7 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
|
||||
// New code Doppler frequency estimation
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
||||
//carrier phase accumulator for (K) doppler estimation
|
||||
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
||||
d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
||||
//remnant carrier phase to prevent overflow in the code NCO
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
|
||||
@ -417,7 +417,7 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
|
||||
// Code discriminator filter
|
||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
|
||||
//Code phase accumulator
|
||||
float code_error_filt_secs;
|
||||
double code_error_filt_secs;
|
||||
code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GPS_L1_CA_CODE_RATE_HZ; //[seconds]
|
||||
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
|
||||
|
||||
@ -428,7 +428,7 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
|
||||
double T_prn_samples;
|
||||
double K_blk_samples;
|
||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
||||
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
|
||||
T_chip_seconds = 1.0 / d_code_freq_chips;
|
||||
T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
|
||||
@ -563,23 +563,32 @@ int Gps_L1_Ca_Dll_Pll_Optim_Tracking_cc::general_work (int noutput_items, gr_vec
|
||||
//tmp_float=(float)d_sample_counter;
|
||||
d_dump_file.write((char*)&d_sample_counter, sizeof(unsigned long int));
|
||||
// accumulated carrier phase
|
||||
d_dump_file.write((char*)&d_acc_carrier_phase_rad, sizeof(float));
|
||||
tmp_float=d_acc_carrier_phase_rad;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
|
||||
// carrier and code frequency
|
||||
d_dump_file.write((char*)&d_carrier_doppler_hz, sizeof(float));
|
||||
d_dump_file.write((char*)&d_code_freq_chips, sizeof(float));
|
||||
tmp_float=d_carrier_doppler_hz;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
tmp_float=d_code_freq_chips;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
|
||||
//PLL commands
|
||||
d_dump_file.write((char*)&carr_error_hz, sizeof(float));
|
||||
d_dump_file.write((char*)&carr_error_filt_hz, sizeof(float));
|
||||
tmp_float=carr_error_hz;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
tmp_float=carr_error_filt_hz;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
|
||||
//DLL commands
|
||||
d_dump_file.write((char*)&code_error_chips, sizeof(float));
|
||||
d_dump_file.write((char*)&code_error_filt_chips, sizeof(float));
|
||||
tmp_float=code_error_chips;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
tmp_float=code_error_filt_chips;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
|
||||
// CN0 and carrier lock test
|
||||
d_dump_file.write((char*)&d_CN0_SNV_dB_Hz, sizeof(float));
|
||||
d_dump_file.write((char*)&d_carrier_lock_test, sizeof(float));
|
||||
tmp_float=d_CN0_SNV_dB_Hz;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
tmp_float=d_carrier_lock_test;
|
||||
d_dump_file.write((char*)&tmp_float, sizeof(float));
|
||||
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_float = d_rem_code_phase_samples;
|
||||
|
@ -135,24 +135,24 @@ private:
|
||||
|
||||
// remaining code phase and carrier phase between tracking loops
|
||||
double d_rem_code_phase_samples;
|
||||
float d_rem_carr_phase_rad;
|
||||
double d_rem_carr_phase_rad;
|
||||
|
||||
// PLL and DLL filter library
|
||||
Tracking_2nd_DLL_filter d_code_loop_filter;
|
||||
Tracking_2nd_PLL_filter d_carrier_loop_filter;
|
||||
|
||||
// acquisition
|
||||
float d_acq_code_phase_samples;
|
||||
float d_acq_carrier_doppler_hz;
|
||||
double d_acq_code_phase_samples;
|
||||
double d_acq_carrier_doppler_hz;
|
||||
// correlator
|
||||
Correlator d_correlator;
|
||||
|
||||
// tracking vars
|
||||
double d_code_freq_chips;
|
||||
float d_carrier_doppler_hz;
|
||||
float d_acc_carrier_phase_rad;
|
||||
float d_code_phase_samples;
|
||||
float d_acc_code_phase_secs;
|
||||
double d_carrier_doppler_hz;
|
||||
double d_acc_carrier_phase_rad;
|
||||
double d_code_phase_samples;
|
||||
double d_acc_code_phase_secs;
|
||||
|
||||
//PRN period in samples
|
||||
int d_current_prn_length_samples;
|
||||
@ -164,9 +164,9 @@ private:
