mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-13 19:50:34 +00:00
update
This commit is contained in:
commit
c60dff01c5
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,715 @@
|
||||
/*!
|
||||
* \file volk_gnsssdr_32f_sincos_32fc.h
|
||||
* \brief VOLK_GNSSSDR kernel: Computes the sine and cosine of a vector of floats.
|
||||
* \authors <ul>
|
||||
* <li> Carles Fernandez-Prades, 2016. cfernandez(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* VOLK_GNSSSDR kernel that computes the sine and cosine of a vector of floats.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
/*!
|
||||
* \page volk_gnsssdr_32f_sincos_32fc
|
||||
*
|
||||
* \b Overview
|
||||
*
|
||||
* Computes the sine and cosine of a vector of floats, providing the output in a complex vector (cosine, sine)
|
||||
*
|
||||
* <b>Dispatcher Prototype</b>
|
||||
* \code
|
||||
* void volk_gnsssdr_32f_sincos_32fc(lv_32fc_t* out, const float* in, unsigned int num_points)
|
||||
* \endcode
|
||||
*
|
||||
* \b Inputs
|
||||
* \li in: Vector of floats, in radians.
|
||||
* \li num_points: Number of components in \p in to be computed.
|
||||
*
|
||||
* \b Outputs
|
||||
* \li out: Vector of the form lv_32fc_t out[n] = lv_cmake(cos(in[n]), sin(in[n]))
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef INCLUDED_volk_gnsssdr_32f_sincos_32fc_H
|
||||
#define INCLUDED_volk_gnsssdr_32f_sincos_32fc_H
|
||||
|
||||
#include <math.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_common.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||
|
||||
#ifdef LV_HAVE_SSE4_1
|
||||
#include <smmintrin.h>
|
||||
/* Adapted from the original VOLK.
|
||||
* In turn based on algorithms from:
|
||||
* Naoki Shibata, "Efficient Evaluation Methods of Elementary Functions Suitable for SIMD Computation,"
|
||||
* Computer Science Research and Development, May 2010, Volume 25, Issue 1, pp 25-32. DOI 10.1007/s00450-010-0108-2 */
|
||||
static inline void volk_gnsssdr_32f_sincos_32fc_u_sse4_1(lv_32fc_t* out, const float* in, unsigned int num_points)
|
||||
{
|
||||
lv_32fc_t* bPtr = out;
|
||||
const float* aPtr = in;
|
||||
|
||||
unsigned int number = 0;
|
||||
unsigned int quarterPoints = num_points / 4;
|
||||
unsigned int i = 0;
|
||||
|
||||
__m128 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
|
||||
__m128 sine, cosine, condition1, condition2, condition3, cplxValue;
|
||||
__m128i q, r, ones, twos, fours;
|
||||
|
||||
m4pi = _mm_set1_ps(1.273239545);
|
||||
pio4A = _mm_set1_ps(0.78515625);
|
||||
pio4B = _mm_set1_ps(0.241876e-3);
|
||||
ffours = _mm_set1_ps(4.0);
|
||||
ftwos = _mm_set1_ps(2.0);
|
||||
fones = _mm_set1_ps(1.0);
|
||||
fzeroes = _mm_setzero_ps();
|
||||
ones = _mm_set1_epi32(1);
|
||||
twos = _mm_set1_epi32(2);
|
||||
fours = _mm_set1_epi32(4);
|
||||
|
||||
cp1 = _mm_set1_ps(1.0);
|
||||
cp2 = _mm_set1_ps(0.83333333e-1);
|
||||
cp3 = _mm_set1_ps(0.2777778e-2);
|
||||
cp4 = _mm_set1_ps(0.49603e-4);
|
||||
cp5 = _mm_set1_ps(0.551e-6);
|
||||
|
||||
for(;number < quarterPoints; number++)
|
||||
{
|
||||
aVal = _mm_loadu_ps(aPtr);
|
||||
__builtin_prefetch(aPtr + 8);
|
||||
s = _mm_sub_ps(aVal, _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes)));
|
||||
q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi)));
|
||||
r = _mm_add_epi32(q, _mm_and_si128(q, ones));
|
||||
|
||||
s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4A));
|
||||
s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4B));
|
||||
|
||||
s = _mm_div_ps(s, _mm_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
|
||||
s = _mm_mul_ps(s, s);
|
||||
// Evaluate Taylor series
|
||||
s = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s);
|
||||
|
||||
for(i = 0; i < 3; i++)
|
||||
{
|
||||
s = _mm_mul_ps(s, _mm_sub_ps(ffours, s));
|
||||
}
|
||||
s = _mm_div_ps(s, ftwos);
|
||||
|
||||
sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s));
|
||||
cosine = _mm_sub_ps(fones, s);
|
||||
|
||||
condition1 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, ones), twos)), fzeroes);
|
||||
condition2 = _mm_cmpneq_ps(_mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(q, fours)), fzeroes), _mm_cmplt_ps(aVal, fzeroes));
|
||||
condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, twos), fours)), fzeroes);
|
||||
|
||||
cplxValue = sine;
|
||||
sine = _mm_add_ps(sine, _mm_and_ps(_mm_sub_ps(cosine, sine), condition1));
|
||||
sine = _mm_sub_ps(sine, _mm_and_ps(_mm_mul_ps(sine, _mm_set1_ps(2.0f)), condition2));
|
||||
|
||||
cosine = _mm_add_ps(cosine, _mm_and_ps(_mm_sub_ps(cplxValue, cosine), condition1));
|
||||
cosine = _mm_sub_ps(cosine, _mm_and_ps(_mm_mul_ps(cosine, _mm_set1_ps(2.0f)), condition3));
|
||||
|
||||
cplxValue = _mm_unpacklo_ps(cosine, sine);
|
||||
|
||||
_mm_storeu_ps((float*)bPtr, cplxValue);
|
||||
bPtr += 2;
|
||||
cplxValue = _mm_unpackhi_ps(cosine, sine);
|
||||
_mm_storeu_ps((float*)bPtr, cplxValue);
|
||||
bPtr += 2;
|
||||
aPtr += 4;
|
||||
}
|
||||
|
||||
number = quarterPoints * 4;
|
||||
for(;number < num_points; number++)
|
||||
{
|
||||
float _in = *aPtr++;
|
||||
*bPtr++ = lv_cmake(cos(_in), sin(_in));
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* LV_HAVE_SSE4_1 for unaligned */
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE4_1
|
||||
#include <smmintrin.h>
|
||||
/* Adapted from the original VOLK.
