|
|
|
|
@@ -334,254 +334,6 @@ static inline void volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc
|
|
|
|
|
#endif /* LV_HAVE_SSE3 */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//#ifdef LV_HAVE_SSE3
|
|
|
|
|
//#include <pmmintrin.h>
|
|
|
|
|
|
|
|
|
|
//static inline void volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn_a_sse3_reload(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const int16_t** in_a, int num_a_vectors, unsigned int num_points)
|
|
|
|
|
//{
|
|
|
|
|
//lv_16sc_t dotProduct = lv_cmake(0,0);
|
|
|
|
|
|
|
|
|
|
//const unsigned int sse_iters = num_points / 4;
|
|
|
|
|
//const unsigned int ROTATOR_RELOAD = 128;
|
|
|
|
|
//int n_vec;
|
|
|
|
|
//int i;
|
|
|
|
|
//unsigned int number;
|
|
|
|
|
//unsigned int j;
|
|
|
|
|
//unsigned int n;
|
|
|
|
|
|
|
|
|
|
//const int16_t** _in_a = in_a;
|
|
|
|
|
//const lv_16sc_t* _in_common = in_common;
|
|
|
|
|
//lv_16sc_t* _out = result;
|
|
|
|
|
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
|
|
|
|
|
|
|
|
|
//__m128i* realcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment());
|
|
|
|
|
//__m128i* imagcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment());
|
|
|
|
|
|
|
|
|
|
//for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//realcacc[n_vec] = _mm_setzero_si128();
|
|
|
|
|
//imagcacc[n_vec] = _mm_setzero_si128();
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//__m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl;
|
|
|
|
|
|
|
|
|
|
//mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0);
|
|
|
|
|
//mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255);
|
|
|
|
|
|
|
|
|
|
//// phase rotation registers
|
|
|
|
|
//__m128 pa, pb, two_phase_acc_reg, two_phase_inc_reg;
|
|
|
|
|
//__m128i pc1, pc2;
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) lv_32fc_t two_phase_inc[2];
|
|
|
|
|
//two_phase_inc[0] = phase_inc * phase_inc;
|
|
|
|
|
//two_phase_inc[1] = phase_inc * phase_inc;
|
|
|
|
|
//two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc);
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) lv_32fc_t two_phase_acc[2];
|
|
|
|
|
//two_phase_acc[0] = (*phase);
|
|
|
|
|
//two_phase_acc[1] = (*phase) * phase_inc;
|
|
|
|
|
//two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc);
|
|
|
|
|
//__m128 yl, yh, tmp1, tmp2, tmp3;
|
|
|
|
|
//lv_16sc_t tmp16;
|
|
|
|
|
//lv_32fc_t tmp32;
|
|
|
|
|
|
|
|
|
|
//for (number = 0; number < sse_iters / ROTATOR_RELOAD; ++number)
|
|
|
|
|
//{
|
|
|
|
|
//for (j = 0; j < ROTATOR_RELOAD; j++)
|
|
|
|
|
//{
|
|
|
|
|
//// Phase rotation on operand in_common starts here:
|
|
|
|
|
////printf("generic phase %i: %f,%f\n", n*4,lv_creal(*phase),lv_cimag(*phase));
|
|
|
|
|
//pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
|
|
|
|
////complex 32fc multiplication b=a*two_phase_acc_reg
|
|
|
|
|
//yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
|
|
|
|
//yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
|
|
|
|
//tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
|
|
|
|
//pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
|
|
|
|
//tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
|
|
|
|
//pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
|
|
|
|
//pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
|
|
|
|
|
|
|
|
|
|
////complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
|
|
|
|
//yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
|
|
|
|
//yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
|
|
|
|
//tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
|
|
|
|
//tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
|
|
|
|
//tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
|
|
|
|
//two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
|
|
|
|
|
|
|
|
|
////next two samples
|
|
|
|
|
//_in_common += 2;
|
|
|
|
|
//pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
|
|
|
|
//__VOLK_GNSSSDR_PREFETCH(_in_common + 8);
|
|
|
|
|
////complex 32fc multiplication b=a*two_phase_acc_reg
|
|
|
|
|
//yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
|
|
|
|
//yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
|
|
|
|
//tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
|
|
|
|
//pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
|
|
|
|
//tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
|
|
|
|
//pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
|
|
|
|
//pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
|
|
|
|
|
|
|
|
|
|
////complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
|
|
|
|
//yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
|
|
|
|
//yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
|
|
|
|
//tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
|
|
|
|
//tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
|
|
|
|
//tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
|
|
|
|
//two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
|
|
|
|
|
|
|
|
|
//// store four rotated in_common samples in the register b
|
|
|
|
|
//b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic
|
|
|
|
|
|
|
|
|
|
////next two samples
|
|
|
|
|
//_in_common += 2;
|
|
|
|
|
|
|
|
|
|
//for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//a = _mm_load_si128((__m128i*)&(_in_a[n_vec][(number * ROTATOR_RELOAD + j) * 4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
|
|
|
|
|
|
|
|
|
//c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
|
|
|
|
|
|
|
|
|
|
//c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
|
|
|
|
|
//real = _mm_subs_epi16(c, c_sr);
|
|
|
|
|
|
|
|
|
|
//b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
|
|
|
|
|
//a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
|
|
|
|
|
|
|
|
|
|
//imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
|
|
|
|
|
//imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
|
|
|
|
|
|
|
|
|
|
//imag = _mm_adds_epi16(imag1, imag2);
|
|
|
|
|
|
|
|
|
|
//realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real);
|
|
|
|
|
//imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag);
|
|
|
|
|
//}
|
|
|
|
|
//}
|
|
|
|
|
//// regenerate phase
|
|
|
|
|
//tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
|
|
|
|
|
//tmp2 = _mm_hadd_ps(tmp1, tmp1);
|
|
|
|
|
//tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
|
|
|
|
|
//tmp2 = _mm_sqrt_ps(tmp1);
|
|
|
|
|
//two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//for (j = 0; j < sse_iters % ROTATOR_RELOAD; j++)
|
|
|
|
|
//{
|
|
|
|
|
//pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
|
|
|
|
////complex 32fc multiplication b=a*two_phase_acc_reg
|
|
|
|
|
//yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
|
|
|
|
//yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
|
|
|
|
//tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
|
|
|
|
//pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
|
|
|
|
//tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
|
|
|
|
//pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
|
|
|
|
//pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
|
|
|
|
|
|
|
|
|
|
////complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
|
|
|
|
//yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
|
|
|
|
//yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
|
|
|
|
//tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
|
|
|
|
//tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
|
|
|
|
//tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
|
|
|
|
//two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
|
|
|
|
|
|
|
|
|
////next two samples
|
|
|
|
|
//_in_common += 2;
|
|
|
|
|
//pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
|
|
|
|
|
//__VOLK_GNSSSDR_PREFETCH(_in_common + 8);
|
|
|
|
|
////complex 32fc multiplication b=a*two_phase_acc_reg
|
|
|
|
|
//yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
|
|
|
|
//yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
|
|
|
|
//tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
|
|
|
|
//pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
|
|
|
|
//tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
|
|
|
|
//pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
|
|
|
|
//pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic
|
|
|
|
|
|
|
|
|
|
////complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg
|
|
|
|
|
//yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr
|
|
|
|
|
//yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di
|
|
|
|
|
//tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
|
|
|
|
|
//tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br
|
|
|
|
|
//tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
|
|
|
|
|
//two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
|
|
|
|
|
|
|
|
|
|
//// store four rotated in_common samples in the register b
|
|
|
|
|
//b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic
|
|
|
|
|
|
|
|
|
|
////next two samples
|
|
|
|
|
//_in_common += 2;
|
|
|
|
|
|
|
|
|
|
//for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//a = _mm_load_si128((__m128i*)&(_in_a[n_vec][((sse_iters / ROTATOR_RELOAD) * ROTATOR_RELOAD + j) * 4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
|
|
|
|
|
|
|
|
|
//c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
|
|
|
|
|
|
|
|
|
|
//c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
|
|
|
|
|
//real = _mm_subs_epi16(c, c_sr);
|
|
|
|
|
|
|
|
|
|
//b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
|
|
|
|
|
//a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
|
|
|
|
|
|
|
|
|
|
//imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
|
|
|
|
|
//imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
|
|
|
|
|
|
|
|
|
|
//imag = _mm_adds_epi16(imag1, imag2);
|
|
|
|
|
|
|
|
|
|
//realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real);
|
|
|
|
|
//imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag);
|
|
|
|
|
//}
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//realcacc[n_vec] = _mm_and_si128(realcacc[n_vec], mask_real);
|
|
|
|
|
//imagcacc[n_vec] = _mm_and_si128(imagcacc[n_vec], mask_imag);
|
|
|
|
|
|
|
|
|
|
//a = _mm_or_si128(realcacc[n_vec], imagcacc[n_vec]);
|
|
|
|
|
|
|
|
|
|
//_mm_store_si128((__m128i*)dotProductVector, a); // Store the results back into the dot product vector
|
|
|
|
|
//dotProduct = lv_cmake(0,0);
|
|
|
|
|
//for (i = 0; i < 4; ++i)
|
|
|
|
|
//{
|
|
|
|
|
//dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])),
|
|
|
|
|
//sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i])));
|
|
|
|
|
//}
|
|
|
|
|
//_out[n_vec] = dotProduct;
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//volk_gnsssdr_free(realcacc);
|
|
|
|
|
//volk_gnsssdr_free(imagcacc);
|
|
|
|
|
|
|
|
|
|
//tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg);
|
|
|
|
|
//tmp2 = _mm_hadd_ps(tmp1, tmp1);
|
|
|
|
|
//tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8);
|
|
|
|
|
//tmp2 = _mm_sqrt_ps(tmp1);
|
|
|
|
|
//two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2);
|
|
|
|
|
|
|
|
|
|
//_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg);
|
|
|
|
|
////(*phase) = lv_cmake((float*)two_phase_acc[0], (float*)two_phase_acc[1]);
|
|
|
|
|
//(*phase) = two_phase_acc[0];
|
|
|
|
|
|
|
|
|
|
//for(n = sse_iters * 4; n < num_points; n++)
|
|
|
|
|
//{
|
|
|
|
|
//tmp16 = in_common[n]; //printf("a_sse phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase));
|
|
|
|
|
//tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase);
|
|
|
|
|
//tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32)));
|
|
|
|
|
//(*phase) *= phase_inc;
|
|
|
|
|
|
|
|
|
|
//for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//lv_16sc_t tmp = tmp16 * in_a[n_vec][n];
|
|
|
|
|
////lv_16sc_t tmp = lv_cmake(sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_creal(in_a[n_vec][n])), - sat_muls16i(lv_cimag(tmp16), lv_cimag(in_a[n_vec][n]))) , sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_cimag(in_a[n_vec][n])), sat_muls16i(lv_cimag(tmp16), lv_creal(in_a[n_vec][n]))));
|
|
|
|
|
//_out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)),
|
|
|
|
|
//sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp)));
|
|
|
|
|
//}
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//}
|
|
|
|
|
//#endif [> LV_HAVE_SSE3 <]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef LV_HAVE_SSE3
|
|
|
|
|
#include <pmmintrin.h>
|
|
|
|
|
@@ -985,13 +737,11 @@ static inline void volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn_u_avx2(lv_16sc
|
|
|
|
|
|
|
|
|
|
__VOLK_GNSSSDR_PREFETCH(_in_common + 16);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Store and convert 32ic to 16ic:
|
|
|
|
|
b2 = _mm256_packs_epi32(c1, c2);
|
|
|
|
|
|
|
|
|
|
b2 = _mm256_permutevar8x32_epi32(b2, perm_idx);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_in_common += 4;
|
|
|
|
|
for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
{
|
|
|
|
|
@@ -1049,558 +799,4 @@ static inline void volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn_u_avx2(lv_16sc
|
|
|
|
|
}
|
|
|
|
|
#endif /* LV_HAVE_AVX2 */
|
|
|
|
|
|
|
|
|
|
//#ifdef LV_HAVE_NEONV7
|
|
|
|
|
//#include <arm_neon.h>
|
|
|
|
|
|
|
|
|
|
//static inline void volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn_neon(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const int16_t** in_a, int num_a_vectors, unsigned int num_points)
|
|
|
|
|
//{
|
|
|
|
|
//const unsigned int neon_iters = num_points / 4;
|
|
|
|
|
|
|
|
|
|
//const int16_t** _in_a = in_a;
|
|
|
|
|
//const lv_16sc_t* _in_common = in_common;
|
|
|
|
|
//lv_16sc_t* _out = result;
|
|
|
|
|
//int n_vec;
|
|
|
|
|
//int i;
|
|
|
|
|
//unsigned int number;
|
|
|
|
|
//unsigned int n;
|
|
|
|
|
//lv_16sc_t tmp16_, tmp;
|
|
|
|
|
//lv_32fc_t tmp32_;
|
|
|
|
|
|
|
|
|
|
//if (neon_iters > 0)
|
|
|
|
|
//{
|
|
|
|
|
//lv_16sc_t dotProduct = lv_cmake(0,0);
|
|
|
|
|
//float arg_phase0 = cargf(*phase);
|
|
|
|
|
//float arg_phase_inc = cargf(phase_inc);
|
|
|
|
|
//float phase_est;
|
|
|
|
|
|
|
|
|
|
//lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc;
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) };
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) };
|
|
|
|
|
|
|
|
|
|
//float32x4_t _phase4_real = vld1q_f32(__phase4_real);
|
|
|
|
|
//float32x4_t _phase4_imag = vld1q_f32(__phase4_imag);
|
|
|
|
|
|
|
|
|
|
//lv_32fc_t phase2 = (lv_32fc_t)(*phase) * phase_inc;
|
|
|
|
|
//lv_32fc_t phase3 = phase2 * phase_inc;
|
|
|
|
|
