1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 04:30:33 +00:00

Clean up Matlab/Octave code

This commit is contained in:
Carles Fernandez 2018-03-30 11:34:31 +02:00
parent 5dea6da9e0
commit c58107d56c

View File

@ -1,32 +1,28 @@
% /*!
% * \file plot_dump.m
% * \brief Read GNSS-SDR Tracking dump binary file and plot some internal
% variables
% * \author Antonio Ramos, 2018. antonio.ramos(at)cttc.es
% * -------------------------------------------------------------------------
% *
% * Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
% *
% * GNSS-SDR is a software defined Global Navigation
% * Satellite Systems receiver
% *
% * This file is part of GNSS-SDR.
% *
% * GNSS-SDR is free software: you can redistribute it and/or modify
% * it under the terms of the GNU General Public License as published by
% * the Free Software Foundation, either version 3 of the License, or
% * at your option) any later version.
% *
% * GNSS-SDR is distributed in the hope that it will be useful,
% * but WITHOUT ANY WARRANTY; without even the implied warranty of
% * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% * GNU General Public License for more details.
% *
% * You should have received a copy of the GNU General Public License
% * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
% *
% * -------------------------------------------------------------------------
% */
% -------------------------------------------------------------------------
%
% Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
%
% GNSS-SDR is a software defined Global Navigation
% Satellite Systems receiver
%
% This file is part of GNSS-SDR.
%
% GNSS-SDR is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% at your option) any later version.
%
% GNSS-SDR is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
%
% -------------------------------------------------------------------------
%
% Antonio Ramos, 2018. antonio.ramos(at)cttc.es
clear all;
clc;
@ -109,7 +105,6 @@ v_3d=[E;N;U].'; %2D East Nort position vectors
sigma_E_accuracy = sqrt((1/(numPoints-1)) * sum((v_2d(:,1) - mean_utm_X).^2));
sigma_N_accuracy = sqrt((1/(numPoints-1)) * sum((v_2d(:,2) - mean_utm_Y).^2));
sigma_ratio_2d_accuracy = sigma_N_accuracy / sigma_E_accuracy
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65%
@ -125,7 +120,6 @@ sigma_U_accuracy=sqrt((1/(numPoints-1))*sum((v_3d(:,3)-mean_utm_Z).^2));
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50%
SEP_accuracy = 0.51 * sqrt(sigma_E_accuracy^2 + sigma_N_accuracy^2 + sigma_U_accuracy^2)
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61%
MRSE_accuracy = sqrt(sigma_E_accuracy^2 + sigma_N_accuracy^2 + sigma_U_accuracy^2)
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
@ -135,14 +129,9 @@ TWO_MRSE_accuracy=2*MRSE_accuracy
%% PRECISION
% 2D analysis
% Simulated X,Y measurements
%v1=randn(1000,2);
% 2D Mean and Variance
mean_2d = [mean(v_2d(:,1)) ; mean(v_2d(:,2))];
sigma_2d = [sqrt(var(v_2d(:,1))) ; sqrt(var(v_2d(:,2)))];
sigma_ratio_2d = sigma_2d(2) / sigma_2d(1)
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65%
@ -152,47 +141,45 @@ TWO_DRMS=2*DRMS
% if sigma_ratio>0.3 -> Prob in circle with r=CEP -> 50%
CEP = 0.62 * sigma_2d(1) + 0.56 * sigma_2d(2)
% Mean and Variance
% 3D Mean and Variance
mean_3d = [mean(v_3d(:,1)) ; mean(v_3d(:,2)) ; mean(v_3d(:,3))];
sigma_3d = [sqrt(var(v_3d(:,1))) ; sqrt(var(v_3d(:,2))) ; sqrt(var(v_3d(:,3)))];
% absolute mean error
% 2D
error_2D_vec = [mean_utm_X-mean_2d(1) mean_utm_Y-mean_2d(2)];
error_2D_m = norm(error_2D_vec)
error_3D_vec = [mean_utm_X-mean_3d(1) mean_utm_Y-mean_3d(2) mean_utm_Z-mean_3d(3)];
error_3D_m = norm(error_3D_vec)
% RMSE 2D
RMSE_X = sqrt(mean((v_3d(:,1)-mean_utm_X).^2))
RMSE_Y = sqrt(mean((v_3d(:,2)-mean_utm_Y).^2))
RMSE_Z = sqrt(mean((v_3d(:,3)-mean_utm_Z).^2))
RMSE_2D = sqrt(mean((v_2d(:,1)-mean_utm_X).^2 + (v_2d(:,2)-mean_utm_Y).^2))
RMSE_3D = sqrt(mean((v_3d(:,1)-mean_utm_X).^2 + (v_3d(:,2)-mean_utm_Y).^2 + (v_3d(:,3)-mean_utm_Z).^2))
% SCATTER PLOT
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50%
SEP = 0.51 * sqrt(sigma_3d(1)^2 + sigma_3d(2)^2 + sigma_3d(3)^2)
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61%
MRSE = sqrt(sigma_3d(1)^2 + sigma_3d(2)^2 + sigma_3d(3)^2)
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
TWO_MRSE = 2 * MRSE
%% SCATTER PLOT 2D
subplot(3,3,8)
scatter(v_2d(:,1)-mean_2d(1), v_2d(:,2)-mean_2d(2));
hold on;
plot(0, 0, 'k*');
[x,y,z] = cylinder([TWO_DRMS TWO_DRMS], 200);
plot(x(1,:), y(1,:), 'Color', [0 0.6 0]);
str = strcat('2DRMS=', num2str(TWO_DRMS), ' m');
text(cosd(65)*TWO_DRMS, sind(65)*TWO_DRMS, str, 'Color', [0 0.6 0]);
[x,y,z] = cylinder([CEP CEP], 200);
plot(x(1,:), y(1,:), 'r--');
str = strcat('CEP=', num2str(CEP), ' m');
text(cosd(80)*CEP, sind(80)*CEP, str, 'Color','r');
@ -202,20 +189,9 @@ axis equal;
xlabel('North [m]','fontname','Times','fontsize', fontsize)
ylabel('East [m]','fontname','Times','fontsize', fontsize)
% 3D analysis
% Simulated X,Y,Z measurements
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50%
SEP=0.51*sqrt(sigma_3d(1)^2+sigma_3d(2)^2+sigma_3d(3)^2)
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61%
MRSE=sqrt(sigma_3d(1)^2+sigma_3d(2)^2+sigma_3d(3)^2)
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
TWO_MRSE=2*MRSE
% SCATTER PLOT
%% SCATTER PLOT 3D
subplot(3,3,9)
scatter3(v_3d(:,1)-mean_3d(1), v_3d(:,2)-mean_3d(2), v_3d(:,3)-mean_3d(3));
@ -223,10 +199,8 @@ hold on;
[x,y,z] = sphere();
hSurface = surf(MRSE*x, MRSE*y, MRSE*z); % sphere centered at origin
set(hSurface, 'facecolor', 'none', 'edgecolor', [0 0.6 0], 'edgealpha', 1, 'facealpha', 1);
%axis equal;
xlabel('North [m]', 'fontname', 'Times', 'fontsize', fontsize-2)
ylabel('East [m]', 'fontname', 'Times', 'fontsize', fontsize-2)
zlabel('Up [m]', 'fontname', 'Times', 'fontsize', fontsize-2)