1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 04:30:33 +00:00

Clean up Matlab/Octave code

This commit is contained in:
Carles Fernandez 2018-03-30 11:34:31 +02:00
parent 5dea6da9e0
commit c58107d56c

View File

@ -1,32 +1,28 @@
% /*! % -------------------------------------------------------------------------
% * \file plot_dump.m %
% * \brief Read GNSS-SDR Tracking dump binary file and plot some internal % Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
% variables %
% * \author Antonio Ramos, 2018. antonio.ramos(at)cttc.es % GNSS-SDR is a software defined Global Navigation
% * ------------------------------------------------------------------------- % Satellite Systems receiver
% * %
% * Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors) % This file is part of GNSS-SDR.
% * %
% * GNSS-SDR is a software defined Global Navigation % GNSS-SDR is free software: you can redistribute it and/or modify
% * Satellite Systems receiver % it under the terms of the GNU General Public License as published by
% * % the Free Software Foundation, either version 3 of the License, or
% * This file is part of GNSS-SDR. % at your option) any later version.
% * %
% * GNSS-SDR is free software: you can redistribute it and/or modify % GNSS-SDR is distributed in the hope that it will be useful,
% * it under the terms of the GNU General Public License as published by % but WITHOUT ANY WARRANTY; without even the implied warranty of
% * the Free Software Foundation, either version 3 of the License, or % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% * at your option) any later version. % GNU General Public License for more details.
% * %
% * GNSS-SDR is distributed in the hope that it will be useful, % You should have received a copy of the GNU General Public License
% * but WITHOUT ANY WARRANTY; without even the implied warranty of % along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
% * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %
% * GNU General Public License for more details. % -------------------------------------------------------------------------
% * %
% * You should have received a copy of the GNU General Public License % Antonio Ramos, 2018. antonio.ramos(at)cttc.es
% * along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
% *
% * -------------------------------------------------------------------------
% */
clear all; clear all;
clc; clc;
@ -84,158 +80,136 @@ end
fclose(fileID); fclose(fileID);
mean_Latitude=mean(navsol.lat); mean_Latitude = mean(navsol.lat);
mean_Longitude=mean(navsol.long); mean_Longitude = mean(navsol.long);
mean_h=mean(navsol.height); mean_h = mean(navsol.height);
utmZone = findUtmZone(mean_Latitude,mean_Longitude); utmZone = findUtmZone(mean_Latitude, mean_Longitude);