|
||||
* In turn based on algorithms from:
|
||||
* Naoki Shibata, "Efficient Evaluation Methods of Elementary Functions Suitable for SIMD Computation,"
|
||||
* Computer Science Research and Development, May 2010, Volume 25, Issue 1, pp 25-32. DOI 10.1007/s00450-010-0108-2 */
|
||||
static inline void volk_gnsssdr_32f_sincos_32fc_a_sse4_1(lv_32fc_t* out, const float* in, unsigned int num_points)
|
||||
{
|
||||
lv_32fc_t* bPtr = out;
|
||||
const float* aPtr = in;
|
||||
|
||||
unsigned int number = 0;
|
||||
unsigned int quarterPoints = num_points / 4;
|
||||
unsigned int i = 0;
|
||||
|
||||
__m128 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
|
||||
__m128 sine, cosine, condition1, condition2, condition3, cplxValue;
|
||||
__m128i q, r, ones, twos, fours;
|
||||
|
||||
m4pi = _mm_set1_ps(1.273239545);
|
||||
pio4A = _mm_set1_ps(0.78515625);
|
||||
pio4B = _mm_set1_ps(0.241876e-3);
|
||||
ffours = _mm_set1_ps(4.0);
|
||||
ftwos = _mm_set1_ps(2.0);
|
||||
fones = _mm_set1_ps(1.0);
|
||||
fzeroes = _mm_setzero_ps();
|
||||
ones = _mm_set1_epi32(1);
|
||||
twos = _mm_set1_epi32(2);
|
||||
fours = _mm_set1_epi32(4);
|
||||
|
||||
cp1 = _mm_set1_ps(1.0);
|
||||
cp2 = _mm_set1_ps(0.83333333e-1);
|
||||
cp3 = _mm_set1_ps(0.2777778e-2);
|
||||
cp4 = _mm_set1_ps(0.49603e-4);
|
||||
cp5 = _mm_set1_ps(0.551e-6);
|
||||
|
||||
for(;number < quarterPoints; number++)
|
||||
{
|
||||
aVal = _mm_load_ps(aPtr);
|
||||
__builtin_prefetch(aPtr + 8);
|
||||
s = _mm_sub_ps(aVal, _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes)));
|
||||
q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi)));
|
||||
r = _mm_add_epi32(q, _mm_and_si128(q, ones));
|
||||
|
||||
s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4A));
|
||||
s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4B));
|
||||
|
||||
s = _mm_div_ps(s, _mm_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
|
||||
s = _mm_mul_ps(s, s);
|
||||
// Evaluate Taylor series
|
||||
s = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s);
|
||||
|
||||
for(i = 0; i < 3; i++)
|
||||
{
|
||||
s = _mm_mul_ps(s, _mm_sub_ps(ffours, s));
|
||||
}
|
||||
s = _mm_div_ps(s, ftwos);
|
||||
|
||||
sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s));
|
||||
cosine = _mm_sub_ps(fones, s);
|
||||
|
||||
condition1 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, ones), twos)), fzeroes);
|
||||
condition2 = _mm_cmpneq_ps(_mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(q, fours)), fzeroes), _mm_cmplt_ps(aVal, fzeroes));
|
||||
condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, twos), fours)), fzeroes);
|
||||
|
||||
cplxValue = sine;
|
||||
sine = _mm_add_ps(sine, _mm_and_ps(_mm_sub_ps(cosine, sine), condition1));
|
||||
sine = _mm_sub_ps(sine, _mm_and_ps(_mm_mul_ps(sine, _mm_set1_ps(2.0f)), condition2));
|
||||
|
||||
cosine = _mm_add_ps(cosine, _mm_and_ps(_mm_sub_ps(cplxValue, cosine), condition1));
|
||||
cosine = _mm_sub_ps(cosine, _mm_and_ps(_mm_mul_ps(cosine, _mm_set1_ps(2.0f)), condition3));
|
||||
|
||||
cplxValue = _mm_unpacklo_ps(cosine, sine);
|
||||
|
||||
_mm_store_ps((float*)bPtr, cplxValue);
|
||||
bPtr += 2;
|
||||
cplxValue = _mm_unpackhi_ps(cosine, sine);
|
||||
_mm_store_ps((float*)bPtr, cplxValue);
|
||||
bPtr += 2;
|
||||
aPtr += 4;
|
||||
}
|
||||
|
||||
number = quarterPoints * 4;
|
||||
for(;number < num_points; number++)
|
||||
{
|
||||
float _in = *aPtr++;
|
||||
*bPtr++ = lv_cmake(cos(_in), sin(_in));
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* LV_HAVE_SSE4_1 for aligned */
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE2
|
||||
#include <emmintrin.h>
|
||||
/* Adapted from http://gruntthepeon.free.fr/ssemath/sse_mathfun.h, original code from Julien Pommier */
|
||||
/* Based on algorithms from the cephes library http://www.netlib.org/cephes/ */
|
||||
static inline void volk_gnsssdr_32f_sincos_32fc_a_sse2(lv_32fc_t* out, const float* in, unsigned int num_points)
|
||||
{
|
||||
lv_32fc_t* bPtr = out;
|
||||
const float* aPtr = in;
|
||||
|
||||
const unsigned int sse_iters = num_points / 4;
|
||||
unsigned int number = 0;
|
||||
float _in;
|
||||
|
||||
__m128 sine, cosine, aux, x;
|
||||
__m128 xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y;
|
||||
|
||||
__m128i emm0, emm2, emm4;
|
||||
|
||||
/* declare some SSE constants */
|
||||
static const int _ps_inv_sign_mask[4] __attribute__((aligned(16))) = { ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000 };
|
||||
static const int _ps_sign_mask[4] __attribute__((aligned(16))) = { (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000 };
|
||||
|
||||
static const float _ps_cephes_FOPI[4] __attribute__((aligned(16))) = { 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516 };
|
||||
static const int _pi32_1[4] __attribute__((aligned(16))) = { 1, 1, 1, 1 };
|
||||
static const int _pi32_inv1[4] __attribute__((aligned(16))) = { ~1, ~1, ~1, ~1 };
|
||||
static const int _pi32_2[4] __attribute__((aligned(16))) = { 2, 2, 2, 2};
|
||||
static const int _pi32_4[4] __attribute__((aligned(16))) = { 4, 4, 4, 4};
|
||||
|
||||
static const float _ps_minus_cephes_DP1[4] __attribute__((aligned(16))) = { -0.78515625, -0.78515625, -0.78515625, -0.78515625 };
|
||||
static const float _ps_minus_cephes_DP2[4] __attribute__((aligned(16))) = { -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4 };
|
||||
static const float _ps_minus_cephes_DP3[4] __attribute__((aligned(16))) = { -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8 };
|
||||
static const float _ps_coscof_p0[4] __attribute__((aligned(16))) = { 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005 };
|
||||
static const float _ps_coscof_p1[4] __attribute__((aligned(16))) = { -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003 };
|
||||
static const float _ps_coscof_p2[4] __attribute__((aligned(16))) = { 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002 };
|
||||
static const float _ps_sincof_p0[4] __attribute__((aligned(16))) = { -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4 };
|
||||
static const float _ps_sincof_p1[4] __attribute__((aligned(16))) = { 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3 };
|
||||
static const float _ps_sincof_p2[4] __attribute__((aligned(16))) = { -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1 };
|
||||
static const float _ps_0p5[4] __attribute__((aligned(16))) = { 0.5f, 0.5f, 0.5f, 0.5f };
|
||||
static const float _ps_1[4] __attribute__((aligned(16))) = { 1.0f, 1.0f, 1.0f, 1.0f };
|
||||
|
||||
for(;number < sse_iters; number++)
|
||||
{
|
||||
x = _mm_load_ps(aPtr);
|
||||
__builtin_prefetch(aPtr + 8);
|
||||
|
||||
sign_bit_sin = x;
|
||||
/* take the absolute value */
|
||||
x = _mm_and_ps(x, *(__m128*)_ps_inv_sign_mask);
|
||||
/* extract the sign bit (upper one) */
|
||||
sign_bit_sin = _mm_and_ps(sign_bit_sin, *(__m128*)_ps_sign_mask);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = _mm_mul_ps(x, *(__m128*)_ps_cephes_FOPI);
