mirror of
				https://github.com/gnss-sdr/gnss-sdr
				synced 2025-10-31 07:13:03 +00:00 
			
		
		
		
	Clean up Matlab/Octave code
This commit is contained in:
		| @@ -1,32 +1,28 @@ | ||||
| % /*! | ||||
| %  * \file plot_dump.m | ||||
| %  * \brief Read GNSS-SDR Tracking dump binary file and plot some internal | ||||
| %     variables | ||||
| %  * \author Antonio Ramos, 2018. antonio.ramos(at)cttc.es | ||||
| %  * ------------------------------------------------------------------------- | ||||
| %  * | ||||
| %  * Copyright (C) 2010-2018  (see AUTHORS file for a list of contributors) | ||||
| %  * | ||||
| %  * GNSS-SDR is a software defined Global Navigation | ||||
| %  *          Satellite Systems receiver | ||||
| %  * | ||||
| %  * This file is part of GNSS-SDR. | ||||
| %  * | ||||
| %  * GNSS-SDR is free software: you can redistribute it and/or modify | ||||
| %  * it under the terms of the GNU General Public License as published by | ||||
| %  * the Free Software Foundation, either version 3 of the License, or | ||||
| %  * at your option) any later version. | ||||
| %  * | ||||
| %  * GNSS-SDR is distributed in the hope that it will be useful, | ||||
| %  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| %  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| %  * GNU General Public License for more details. | ||||
| %  * | ||||
| %  * You should have received a copy of the GNU General Public License | ||||
| %  * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
| %  * | ||||
| %  * ------------------------------------------------------------------------- | ||||
| %  */ | ||||
| % ------------------------------------------------------------------------- | ||||
| % | ||||
| % Copyright (C) 2010-2018  (see AUTHORS file for a list of contributors) | ||||
| % | ||||
| % GNSS-SDR is a software defined Global Navigation | ||||
| %           Satellite Systems receiver | ||||
| % | ||||
| % This file is part of GNSS-SDR. | ||||
| % | ||||
| % GNSS-SDR is free software: you can redistribute it and/or modify | ||||
| % it under the terms of the GNU General Public License as published by | ||||
| % the Free Software Foundation, either version 3 of the License, or | ||||
| % at your option) any later version. | ||||
| % | ||||
| % GNSS-SDR is distributed in the hope that it will be useful, | ||||
| % but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| % GNU General Public License for more details. | ||||
| % | ||||
| % You should have received a copy of the GNU General Public License | ||||
| % along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>. | ||||
| % | ||||
| % ------------------------------------------------------------------------- | ||||
| % | ||||
| %  Antonio Ramos, 2018. antonio.ramos(at)cttc.es | ||||
|  | ||||
| clear all; | ||||
| clc; | ||||
| @@ -84,158 +80,136 @@ end | ||||
| fclose(fileID); | ||||
|  | ||||
|  | ||||
| mean_Latitude=mean(navsol.lat); | ||||
| mean_Longitude=mean(navsol.long); | ||||
| mean_h=mean(navsol.height); | ||||
| utmZone = findUtmZone(mean_Latitude,mean_Longitude); | ||||
| [ref_X_cart,ref_Y_cart,ref_Z_cart]=geo2cart(dms2mat(deg2dms(mean_Latitude)), dms2mat(deg2dms(mean_Longitude)), mean_h, 5); | ||||
| [mean_utm_X,mean_utm_Y,mean_utm_Z]=cart2utm(ref_X_cart,ref_Y_cart,ref_Z_cart,utmZone); | ||||