[ref_X_cart,ref_Y_cart,ref_Z_cart]=geo2cart(dms2mat(deg2dms(mean_Latitude)), dms2mat(deg2dms(mean_Longitude)), mean_h, 5); [ref_X_cart, ref_Y_cart, ref_Z_cart] = geo2cart(dms2mat(deg2dms(mean_Latitude)), dms2mat(deg2dms(mean_Longitude)), mean_h, 5);
[mean_utm_X,mean_utm_Y,mean_utm_Z]=cart2utm(ref_X_cart,ref_Y_cart,ref_Z_cart,utmZone); [mean_utm_X, mean_utm_Y, mean_utm_Z] = cart2utm(ref_X_cart, ref_Y_cart, ref_Z_cart, utmZone);
numPoints=length(navsol.X); numPoints = length(navsol.X);
aux=0; aux = 0;
for n=1:numPoints for n = 1:numPoints
aux=aux+1; aux = aux+1;
[E(aux),N(aux),U(aux)]=cart2utm(navsol.X(n), navsol.Y(n), navsol.Z(n), utmZone); [E(aux), N(aux), U(aux)] = cart2utm(navsol.X(n), navsol.Y(n), navsol.Z(n), utmZone);
end end
v_2d=[E;N].'; %2D East Nort position vectors v_2d = [E;N].'; % 2D East Nort position vectors
v_3d=[E;N;U].'; %2D East Nort position vectors v_3d = [E;N;U].'; % 2D East Nort position vectors
%% ACCURACY %% ACCURACY
% 2D ------------------- % 2D -------------------
sigma_E_accuracy=sqrt((1/(numPoints-1))*sum((v_2d(:,1)-mean_utm_X).^2)); sigma_E_accuracy = sqrt((1/(numPoints-1)) * sum((v_2d(:,1) - mean_utm_X).^2));
sigma_N_accuracy=sqrt((1/(numPoints-1))*sum((v_2d(:,2)-mean_utm_Y).^2)); sigma_N_accuracy = sqrt((1/(numPoints-1)) * sum((v_2d(:,2) - mean_utm_Y).^2));
sigma_ratio_2d_accuracy = sigma_N_accuracy / sigma_E_accuracy
sigma_ratio_2d_accuracy=sigma_N_accuracy/sigma_E_accuracy
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65% % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65%
DRMS_accuracy=sqrt(sigma_E_accuracy^2+sigma_N_accuracy^2) DRMS_accuracy = sqrt(sigma_E_accuracy^2 + sigma_N_accuracy^2)
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
TWO_DRMS_accuracy=2*DRMS_accuracy TWO_DRMS_accuracy = 2 * DRMS_accuracy
% if sigma_ratio>0.3 -> Prob in circle with r=CEP -> 50% % if sigma_ratio>0.3 -> Prob in circle with r=CEP -> 50%
CEP_accuracy=0.62*sigma_E_accuracy+0.56*sigma_N_accuracy CEP_accuracy = 0.62 * sigma_E_accuracy + 0.56 * sigma_N_accuracy
% 3D ------------------- % 3D -------------------
sigma_U_accuracy=sqrt((1/(numPoints-1))*sum((v_3d(:,3)-mean_utm_Z).^2)); sigma_U_accuracy = sqrt((1/(numPoints-1)) * sum((v_3d(:,3) - mean_utm_Z).^2));
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50% % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50%
SEP_accuracy=0.51*sqrt(sigma_E_accuracy^2+sigma_N_accuracy^2+sigma_U_accuracy^2) SEP_accuracy = 0.51 * sqrt(sigma_E_accuracy^2 + sigma_N_accuracy^2 + sigma_U_accuracy^2)
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61% % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61%
MRSE_accuracy=sqrt(sigma_E_accuracy^2+sigma_N_accuracy^2+sigma_U_accuracy^2) MRSE_accuracy = sqrt(sigma_E_accuracy^2 + sigma_N_accuracy^2 + sigma_U_accuracy^2)
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
TWO_MRSE_accuracy=2*MRSE_accuracy TWO_MRSE_accuracy=2 * MRSE_accuracy
%% PRECISION %% PRECISION
% 2D analysis