|
||||
|
||||
/* store the integer part of y in emm2 */
|
||||
emm2 = _mm_cvttps_epi32(y);
|
||||
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = _mm_add_epi32(emm2, *(__m128i *)_pi32_1);
|
||||
emm2 = _mm_and_si128(emm2, *(__m128i *)_pi32_inv1);
|
||||
y = _mm_cvtepi32_ps(emm2);
|
||||
|
||||
emm4 = emm2;
|
||||
|
||||
/* get the swap sign flag for the sine */
|
||||
emm0 = _mm_and_si128(emm2, *(__m128i *)_pi32_4);
|
||||
emm0 = _mm_slli_epi32(emm0, 29);
|
||||
__m128 swap_sign_bit_sin = _mm_castsi128_ps(emm0);
|
||||
|
||||
/* get the polynom selection mask for the sine*/
|
||||
emm2 = _mm_and_si128(emm2, *(__m128i *)_pi32_2);
|
||||
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
|
||||
__m128 poly_mask = _mm_castsi128_ps(emm2);
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic”
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = *(__m128*)_ps_minus_cephes_DP1;
|
||||
xmm2 = *(__m128*)_ps_minus_cephes_DP2;
|
||||
xmm3 = *(__m128*)_ps_minus_cephes_DP3;
|
||||
xmm1 = _mm_mul_ps(y, xmm1);
|
||||
xmm2 = _mm_mul_ps(y, xmm2);
|
||||
xmm3 = _mm_mul_ps(y, xmm3);
|
||||
x = _mm_add_ps(x, xmm1);
|
||||
x = _mm_add_ps(x, xmm2);
|
||||
x = _mm_add_ps(x, xmm3);
|
||||
|
||||
emm4 = _mm_sub_epi32(emm4, *(__m128i *)_pi32_2);
|
||||
emm4 = _mm_andnot_si128(emm4, *(__m128i *)_pi32_4);
|
||||
emm4 = _mm_slli_epi32(emm4, 29);
|
||||
__m128 sign_bit_cos = _mm_castsi128_ps(emm4);
|
||||
|
||||
sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin);
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
||||
__m128 z = _mm_mul_ps(x,x);
|
||||
y = *(__m128*)_ps_coscof_p0;
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(__m128*)_ps_coscof_p1);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(__m128*)_ps_coscof_p2);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_mul_ps(y, z);
|
||||
__m128 tmp = _mm_mul_ps(z, *(__m128*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
y = _mm_add_ps(y, *(__m128*)_ps_1);
|
||||
|
||||
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
||||
|
||||
__m128 y2 = *(__m128*)_ps_sincof_p0;
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(__m128*)_ps_sincof_p1);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(__m128*)_ps_sincof_p2);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_mul_ps(y2, x);
|
||||
y2 = _mm_add_ps(y2, x);
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
xmm3 = poly_mask;
|
||||
__m128 ysin2 = _mm_and_ps(xmm3, y2);
|
||||
__m128 ysin1 = _mm_andnot_ps(xmm3, y);
|
||||
y2 = _mm_sub_ps(y2,ysin2);
|
||||
y = _mm_sub_ps(y, ysin1);
|
||||
|
||||
xmm1 = _mm_add_ps(ysin1,ysin2);
|
||||
xmm2 = _mm_add_ps(y,y2);
|
||||
|
||||
/* update the sign */
|
||||
sine = _mm_xor_ps(xmm1, sign_bit_sin);
|
||||
cosine = _mm_xor_ps(xmm2, sign_bit_cos);
|
||||
|
||||
/* write the output */
|
||||
aux = _mm_unpacklo_ps(cosine, sine);
|
||||
_mm_store_ps((float*)bPtr, aux);
|
||||
bPtr += 2;
|
||||
aux = _mm_unpackhi_ps(cosine, sine);
|
||||
_mm_store_ps((float*)bPtr, aux);
|
||||
bPtr += 2;
|
||||
|
||||
aPtr += 4;
|
||||
}
|
||||
|
||||
for(number = sse_iters * 4; number < num_points; number++)
|
||||
{
|
||||
_in = *aPtr++;
|
||||
*bPtr++ = lv_cmake((float)cos(_in), (float)sin(_in) );
|
||||
}
|
||||
|
||||
}
|
||||
#endif /* LV_HAVE_SSE2 */
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE2
|
||||
#include <emmintrin.h>
|
||||
/* Adapted from http://gruntthepeon.free.fr/ssemath/sse_mathfun.h, original code from Julien Pommier */
|
||||
/* Based on algorithms from the cephes library http://www.netlib.org/cephes/ */
|
||||
static inline void volk_gnsssdr_32f_sincos_32fc_u_sse2(lv_32fc_t* out, const float* in, unsigned int num_points)
|
||||
{
|
||||
lv_32fc_t* bPtr = out;
|
||||
const float* aPtr = in;
|
||||
|
||||
const unsigned int sse_iters = num_points / 4;
|
||||
unsigned int number = 0;
|
||||
float _in;
|
||||
|
||||
__m128 sine, cosine, aux, x;
|
||||
__m128 xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y;
|
||||
|
||||
__m128i emm0, emm2, emm4;
|
||||
|
||||
/* declare some SSE constants */
|
||||
static const int _ps_inv_sign_mask[4] __attribute__((aligned(16))) = { ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000 };
|
||||
static const int _ps_sign_mask[4] __attribute__((aligned(16))) = { (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000 };
|
||||
|
||||
static const float _ps_cephes_FOPI[4] __attribute__((aligned(16))) = { 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516 };
|
||||
static const int _pi32_1[4] __attribute__((aligned(16))) = { 1, 1, 1, 1 };
|
||||
static const int _pi32_inv1[4] __attribute__((aligned(16))) = { ~1, ~1, ~1, ~1 };
|
||||
static const int _pi32_2[4] __attribute__((aligned(16))) = { 2, 2, 2, 2};
|
||||
static const int _pi32_4[4] __attribute__((aligned(16))) = { 4, 4, 4, 4};
|
||||
|
||||
static const float _ps_minus_cephes_DP1[4] __attribute__((aligned(16))) = { -0.78515625, -0.78515625, -0.78515625, -0.78515625 };
|
||||
static const float _ps_minus_cephes_DP2[4] __attribute__((aligned(16))) = { -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4 };
|
||||
static const float _ps_minus_cephes_DP3[4] __attribute__((aligned(16))) = { -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8 };
|
||||
static const float _ps_coscof_p0[4] __attribute__((aligned(16))) = { 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005 };
|
||||
static const float _ps_coscof_p1[4] __attribute__((aligned(16))) = { -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003 };
|
||||
static const float _ps_coscof_p2[4] __attribute__((aligned(16))) = { 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002 };
|
||||
static const float _ps_sincof_p0[4] __attribute__((aligned(16))) = { -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4 };
|
||||
static const float _ps_sincof_p1[4] __attribute__((aligned(16))) = { 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3 };
|
||||
static const float _ps_sincof_p2[4] __attribute__((aligned(16))) = { -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1 };
|
||||
static const float _ps_0p5[4] __attribute__((aligned(16))) = { 0.5f, 0.5f, 0.5f, 0.5f };
|
||||
static const float _ps_1[4] __attribute__((aligned(16))) = { 1.0f, 1.0f, 1.0f, 1.0f };
|
||||
|
||||
for(;number < sse_iters; number++)
|
||||
{
|
||||
x = _mm_loadu_ps(aPtr);
|
||||
__builtin_prefetch(aPtr + 8);
|
||||
|
||||
sign_bit_sin = x;
|
||||
/* take the absolute value */
|
||||
x = _mm_and_ps(x, *(__m128*)_ps_inv_sign_mask);
|
||||
/* extract the sign bit (upper one) */
|
||||
sign_bit_sin = _mm_and_ps(sign_bit_sin, *(__m128*)_ps_sign_mask);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = _mm_mul_ps(x, *(__m128*)_ps_cephes_FOPI);
|
||||
|
||||
/* store the integer part of y in emm2 */
|
||||
emm2 = _mm_cvttps_epi32(y);
|
||||
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = _mm_add_epi32(emm2, *(__m128i *)_pi32_1);