//lv_32fc_t phase4 = phase3 * phase_inc;
|
|
|
|
|
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t __phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t __phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
|
|
|
|
|
|
|
|
|
|
//float32x4_t _phase_real = vld1q_f32(__phase_real);
|
|
|
|
|
//float32x4_t _phase_imag = vld1q_f32(__phase_imag);
|
|
|
|
|
|
|
|
|
|
//int16x4x2_t a_val, b_val, c_val;
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
|
|
|
|
//float32x4_t half = vdupq_n_f32(0.5f);
|
|
|
|
|
//int16x4x2_t tmp16;
|
|
|
|
|
//int32x4x2_t tmp32i;
|
|
|
|
|
|
|
|
|
|
//float32x4x2_t tmp32f, tmp32_real, tmp32_imag;
|
|
|
|
|
//float32x4_t sign, PlusHalf, Round;
|
|
|
|
|
|
|
|
|
|
//int16x4x2_t* accumulator = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment());
|
|
|
|
|
|
|
|
|
|
//for(n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//accumulator[n_vec].val[0] = vdup_n_s16(0);
|
|
|
|
|
//accumulator[n_vec].val[1] = vdup_n_s16(0);
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//for(number = 0; number < neon_iters; number++)
|
|
|
|
|
//{
|
|
|
|
|
//[> load 4 complex numbers (int 16 bits each component) <]
|
|
|
|
|
//tmp16 = vld2_s16((int16_t*)_in_common);
|
|
|
|
|
//__VOLK_GNSSSDR_PREFETCH(_in_common + 8);
|
|
|
|
|
//_in_common += 4;
|
|
|
|
|
|
|
|
|
|
//[> promote them to int 32 bits <]
|
|
|
|
|
//tmp32i.val[0] = vmovl_s16(tmp16.val[0]);
|
|
|
|
|
//tmp32i.val[1] = vmovl_s16(tmp16.val[1]);
|
|
|
|
|
|
|
|
|
|
//[> promote them to float 32 bits <]
|
|
|
|
|
//tmp32f.val[0] = vcvtq_f32_s32(tmp32i.val[0]);
|
|
|
|
|
//tmp32f.val[1] = vcvtq_f32_s32(tmp32i.val[1]);
|
|
|
|
|
|
|
|
|
|
//[> complex multiplication of four complex samples (float 32 bits each component) <]
|
|
|
|
|
//tmp32_real.val[0] = vmulq_f32(tmp32f.val[0], _phase_real);
|
|
|
|
|
//tmp32_real.val[1] = vmulq_f32(tmp32f.val[1], _phase_imag);
|
|
|
|
|
//tmp32_imag.val[0] = vmulq_f32(tmp32f.val[0], _phase_imag);
|
|
|
|
|
//tmp32_imag.val[1] = vmulq_f32(tmp32f.val[1], _phase_real);
|
|
|
|
|
|
|
|
|
|
//tmp32f.val[0] = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]);
|
|
|
|
|
//tmp32f.val[1] = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]);
|
|
|
|
|
|
|
|
|
|
//[> downcast results to int32 <]
|
|
|
|
|
//[> in __aarch64__ we can do that with vcvtaq_s32_f32(ret1); vcvtaq_s32_f32(ret2); <]
|
|
|
|
|
//sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[0]), 31)));
|
|
|
|
|
//PlusHalf = vaddq_f32(tmp32f.val[0], half);
|
|
|
|
|
//Round = vsubq_f32(PlusHalf, sign);
|
|
|
|
|
//tmp32i.val[0] = vcvtq_s32_f32(Round);
|
|
|
|
|
|
|
|
|
|
//sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[1]), 31)));
|
|
|
|
|
//PlusHalf = vaddq_f32(tmp32f.val[1], half);
|
|
|
|
|
//Round = vsubq_f32(PlusHalf, sign);
|
|
|
|
|
//tmp32i.val[1] = vcvtq_s32_f32(Round);
|
|
|
|
|
|
|
|
|
|
//[> downcast results to int16 <]
|
|
|
|
|
//tmp16.val[0] = vqmovn_s32(tmp32i.val[0]);
|
|
|
|
|
//tmp16.val[1] = vqmovn_s32(tmp32i.val[1]);
|
|
|
|
|
|
|
|
|
|
//[> compute next four phases <]
|
|
|
|
|
//tmp32_real.val[0] = vmulq_f32(_phase_real, _phase4_real);
|
|
|
|
|
//tmp32_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag);
|
|
|
|
|
//tmp32_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag);
|
|
|
|
|
//tmp32_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real);
|
|
|
|
|
|
|
|
|
|
//_phase_real = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]);
|
|
|
|
|
//_phase_imag = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]);
|
|
|
|
|
|
|
|
|
|
//for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//a_val = vld2_s16((int16_t*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
|
|
|
|
|
////__VOLK_GNSSSDR_PREFETCH(&_in_a[n_vec][number*4] + 8);
|
|
|
|
|
|
|
|
|
|
//// multiply the real*real and imag*imag to get real result
|
|
|
|
|
//// a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
|
|
|
|
|
//b_val.val[0] = vmul_s16(a_val.val[0], tmp16.val[0]);
|
|
|
|
|
//// a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i
|
|
|
|
|
//b_val.val[1] = vmul_s16(a_val.val[1], tmp16.val[1]);
|
|
|
|
|
//c_val.val[0] = vqsub_s16(b_val.val[0], b_val.val[1]);
|
|
|
|
|
|
|
|
|
|
//// Multiply cross terms to get the imaginary result
|
|
|
|
|
//// a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i
|
|
|
|
|
//b_val.val[0] = vmul_s16(a_val.val[0], tmp16.val[1]);
|
|
|
|
|
//// a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
|
|
|
|
|
//b_val.val[1] = vmul_s16(a_val.val[1], tmp16.val[0]);
|
|
|
|
|
//c_val.val[1] = vqadd_s16(b_val.val[0], b_val.val[1]);
|
|
|
|
|
|
|
|
|
|
//accumulator[n_vec].val[0] = vqadd_s16(accumulator[n_vec].val[0], c_val.val[0]);
|
|
|
|
|
//accumulator[n_vec].val[1] = vqadd_s16(accumulator[n_vec].val[1], c_val.val[1]);
|
|
|
|
|
//}
|
|
|
|
|
//// Regenerate phase
|
|
|
|
|