|
||||
// CN0 estimation and lock detector
|
||||
int d_cn0_estimation_counter;
|
||||
gr_complex* d_Prompt_buffer;
|
||||
float d_carrier_lock_test;
|
||||
float d_CN0_SNV_dB_Hz;
|
||||
float d_carrier_lock_threshold;
|
||||
double d_carrier_lock_test;
|
||||
double d_CN0_SNV_dB_Hz;
|
||||
double d_carrier_lock_threshold;
|
||||
int d_carrier_lock_fail_counter;
|
||||
|
||||
// control vars
|
||||
|
@ -190,17 +190,17 @@ void Gps_L1_Ca_Dll_Pll_Tracking_cc::start_tracking()
|
||||
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
|
||||
|
||||
long int acq_trk_diff_samples;
|
||||
float acq_trk_diff_seconds;
|
||||
double acq_trk_diff_seconds;
|
||||
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);//-d_vector_length;
|
||||
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
|
||||
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
|
||||
//doppler effect
|
||||
// Fd=(C/(C+Vr))*F
|
||||
float radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
|
||||
double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
|
||||
// new chip and prn sequence periods based on acq Doppler
|
||||
float T_chip_mod_seconds;
|
||||
float T_prn_mod_seconds;
|
||||
float T_prn_mod_samples;
|
||||
double T_chip_mod_seconds;
|
||||
double T_prn_mod_seconds;
|
||||
double T_prn_mod_samples;
|
||||
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
|
||||
T_chip_mod_seconds = 1/d_code_freq_chips;
|
||||
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
@ -208,11 +208,11 @@ void Gps_L1_Ca_Dll_Pll_Tracking_cc::start_tracking()
|
||||
|
||||
d_current_prn_length_samples = round(T_prn_mod_samples);
|
||||
|
||||
float T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
|
||||
float T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
|
||||
float T_prn_diff_seconds= T_prn_true_seconds - T_prn_mod_seconds;
|
||||
float N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
||||
float corrected_acq_phase_samples, delay_correction_samples;
|
||||
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
|
||||
double T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
|
||||
double T_prn_diff_seconds= T_prn_true_seconds - T_prn_mod_seconds;
|
||||
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
||||
double corrected_acq_phase_samples, delay_correction_samples;
|
||||
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<float>(d_fs_in)), T_prn_true_samples);
|
||||
if (corrected_acq_phase_samples < 0)
|
||||
{
|
||||
@ -297,7 +297,7 @@ void Gps_L1_Ca_Dll_Pll_Tracking_cc::update_local_code()
|
||||
void Gps_L1_Ca_Dll_Pll_Tracking_cc::update_local_carrier()
|
||||
{
|
||||
float sin_f, cos_f;
|
||||
float phase_step_rad = static_cast<float>(GPS_TWO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
|
||||
float phase_step_rad = static_cast<float>(GPS_TWO_PI) * static_cast<float>(d_carrier_doppler_hz) / static_cast<float>(d_fs_in);
|
||||
int phase_step_rad_i = gr::fxpt::float_to_fixed(phase_step_rad);
|
||||
int phase_rad_i = gr::fxpt::float_to_fixed(d_rem_carr_phase_rad);
|
||||
|
||||
@ -336,10 +336,10 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||
{
|
||||
// process vars
|
||||
float carr_error_hz;
|
||||
float carr_error_filt_hz;
|
||||
float code_error_chips;
|
||||
float code_error_filt_chips;
|
||||
double carr_error_hz;
|
||||
double carr_error_filt_hz;
|
||||
double code_error_chips;
|
||||
double code_error_filt_chips;
|
||||
|
||||
// Block input data and block output stream pointers
|
||||
const gr_complex* in = (gr_complex*) input_items[0]; //PRN start block alignment
|
||||
@ -355,7 +355,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
||||
if (d_pull_in == true)
|
||||
{
|
||||
int samples_offset;
|
||||
float acq_trk_shif_correction_samples;
|
||||
double acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
|
||||
@ -414,7 +414,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
||||
|
||||
// ################## PLL ##########################################################
|
||||
// PLL discriminator
|
||||
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / static_cast<float>(GPS_TWO_PI);
|
||||
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / GPS_TWO_PI;
|
||||
// Carrier discriminator filter
|
||||