|
||||
emm2 = _mm_and_si128(emm2, *(__m128i *)_pi32_inv1);
|
||||
y = _mm_cvtepi32_ps(emm2);
|
||||
|
||||
emm4 = emm2;
|
||||
|
||||
/* get the swap sign flag for the sine */
|
||||
emm0 = _mm_and_si128(emm2, *(__m128i *)_pi32_4);
|
||||
emm0 = _mm_slli_epi32(emm0, 29);
|
||||
__m128 swap_sign_bit_sin = _mm_castsi128_ps(emm0);
|
||||
|
||||
/* get the polynom selection mask for the sine*/
|
||||
emm2 = _mm_and_si128(emm2, *(__m128i *)_pi32_2);
|
||||
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
|
||||
__m128 poly_mask = _mm_castsi128_ps(emm2);
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic”
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = *(__m128*)_ps_minus_cephes_DP1;
|
||||
xmm2 = *(__m128*)_ps_minus_cephes_DP2;
|
||||
xmm3 = *(__m128*)_ps_minus_cephes_DP3;
|
||||
xmm1 = _mm_mul_ps(y, xmm1);
|
||||
xmm2 = _mm_mul_ps(y, xmm2);
|
||||
xmm3 = _mm_mul_ps(y, xmm3);
|
||||
x = _mm_add_ps(x, xmm1);
|
||||
x = _mm_add_ps(x, xmm2);
|
||||
x = _mm_add_ps(x, xmm3);
|
||||
|
||||
emm4 = _mm_sub_epi32(emm4, *(__m128i *)_pi32_2);
|
||||
emm4 = _mm_andnot_si128(emm4, *(__m128i *)_pi32_4);
|
||||
emm4 = _mm_slli_epi32(emm4, 29);
|
||||
__m128 sign_bit_cos = _mm_castsi128_ps(emm4);
|
||||
|
||||
sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin);
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
||||
__m128 z = _mm_mul_ps(x,x);
|
||||
y = *(__m128*)_ps_coscof_p0;
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(__m128*)_ps_coscof_p1);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(__m128*)_ps_coscof_p2);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_mul_ps(y, z);
|
||||
__m128 tmp = _mm_mul_ps(z, *(__m128*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
y = _mm_add_ps(y, *(__m128*)_ps_1);
|
||||
|
||||
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
||||
|
||||
__m128 y2 = *(__m128*)_ps_sincof_p0;
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(__m128*)_ps_sincof_p1);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(__m128*)_ps_sincof_p2);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_mul_ps(y2, x);
|
||||
y2 = _mm_add_ps(y2, x);
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
xmm3 = poly_mask;
|
||||
__m128 ysin2 = _mm_and_ps(xmm3, y2);
|
||||
__m128 ysin1 = _mm_andnot_ps(xmm3, y);
|
||||
y2 = _mm_sub_ps(y2,ysin2);
|
||||
y = _mm_sub_ps(y, ysin1);
|
||||
|
||||
xmm1 = _mm_add_ps(ysin1,ysin2);
|
||||
xmm2 = _mm_add_ps(y,y2);
|
||||
|
||||
/* update the sign */
|
||||
sine = _mm_xor_ps(xmm1, sign_bit_sin);
|
||||
cosine = _mm_xor_ps(xmm2, sign_bit_cos);
|
||||
|
||||
/* write the output */
|
||||
aux = _mm_unpacklo_ps(cosine, sine);
|
||||
_mm_storeu_ps((float*)bPtr, aux);
|
||||
bPtr += 2;
|
||||
aux = _mm_unpackhi_ps(cosine, sine);
|
||||
_mm_storeu_ps((float*)bPtr, aux);
|
||||
bPtr += 2;
|
||||
|
||||
aPtr += 4;
|
||||
}
|
||||
|
||||
for(number = sse_iters * 4; number < num_points; number++)
|
||||
{
|
||||
_in = *aPtr++;
|
||||
*bPtr++ = lv_cmake((float)cos(_in), (float)sin(_in) );
|
||||
}
|
||||
|
||||
}
|
||||
#endif /* LV_HAVE_SSE2 */
|
||||
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
|
||||
static inline void volk_gnsssdr_32f_sincos_32fc_generic(lv_32fc_t* out, const float* in, unsigned int num_points)
|
||||
{
|
||||
float _in;
|
||||
for(unsigned int i = 0; i < num_points; i++)
|
||||
{
|
||||
_in = *in++;
|
||||
*out++ = lv_cmake((float)cos(_in), (float)sin(_in) );
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* LV_HAVE_GENERIC */
|
||||
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
#include <volk_gnsssdr/volk_gnsssdr_sine_table.h>
|
||||
#include <stdint.h>
|
||||
static inline void volk_gnsssdr_32f_sincos_32fc_generic_fxpt(lv_32fc_t* out, const float* in, unsigned int num_points)
|
||||
{
|
||||
float _in, s, c;
|
||||
int32_t x, sin_index, cos_index, d;
|
||||
const float PI = 3.14159265358979323846;
|
||||
const float TWO_TO_THE_31_DIV_PI = 2147483648.0 / PI;
|
||||
const float TWO_PI = PI * 2;
|
||||
const int32_t bitlength = 32;
|
||||
const int32_t Nbits = 10;
|
||||
const int32_t diffbits = bitlength - Nbits;
|
||||
uint32_t ux;
|
||||
|
||||
for(unsigned int i = 0; i < num_points; i++)
|
||||
{
|
||||
_in = *in++;
|
||||
d = (int32_t)floor(_in / TWO_PI + 0.5);
|
||||
_in -= d * TWO_PI;
|
||||
x = (int32_t) ((float) _in * TWO_TO_THE_31_DIV_PI);
|
||||
|
||||
ux = x;
|
||||
sin_index = ux >> diffbits;
|
||||
s = sine_table_10bits[sin_index][0] * (ux >> 1) + sine_table_10bits[sin_index][1];
|
||||
|
||||
ux = x + 0x40000000;
|
||||
cos_index = ux >> diffbits;
|
||||
c = sine_table_10bits[cos_index][0] * (ux >> 1) + sine_table_10bits[cos_index][1];
|
||||
|
||||
*out++ = lv_cmake((float)c, (float)s );
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* LV_HAVE_GENERIC */
|
||||
|
||||
|
||||
#ifdef LV_HAVE_NEON
|
||||
#include <arm_neon.h>
|
||||
/* Adapted from http://gruntthepeon.free.fr/ssemath/neon_mathfun.h, original code from Julien Pommier */
|
||||
/* Based on algorithms from the cephes library http://www.netlib.org/cephes/ */
|
||||
static inline void volk_gnsssdr_32f_sincos_32fc_neon(lv_32fc_t* out, const float* in, unsigned int num_points)
|
||||
{
|
||||
lv_32fc_t* bPtr = out;
|
||||
const float* aPtr = in;
|
||||
const unsigned int neon_iters = num_points / 4;
|
||||
|
||||
const float32_t c_minus_cephes_DP1 = -0.78515625;
|
||||
const float32_t c_minus_cephes_DP2 = -2.4187564849853515625e-4;
|
||||
const float32_t c_minus_cephes_DP3 = -3.77489497744594108e-8;
|
||||
const float32_t c_sincof_p0 = -1.9515295891E-4;
|
||||
const float32_t c_sincof_p1 = 8.3321608736E-3;
|
||||
const float32_t c_sincof_p2 = -1.6666654611E-1;
|
||||
const float32_t c_coscof_p0 = 2.443315711809948E-005;
|
||||
const float32_t c_coscof_p1 = -1.388731625493765E-003;
|
||||
const float32_t c_coscof_p2 = 4.166664568298827E-002;
|
||||
const float32_t c_cephes_FOPI = 1.27323954473516;
|
||||
|
||||
unsigned int number = 0;
|
||||
float _in;
|
||||
|
||||
float32x4_t x, xmm1, xmm2, xmm3, y, y1, y2, ys, yc, z;
|
||||
float32x4x2_t result;
|
||||
|
||||
uint32x4_t emm2, poly_mask, sign_mask_sin, sign_mask_cos;
|
||||
|
||||
for(;number < neon_iters; number++)
|
||||
{
|
||||
x = vld1q_f32(aPtr);
|
||||
__builtin_prefetch(aPtr + 8);
|
||||
|
||||
sign_mask_sin = vcltq_f32(x, vdupq_n_f32(0));
|
||||
x = vabsq_f32(x);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = vmulq_f32(x, vdupq_n_f32(c_cephes_FOPI));
|
||||
|
||||
/* store the integer part of y in mm0 */
|
||||
emm2 = vcvtq_u32_f32(y);
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = vaddq_u32(emm2, vdupq_n_u32(1));
|
||||
emm2 = vandq_u32(emm2, vdupq_n_u32(~1));
|
||||
y = vcvtq_f32_u32(emm2);
|
||||
|
||||
/* get the polynom selection mask
|
||||
there is one polynom for 0 <= x <= Pi/4
|
||||
and another one for Pi/4<x<=Pi/2
|
||||
|
||||
Both branches will be computed.