//if ((number % 256) == 0)
|
|
|
|
|
//{
|
|
|
|
|
//phase_est = arg_phase0 + (number + 1) * 4 * arg_phase_inc;
|
|
|
|
|
|
|
|
|
|
//*phase = lv_cmake(cos(phase_est), sin(phase_est));
|
|
|
|
|
//phase2 = (lv_32fc_t)(*phase) * phase_inc;
|
|
|
|
|
//phase3 = phase2 * phase_inc;
|
|
|
|
|
//phase4 = phase3 * phase_inc;
|
|
|
|
|
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
|
|
|
|
|
|
|
|
|
|
//_phase_real = vld1q_f32(____phase_real);
|
|
|
|
|
//_phase_imag = vld1q_f32(____phase_imag);
|
|
|
|
|
//}
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//vst2_s16((int16_t*)dotProductVector, accumulator[n_vec]); // Store the results back into the dot product vector
|
|
|
|
|
//dotProduct = lv_cmake(0,0);
|
|
|
|
|
//for (i = 0; i < 4; ++i)
|
|
|
|
|
//{
|
|
|
|
|
//dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])),
|
|
|
|
|
//sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i])));
|
|
|
|
|
//}
|
|
|
|
|
//_out[n_vec] = dotProduct;
|
|
|
|
|
//}
|
|
|
|
|
//volk_gnsssdr_free(accumulator);
|
|
|
|
|
//vst1q_f32((float32_t*)__phase_real, _phase_real);
|
|
|
|
|
//vst1q_f32((float32_t*)__phase_imag, _phase_imag);
|
|
|
|
|
|
|
|
|
|
//(*phase) = lv_cmake((float32_t)__phase_real[0], (float32_t)__phase_imag[0]);
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//for (n = neon_iters * 4; n < num_points; n++)
|
|
|
|
|
//{
|
|
|
|
|
//tmp16_ = in_common[n]; //printf("neon phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase));
|
|
|
|
|
//tmp32_ = lv_cmake((float32_t)lv_creal(tmp16_), (float32_t)lv_cimag(tmp16_)) * (*phase);
|
|
|
|
|
//tmp16_ = lv_cmake((int16_t)rintf(lv_creal(tmp32_)), (int16_t)rintf(lv_cimag(tmp32_)));
|
|
|
|
|
//(*phase) *= phase_inc;
|
|
|
|
|
//for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//tmp = tmp16_ * in_a[n_vec][n];
|
|
|
|
|
//_out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp)));
|
|
|
|
|
//}
|
|
|
|
|
//}
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//#endif [> LV_HAVE_NEONV7 <]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//#ifdef LV_HAVE_NEONV7
|
|
|
|
|
//#include <arm_neon.h>
|
|
|
|
|
//#include <volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h>
|
|
|
|
|
|
|
|
|
|
//static inline void volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn_neon_vma(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const int16_t** in_a, int num_a_vectors, unsigned int num_points)
|
|
|
|
|
//{
|
|
|
|
|
//const unsigned int neon_iters = num_points / 4;
|
|
|
|
|
|
|
|
|
|
//const int16_t** _in_a = in_a;
|
|
|
|
|
//const lv_16sc_t* _in_common = in_common;
|
|
|
|
|
//lv_16sc_t* _out = result;
|
|
|
|
|
//int n_vec;
|
|
|
|
|
//int i;
|
|
|
|
|
//unsigned int number;
|
|
|
|
|
//unsigned int n;
|
|
|
|
|
//lv_16sc_t tmp16_, tmp;
|
|
|
|
|
//lv_32fc_t tmp32_;
|
|
|
|
|
|
|
|
|
|
//if (neon_iters > 0)
|
|
|
|
|
//{
|
|
|
|
|
//lv_16sc_t dotProduct = lv_cmake(0,0);
|
|
|
|
|
//float arg_phase0 = cargf(*phase);
|
|
|
|
|
//float arg_phase_inc = cargf(phase_inc);
|
|
|
|
|
//float phase_est;
|
|
|
|
|
////printf("arg phase0: %f", arg_phase0);
|
|
|
|
|
//lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc;
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) };
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) };
|
|
|
|
|
|
|
|
|
|
//float32x4_t _phase4_real = vld1q_f32(__phase4_real);
|
|
|
|
|
//float32x4_t _phase4_imag = vld1q_f32(__phase4_imag);
|
|
|
|
|
|
|
|
|
|
//lv_32fc_t phase2 = (lv_32fc_t)(*phase) * phase_inc;
|
|
|
|
|
//lv_32fc_t phase3 = phase2 * phase_inc;
|
|
|
|
|
//lv_32fc_t phase4 = phase3 * phase_inc;
|
|
|
|
|
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t __phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t __phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
|
|
|
|
|
|
|
|
|
|
//float32x4_t _phase_real = vld1q_f32(__phase_real);
|
|
|
|
|
//float32x4_t _phase_imag = vld1q_f32(__phase_imag);
|
|
|
|
|
|
|
|
|
|
//int16x4x2_t a_val, b_val;
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
|
|
|
|
//float32x4_t half = vdupq_n_f32(0.5f);
|
|
|
|
|
//int16x4x2_t tmp16;
|
|
|
|
|
//int32x4x2_t tmp32i;
|
|
|
|
|
|
|
|
|
|
//float32x4x2_t tmp32f, tmp32_real, tmp32_imag;
|
|
|
|
|
//float32x4_t sign, PlusHalf, Round;
|
|
|
|
|
|
|
|
|
|
//int16x4x2_t* accumulator = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment());
|
|
|
|
|
|
|
|
|
|
//for(n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//accumulator[n_vec].val[0] = vdup_n_s16(0);
|
|
|
|
|
//accumulator[n_vec].val[1] = vdup_n_s16(0);
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//for(number = 0; number < neon_iters; number++)
|
|
|
|
|
//{
|
|
|
|
|
//[> load 4 complex numbers (int 16 bits each component) <]
|
|
|
|
|
//tmp16 = vld2_s16((int16_t*)_in_common);
|
|
|
|
|
//__VOLK_GNSSSDR_PREFETCH(_in_common + 8);
|
|
|
|
|