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
|
||||
// New carrier Doppler frequency estimation
|
||||
@ -422,7 +422,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
||||
// New code Doppler frequency estimation
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
||||
//carrier phase accumulator for (K) doppler estimation
|
||||
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
||||
d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
||||
//remanent carrier phase to prevent overflow in the code NCO
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
|
||||
@ -433,7 +433,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
||||
// Code discriminator filter
|
||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
|
||||
//Code phase accumulator
|
||||
float code_error_filt_secs;
|
||||
double code_error_filt_secs;
|
||||
code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GPS_L1_CA_CODE_RATE_HZ; //[seconds]
|
||||
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
|
||||
|
||||
@ -504,9 +504,9 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
||||
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter)/static_cast<double>(d_fs_in);
|
||||
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
|
||||
current_synchro_data.Code_phase_secs = 0;
|
||||
current_synchro_data.Carrier_phase_rads = static_cast<double>(d_acc_carrier_phase_rad);
|
||||
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
|
||||
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
|
||||
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_pseudorange = false;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
@ -579,6 +579,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
||||
tmp_L = std::abs<float>(*d_Late);
|
||||
try
|
||||
{
|
||||
|
||||
// EPR
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
|
||||
@ -590,28 +591,27 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_in
|
||||
//tmp_float=(float)d_sample_counter;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
|
||||
// accumulated carrier phase
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(double));
|
||||
|
||||
// carrier and code frequency
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
|
||||
tmp_float=d_code_freq_chips;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
|
||||
|
||||
//PLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
||||
|
||||
//DLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(double));
|
||||
|
||||
// CN0 and carrier lock test
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
|
||||
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_float = d_rem_code_phase_samples;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
tmp_double = d_rem_code_phase_samples;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
}
|
||||
|
@ -139,24 +139,24 @@ private:
|
||||
|
||||
// remaining code phase and carrier phase between tracking loops
|
||||
double d_rem_code_phase_samples;
|
||||
float d_rem_carr_phase_rad;
|
||||
double d_rem_carr_phase_rad;
|
||||
|
||||
// PLL and DLL filter library
|
||||
Tracking_2nd_DLL_filter d_code_loop_filter;
|
||||
Tracking_2nd_PLL_filter d_carrier_loop_filter;
|
||||
|
||||
// acquisition
|
||||
float d_acq_code_phase_samples;
|
||||
float d_acq_carrier_doppler_hz;
|
||||
double d_acq_code_phase_samples;
|
||||
double d_acq_carrier_doppler_hz;
|
||||
// correlator
|
||||
Correlator d_correlator;
|
||||
|
||||
// tracking vars
|
||||
double d_code_freq_chips;
|
||||
float d_carrier_doppler_hz;
|
||||
float d_acc_carrier_phase_rad;
|
||||
float d_code_phase_samples;
|
||||
float d_acc_code_phase_secs;
|
||||
double d_carrier_doppler_hz;
|
||||
double d_acc_carrier_phase_rad;
|
||||
double d_code_phase_samples;
|
||||
double d_acc_code_phase_secs;
|
||||
|
||||
//PRN period in samples
|
||||
int d_current_prn_length_samples;
|
||||
@ -168,9 +168,9 @@ private:
|
||||
// CN0 estimation and lock detector
|
||||
int d_cn0_estimation_counter;
|
||||
gr_complex* d_Prompt_buffer;
|
||||
float d_carrier_lock_test;
|
||||
float d_CN0_SNV_dB_Hz;
|
||||
float d_carrier_lock_threshold;
|
||||
double d_carrier_lock_test;
|
||||
double d_CN0_SNV_dB_Hz;
|
||||
double d_carrier_lock_threshold;
|
||||