|
||||
*/
|
||||
poly_mask = vtstq_u32(emm2, vdupq_n_u32(2));
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic"
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = vmulq_n_f32(y, c_minus_cephes_DP1);
|
||||
xmm2 = vmulq_n_f32(y, c_minus_cephes_DP2);
|
||||
xmm3 = vmulq_n_f32(y, c_minus_cephes_DP3);
|
||||
x = vaddq_f32(x, xmm1);
|
||||
x = vaddq_f32(x, xmm2);
|
||||
x = vaddq_f32(x, xmm3);
|
||||
|
||||
sign_mask_sin = veorq_u32(sign_mask_sin, vtstq_u32(emm2, vdupq_n_u32(4)));
|
||||
sign_mask_cos = vtstq_u32(vsubq_u32(emm2, vdupq_n_u32(2)), vdupq_n_u32(4));
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) in y1,
|
||||
and the second polynom (Pi/4 <= x <= 0) in y2 */
|
||||
z = vmulq_f32(x,x);
|
||||
|
||||
y1 = vmulq_n_f32(z, c_coscof_p0);
|
||||
y2 = vmulq_n_f32(z, c_sincof_p0);
|
||||
y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p1));
|
||||
y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p1));
|
||||
y1 = vmulq_f32(y1, z);
|
||||
y2 = vmulq_f32(y2, z);
|
||||
y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p2));
|
||||
y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p2));
|
||||
y1 = vmulq_f32(y1, z);
|
||||
y2 = vmulq_f32(y2, z);
|
||||
y1 = vmulq_f32(y1, z);
|
||||
y2 = vmulq_f32(y2, x);
|
||||
y1 = vsubq_f32(y1, vmulq_f32(z, vdupq_n_f32(0.5f)));
|
||||
y2 = vaddq_f32(y2, x);
|
||||
y1 = vaddq_f32(y1, vdupq_n_f32(1));
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
ys = vbslq_f32(poly_mask, y1, y2);
|
||||
yc = vbslq_f32(poly_mask, y2, y1);
|
||||
result.val[1] = vbslq_f32(sign_mask_sin, vnegq_f32(ys), ys);
|
||||
result.val[0] = vbslq_f32(sign_mask_cos, yc, vnegq_f32(yc));
|
||||
|
||||
vst2q_f32((float32_t*)bPtr, result);
|
||||
bPtr += 4;
|
||||
aPtr += 4;
|
||||
}
|
||||
|
||||
for(number = neon_iters * 4; number < num_points; number++)
|
||||
{
|
||||
_in = *aPtr++;
|
||||
*bPtr++ = lv_cmake((float)cos(_in), (float)sin(_in) );
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* LV_HAVE_NEON */
|
||||
|
||||
|
||||
#endif /* INCLUDED_volk_gnsssdr_32f_sincos_32fc_H */
|
@ -0,0 +1,542 @@
|
||||
/*!
|
||||
* \file volk_gnsssdr_s32f_sincos_32fc.h
|
||||
* \brief VOLK_GNSSSDR kernel: Computes the sine and cosine of a vector of floats.
|
||||
* \authors <ul>
|
||||
* <li> Carles Fernandez-Prades, 2016. cfernandez(at)cttc.es
|
||||
* </ul>
|
||||
*
|
||||
* VOLK_GNSSSDR kernel that computes the sine and cosine of a vector of floats.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
|
||||
*
|
||||
* GNSS-SDR is a software defined Global Navigation
|
||||
* Satellite Systems receiver
|
||||
*
|
||||
* This file is part of GNSS-SDR.
|
||||
*
|
||||
* GNSS-SDR is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNSS-SDR is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
/*!
|
||||
* \page volk_gnsssdr_s32f_sincos_32fc
|
||||
*
|
||||
* \b Overview
|
||||
*
|
||||
* VOLK_GNSSSDR kernel that computes the sine and cosine with a fixed
|
||||
* phase increment \p phase_inc per sample, providing the output in a complex vector (cosine, sine)
|
||||
*
|
||||
* <b>Dispatcher Prototype</b>
|
||||
* \code
|
||||
* void volk_gnsssdr_s32f_sincos_32fc(lv_32fc_t* out, const float phase_inc, unsigned int num_points)
|
||||
* \endcode
|
||||
*
|
||||
* \b Inputs
|
||||
* \li phase_inc: Phase increment per sample, in radians.
|
||||
* \li num_points: Number of components in \p in to be computed.
|
||||
*
|
||||
* \b Outputs
|
||||
* \li out: Vector of the form lv_32fc_t out[n] = lv_cmake(cos(in[n]), sin(in[n]))
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
#ifndef INCLUDED_volk_gnsssdr_s32f_sincos_32fc_H
|
||||
#define INCLUDED_volk_gnsssdr_s32f_sincos_32fc_H
|
||||
|
||||
#include <math.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_common.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE2
|
||||
#include <emmintrin.h>
|
||||
/* Adapted from http://gruntthepeon.free.fr/ssemath/sse_mathfun.h, original code from Julien Pommier */
|
||||
/* Based on algorithms from the cephes library http://www.netlib.org/cephes/ */
|
||||
static inline void volk_gnsssdr_s32f_sincos_32fc_a_sse2(lv_32fc_t* out, const float phase_inc, unsigned int num_points)
|
||||
{
|
||||
lv_32fc_t* bPtr = out;
|
||||
|
||||
const unsigned int sse_iters = num_points / 4;
|
||||
unsigned int number = 0;
|
||||
float _phase;
|
||||
|
||||
__m128 sine, cosine, aux, x, four_phases_reg;
|
||||
__m128 xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y;
|
||||
__m128i emm0, emm2, emm4;
|
||||
|
||||
/* declare some SSE constants */
|
||||
static const int _ps_inv_sign_mask[4] __attribute__((aligned(16))) = { ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000 };
|
||||
static const int _ps_sign_mask[4] __attribute__((aligned(16))) = { (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000 };
|
||||
|
||||
static const float _ps_cephes_FOPI[4] __attribute__((aligned(16))) = { 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516 };
|
||||
static const int _pi32_1[4] __attribute__((aligned(16))) = { 1, 1, 1, 1 };
|
||||
static const int _pi32_inv1[4] __attribute__((aligned(16))) = { ~1, ~1, ~1, ~1 };
|
||||
static const int _pi32_2[4] __attribute__((aligned(16))) = { 2, 2, 2, 2};
|
||||
static const int _pi32_4[4] __attribute__((aligned(16))) = { 4, 4, 4, 4};
|
||||
|
||||
static const float _ps_minus_cephes_DP1[4] __attribute__((aligned(16))) = { -0.78515625, -0.78515625, -0.78515625, -0.78515625 };
|
||||
static const float _ps_minus_cephes_DP2[4] __attribute__((aligned(16))) = { -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4 };
|
||||
static const float _ps_minus_cephes_DP3[4] __attribute__((aligned(16))) = { -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8 };
|
||||
static const float _ps_coscof_p0[4] __attribute__((aligned(16))) = { 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005 };
|
||||
static const float _ps_coscof_p1[4] __attribute__((aligned(16))) = { -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003 };
|
||||
static const float _ps_coscof_p2[4] __attribute__((aligned(16))) = { 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002 };
|
||||
