1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-06-07 17:14:09 +00:00

Add sse4_1 implementation

This commit is contained in:
Carles Fernandez 2018-08-09 21:08:58 +02:00
parent 4f588058d0
commit c5f10cd56c
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
2 changed files with 226 additions and 193 deletions

View File

@ -133,65 +133,68 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_sse3(float* res
} }
#endif #endif
//
//
//#ifdef LV_HAVE_SSE4_1 #ifdef LV_HAVE_SSE4_1
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_u_sse4_1(float* result, const float* local_code, unsigned int num_points) static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_sse4_1(float* result, const float* local_code, unsigned int num_points)
//{ {
// int code_length_chips = 2046; int code_length_chips = 2046;
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points); float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// int num_out_vectors = 3; int num_out_vectors = 3;
// float rem_code_phase_chips = -0.234; float rem_code_phase_chips = -0.8234;
// unsigned int n; float code_phase_rate_step_chips = 1.0 / powf(2.0, 33.0);
// float shifts_chips[3] = {-0.1, 0.0, 0.1}; unsigned int n;
// float shifts_chips[3] = {-0.1, 0.0, 0.1};
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// for (n = 0; n < num_out_vectors; n++) float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// { for (n = 0; n < num_out_vectors; n++)
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment()); {
// } result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
// }
// volk_gnsssdr_32f_xn_resampler_32f_xn_u_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
// volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
// for (n = 0; n < num_out_vectors; n++)
// { for (n = 0; n < num_out_vectors; n++)
// volk_gnsssdr_free(result_aux[n]); {
// } volk_gnsssdr_free(result_aux[n]);
// volk_gnsssdr_free(result_aux); }
//} volk_gnsssdr_free(result_aux);
// }
//#endif
// #endif
//#ifdef LV_HAVE_SSE4_1
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_a_sse4_1(float* result, const float* local_code, unsigned int num_points)
//{ #ifdef LV_HAVE_SSE4_1
// int code_length_chips = 2046; static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_sse4_1(float* result, const float* local_code, unsigned int num_points)
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points); {
// int num_out_vectors = 3; int code_length_chips = 2046;
// float rem_code_phase_chips = -0.234; float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// unsigned int n; int num_out_vectors = 3;
// float shifts_chips[3] = {-0.1, 0.0, 0.1}; float rem_code_phase_chips = -0.8234;
// float code_phase_rate_step_chips = 1.0 / powf(2.0, 33.0);
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment()); unsigned int n;
// for (n = 0; n < num_out_vectors; n++) float shifts_chips[3] = {-0.1, 0.0, 0.1};
// {
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment()); float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// } for (n = 0; n < num_out_vectors; n++)
// {
// volk_gnsssdr_32f_xn_resampler_32f_xn_a_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points); result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
// }
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
// volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
// for (n = 0; n < num_out_vectors; n++)
// { memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
// volk_gnsssdr_free(result_aux[n]);
// } for (n = 0; n < num_out_vectors; n++)
// volk_gnsssdr_free(result_aux); {
//} volk_gnsssdr_free(result_aux[n]);
// }
//#endif volk_gnsssdr_free(result_aux);
}
#endif
// //
//#ifdef LV_HAVE_AVX //#ifdef LV_HAVE_AVX
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_a_avx(float* result, const float* local_code, unsigned int num_points) //static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_a_avx(float* result, const float* local_code, unsigned int num_points)