| mean_Latitude = mean(navsol.lat); | ||||
| mean_Longitude = mean(navsol.long); | ||||
| mean_h = mean(navsol.height); | ||||
| utmZone = findUtmZone(mean_Latitude, mean_Longitude); | ||||
| [ref_X_cart, ref_Y_cart, ref_Z_cart] = geo2cart(dms2mat(deg2dms(mean_Latitude)), dms2mat(deg2dms(mean_Longitude)), mean_h, 5); | ||||
| [mean_utm_X, mean_utm_Y, mean_utm_Z] = cart2utm(ref_X_cart, ref_Y_cart, ref_Z_cart, utmZone); | ||||
|  | ||||
|  | ||||
| numPoints=length(navsol.X); | ||||
| aux=0; | ||||
| for n=1:numPoints | ||||
|     aux=aux+1; | ||||
|     [E(aux),N(aux),U(aux)]=cart2utm(navsol.X(n), navsol.Y(n), navsol.Z(n), utmZone); | ||||
| numPoints = length(navsol.X); | ||||
| aux = 0; | ||||
| for n = 1:numPoints | ||||
|     aux = aux+1; | ||||
|     [E(aux), N(aux), U(aux)] = cart2utm(navsol.X(n), navsol.Y(n), navsol.Z(n), utmZone); | ||||
| end | ||||
|  | ||||
| v_2d=[E;N].'; %2D East Nort position vectors | ||||
| v_3d=[E;N;U].'; %2D East Nort position vectors | ||||
| v_2d = [E;N].';   % 2D East Nort position vectors | ||||
| v_3d = [E;N;U].'; % 2D East Nort position vectors | ||||
|  | ||||
|  | ||||
| %% ACCURACY | ||||
|  | ||||
| % 2D ------------------- | ||||
|  | ||||
| sigma_E_accuracy=sqrt((1/(numPoints-1))*sum((v_2d(:,1)-mean_utm_X).^2)); | ||||
| sigma_N_accuracy=sqrt((1/(numPoints-1))*sum((v_2d(:,2)-mean_utm_Y).^2)); | ||||
|  | ||||
| sigma_ratio_2d_accuracy=sigma_N_accuracy/sigma_E_accuracy | ||||
| sigma_E_accuracy = sqrt((1/(numPoints-1)) * sum((v_2d(:,1) - mean_utm_X).^2)); | ||||
| sigma_N_accuracy = sqrt((1/(numPoints-1)) * sum((v_2d(:,2) - mean_utm_Y).^2)); | ||||
| sigma_ratio_2d_accuracy = sigma_N_accuracy / sigma_E_accuracy | ||||
|  | ||||
| % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65% | ||||
| DRMS_accuracy=sqrt(sigma_E_accuracy^2+sigma_N_accuracy^2) | ||||
| DRMS_accuracy = sqrt(sigma_E_accuracy^2 + sigma_N_accuracy^2) | ||||
| % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% | ||||
| TWO_DRMS_accuracy=2*DRMS_accuracy | ||||
| TWO_DRMS_accuracy = 2 * DRMS_accuracy | ||||
| % if sigma_ratio>0.3 -> Prob in circle with r=CEP -> 50% | ||||
| CEP_accuracy=0.62*sigma_E_accuracy+0.56*sigma_N_accuracy | ||||
| CEP_accuracy = 0.62 * sigma_E_accuracy + 0.56 * sigma_N_accuracy | ||||
|  | ||||
| % 3D ------------------- | ||||
|  | ||||
| sigma_U_accuracy=sqrt((1/(numPoints-1))*sum((v_3d(:,3)-mean_utm_Z).^2)); | ||||
| sigma_U_accuracy = sqrt((1/(numPoints-1)) * sum((v_3d(:,3) - mean_utm_Z).^2)); | ||||
|  | ||||
| % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50% | ||||
| SEP_accuracy=0.51*sqrt(sigma_E_accuracy^2+sigma_N_accuracy^2+sigma_U_accuracy^2) | ||||
|  | ||||
| SEP_accuracy = 0.51 * sqrt(sigma_E_accuracy^2 + sigma_N_accuracy^2 + sigma_U_accuracy^2) | ||||
| % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61% | ||||
| MRSE_accuracy=sqrt(sigma_E_accuracy^2+sigma_N_accuracy^2+sigma_U_accuracy^2) | ||||
| MRSE_accuracy = sqrt(sigma_E_accuracy^2 + sigma_N_accuracy^2 + sigma_U_accuracy^2) | ||||
| % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% | ||||
| TWO_MRSE_accuracy=2*MRSE_accuracy | ||||
| TWO_MRSE_accuracy=2 * MRSE_accuracy | ||||
|  | ||||
|  | ||||
|  | ||||
| %% PRECISION | ||||
|  | ||||
| % 2D analysis | ||||