static const float _ps_sincof_p0[4] __attribute__((aligned(16))) = { -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4 };
|
||||
static const float _ps_sincof_p1[4] __attribute__((aligned(16))) = { 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3 };
|
||||
static const float _ps_sincof_p2[4] __attribute__((aligned(16))) = { -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1 };
|
||||
static const float _ps_0p5[4] __attribute__((aligned(16))) = { 0.5f, 0.5f, 0.5f, 0.5f };
|
||||
static const float _ps_1[4] __attribute__((aligned(16))) = { 1.0f, 1.0f, 1.0f, 1.0f };
|
||||
|
||||
float four_phases[4] __attribute__((aligned(16))) = { 0.0f, phase_inc, 2 * phase_inc, 3 * phase_inc };
|
||||
float four_phases_inc[4] __attribute__((aligned(16))) = { 4 * phase_inc, 4 * phase_inc, 4 * phase_inc, 4 * phase_inc };
|
||||
four_phases_reg = _mm_load_ps(four_phases);
|
||||
const __m128 four_phases_inc_reg = _mm_load_ps(four_phases_inc);
|
||||
|
||||
for(;number < sse_iters; number++)
|
||||
{
|
||||
x = four_phases_reg;
|
||||
|
||||
sign_bit_sin = x;
|
||||
/* take the absolute value */
|
||||
x = _mm_and_ps(x, *(__m128*)_ps_inv_sign_mask);
|
||||
/* extract the sign bit (upper one) */
|
||||
sign_bit_sin = _mm_and_ps(sign_bit_sin, *(__m128*)_ps_sign_mask);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = _mm_mul_ps(x, *(__m128*)_ps_cephes_FOPI);
|
||||
|
||||
/* store the integer part of y in emm2 */
|
||||
emm2 = _mm_cvttps_epi32(y);
|
||||
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = _mm_add_epi32(emm2, *(__m128i *)_pi32_1);
|
||||
emm2 = _mm_and_si128(emm2, *(__m128i *)_pi32_inv1);
|
||||
y = _mm_cvtepi32_ps(emm2);
|
||||
|
||||
emm4 = emm2;
|
||||
|
||||
/* get the swap sign flag for the sine */
|
||||
emm0 = _mm_and_si128(emm2, *(__m128i *)_pi32_4);
|
||||
emm0 = _mm_slli_epi32(emm0, 29);
|
||||
__m128 swap_sign_bit_sin = _mm_castsi128_ps(emm0);
|
||||
|
||||
/* get the polynom selection mask for the sine*/
|
||||
emm2 = _mm_and_si128(emm2, *(__m128i *)_pi32_2);
|
||||
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
|
||||
__m128 poly_mask = _mm_castsi128_ps(emm2);
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic”
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = *(__m128*)_ps_minus_cephes_DP1;
|
||||
xmm2 = *(__m128*)_ps_minus_cephes_DP2;
|
||||
xmm3 = *(__m128*)_ps_minus_cephes_DP3;
|
||||
xmm1 = _mm_mul_ps(y, xmm1);
|
||||
xmm2 = _mm_mul_ps(y, xmm2);
|
||||
xmm3 = _mm_mul_ps(y, xmm3);
|
||||
x = _mm_add_ps(x, xmm1);
|
||||
x = _mm_add_ps(x, xmm2);
|
||||
x = _mm_add_ps(x, xmm3);
|
||||
|
||||
emm4 = _mm_sub_epi32(emm4, *(__m128i *)_pi32_2);
|
||||
emm4 = _mm_andnot_si128(emm4, *(__m128i *)_pi32_4);
|
||||
emm4 = _mm_slli_epi32(emm4, 29);
|
||||
__m128 sign_bit_cos = _mm_castsi128_ps(emm4);
|
||||
|
||||
sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin);
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
||||
__m128 z = _mm_mul_ps(x,x);
|
||||
y = *(__m128*)_ps_coscof_p0;
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(__m128*)_ps_coscof_p1);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(__m128*)_ps_coscof_p2);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_mul_ps(y, z);
|
||||
__m128 tmp = _mm_mul_ps(z, *(__m128*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
y = _mm_add_ps(y, *(__m128*)_ps_1);
|
||||
|
||||
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
||||
__m128 y2 = *(__m128*)_ps_sincof_p0;
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(__m128*)_ps_sincof_p1);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(__m128*)_ps_sincof_p2);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_mul_ps(y2, x);
|
||||
y2 = _mm_add_ps(y2, x);
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
xmm3 = poly_mask;
|
||||
__m128 ysin2 = _mm_and_ps(xmm3, y2);
|
||||
__m128 ysin1 = _mm_andnot_ps(xmm3, y);
|
||||
y2 = _mm_sub_ps(y2,ysin2);
|
||||
y = _mm_sub_ps(y, ysin1);
|
||||
|
||||
xmm1 = _mm_add_ps(ysin1,ysin2);
|
||||
xmm2 = _mm_add_ps(y,y2);
|
||||
|
||||
/* update the sign */
|
||||
sine = _mm_xor_ps(xmm1, sign_bit_sin);
|
||||
cosine = _mm_xor_ps(xmm2, sign_bit_cos);
|
||||
|
||||
/* write the output */
|
||||
aux = _mm_unpacklo_ps(cosine, sine);
|
||||
_mm_store_ps((float*)bPtr, aux);
|
||||
bPtr += 2;
|
||||
aux = _mm_unpackhi_ps(cosine, sine);
|
||||
_mm_store_ps((float*)bPtr, aux);
|
||||
bPtr += 2;
|
||||
|
||||
four_phases_reg = _mm_add_ps(four_phases_reg, four_phases_inc_reg);
|
||||
}
|
||||
|
||||
_phase = phase_inc * (sse_iters * 4);
|
||||
for(number = sse_iters * 4; number < num_points; number++)
|
||||
{
|
||||
*bPtr++ = lv_cmake((float)cos(_phase), (float)sin(_phase) );
|
||||
_phase += phase_inc;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* LV_HAVE_SSE2 */
|
||||
|
||||
|
||||
#ifdef LV_HAVE_SSE2
|
||||
#include <emmintrin.h>
|
||||
/* Adapted from http://gruntthepeon.free.fr/ssemath/sse_mathfun.h, original code from Julien Pommier */
|
||||
/* Based on algorithms from the cephes library http://www.netlib.org/cephes/ */
|
||||
static inline void volk_gnsssdr_s32f_sincos_32fc_u_sse2(lv_32fc_t* out, const float phase_inc, unsigned int num_points)
|
||||
{
|
||||
lv_32fc_t* bPtr = out;
|
||||
|
||||
const unsigned int sse_iters = num_points / 4;
|
||||
unsigned int number = 0;
|
||||
float _phase;
|
||||
|
||||
__m128 sine, cosine, aux, x, four_phases_reg;
|
||||
__m128 xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y;
|
||||
__m128i emm0, emm2, emm4;
|
||||
|
||||
/* declare some SSE constants */
|
||||
static const int _ps_inv_sign_mask[4] __attribute__((aligned(16))) = { ~0x80000000, ~0x80000000, ~0x80000000, ~0x80000000 };
|
||||
static const int _ps_sign_mask[4] __attribute__((aligned(16))) = { (int)0x80000000, (int)0x80000000, (int)0x80000000, (int)0x80000000 };
|
||||
|
||||
static const float _ps_cephes_FOPI[4] __attribute__((aligned(16))) = { 1.27323954473516, 1.27323954473516, 1.27323954473516, 1.27323954473516 };
|
||||
static const int _pi32_1[4] __attribute__((aligned(16))) = { 1, 1, 1, 1 };
|
||||
static const int _pi32_inv1[4] __attribute__((aligned(16))) = { ~1, ~1, ~1, ~1 };
|
||||
static const int _pi32_2[4] __attribute__((aligned(16))) = { 2, 2, 2, 2};