View File

@ -276,140 +276,170 @@ static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse3(float** resu
} }
#endif #endif
//
//
//#ifdef LV_HAVE_SSE4_1 #ifdef LV_HAVE_SSE4_1
//#include <smmintrin.h> #include <smmintrin.h>
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
//{ {
// float** _result = result; float** _result = result;
// const unsigned int quarterPoints = num_points / 4; const unsigned int quarterPoints = num_points / 4;
// int current_correlator_tap; // int current_correlator_tap;
// unsigned int n; unsigned int n;
// unsigned int k; unsigned int k;
// const __m128 fours = _mm_set1_ps(4.0f); unsigned int current_correlator_tap;
// const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips); const __m128 ones = _mm_set1_ps(1.0f);
// const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips); const __m128 fours = _mm_set1_ps(4.0f);
// const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
// __VOLK_ATTR_ALIGNED(16) const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
// int local_code_chip_index[4]; const __m128 code_phase_rate_step_chips_reg = _mm_set_ps1(code_phase_rate_step_chips);
// int local_code_chip_index_;
// __VOLK_ATTR_ALIGNED(16)
// const __m128i zeros = _mm_setzero_si128(); int local_code_chip_index[4];
// const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips); int local_code_chip_index_;
// const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips); const __m128i zeros = _mm_setzero_si128();
// __m128i local_code_chip_index_reg, aux_i, negatives, i; const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
// __m128 aux, aux2, shifts_chips_reg, c, cTrunc, base; const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
// __m128i local_code_chip_index_reg, aux_i, negatives, i;
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) __m128 aux, aux2, aux3, indexnn, shifts_chips_reg, c, cTrunc, base;
// { __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
// shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
// aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg); shifts_chips_reg = _mm_set_ps1((float)shifts_chips[0]);
// __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f); aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
// for (n = 0; n < quarterPoints; n++)
// { for (n = 0; n < quarterPoints; n++)
// aux = _mm_mul_ps(code_phase_step_chips_reg, indexn); {
// aux = _mm_add_ps(aux, aux2); aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
// // floor indexnn = _mm_mul_ps(indexn, indexn);
// aux = _mm_floor_ps(aux); aux3 = _mm_mul_ps(code_phase_rate_step_chips_reg, indexnn);
// aux = _mm_add_ps(aux, aux3);
// // fmod aux = _mm_add_ps(aux, aux2);
// c = _mm_div_ps(aux, code_length_chips_reg_f); // floor
// i = _mm_cvttps_epi32(c); aux = _mm_floor_ps(aux);
// cTrunc = _mm_cvtepi32_ps(i);
// base = _mm_mul_ps(cTrunc, code_length_chips_reg_f); // Correct negative shift
// local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base)); c = _mm_div_ps(aux, code_length_chips_reg_f);
// aux3 = _mm_add_ps(c, ones);
// negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros); i = _mm_cvttps_epi32(aux3);
// aux_i = _mm_and_si128(code_length_chips_reg_i, negatives); cTrunc = _mm_cvtepi32_ps(i);
// local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i); base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
// _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg); local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
// for (k = 0; k < 4; ++k) negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
// { aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
// _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]]; local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
// }
// indexn = _mm_add_ps(indexn, fours); _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
// }
// for (n = quarterPoints * 4; n < num_points; n++) for (k = 0; k < 4; ++k)
// { {
// // resample code for current tap _result[0][n * 4 + k] = local_code[local_code_chip_index[k]];
// local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); }
// //Take into account that in multitap correlators, the shifts can be negative! indexn = _mm_add_ps(indexn, fours);
// if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); }
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; for (n = quarterPoints * 4; n < num_points; n++)
// } {
// } // resample code for first tap
//} local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + code_phase_rate_step_chips * (float)(n * n) + shifts_chips[0] - rem_code_phase_chips);
// // Take into account that in multitap correlators, the shifts can be negative!
//#endif if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[0][n] = local_code[local_code_chip_index_];
//#ifdef LV_HAVE_SSE4_1 }
//#include <smmintrin.h>
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) // adjacent correlators
//{ unsigned int shift_samples = 0;
// float** _result = result; for (current_correlator_tap = 1; current_correlator_tap < num_out_vectors; current_correlator_tap++)
// const unsigned int quarterPoints = num_points / 4; {
// int current_correlator_tap; shift_samples += (int)round((shifts_chips[current_correlator_tap] - shifts_chips[current_correlator_tap - 1]) / code_phase_step_chips);