% Simulated X,Y measurements
%v1=randn(1000,2);
% 2D Mean and Variance % 2D Mean and Variance
mean_2d = [mean(v_2d(:,1)) ; mean(v_2d(:,2))]; mean_2d = [mean(v_2d(:,1)) ; mean(v_2d(:,2))];
sigma_2d = [sqrt(var(v_2d(:,1))) ; sqrt(var(v_2d(:,2)))]; sigma_2d = [sqrt(var(v_2d(:,1))) ; sqrt(var(v_2d(:,2)))];
sigma_ratio_2d = sigma_2d(2) / sigma_2d(1)
sigma_ratio_2d=sigma_2d(2)/sigma_2d(1)
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65% % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 65%
DRMS=sqrt(sigma_2d(1)^2+sigma_2d(2)^2) DRMS = sqrt(sigma_2d(1)^2 + sigma_2d(2)^2)
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95% % if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
TWO_DRMS=2*DRMS TWO_DRMS = 2 * DRMS
% if sigma_ratio>0.3 -> Prob in circle with r=CEP -> 50% % if sigma_ratio>0.3 -> Prob in circle with r=CEP -> 50%
CEP=0.62*sigma_2d(1)+0.56*sigma_2d(2) CEP = 0.62 * sigma_2d(1) + 0.56 * sigma_2d(2)
% 3D Mean and Variance
% Mean and Variance mean_3d = [mean(v_3d(:,1)) ; mean(v_3d(:,2)) ; mean(v_3d(:,3))];
mean_3d=[mean(v_3d(:,1)) ; mean(v_3d(:,2)) ; mean(v_3d(:,3))]; sigma_3d = [sqrt(var(v_3d(:,1))) ; sqrt(var(v_3d(:,2))) ; sqrt(var(v_3d(:,3)))];
sigma_3d=[sqrt(var(v_3d(:,1))) ; sqrt(var(v_3d(:,2))) ; sqrt(var(v_3d(:,3)))];
% absolute mean error % absolute mean error
% 2D error_2D_vec = [mean_utm_X-mean_2d(1) mean_utm_Y-mean_2d(2)];
error_2D_m = norm(error_2D_vec)
error_2D_vec=[mean_utm_X-mean_2d(1) mean_utm_Y-mean_2d(2)]; error_3D_vec = [mean_utm_X-mean_3d(1) mean_utm_Y-mean_3d(2) mean_utm_Z-mean_3d(3)];
error_2D_m=norm(error_2D_vec) error_3D_m = norm(error_3D_vec)
error_3D_vec=[mean_utm_X-mean_3d(1) mean_utm_Y-mean_3d(2) mean_utm_Z-mean_3d(3)]; RMSE_X = sqrt(mean((v_3d(:,1)-mean_utm_X).^2))
error_3D_m=norm(error_3D_vec) RMSE_Y = sqrt(mean((v_3d(:,2)-mean_utm_Y).^2))
RMSE_Z = sqrt(mean((v_3d(:,3)-mean_utm_Z).^2))
% RMSE 2D RMSE_2D = sqrt(mean((v_2d(:,1)-mean_utm_X).^2 + (v_2d(:,2)-mean_utm_Y).^2))
RMSE_3D = sqrt(mean((v_3d(:,1)-mean_utm_X).^2 + (v_3d(:,2)-mean_utm_Y).^2 + (v_3d(:,3)-mean_utm_Z).^2))
RMSE_X=sqrt(mean((v_3d(:,1)-mean_utm_X).^2)) % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50%
RMSE_Y=sqrt(mean((v_3d(:,2)-mean_utm_Y).^2)) SEP = 0.51 * sqrt(sigma_3d(1)^2 + sigma_3d(2)^2 + sigma_3d(3)^2)
RMSE_Z=sqrt(mean((v_3d(:,3)-mean_utm_Z).^2)) % if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61%
MRSE = sqrt(sigma_3d(1)^2 + sigma_3d(2)^2 + sigma_3d(3)^2)
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
TWO_MRSE = 2 * MRSE
RMSE_2D=sqrt(mean((v_2d(:,1)-mean_utm_X).^2+(v_2d(:,2)-mean_utm_Y).^2)) %% SCATTER PLOT 2D
RMSE_3D=sqrt(mean((v_3d(:,1)-mean_utm_X).^2+(v_3d(:,2)-mean_utm_Y).^2+(v_3d(:,3)-mean_utm_Z).^2))
% SCATTER PLOT
subplot(3,3,8) subplot(3,3,8)
scatter(v_2d(:,1)-mean_2d(1),v_2d(:,2)-mean_2d(2)); scatter(v_2d(:,1)-mean_2d(1), v_2d(:,2)-mean_2d(2));
hold on; hold on;