| % Simulated X,Y measurements | ||||
| %v1=randn(1000,2); | ||||
|  | ||||
| % 2D Mean and Variance | ||||
| mean_2d  = [mean(v_2d(:,1)) ; mean(v_2d(:,2))]; | ||||
| sigma_2d = [sqrt(var(v_2d(:,1))) ; sqrt(var(v_2d(:,2)))]; | ||||
|  | ||||
| sigma_ratio_2d=sigma_2d(2)/sigma_2d(1) | ||||
| sigma_ratio_2d = sigma_2d(2) / sigma_2d(1) | ||||
|  | ||||
| % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65% | ||||
| DRMS=sqrt(sigma_2d(1)^2+sigma_2d(2)^2) | ||||
| DRMS = sqrt(sigma_2d(1)^2 + sigma_2d(2)^2) | ||||
| % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% | ||||
| TWO_DRMS=2*DRMS | ||||
| TWO_DRMS = 2 * DRMS | ||||
| % if sigma_ratio>0.3 -> Prob in circle with r=CEP -> 50% | ||||
| CEP=0.62*sigma_2d(1)+0.56*sigma_2d(2) | ||||
| CEP = 0.62 * sigma_2d(1) + 0.56 * sigma_2d(2) | ||||
|  | ||||
|  | ||||
| % Mean and Variance | ||||
| mean_3d=[mean(v_3d(:,1)) ; mean(v_3d(:,2)) ; mean(v_3d(:,3))]; | ||||
| sigma_3d=[sqrt(var(v_3d(:,1))) ; sqrt(var(v_3d(:,2))) ; sqrt(var(v_3d(:,3)))]; | ||||
| % 3D Mean and Variance | ||||
| mean_3d = [mean(v_3d(:,1)) ; mean(v_3d(:,2)) ; mean(v_3d(:,3))]; | ||||
| sigma_3d = [sqrt(var(v_3d(:,1))) ; sqrt(var(v_3d(:,2))) ; sqrt(var(v_3d(:,3)))]; | ||||
|  | ||||
| % absolute mean error | ||||
| % 2D | ||||
| error_2D_vec = [mean_utm_X-mean_2d(1) mean_utm_Y-mean_2d(2)]; | ||||
| error_2D_m = norm(error_2D_vec) | ||||
|  | ||||
| error_2D_vec=[mean_utm_X-mean_2d(1) mean_utm_Y-mean_2d(2)]; | ||||
| error_2D_m=norm(error_2D_vec) | ||||
| error_3D_vec = [mean_utm_X-mean_3d(1) mean_utm_Y-mean_3d(2) mean_utm_Z-mean_3d(3)]; | ||||
| error_3D_m = norm(error_3D_vec) | ||||
|  | ||||
| error_3D_vec=[mean_utm_X-mean_3d(1) mean_utm_Y-mean_3d(2) mean_utm_Z-mean_3d(3)]; | ||||
| error_3D_m=norm(error_3D_vec) | ||||
| RMSE_X = sqrt(mean((v_3d(:,1)-mean_utm_X).^2)) | ||||
| RMSE_Y = sqrt(mean((v_3d(:,2)-mean_utm_Y).^2)) | ||||
| RMSE_Z = sqrt(mean((v_3d(:,3)-mean_utm_Z).^2)) | ||||
|  | ||||
| % RMSE 2D | ||||
| RMSE_2D = sqrt(mean((v_2d(:,1)-mean_utm_X).^2 + (v_2d(:,2)-mean_utm_Y).^2)) | ||||
| RMSE_3D = sqrt(mean((v_3d(:,1)-mean_utm_X).^2 + (v_3d(:,2)-mean_utm_Y).^2 + (v_3d(:,3)-mean_utm_Z).^2)) | ||||
|  | ||||
| RMSE_X=sqrt(mean((v_3d(:,1)-mean_utm_X).^2)) | ||||
| RMSE_Y=sqrt(mean((v_3d(:,2)-mean_utm_Y).^2)) | ||||
| RMSE_Z=sqrt(mean((v_3d(:,3)-mean_utm_Z).^2)) | ||||
| % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50% | ||||
| SEP = 0.51 * sqrt(sigma_3d(1)^2 + sigma_3d(2)^2 + sigma_3d(3)^2) | ||||
| % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61% | ||||
| MRSE = sqrt(sigma_3d(1)^2 + sigma_3d(2)^2 + sigma_3d(3)^2) | ||||
| % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% | ||||
| TWO_MRSE = 2 * MRSE | ||||
|  | ||||
|  | ||||
| RMSE_2D=sqrt(mean((v_2d(:,1)-mean_utm_X).^2+(v_2d(:,2)-mean_utm_Y).^2)) | ||||
|  | ||||
| RMSE_3D=sqrt(mean((v_3d(:,1)-mean_utm_X).^2+(v_3d(:,2)-mean_utm_Y).^2+(v_3d(:,3)-mean_utm_Z).^2)) | ||||
|  | ||||
| % SCATTER PLOT | ||||
| %% SCATTER PLOT 2D | ||||
| subplot(3,3,8) | ||||
| scatter(v_2d(:,1)-mean_2d(1),v_2d(:,2)-mean_2d(2)); | ||||
| scatter(v_2d(:,1)-mean_2d(1), v_2d(:,2)-mean_2d(2)); | ||||
| hold on; | ||||
|  | ||||
| plot(0,0,'k*'); | ||||
| plot(0, 0, 'k*'); | ||||
|  | ||||
| [x,y,z] = cylinder([TWO_DRMS TWO_DRMS], 200); | ||||
| plot(x(1,:), y(1,:), 'Color', [0 0.6 0]); | ||||