|
||||
static const int _pi32_4[4] __attribute__((aligned(16))) = { 4, 4, 4, 4};
|
||||
|
||||
static const float _ps_minus_cephes_DP1[4] __attribute__((aligned(16))) = { -0.78515625, -0.78515625, -0.78515625, -0.78515625 };
|
||||
static const float _ps_minus_cephes_DP2[4] __attribute__((aligned(16))) = { -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4, -2.4187564849853515625e-4 };
|
||||
static const float _ps_minus_cephes_DP3[4] __attribute__((aligned(16))) = { -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8, -3.77489497744594108e-8 };
|
||||
static const float _ps_coscof_p0[4] __attribute__((aligned(16))) = { 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005, 2.443315711809948E-005 };
|
||||
static const float _ps_coscof_p1[4] __attribute__((aligned(16))) = { -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003, -1.388731625493765E-003 };
|
||||
static const float _ps_coscof_p2[4] __attribute__((aligned(16))) = { 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002, 4.166664568298827E-002 };
|
||||
static const float _ps_sincof_p0[4] __attribute__((aligned(16))) = { -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4, -1.9515295891E-4 };
|
||||
static const float _ps_sincof_p1[4] __attribute__((aligned(16))) = { 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3, 8.3321608736E-3 };
|
||||
static const float _ps_sincof_p2[4] __attribute__((aligned(16))) = { -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1, -1.6666654611E-1 };
|
||||
static const float _ps_0p5[4] __attribute__((aligned(16))) = { 0.5f, 0.5f, 0.5f, 0.5f };
|
||||
static const float _ps_1[4] __attribute__((aligned(16))) = { 1.0f, 1.0f, 1.0f, 1.0f };
|
||||
|
||||
float four_phases[4] __attribute__((aligned(16))) = { 0.0f, phase_inc, 2 * phase_inc, 3 * phase_inc };
|
||||
float four_phases_inc[4] __attribute__((aligned(16))) = { 4 * phase_inc, 4 * phase_inc, 4 * phase_inc, 4 * phase_inc };
|
||||
four_phases_reg = _mm_load_ps(four_phases);
|
||||
const __m128 four_phases_inc_reg = _mm_load_ps(four_phases_inc);
|
||||
|
||||
for(;number < sse_iters; number++)
|
||||
{
|
||||
x = four_phases_reg;
|
||||
|
||||
sign_bit_sin = x;
|
||||
/* take the absolute value */
|
||||
x = _mm_and_ps(x, *(__m128*)_ps_inv_sign_mask);
|
||||
/* extract the sign bit (upper one) */
|
||||
sign_bit_sin = _mm_and_ps(sign_bit_sin, *(__m128*)_ps_sign_mask);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = _mm_mul_ps(x, *(__m128*)_ps_cephes_FOPI);
|
||||
|
||||
/* store the integer part of y in emm2 */
|
||||
emm2 = _mm_cvttps_epi32(y);
|
||||
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = _mm_add_epi32(emm2, *(__m128i *)_pi32_1);
|
||||
emm2 = _mm_and_si128(emm2, *(__m128i *)_pi32_inv1);
|
||||
y = _mm_cvtepi32_ps(emm2);
|
||||
|
||||
emm4 = emm2;
|
||||
|
||||
/* get the swap sign flag for the sine */
|
||||
emm0 = _mm_and_si128(emm2, *(__m128i *)_pi32_4);
|
||||
emm0 = _mm_slli_epi32(emm0, 29);
|
||||
__m128 swap_sign_bit_sin = _mm_castsi128_ps(emm0);
|
||||
|
||||
/* get the polynom selection mask for the sine*/
|
||||
emm2 = _mm_and_si128(emm2, *(__m128i *)_pi32_2);
|
||||
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
|
||||
__m128 poly_mask = _mm_castsi128_ps(emm2);
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic”
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = *(__m128*)_ps_minus_cephes_DP1;
|
||||
xmm2 = *(__m128*)_ps_minus_cephes_DP2;
|
||||
xmm3 = *(__m128*)_ps_minus_cephes_DP3;
|
||||
xmm1 = _mm_mul_ps(y, xmm1);
|
||||
xmm2 = _mm_mul_ps(y, xmm2);
|
||||
xmm3 = _mm_mul_ps(y, xmm3);
|
||||
x = _mm_add_ps(x, xmm1);
|
||||
x = _mm_add_ps(x, xmm2);
|
||||
x = _mm_add_ps(x, xmm3);
|
||||
|
||||
emm4 = _mm_sub_epi32(emm4, *(__m128i *)_pi32_2);
|
||||
emm4 = _mm_andnot_si128(emm4, *(__m128i *)_pi32_4);
|
||||
emm4 = _mm_slli_epi32(emm4, 29);
|
||||
__m128 sign_bit_cos = _mm_castsi128_ps(emm4);
|
||||
|
||||
sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin);
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
||||
__m128 z = _mm_mul_ps(x,x);
|
||||
y = *(__m128*)_ps_coscof_p0;
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(__m128*)_ps_coscof_p1);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(__m128*)_ps_coscof_p2);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_mul_ps(y, z);
|
||||
__m128 tmp = _mm_mul_ps(z, *(__m128*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
y = _mm_add_ps(y, *(__m128*)_ps_1);
|
||||
|
||||
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
||||
__m128 y2 = *(__m128*)_ps_sincof_p0;
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(__m128*)_ps_sincof_p1);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(__m128*)_ps_sincof_p2);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_mul_ps(y2, x);
|
||||
y2 = _mm_add_ps(y2, x);
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
xmm3 = poly_mask;
|
||||
__m128 ysin2 = _mm_and_ps(xmm3, y2);
|
||||
__m128 ysin1 = _mm_andnot_ps(xmm3, y);
|
||||
y2 = _mm_sub_ps(y2,ysin2);
|
||||
y = _mm_sub_ps(y, ysin1);
|
||||
|
||||
xmm1 = _mm_add_ps(ysin1,ysin2);
|
||||
xmm2 = _mm_add_ps(y,y2);
|
||||
|
||||
/* update the sign */
|
||||
sine = _mm_xor_ps(xmm1, sign_bit_sin);
|
||||
cosine = _mm_xor_ps(xmm2, sign_bit_cos);
|
||||
|
||||
/* write the output */
|
||||
aux = _mm_unpacklo_ps(cosine, sine);
|
||||
_mm_storeu_ps((float*)bPtr, aux);
|
||||
bPtr += 2;
|
||||
aux = _mm_unpackhi_ps(cosine, sine);
|
||||
_mm_storeu_ps((float*)bPtr, aux);
|
||||
bPtr += 2;
|
||||
|
||||
four_phases_reg = _mm_add_ps(four_phases_reg, four_phases_inc_reg);
|
||||
}
|
||||
|
||||
_phase = phase_inc * (sse_iters * 4);
|
||||
for(number = sse_iters * 4; number < num_points; number++)
|
||||
{
|
||||
*bPtr++ = lv_cmake((float)cos(_phase), (float)sin(_phase) );
|
||||
_phase += phase_inc;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* LV_HAVE_SSE2 */
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
|
||||
static inline void volk_gnsssdr_s32f_sincos_32fc_generic(lv_32fc_t* out, const float phase_inc, unsigned int num_points)
|
||||
{
|
||||
float _phase = 0.0;
|
||||
for(unsigned int i = 0; i < num_points; i++)