int d_carrier_lock_fail_counter;
|
||||
|
||||
// control vars
|
||||
|
@ -356,7 +356,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work (int noutput_items, gr_vecto
|
||||
// New code Doppler frequency estimation
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
||||
//carrier phase accumulator for (K) doppler estimation
|
||||
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
||||
d_acc_carrier_phase_rad -= GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
||||
//remanent carrier phase to prevent overflow in the code NCO
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * GPS_L1_CA_CODE_PERIOD;
|
||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_TWO_PI);
|
||||
|
@ -199,11 +199,11 @@ void gps_l2_m_dll_pll_tracking_cc::start_tracking()
|
||||
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
|
||||
//doppler effect
|
||||
// Fd=(C/(C+Vr))*F
|
||||
float radial_velocity = (GPS_L2_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L2_FREQ_HZ;
|
||||
double radial_velocity = (GPS_L2_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L2_FREQ_HZ;
|
||||
// new chip and prn sequence periods based on acq Doppler
|
||||
float T_chip_mod_seconds;
|
||||
float T_prn_mod_seconds;
|
||||
float T_prn_mod_samples;
|
||||
double T_chip_mod_seconds;
|
||||
double T_prn_mod_seconds;
|
||||
double T_prn_mod_samples;
|
||||
d_code_freq_chips = radial_velocity * GPS_L2_M_CODE_RATE_HZ;
|
||||
T_chip_mod_seconds = 1/d_code_freq_chips;
|
||||
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L2_M_CODE_LENGTH_CHIPS;
|
||||
@ -211,11 +211,11 @@ void gps_l2_m_dll_pll_tracking_cc::start_tracking()
|
||||
|
||||
d_current_prn_length_samples = round(T_prn_mod_samples);
|
||||
|
||||
float T_prn_true_seconds = GPS_L2_M_CODE_LENGTH_CHIPS / GPS_L2_M_CODE_RATE_HZ;
|
||||
float T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
|
||||
float T_prn_diff_seconds= T_prn_true_seconds - T_prn_mod_seconds;
|
||||
float N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
||||
float corrected_acq_phase_samples, delay_correction_samples;
|
||||
double T_prn_true_seconds = GPS_L2_M_CODE_LENGTH_CHIPS / GPS_L2_M_CODE_RATE_HZ;
|
||||
double T_prn_true_samples = T_prn_true_seconds * static_cast<float>(d_fs_in);
|
||||
double T_prn_diff_seconds= T_prn_true_seconds - T_prn_mod_seconds;
|
||||
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
||||
double corrected_acq_phase_samples, delay_correction_samples;
|
||||
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<float>(d_fs_in)), T_prn_true_samples);
|
||||
if (corrected_acq_phase_samples < 0)
|
||||
{
|
||||
@ -276,7 +276,7 @@ void gps_l2_m_dll_pll_tracking_cc::update_local_code()
|
||||
int epl_loop_length_samples;
|
||||
|
||||
// unified loop for E, P, L code vectors
|
||||
code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
|
||||
code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||
rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / d_fs_in);
|
||||
tcode_chips = -rem_code_phase_chips;
|
||||
|
||||
@ -301,7 +301,7 @@ void gps_l2_m_dll_pll_tracking_cc::update_local_carrier()
|
||||
{
|
||||
float phase_rad, phase_step_rad;
|
||||
|
||||
phase_step_rad = static_cast<float>(GPS_L2_TWO_PI) * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
|
||||
phase_step_rad = GPS_L2_TWO_PI * d_carrier_doppler_hz / static_cast<float>(d_fs_in);
|
||||
phase_rad = d_rem_carr_phase_rad;
|
||||
for(int i = 0; i < d_current_prn_length_samples; i++)
|
||||
{
|
||||
@ -337,10 +337,10 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||
{
|
||||
// process vars
|
||||
float carr_error_hz=0;
|
||||
float carr_error_filt_hz=0;
|
||||
float code_error_chips=0;
|
||||
float code_error_filt_chips=0;
|
||||
double carr_error_hz=0;
|
||||
double carr_error_filt_hz=0;
|
||||
double code_error_chips=0;
|
||||
double code_error_filt_chips=0;
|
||||
|
||||
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
|
||||
Gnss_Synchro current_synchro_data = Gnss_Synchro();
|
||||
@ -355,7 +355,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
||||
if (d_pull_in == true)
|
||||
{
|
||||
int samples_offset;
|
||||
float acq_trk_shif_correction_samples;
|
||||
double acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = (d_sample_counter - (d_acq_sample_stamp-d_current_prn_length_samples));
|
||||
acq_trk_shif_correction_samples = -fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
|
||||
@ -419,7 +419,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
||||
|
||||
// ################## PLL ##########################################################
|
||||
// PLL discriminator
|
||||
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / static_cast<float>(GPS_L2_TWO_PI);
|
||||
carr_error_hz = pll_cloop_two_quadrant_atan(*d_Prompt) / GPS_L2_TWO_PI;
|
||||
// Carrier discriminator filter
|
||||
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
|
||||
// New carrier Doppler frequency estimation
|
||||
@ -427,7 +427,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
||||
// New code Doppler frequency estimation
|
||||
d_code_freq_chips = GPS_L2_M_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L2_M_CODE_RATE_HZ) / GPS_L2_FREQ_HZ);
|
||||
//carrier phase accumulator for (K) doppler estimation
|
||||
d_acc_carrier_phase_rad = d_acc_carrier_phase_rad + GPS_L2_TWO_PI * d_carrier_doppler_hz * GPS_L2_M_PERIOD;
|
||||
d_acc_carrier_phase_rad -= GPS_L2_TWO_PI * d_carrier_doppler_hz * GPS_L2_M_PERIOD;
|
||||
//remanent carrier phase to prevent overflow in the code NCO
|
||||
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GPS_L2_TWO_PI * d_carrier_doppler_hz * GPS_L2_M_PERIOD;
|
||||
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GPS_L2_TWO_PI);
|
||||
@ -438,7 +438,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
||||
// Code discriminator filter
|
||||
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); //[chips/second]
|
||||
//Code phase accumulator
|
||||
float code_error_filt_secs;
|
||||
double code_error_filt_secs;
|
||||
code_error_filt_secs = (GPS_L2_M_PERIOD * code_error_filt_chips) / GPS_L2_M_CODE_RATE_HZ; //[seconds]
|
||||
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
|
||||
|
||||
@ -449,7 +449,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
||||
double T_prn_samples;
|
||||
double K_blk_samples;
|
||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
||||
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
|
||||
T_chip_seconds = 1.0 / d_code_freq_chips;
|
||||
T_prn_seconds = T_chip_seconds * GPS_L2_M_CODE_LENGTH_CHIPS;
|
||||
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
|
||||
@ -502,16 +502,16 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
||||
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter + (double)d_current_prn_length_samples + (double)d_rem_code_phase_samples)/static_cast<double>(d_fs_in);
|
||||
|
||||
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!, but some glitches??)
|
||||
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + static_cast<double>(d_rem_code_phase_samples)) / static_cast<double>(d_fs_in);
|
||||
current_synchro_data.Tracking_timestamp_secs = (static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in);
|
||||
//compute remnant code phase samples AFTER the Tracking timestamp
|
||||
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
|
||||
|
||||
//current_synchro_data.Tracking_timestamp_secs = ((double)d_sample_counter)/static_cast<double>(d_fs_in);
|
||||
// This tracking block aligns the Tracking_timestamp_secs with the start sample of the PRN, thus, Code_phase_secs=0
|
||||
current_synchro_data.Code_phase_secs = 0;
|
||||
current_synchro_data.Carrier_phase_rads = static_cast<double>(d_acc_carrier_phase_rad);
|
||||
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
|
||||
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
|
||||
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_tracking = true;
|
||||
*out[0] = current_synchro_data;
|
||||
|
||||
@ -596,27 +596,27 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
|
||||
//tmp_float=(float)d_sample_counter;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
|
||||
// accumulated carrier phase
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_rad), sizeof(double));
|
||||
|
||||
// carrier and code frequency
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
|
||||
|
||||
//PLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_filt_hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&carr_error_hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