//_in_common += 4;
|
|
|
|
|
|
|
|
|
|
//[> promote them to int 32 bits <]
|
|
|
|
|
//tmp32i.val[0] = vmovl_s16(tmp16.val[0]);
|
|
|
|
|
//tmp32i.val[1] = vmovl_s16(tmp16.val[1]);
|
|
|
|
|
|
|
|
|
|
//[> promote them to float 32 bits <]
|
|
|
|
|
//tmp32f.val[0] = vcvtq_f32_s32(tmp32i.val[0]);
|
|
|
|
|
//tmp32f.val[1] = vcvtq_f32_s32(tmp32i.val[1]);
|
|
|
|
|
|
|
|
|
|
//[> complex multiplication of four complex samples (float 32 bits each component) <]
|
|
|
|
|
//tmp32_real.val[0] = vmulq_f32(tmp32f.val[0], _phase_real);
|
|
|
|
|
//tmp32_real.val[1] = vmulq_f32(tmp32f.val[1], _phase_imag);
|
|
|
|
|
//tmp32_imag.val[0] = vmulq_f32(tmp32f.val[0], _phase_imag);
|
|
|
|
|
//tmp32_imag.val[1] = vmulq_f32(tmp32f.val[1], _phase_real);
|
|
|
|
|
|
|
|
|
|
//tmp32f.val[0] = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]);
|
|
|
|
|
//tmp32f.val[1] = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]);
|
|
|
|
|
|
|
|
|
|
//[> downcast results to int32 <]
|
|
|
|
|
//[> in __aarch64__ we can do that with vcvtaq_s32_f32(ret1); vcvtaq_s32_f32(ret2); <]
|
|
|
|
|
//sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[0]), 31)));
|
|
|
|
|
//PlusHalf = vaddq_f32(tmp32f.val[0], half);
|
|
|
|
|
//Round = vsubq_f32(PlusHalf, sign);
|
|
|
|
|
//tmp32i.val[0] = vcvtq_s32_f32(Round);
|
|
|
|
|
|
|
|
|
|
//sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[1]), 31)));
|
|
|
|
|
//PlusHalf = vaddq_f32(tmp32f.val[1], half);
|
|
|
|
|
//Round = vsubq_f32(PlusHalf, sign);
|
|
|
|
|
//tmp32i.val[1] = vcvtq_s32_f32(Round);
|
|
|
|
|
|
|
|
|
|
//[> downcast results to int16 <]
|
|
|
|
|
//tmp16.val[0] = vqmovn_s32(tmp32i.val[0]);
|
|
|
|
|
//tmp16.val[1] = vqmovn_s32(tmp32i.val[1]);
|
|
|
|
|
|
|
|
|
|
//[> compute next four phases <]
|
|
|
|
|
//tmp32_real.val[0] = vmulq_f32(_phase_real, _phase4_real);
|
|
|
|
|
//tmp32_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag);
|
|
|
|
|
//tmp32_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag);
|
|
|
|
|
//tmp32_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real);
|
|
|
|
|
|
|
|
|
|
//_phase_real = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]);
|
|
|
|
|
//_phase_imag = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]);
|
|
|
|
|
|
|
|
|
|
//// Regenerate phase
|
|
|
|
|
//if ((number % 256) == 0)
|
|
|
|
|
//{
|
|
|
|
|
////printf("computed phase: %f\n", cos(cargf(lv_cmake(_phase_real[0],_phase_imag[0]))));
|
|
|
|
|
//phase_est = arg_phase0 + (number + 1) * 4 * arg_phase_inc;
|
|
|
|
|
////printf("Estimated phase: %f\n\n", cos(phase_est));
|
|
|
|
|
|
|
|
|
|
//*phase = lv_cmake(cos(phase_est), sin(phase_est));
|
|
|
|
|
//phase2 = (lv_32fc_t)(*phase) * phase_inc;
|
|
|
|
|
//phase3 = phase2 * phase_inc;
|
|
|
|
|
//phase4 = phase3 * phase_inc;
|
|
|
|
|
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
|
|
|
|
|
|
|
|
|
|
//_phase_real = vld1q_f32(____phase_real);
|
|
|
|
|
//_phase_imag = vld1q_f32(____phase_imag);
|
|
|
|
|
|
|
|
|
|
//// Round = vmulq_f32(_phase_real, _phase_real);
|
|
|
|
|
//// Round = vmlaq_f32(Round, _phase_imag, _phase_imag);
|
|
|
|
|
//// Round = vsqrtq_f32(Round);//printf("sqrt: %f \n", Round[0]);
|
|
|
|
|
////Round = vrsqrteq_f32(Round);printf("1/sqtr: %f \n",Round[0]);
|
|
|
|
|
////Round = vrecpeq_f32((Round);
|
|
|
|
|
//// _phase_real = vdivq_f32(_phase_real, Round);
|
|
|
|
|
//// _phase_imag = vdivq_f32(_phase_imag, Round);
|
|
|
|
|
////_phase_real = vmulq_f32(_phase_real, Round);
|
|
|
|
|
////_phase_imag = vmulq_f32(_phase_imag, Round);
|
|
|
|
|
////printf("After %i: %f,%f, %f\n\n", number, _phase_real[0], _phase_imag[0], sqrt(_phase_real[0]*_phase_real[0]+_phase_imag[0]*_phase_imag[0]));
|
|
|
|
|
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//a_val = vld2_s16((int16_t*)&(_in_a[n_vec][number*4]));
|
|
|
|
|
|
|
|
|
|
//b_val.val[0] = vmul_s16(a_val.val[0], tmp16.val[0]);
|
|
|
|
|
//b_val.val[1] = vmul_s16(a_val.val[1], tmp16.val[0]);
|
|
|
|
|
|
|
|
|
|
//// use multiply accumulate/subtract to get result
|
|
|
|
|
//b_val.val[0] = vmls_s16(b_val.val[0], a_val.val[1], tmp16.val[1]);
|
|
|
|
|
//b_val.val[1] = vmla_s16(b_val.val[1], a_val.val[0], tmp16.val[1]);
|
|
|
|
|
|
|
|
|
|
//accumulator[n_vec].val[0] = vqadd_s16(accumulator[n_vec].val[0], b_val.val[0]);
|
|
|
|
|
//accumulator[n_vec].val[1] = vqadd_s16(accumulator[n_vec].val[1], b_val.val[1]);
|
|
|
|
|
//}
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//vst2_s16((int16_t*)dotProductVector, accumulator[n_vec]); // Store the results back into the dot product vector
|
|
|
|
|
//dotProduct = lv_cmake(0,0);
|
|
|
|
|
//for (i = 0; i < 4; ++i)
|
|
|
|
|
//{
|
|
|
|
|
//dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])),
|
|
|
|
|
//sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i])));
|
|
|
|
|
//}
|
|
|
|
|
//_out[n_vec] = dotProduct;