// unsigned int n; memcpy(&_result[current_correlator_tap][0], &_result[0][shift_samples], (num_points - shift_samples) * sizeof(float));
// unsigned int k; memcpy(&_result[current_correlator_tap][num_points - shift_samples], &_result[0][0], shift_samples * sizeof(float));
// const __m128 fours = _mm_set1_ps(4.0f); }
// const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips); }
// const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
// #endif
// __VOLK_ATTR_ALIGNED(16)
// int local_code_chip_index[4];
// int local_code_chip_index_; #ifdef LV_HAVE_SSE4_1
// #include <smmintrin.h>
// const __m128i zeros = _mm_setzero_si128(); static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
// const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips); {
// const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips); float** _result = result;
// __m128i local_code_chip_index_reg, aux_i, negatives, i; const unsigned int quarterPoints = num_points / 4;
// __m128 aux, aux2, shifts_chips_reg, c, cTrunc, base; // int current_correlator_tap;
// unsigned int n;
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) unsigned int k;
// { unsigned int current_correlator_tap;
// shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]); const __m128 ones = _mm_set1_ps(1.0f);
// aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg); const __m128 fours = _mm_set1_ps(4.0f);
// __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f); const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
// for (n = 0; n < quarterPoints; n++) const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
// { const __m128 code_phase_rate_step_chips_reg = _mm_set_ps1(code_phase_rate_step_chips);
// aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
// aux = _mm_add_ps(aux, aux2); __VOLK_ATTR_ALIGNED(16)
// // floor int local_code_chip_index[4];
// aux = _mm_floor_ps(aux); int local_code_chip_index_;
// const __m128i zeros = _mm_setzero_si128();
// // fmod const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
// c = _mm_div_ps(aux, code_length_chips_reg_f); const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
// i = _mm_cvttps_epi32(c); __m128i local_code_chip_index_reg, aux_i, negatives, i;
// cTrunc = _mm_cvtepi32_ps(i); __m128 aux, aux2, aux3, indexnn, shifts_chips_reg, c, cTrunc, base;
// base = _mm_mul_ps(cTrunc, code_length_chips_reg_f); __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
// local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
// shifts_chips_reg = _mm_set_ps1((float)shifts_chips[0]);
// negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros); aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
// aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
// local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i); for (n = 0; n < quarterPoints; n++)
// _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg); {
// for (k = 0; k < 4; ++k) aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
// { indexnn = _mm_mul_ps(indexn, indexn);
// _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]]; aux3 = _mm_mul_ps(code_phase_rate_step_chips_reg, indexnn);
// } aux = _mm_add_ps(aux, aux3);
// indexn = _mm_add_ps(indexn, fours); aux = _mm_add_ps(aux, aux2);
// } // floor
// for (n = quarterPoints * 4; n < num_points; n++) aux = _mm_floor_ps(aux);
// {
// // resample code for current tap // Correct negative shift
// local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); c = _mm_div_ps(aux, code_length_chips_reg_f);
// //Take into account that in multitap correlators, the shifts can be negative! aux3 = _mm_add_ps(c, ones);
// if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); i = _mm_cvttps_epi32(aux3);
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips; cTrunc = _mm_cvtepi32_ps(i);
// _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
// } local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
// } negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
//} aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
// local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
//#endif
_mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
for (k = 0; k < 4; ++k)
{
_result[0][n * 4 + k] = local_code[local_code_chip_index[k]];
}
indexn = _mm_add_ps(indexn, fours);
}
for (n = quarterPoints * 4; n < num_points; n++)
{
// resample code for first tap
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + code_phase_rate_step_chips * (float)(n * n) + shifts_chips[0] - rem_code_phase_chips);
// Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
_result[0][n] = local_code[local_code_chip_index_];
}
// adjacent correlators
unsigned int shift_samples = 0;
for (current_correlator_tap = 1; current_correlator_tap < num_out_vectors; current_correlator_tap++)
{
shift_samples += (int)round((shifts_chips[current_correlator_tap] - shifts_chips[current_correlator_tap - 1]) / code_phase_step_chips);
memcpy(&_result[current_correlator_tap][0], &_result[0][shift_samples], (num_points - shift_samples) * sizeof(float));
memcpy(&_result[current_correlator_tap][num_points - shift_samples], &_result[0][0], shift_samples * sizeof(float));
}
}
#endif
// //
// //
//#ifdef LV_HAVE_AVX //#ifdef LV_HAVE_AVX