||||
|
||||
//DLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_chips), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&code_error_filt_chips), sizeof(double));
|
||||
|
||||
// CN0 and carrier lock test
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
|
||||
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_float = d_rem_code_phase_samples;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_float), sizeof(float));
|
||||
tmp_double = d_rem_code_phase_samples;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = static_cast<double>(d_sample_counter + d_current_prn_length_samples);
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
}
|
||||
|
@ -137,24 +137,24 @@ private:
|
||||
|
||||
// remaining code phase and carrier phase between tracking loops
|
||||
double d_rem_code_phase_samples;
|
||||
float d_rem_carr_phase_rad;
|
||||
double d_rem_carr_phase_rad;
|
||||
|
||||
// PLL and DLL filter library
|
||||
Tracking_2nd_DLL_filter d_code_loop_filter;
|
||||
Tracking_2nd_PLL_filter d_carrier_loop_filter;
|
||||
|
||||
// acquisition
|
||||
float d_acq_code_phase_samples;
|
||||
float d_acq_carrier_doppler_hz;
|
||||
double d_acq_code_phase_samples;
|
||||
double d_acq_carrier_doppler_hz;
|
||||
// correlator
|
||||
Correlator d_correlator;
|
||||
|
||||
// tracking vars
|
||||
double d_code_freq_chips;
|
||||
float d_carrier_doppler_hz;
|
||||
float d_acc_carrier_phase_rad;
|
||||
float d_code_phase_samples;
|
||||
float d_acc_code_phase_secs;
|
||||
double d_carrier_doppler_hz;
|
||||
double d_acc_carrier_phase_rad;
|
||||
double d_code_phase_samples;
|
||||
double d_acc_code_phase_secs;
|
||||
|
||||
//PRN period in samples
|
||||
int d_current_prn_length_samples;
|
||||
@ -166,9 +166,9 @@ private:
|
||||
// CN0 estimation and lock detector
|
||||
int d_cn0_estimation_counter;
|
||||
gr_complex* d_Prompt_buffer;
|
||||
float d_carrier_lock_test;
|
||||
float d_CN0_SNV_dB_Hz;
|
||||
float d_carrier_lock_threshold;
|
||||
double d_carrier_lock_test;
|
||||
double d_CN0_SNV_dB_Hz;
|
||||
double d_carrier_lock_threshold;
|
||||
int d_carrier_lock_fail_counter;
|
||||
|
||||
// control vars
|
||||
|
@ -18,21 +18,15 @@
|
||||
|
||||
|
||||
if(ENABLE_CUDA)
|
||||
FIND_PACKAGE(CUDA REQUIRED)
|
||||
|
||||
# Append current NVCC flags by something, eg comput capability
|
||||
# set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} --gpu-architecture sm_30)
|
||||
|
||||
list(APPEND CUDA_NVCC_FLAGS "-gencode arch=compute_30,code=sm_30; -std=c++11;-O3; -use_fast_math -default-stream per-thread")
|
||||
SET(CUDA_PROPAGATE_HOST_FLAGS OFF)
|
||||
|
||||
CUDA_INCLUDE_DIRECTORIES(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}
|
||||
#${CMAKE_CURRENT_SOURCE_DIR}/cudahelpers
|
||||
)
|
||||
|
||||
SET(LIB_TYPE STATIC) #set the lib type
|
||||
set(CUDA_PROPAGATE_HOST_FLAGS OFF)
|
||||
CUDA_INCLUDE_DIRECTORIES( ${CMAKE_CURRENT_SOURCE_DIR})
|
||||
set(LIB_TYPE STATIC) #set the lib type
|
||||
CUDA_ADD_LIBRARY(CUDA_CORRELATOR_LIB ${LIB_TYPE} cuda_multicorrelator.h cuda_multicorrelator.cu)
|
||||
set(OPT_TRACKING_LIBRARIES ${OPT_TRACKING_LIBRARIES} CUDA_CORRELATOR_LIB)
|
||||
set(OPT_TRACKING_INCLUDES ${OPT_TRACKING_INCLUDES} ${CUDA_INCLUDE_DIRS} )
|
||||
endif(ENABLE_CUDA)
|
||||
|
||||
|
||||
@ -54,7 +48,7 @@ include_directories(
|
||||
${CMAKE_SOURCE_DIR}/src/core/interfaces
|
||||
${CMAKE_SOURCE_DIR}/src/core/receiver
|
||||
${VOLK_INCLUDE_DIRS}
|
||||
${CUDA_INCLUDE_DIRS}
|
||||
${OPT_TRACKING_INCLUDES}
|
||||
)
|
||||
|
||||
if(ENABLE_GENERIC_ARCH)
|
||||
@ -69,4 +63,4 @@ endif(SSE3_AVAILABLE)
|
||||
file(GLOB TRACKING_LIB_HEADERS "*.h")
|
||||
add_library(tracking_lib ${TRACKING_LIB_SOURCES} ${TRACKING_LIB_HEADERS})
|
||||
source_group(Headers FILES ${TRACKING_LIB_HEADERS})
|
||||
target_link_libraries(tracking_lib ${CUDA_CORRELATOR_LIB} ${VOLK_LIBRARIES} ${GNURADIO_RUNTIME_LIBRARIES})
|
||||
target_link_libraries(tracking_lib ${OPT_TRACKING_LIBRARIES} ${VOLK_LIBRARIES} ${GNURADIO_RUNTIME_LIBRARIES})
|
||||
|
@ -46,9 +46,9 @@
|
||||
* \f$I_{PS2},Q_{PS2}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_2\f$. The output is in [radians/second].