plot(0,0,'k*'); plot(0, 0, 'k*');
[x,y,z] = cylinder([TWO_DRMS TWO_DRMS], 200);
plot(x(1,:), y(1,:), 'Color', [0 0.6 0]);
str = strcat('2DRMS=', num2str(TWO_DRMS), ' m');
text(cosd(65)*TWO_DRMS, sind(65)*TWO_DRMS, str, 'Color', [0 0.6 0]);
[x,y,z] = cylinder([TWO_DRMS TWO_DRMS],200); [x,y,z] = cylinder([CEP CEP], 200);
plot(x(1,:),y(1,:),'Color',[0 0.6 0]); plot(x(1,:), y(1,:), 'r--');
str = strcat('2DRMS=',num2str(TWO_DRMS), ' m'); str = strcat('CEP=', num2str(CEP), ' m');
text(cosd(65)*TWO_DRMS,sind(65)*TWO_DRMS,str,'Color',[0 0.6 0]); text(cosd(80)*CEP, sind(80)*CEP, str, 'Color','r');
[x,y,z] = cylinder([CEP CEP],200);
plot(x(1,:),y(1,:),'r--');
str = strcat('CEP=',num2str(CEP), ' m');
text(cosd(80)*CEP,sind(80)*CEP,str,'Color','r');
grid on grid on
axis equal; axis equal;
xlabel('North [m]','fontname','Times','fontsize', fontsize) xlabel('North [m]','fontname','Times','fontsize', fontsize)
ylabel('East [m]','fontname','Times','fontsize', fontsize) ylabel('East [m]','fontname','Times','fontsize', fontsize)
% 3D analysis
% Simulated X,Y,Z measurements
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 50%
SEP=0.51*sqrt(sigma_3d(1)^2+sigma_3d(2)^2+sigma_3d(3)^2)
% if sigma_ratio=1 -> Prob in circle with r=DRMS -> 61%
MRSE=sqrt(sigma_3d(1)^2+sigma_3d(2)^2+sigma_3d(3)^2)
% if sigma_ratio=1 -> Prob in circle with r=2DRMS -> 95%
TWO_MRSE=2*MRSE
%% SCATTER PLOT 3D
% SCATTER PLOT
subplot(3,3,9) subplot(3,3,9)
scatter3(v_3d(:,1)-mean_3d(1),v_3d(:,2)-mean_3d(2), v_3d(:,3)-mean_3d(3)); scatter3(v_3d(:,1)-mean_3d(1), v_3d(:,2)-mean_3d(2), v_3d(:,3)-mean_3d(3));
hold on; hold on;
[x,y,z] = sphere(); [x,y,z] = sphere();
hSurface=surf(MRSE*x,MRSE*y,MRSE*z); % sphere centered at origin hSurface = surf(MRSE*x, MRSE*y, MRSE*z); % sphere centered at origin
set(hSurface, 'facecolor', 'none', 'edgecolor', [0 0.6 0], 'edgealpha', 1, 'facealpha', 1);
set(hSurface,'facecolor','none','edgecolor',[0 0.6 0],'edgealpha',1,'facealpha',1); xlabel('North [m]', 'fontname', 'Times', 'fontsize', fontsize-2)
ylabel('East [m]', 'fontname', 'Times', 'fontsize', fontsize-2)
zlabel('Up [m]', 'fontname', 'Times', 'fontsize', fontsize-2)
str = strcat('MRSE=', num2str(MRSE), ' m')
text(cosd(45)*MRSE, sind(45)*MRSE, 20, str, 'Color', [0 0.6 0]);
a = gca;
set(a, 'fontsize', fontsize-6)
%axis equal; hh = findall(hf, '-property', 'FontName');
xlabel('North [m]','fontname','Times','fontsize', fontsize-2) set(hh, 'FontName', 'Times');
ylabel('East [m]','fontname','Times','fontsize', fontsize-2)
zlabel('Up [m]','fontname','Times','fontsize', fontsize-2)
str = strcat('MRSE=',num2str(MRSE), ' m')
text(cosd(45)*MRSE,sind(45)*MRSE,20,str,'Color',[0 0.6 0]);
a=gca;
set(a,'fontsize',fontsize-6)
hh=findall(hf,'-property','FontName');
set(hh,'FontName','Times');
print(hf, 'Figure2.eps', '-depsc') print(hf, 'Figure2.eps', '-depsc')
close(hf); close(hf);