| str = strcat('2DRMS=', num2str(TWO_DRMS), ' m'); | ||||
| text(cosd(65)*TWO_DRMS, sind(65)*TWO_DRMS, str, 'Color', [0 0.6 0]); | ||||
|  | ||||
| [x,y,z] = cylinder([TWO_DRMS TWO_DRMS],200); | ||||
| plot(x(1,:),y(1,:),'Color',[0 0.6 0]); | ||||
| str = strcat('2DRMS=',num2str(TWO_DRMS), ' m'); | ||||
| text(cosd(65)*TWO_DRMS,sind(65)*TWO_DRMS,str,'Color',[0 0.6 0]); | ||||
|  | ||||
|  | ||||
| [x,y,z] = cylinder([CEP CEP],200); | ||||
|  | ||||
| plot(x(1,:),y(1,:),'r--'); | ||||
| str = strcat('CEP=',num2str(CEP), ' m'); | ||||
| text(cosd(80)*CEP,sind(80)*CEP,str,'Color','r'); | ||||
| [x,y,z] = cylinder([CEP CEP], 200); | ||||
| plot(x(1,:), y(1,:), 'r--'); | ||||
| str = strcat('CEP=', num2str(CEP), ' m'); | ||||
| text(cosd(80)*CEP, sind(80)*CEP, str, 'Color','r'); | ||||
|  | ||||
| grid on | ||||
| axis equal; | ||||
| xlabel('North [m]','fontname','Times','fontsize', fontsize) | ||||
| ylabel('East [m]','fontname','Times','fontsize', fontsize) | ||||
|  | ||||
| % 3D analysis | ||||
| % Simulated X,Y,Z measurements | ||||
|  | ||||
| % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50% | ||||
| SEP=0.51*sqrt(sigma_3d(1)^2+sigma_3d(2)^2+sigma_3d(3)^2) | ||||
|  | ||||
| % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61% | ||||
| MRSE=sqrt(sigma_3d(1)^2+sigma_3d(2)^2+sigma_3d(3)^2) | ||||
| % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% | ||||
| TWO_MRSE=2*MRSE | ||||
|  | ||||
|  | ||||
|  | ||||
| % SCATTER PLOT | ||||
| %% SCATTER PLOT 3D | ||||
| subplot(3,3,9) | ||||
| scatter3(v_3d(:,1)-mean_3d(1),v_3d(:,2)-mean_3d(2), v_3d(:,3)-mean_3d(3)); | ||||
| scatter3(v_3d(:,1)-mean_3d(1), v_3d(:,2)-mean_3d(2), v_3d(:,3)-mean_3d(3)); | ||||
|  | ||||
| hold on; | ||||
|  | ||||
| [x,y,z] = sphere(); | ||||
| hSurface=surf(MRSE*x,MRSE*y,MRSE*z);  % sphere centered at origin | ||||
| hSurface = surf(MRSE*x, MRSE*y, MRSE*z);  % sphere centered at origin | ||||
| set(hSurface, 'facecolor', 'none', 'edgecolor', [0 0.6 0], 'edgealpha', 1, 'facealpha', 1); | ||||
|  | ||||
| set(hSurface,'facecolor','none','edgecolor',[0 0.6 0],'edgealpha',1,'facealpha',1); | ||||
| xlabel('North [m]', 'fontname', 'Times', 'fontsize', fontsize-2) | ||||
| ylabel('East [m]', 'fontname', 'Times', 'fontsize', fontsize-2) | ||||
| zlabel('Up [m]', 'fontname', 'Times', 'fontsize', fontsize-2) | ||||
| str = strcat('MRSE=', num2str(MRSE), ' m') | ||||
| text(cosd(45)*MRSE, sind(45)*MRSE, 20, str, 'Color', [0 0.6 0]); | ||||
| a = gca; | ||||
| set(a, 'fontsize', fontsize-6) | ||||
|  | ||||
| %axis equal; | ||||
| xlabel('North [m]','fontname','Times','fontsize', fontsize-2) | ||||
| ylabel('East [m]','fontname','Times','fontsize', fontsize-2) | ||||
| zlabel('Up [m]','fontname','Times','fontsize', fontsize-2) | ||||
| str = strcat('MRSE=',num2str(MRSE), ' m') | ||||
| text(cosd(45)*MRSE,sind(45)*MRSE,20,str,'Color',[0 0.6 0]); | ||||
| a=gca; | ||||
| set(a,'fontsize',fontsize-6) | ||||
|  | ||||
| hh=findall(hf,'-property','FontName'); | ||||
| set(hh,'FontName','Times'); | ||||
| hh = findall(hf, '-property', 'FontName'); | ||||
| set(hh, 'FontName', 'Times'); | ||||
| print(hf, 'Figure2.eps', '-depsc') | ||||
| close(hf); | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Carles Fernandez
					Carles Fernandez