|
||||
*/
|
||||
|
||||
float fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2, float t1, float t2)
|
||||
double fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2, double t1, double t2)
|
||||
{
|
||||
float cross, dot;
|
||||
double cross, dot;
|
||||
dot = prompt_s1.real()*prompt_s2.real() + prompt_s1.imag()*prompt_s2.imag();
|
||||
cross = prompt_s1.real()*prompt_s2.imag() - prompt_s2.real()*prompt_s1.imag();
|
||||
return atan2(cross, dot) / (t2-t1);
|
||||
@ -62,7 +62,7 @@ float fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2, float t
|
||||
* \f}
|
||||
* where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians].
|
||||
*/
|
||||
float pll_four_quadrant_atan(gr_complex prompt_s1)
|
||||
double pll_four_quadrant_atan(gr_complex prompt_s1)
|
||||
{
|
||||
return atan2(prompt_s1.imag(), prompt_s1.real());
|
||||
}
|
||||
@ -75,7 +75,7 @@ float pll_four_quadrant_atan(gr_complex prompt_s1)
|
||||
* \f}
|
||||
* where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians].
|
||||
*/
|
||||
float pll_cloop_two_quadrant_atan(gr_complex prompt_s1)
|
||||
double pll_cloop_two_quadrant_atan(gr_complex prompt_s1)
|
||||
{
|
||||
if (prompt_s1.real() != 0.0)
|
||||
{
|
||||
@ -96,9 +96,9 @@ float pll_cloop_two_quadrant_atan(gr_complex prompt_s1)
|
||||
* where \f$E=\sqrt{I_{ES}^2+Q_{ES}^2}\f$ is the Early correlator output absolute value and
|
||||
* \f$L=\sqrt{I_{LS}^2+Q_{LS}^2}\f$ is the Late correlator output absolute value. The output is in [chips].
|
||||
*/
|
||||
float dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1)
|
||||
double dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1)
|
||||
{
|
||||
float P_early, P_late;
|
||||
double P_early, P_late;
|
||||
P_early = std::abs(early_s1);
|
||||
P_late = std::abs(late_s1);
|
||||
return 0.5*(P_early - P_late) / ((P_early + P_late));
|
||||
@ -113,9 +113,9 @@ float dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1)
|
||||
* where \f$E=\sqrt{I_{VE}^2+Q_{VE}^2+I_{E}^2+Q_{E}^2}\f$ and
|
||||
* \f$L=\sqrt{I_{VL}^2+Q_{VL}^2+I_{L}^2+Q_{L}^2}\f$ . The output is in [chips].
|
||||
*/
|
||||
float dll_nc_vemlp_normalized(gr_complex very_early_s1, gr_complex early_s1, gr_complex late_s1, gr_complex very_late_s1)
|
||||
double dll_nc_vemlp_normalized(gr_complex very_early_s1, gr_complex early_s1, gr_complex late_s1, gr_complex very_late_s1)
|
||||
{
|
||||
float P_early, P_late;
|
||||
double P_early, P_late;
|
||||
P_early = std::sqrt(std::norm(very_early_s1) + std::norm(early_s1));
|
||||
P_late = std::sqrt(std::norm(very_late_s1) + std::norm(late_s1));
|
||||
return (P_early - P_late) / ((P_early + P_late));
|
||||
|
@ -50,7 +50,7 @@
|
||||
* \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_1\f$, and
|
||||
* \f$I_{PS2},Q_{PS2}\f$ are the inphase and quadrature prompt correlator outputs respectively at sample time \f$t_2\f$. The output is in [radians/second].