|
|
|
|
|
//}
|
|
|
|
|
//volk_gnsssdr_free(accumulator);
|
|
|
|
|
|
|
|
|
|
//vst1q_f32((float32_t*)__phase_real, _phase_real);
|
|
|
|
|
//vst1q_f32((float32_t*)__phase_imag, _phase_imag);
|
|
|
|
|
|
|
|
|
|
//(*phase) = lv_cmake((float32_t)__phase_real[0], (float32_t)__phase_imag[0]);
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//for (n = neon_iters * 4; n < num_points; n++)
|
|
|
|
|
//{
|
|
|
|
|
//tmp16_ = in_common[n]; //printf("neon phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase));
|
|
|
|
|
//tmp32_ = lv_cmake((float32_t)lv_creal(tmp16_), (float32_t)lv_cimag(tmp16_)) * (*phase);
|
|
|
|
|
//tmp16_ = lv_cmake((int16_t)rintf(lv_creal(tmp32_)), (int16_t)rintf(lv_cimag(tmp32_)));
|
|
|
|
|
//(*phase) *= phase_inc;
|
|
|
|
|
//for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//tmp = tmp16_ * in_a[n_vec][n];
|
|
|
|
|
//_out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp)));
|
|
|
|
|
//}
|
|
|
|
|
//}
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//#endif [> LV_HAVE_NEONV7 <]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//#ifdef LV_HAVE_NEONV7
|
|
|
|
|
//#include <arm_neon.h>
|
|
|
|
|
//#include <volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h>
|
|
|
|
|
|
|
|
|
|
//static inline void volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn_neon_optvma(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const int16_t** in_a, int num_a_vectors, unsigned int num_points)
|
|
|
|
|
//{
|
|
|
|
|
//const unsigned int neon_iters = num_points / 4;
|
|
|
|
|
|
|
|
|
|
//const int16_t** _in_a = in_a;
|
|
|
|
|
//const lv_16sc_t* _in_common = in_common;
|
|
|
|
|
//lv_16sc_t* _out = result;
|
|
|
|
|
//int n_vec;
|
|
|
|
|
//int i;
|
|
|
|
|
//unsigned int number;
|
|
|
|
|
//unsigned int n;
|
|
|
|
|
//lv_16sc_t tmp16_, tmp;
|
|
|
|
|
//lv_32fc_t tmp32_;
|
|
|
|
|
|
|
|
|
|
//if (neon_iters > 0)
|
|
|
|
|
//{
|
|
|
|
|
//lv_16sc_t dotProduct = lv_cmake(0,0);
|
|
|
|
|
//float arg_phase0 = cargf(*phase);
|
|
|
|
|
//float arg_phase_inc = cargf(phase_inc);
|
|
|
|
|
//float phase_est;
|
|
|
|
|
|
|
|
|
|
//lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc;
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) };
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) };
|
|
|
|
|
|
|
|
|
|
//float32x4_t _phase4_real = vld1q_f32(__phase4_real);
|
|
|
|
|
//float32x4_t _phase4_imag = vld1q_f32(__phase4_imag);
|
|
|
|
|
|
|
|
|
|
//lv_32fc_t phase2 = (lv_32fc_t)(*phase) * phase_inc;
|
|
|
|
|
//lv_32fc_t phase3 = phase2 * phase_inc;
|
|
|
|
|
//lv_32fc_t phase4 = phase3 * phase_inc;
|
|
|
|
|
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t __phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t __phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
|
|
|
|
|
|
|
|
|
|
//float32x4_t _phase_real = vld1q_f32(__phase_real);
|
|
|
|
|
//float32x4_t _phase_imag = vld1q_f32(__phase_imag);
|
|
|
|
|
|
|
|
|
|
//int16x4x2_t a_val, b_val;
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
|
|
|
|
|
//float32x4_t half = vdupq_n_f32(0.5f);
|
|
|
|
|
//int32x4x2_t tmp32i;
|
|
|
|
|
|
|
|
|
|
//float32x4x2_t tmp32f, tmp32_real, tmp32_imag;
|
|
|
|
|
//float32x4_t sign, PlusHalf, Round;
|
|
|
|
|
|
|
|
|
|
//int16x4x2_t* accumulator1 = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment());
|
|
|
|
|
//int16x4x2_t* accumulator2 = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment());
|
|
|
|
|
|
|
|
|
|
//for(n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//accumulator1[n_vec].val[0] = vdup_n_s16(0);
|
|
|
|
|
//accumulator1[n_vec].val[1] = vdup_n_s16(0);
|
|
|
|
|
//accumulator2[n_vec].val[0] = vdup_n_s16(0);
|
|
|
|
|
//accumulator2[n_vec].val[1] = vdup_n_s16(0);
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//for(number = 0; number < neon_iters; number++)
|
|
|
|
|
//{
|
|
|
|
|
//[> load 4 complex numbers (int 16 bits each component) <]
|
|
|
|
|
//b_val = vld2_s16((int16_t*)_in_common);
|
|
|
|
|
//__VOLK_GNSSSDR_PREFETCH(_in_common + 8);
|
|
|
|
|
//_in_common += 4;
|
|
|
|
|
|
|
|
|
|
//[> promote them to int 32 bits <]
|
|
|
|
|
//tmp32i.val[0] = vmovl_s16(b_val.val[0]);
|
|
|
|
|
//tmp32i.val[1] = vmovl_s16(b_val.val[1]);
|
|
|
|
|
|
|
|
|
|
//[> promote them to float 32 bits <]
|
|
|
|
|
//tmp32f.val[0] = vcvtq_f32_s32(tmp32i.val[0]);
|
|
|
|
|
//tmp32f.val[1] = vcvtq_f32_s32(tmp32i.val[1]);
|
|
|
|
|
|
|
|
|
|
//[> complex multiplication of four complex samples (float 32 bits each component) <]
|
|
|
|
|
//tmp32_real.val[0] = vmulq_f32(tmp32f.val[0], _phase_real);
|
|
|
|
|
//tmp32_real.val[1] = vmulq_f32(tmp32f.val[1], _phase_imag);
|
|
|
|
|
//tmp32_imag.val[0] = vmulq_f32(tmp32f.val[0], _phase_imag);
|
|
|
|
|
//tmp32_imag.val[1] = vmulq_f32(tmp32f.val[1], _phase_real);
|
|
|
|
|
|
|
|
|
|
//tmp32f.val[0] = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]);