|
||||
{
|
||||
*out++ = lv_cmake((float)cos(_phase), (float)sin(_phase) );
|
||||
_phase += phase_inc;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* LV_HAVE_GENERIC */
|
||||
|
||||
|
||||
#ifdef LV_HAVE_GENERIC
|
||||
#include <volk_gnsssdr/volk_gnsssdr_sine_table.h>
|
||||
#include <stdint.h>
|
||||
static inline void volk_gnsssdr_s32f_sincos_32fc_generic_fxpt(lv_32fc_t* out, const float phase_inc, unsigned int num_points)
|
||||
{
|
||||
float _in, s, c;
|
||||
int32_t x, sin_index, cos_index, d;
|
||||
const float PI = 3.14159265358979323846;
|
||||
const float TWO_TO_THE_31_DIV_PI = 2147483648.0 / PI;
|
||||
const float TWO_PI = PI * 2;
|
||||
const int32_t bitlength = 32;
|
||||
const int32_t Nbits = 10;
|
||||
const int32_t diffbits = bitlength - Nbits;
|
||||
uint32_t ux;
|
||||
float _phase = 0.0;
|
||||
for(unsigned int i = 0; i < num_points; i++)
|
||||
{
|
||||
_in = _phase;
|
||||
d = (int32_t)floor(_in / TWO_PI + 0.5);
|
||||
_in -= d * TWO_PI;
|
||||
x = (int32_t) ((float)_in * TWO_TO_THE_31_DIV_PI);
|
||||
|
||||
ux = x;
|
||||
sin_index = ux >> diffbits;
|
||||
s = sine_table_10bits[sin_index][0] * (ux >> 1) + sine_table_10bits[sin_index][1];
|
||||
|
||||
ux = x + 0x40000000;
|
||||
cos_index = ux >> diffbits;
|
||||
c = sine_table_10bits[cos_index][0] * (ux >> 1) + sine_table_10bits[cos_index][1];
|
||||
|
||||
*out++ = lv_cmake((float)c, (float)s );
|
||||
_phase += phase_inc;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* LV_HAVE_GENERIC */
|
||||
|
||||
|
||||
#ifdef LV_HAVE_NEON
|
||||
#include <arm_neon.h>
|
||||
/* Adapted from http://gruntthepeon.free.fr/ssemath/neon_mathfun.h, original code from Julien Pommier */
|
||||
/* Based on algorithms from the cephes library http://www.netlib.org/cephes/ */
|
||||
static inline void volk_gnsssdr_s32f_sincos_32fc_neon(lv_32fc_t* out, const float phase_inc, unsigned int num_points)
|
||||
{
|
||||
lv_32fc_t* bPtr = out;
|
||||
const unsigned int neon_iters = num_points / 4;
|
||||
|
||||
__VOLK_ATTR_ALIGNED(16) float32_t four_phases[4] = { 0.0f , phase_inc, 2 * phase_inc, 3 * phase_inc };
|
||||
float four_inc = 4 * phase_inc;
|
||||
__VOLK_ATTR_ALIGNED(16) float32_t four_phases_inc[4] = { four_inc, four_inc, four_inc, four_inc };
|
||||
|
||||
float32x4_t four_phases_reg = vld1q_f32(four_phases);
|
||||
float32x4_t four_phases_inc_reg = vld1q_f32(four_phases_inc);
|
||||
|
||||
const float32_t c_minus_cephes_DP1 = -0.78515625;
|
||||
const float32_t c_minus_cephes_DP2 = -2.4187564849853515625e-4;
|
||||
const float32_t c_minus_cephes_DP3 = -3.77489497744594108e-8;
|
||||
const float32_t c_sincof_p0 = -1.9515295891E-4;
|
||||
const float32_t c_sincof_p1 = 8.3321608736E-3;
|
||||
const float32_t c_sincof_p2 = -1.6666654611E-1;
|
||||
const float32_t c_coscof_p0 = 2.443315711809948E-005;
|
||||
const float32_t c_coscof_p1 = -1.388731625493765E-003;
|
||||
const float32_t c_coscof_p2 = 4.166664568298827E-002;
|
||||
const float32_t c_cephes_FOPI = 1.27323954473516;
|
||||
|
||||
unsigned int number = 0;
|
||||
float _phase;
|
||||
|
||||
float32x4_t x, xmm1, xmm2, xmm3, y, y1, y2, ys, yc, z;
|
||||
float32x4x2_t result;
|
||||
|
||||
uint32x4_t emm2, poly_mask, sign_mask_sin, sign_mask_cos;
|
||||
|
||||
for(;number < neon_iters; number++)
|
||||
{
|
||||
x = four_phases_reg;
|
||||
|
||||
sign_mask_sin = vcltq_f32(x, vdupq_n_f32(0));
|
||||
x = vabsq_f32(x);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = vmulq_f32(x, vdupq_n_f32(c_cephes_FOPI));
|
||||
|
||||
/* store the integer part of y in mm0 */
|
||||
emm2 = vcvtq_u32_f32(y);
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = vaddq_u32(emm2, vdupq_n_u32(1));
|
||||
emm2 = vandq_u32(emm2, vdupq_n_u32(~1));
|
||||
y = vcvtq_f32_u32(emm2);
|
||||
|
||||
/* get the polynom selection mask
|
||||
there is one polynom for 0 <= x <= Pi/4
|
||||
and another one for Pi/4<x<=Pi/2
|
||||
|
||||
Both branches will be computed.
|
||||
*/
|
||||
poly_mask = vtstq_u32(emm2, vdupq_n_u32(2));
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic"
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = vmulq_n_f32(y, c_minus_cephes_DP1);
|
||||
xmm2 = vmulq_n_f32(y, c_minus_cephes_DP2);
|
||||
xmm3 = vmulq_n_f32(y, c_minus_cephes_DP3);
|
||||
x = vaddq_f32(x, xmm1);
|
||||
x = vaddq_f32(x, xmm2);
|
||||
x = vaddq_f32(x, xmm3);
|
||||
|
||||
sign_mask_sin = veorq_u32(sign_mask_sin, vtstq_u32(emm2, vdupq_n_u32(4)));
|
||||
sign_mask_cos = vtstq_u32(vsubq_u32(emm2, vdupq_n_u32(2)), vdupq_n_u32(4));
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) in y1,
|
||||
and the second polynom (Pi/4 <= x <= 0) in y2 */
|
||||
z = vmulq_f32(x,x);
|
||||
|
||||
y1 = vmulq_n_f32(z, c_coscof_p0);
|
||||
y2 = vmulq_n_f32(z, c_sincof_p0);
|
||||
y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p1));
|
||||
y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p1));
|
||||
y1 = vmulq_f32(y1, z);
|
||||
y2 = vmulq_f32(y2, z);
|
||||
y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p2));
|
||||
y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p2));
|
||||
y1 = vmulq_f32(y1, z);
|
||||
y2 = vmulq_f32(y2, z);
|
||||
y1 = vmulq_f32(y1, z);
|
||||
y2 = vmulq_f32(y2, x);
|
||||
y1 = vsubq_f32(y1, vmulq_f32(z, vdupq_n_f32(0.5f)));
|
||||
y2 = vaddq_f32(y2, x);
|
||||
y1 = vaddq_f32(y1, vdupq_n_f32(1));
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
ys = vbslq_f32(poly_mask, y1, y2);
|
||||
yc = vbslq_f32(poly_mask, y2, y1);
|
||||
result.val[1] = vbslq_f32(sign_mask_sin, vnegq_f32(ys), ys);
|
||||
result.val[0] = vbslq_f32(sign_mask_cos, yc, vnegq_f32(yc));
|
||||
|
||||
vst2q_f32((float32_t*)bPtr, result);
|
||||
bPtr += 4;
|
||||
|
||||
four_phases_reg = vaddq_f32(four_phases_reg, four_phases_inc_reg);
|
||||
}
|
||||
|
||||
_phase = phase_inc * (neon_iters * 4);
|
||||
for(number = neon_iters * 4; number < num_points; number++)
|
||||
{
|
||||
*bPtr++ = lv_cmake((float)cos(_phase), (float)sin(_phase) );
|
||||
_phase += phase_inc;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* LV_HAVE_NEON */
|
||||
|
||||
#endif /* INCLUDED_volk_gnsssdr_s32f_sincos_32fc_H */
|
Loading…
Reference in New Issue
Block a user