|
||||
*/
|
||||
float fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2, float t1, float t2);
|
||||
double fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2, double t1, double t2);
|
||||
|
||||
|
||||
/*! \brief PLL four quadrant arctan discriminator
|
||||
@ -61,7 +61,7 @@ float fll_four_quadrant_atan(gr_complex prompt_s1, gr_complex prompt_s2, float t
|
||||
* \f}
|
||||
* where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians].
|
||||
*/
|
||||
float pll_four_quadrant_atan(gr_complex prompt_s1);
|
||||
double pll_four_quadrant_atan(gr_complex prompt_s1);
|
||||
|
||||
|
||||
/*! \brief PLL Costas loop two quadrant arctan discriminator
|
||||
@ -72,7 +72,7 @@ float pll_four_quadrant_atan(gr_complex prompt_s1);
|
||||
* \f}
|
||||
* where \f$I_{PS1},Q_{PS1}\f$ are the inphase and quadrature prompt correlator outputs respectively. The output is in [radians].
|
||||
*/
|
||||
float pll_cloop_two_quadrant_atan(gr_complex prompt_s1);
|
||||
double pll_cloop_two_quadrant_atan(gr_complex prompt_s1);
|
||||
|
||||
|
||||
/*! \brief DLL Noncoherent Early minus Late envelope normalized discriminator
|
||||
@ -84,7 +84,7 @@ float pll_cloop_two_quadrant_atan(gr_complex prompt_s1);
|
||||
* where \f$E=\sqrt{I_{ES}^2+Q_{ES}^2}\f$ is the Early correlator output absolute value and
|
||||
* \f$L=\sqrt{I_{LS}^2+Q_{LS}^2}\f$ is the Late correlator output absolute value. The output is in [chips].
|
||||
*/
|
||||
float dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1);
|
||||
double dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1);
|
||||
|
||||
|
||||
/*! \brief DLL Noncoherent Very Early Minus Late Power (VEMLP) normalized discriminator
|
||||
@ -97,7 +97,7 @@ float dll_nc_e_minus_l_normalized(gr_complex early_s1, gr_complex late_s1);
|
||||
* where \f$E=\sqrt{I_{VE}^2+Q_{VE}^2+I_{E}^2+Q_{E}^2}\f$ and
|
||||
* \f$L=\sqrt{I_{VL}^2+Q_{VL}^2+I_{L}^2+Q_{L}^2}\f$ . The output is in [chips].
|
||||
*/
|
||||
float dll_nc_vemlp_normalized(gr_complex very_early_s1, gr_complex early_s1, gr_complex late_s1, gr_complex very_late_s1);
|
||||
double dll_nc_vemlp_normalized(gr_complex very_early_s1, gr_complex early_s1, gr_complex late_s1, gr_complex very_late_s1);
|
||||
|
||||
|
||||
#endif
|
||||
|
@ -70,7 +70,7 @@ const double GPS_STARTOFFSET_ms = 68.802; //[ms] Initial sign. travel time (this
|
||||
|
||||
|
||||
// OBSERVABLE HISTORY DEEP FOR INTERPOLATION
|
||||
const int GPS_L1_CA_HISTORY_DEEP=200;
|
||||
const int GPS_L1_CA_HISTORY_DEEP=100;
|
||||
// NAVIGATION MESSAGE DEMODULATION AND DECODING
|
||||
|
||||
#define GPS_PREAMBLE {1, 0, 0, 0, 1, 0, 1, 1}
|
||||
|
@ -33,6 +33,10 @@ if(ENABLE_UHD)
|
||||
set(GNSS_SDR_OPTIONAL_HEADERS ${GNSS_SDR_OPTIONAL_HEADERS} ${UHD_INCLUDE_DIRS})
|
||||
endif(ENABLE_UHD)
|
||||
|
||||
if(OPENSSL_FOUND)
|
||||
add_definitions( -DUSE_OPENSSL_FALLBACK=1 )
|
||||
endif(OPENSSL_FOUND)
|
||||
|
||||
if(ENABLE_CUDA)
|
||||
add_definitions(-DCUDA_GPU_ACCEL=1)
|
||||
set(GNSS_SDR_OPTIONAL_LIBS ${GNSS_SDR_OPTIONAL_LIBS} ${CUDA_LIBRARIES})
|
||||
|
Loading…
Reference in New Issue
Block a user