|
|
|
|
|
//tmp32f.val[1] = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]);
|
|
|
|
|
|
|
|
|
|
//[> downcast results to int32 <]
|
|
|
|
|
//[> in __aarch64__ we can do that with vcvtaq_s32_f32(ret1); vcvtaq_s32_f32(ret2); <]
|
|
|
|
|
//sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[0]), 31)));
|
|
|
|
|
//PlusHalf = vaddq_f32(tmp32f.val[0], half);
|
|
|
|
|
//Round = vsubq_f32(PlusHalf, sign);
|
|
|
|
|
//tmp32i.val[0] = vcvtq_s32_f32(Round);
|
|
|
|
|
|
|
|
|
|
//sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[1]), 31)));
|
|
|
|
|
//PlusHalf = vaddq_f32(tmp32f.val[1], half);
|
|
|
|
|
//Round = vsubq_f32(PlusHalf, sign);
|
|
|
|
|
//tmp32i.val[1] = vcvtq_s32_f32(Round);
|
|
|
|
|
|
|
|
|
|
//[> downcast results to int16 <]
|
|
|
|
|
//b_val.val[0] = vqmovn_s32(tmp32i.val[0]);
|
|
|
|
|
//b_val.val[1] = vqmovn_s32(tmp32i.val[1]);
|
|
|
|
|
|
|
|
|
|
//[> compute next four phases <]
|
|
|
|
|
//tmp32_real.val[0] = vmulq_f32(_phase_real, _phase4_real);
|
|
|
|
|
//tmp32_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag);
|
|
|
|
|
//tmp32_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag);
|
|
|
|
|
//tmp32_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real);
|
|
|
|
|
|
|
|
|
|
//_phase_real = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]);
|
|
|
|
|
//_phase_imag = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]);
|
|
|
|
|
|
|
|
|
|
//// Regenerate phase
|
|
|
|
|
//if ((number % 256) == 0)
|
|
|
|
|
//{
|
|
|
|
|
////printf("computed phase: %f\n", cos(cargf(lv_cmake(_phase_real[0],_phase_imag[0]))));
|
|
|
|
|
//phase_est = arg_phase0 + (number + 1) * 4 * arg_phase_inc;
|
|
|
|
|
////printf("Estimated phase: %f\n\n", cos(phase_est));
|
|
|
|
|
|
|
|
|
|
//*phase = lv_cmake(cos(phase_est), sin(phase_est));
|
|
|
|
|
//phase2 = (lv_32fc_t)(*phase) * phase_inc;
|
|
|
|
|
//phase3 = phase2 * phase_inc;
|
|
|
|
|
//phase4 = phase3 * phase_inc;
|
|
|
|
|
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) };
|
|
|
|
|
//__VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) };
|
|
|
|
|
|
|
|
|
|
//_phase_real = vld1q_f32(____phase_real);
|
|
|
|
|
//_phase_imag = vld1q_f32(____phase_imag);
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//a_val = vld2_s16((int16_t*)&(_in_a[n_vec][number*4]));
|
|
|
|
|
|
|
|
|
|
//// use 2 accumulators to remove inter-instruction data dependencies
|
|
|
|
|
//accumulator1[n_vec].val[0] = vmla_s16(accumulator1[n_vec].val[0], a_val.val[0], b_val.val[0]);
|
|
|
|
|
//accumulator1[n_vec].val[1] = vmla_s16(accumulator1[n_vec].val[1], a_val.val[0], b_val.val[1]);
|
|
|
|
|
//accumulator2[n_vec].val[0] = vmls_s16(accumulator2[n_vec].val[0], a_val.val[1], b_val.val[1]);
|
|
|
|
|
//accumulator2[n_vec].val[1] = vmla_s16(accumulator2[n_vec].val[1], a_val.val[1], b_val.val[0]);
|
|
|
|
|
//}
|
|
|
|
|
//}
|
|
|
|
|
//for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//accumulator1[n_vec].val[0] = vqadd_s16(accumulator1[n_vec].val[0], accumulator2[n_vec].val[0]);
|
|
|
|
|
//accumulator1[n_vec].val[1] = vqadd_s16(accumulator1[n_vec].val[1], accumulator2[n_vec].val[1]);
|
|
|
|
|
//}
|
|
|
|
|
//for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//vst2_s16((int16_t*)dotProductVector, accumulator1[n_vec]); // Store the results back into the dot product vector
|
|
|
|
|
//dotProduct = lv_cmake(0,0);
|
|
|
|
|
//for (i = 0; i < 4; ++i)
|
|
|
|
|
//{
|
|
|
|
|
//dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])),
|
|
|
|
|
//sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i])));
|
|
|
|
|
//}
|
|
|
|
|
//_out[n_vec] = dotProduct;
|
|
|
|
|
//}
|
|
|
|
|
//volk_gnsssdr_free(accumulator1);
|
|
|
|
|
//volk_gnsssdr_free(accumulator2);
|
|
|
|
|
|
|
|
|
|
//vst1q_f32((float32_t*)__phase_real, _phase_real);
|
|
|
|
|
//vst1q_f32((float32_t*)__phase_imag, _phase_imag);
|
|
|
|
|
|
|
|
|
|
//(*phase) = lv_cmake((float32_t)__phase_real[0], (float32_t)__phase_imag[0]);
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//for (n = neon_iters * 4; n < num_points; n++)
|
|
|
|
|
//{
|
|
|
|
|
//tmp16_ = in_common[n]; //printf("neon phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase));
|
|
|
|
|
//tmp32_ = lv_cmake((float32_t)lv_creal(tmp16_), (float32_t)lv_cimag(tmp16_)) * (*phase);
|
|
|
|
|
//tmp16_ = lv_cmake((int16_t)rintf(lv_creal(tmp32_)), (int16_t)rintf(lv_cimag(tmp32_)));
|
|
|
|
|
//(*phase) *= phase_inc;
|
|
|
|
|
//for (n_vec = 0; n_vec < num_a_vectors; n_vec++)
|
|
|
|
|
//{
|
|
|
|
|
//tmp = tmp16_ * in_a[n_vec][n];
|
|
|
|
|
//_out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp)));
|
|
|
|
|
//}
|
|
|
|
|
//}
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
//#endif [> LV_HAVE_NEONV7 <]
|
|
|
|
|
|
|
|
|
|
#endif /* INCLUDED_volk_gnsssdr_16ic_16i_dot_prod_16ic_xn_H */
|
|
|
|
|
|