|  |  |  | @@ -334,254 +334,6 @@ static inline void volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn_a_sse3(lv_16sc | 
		
	
		
			
				|  |  |  |  | #endif /* LV_HAVE_SSE3 */ | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //#ifdef LV_HAVE_SSE3 | 
		
	
		
			
				|  |  |  |  | //#include <pmmintrin.h> | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //static inline void volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn_a_sse3_reload(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const int16_t** in_a,  int num_a_vectors, unsigned int num_points) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //lv_16sc_t dotProduct = lv_cmake(0,0); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //const unsigned int sse_iters = num_points / 4; | 
		
	
		
			
				|  |  |  |  | //const unsigned int ROTATOR_RELOAD = 128; | 
		
	
		
			
				|  |  |  |  | //int n_vec; | 
		
	
		
			
				|  |  |  |  | //int i; | 
		
	
		
			
				|  |  |  |  | //unsigned int number; | 
		
	
		
			
				|  |  |  |  | //unsigned int j; | 
		
	
		
			
				|  |  |  |  | //unsigned int n; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //const int16_t** _in_a = in_a; | 
		
	
		
			
				|  |  |  |  | //const lv_16sc_t* _in_common = in_common; | 
		
	
		
			
				|  |  |  |  | //lv_16sc_t* _out = result; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //__m128i* realcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment()); | 
		
	
		
			
				|  |  |  |  | //__m128i* imagcacc = (__m128i*)volk_gnsssdr_malloc(num_a_vectors * sizeof(__m128i), volk_gnsssdr_get_alignment()); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //realcacc[n_vec] = _mm_setzero_si128(); | 
		
	
		
			
				|  |  |  |  | //imagcacc[n_vec] = _mm_setzero_si128(); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //__m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //mask_imag = _mm_set_epi8(255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0); | 
		
	
		
			
				|  |  |  |  | //mask_real = _mm_set_epi8(0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //// phase rotation registers | 
		
	
		
			
				|  |  |  |  | //__m128 pa, pb, two_phase_acc_reg, two_phase_inc_reg; | 
		
	
		
			
				|  |  |  |  | //__m128i pc1, pc2; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) lv_32fc_t two_phase_inc[2]; | 
		
	
		
			
				|  |  |  |  | //two_phase_inc[0] = phase_inc * phase_inc; | 
		
	
		
			
				|  |  |  |  | //two_phase_inc[1] = phase_inc * phase_inc; | 
		
	
		
			
				|  |  |  |  | //two_phase_inc_reg = _mm_load_ps((float*) two_phase_inc); | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) lv_32fc_t two_phase_acc[2]; | 
		
	
		
			
				|  |  |  |  | //two_phase_acc[0] = (*phase); | 
		
	
		
			
				|  |  |  |  | //two_phase_acc[1] = (*phase) * phase_inc; | 
		
	
		
			
				|  |  |  |  | //two_phase_acc_reg = _mm_load_ps((float*)two_phase_acc); | 
		
	
		
			
				|  |  |  |  | //__m128 yl, yh, tmp1, tmp2, tmp3; | 
		
	
		
			
				|  |  |  |  | //lv_16sc_t tmp16; | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t tmp32; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for (number = 0; number <  sse_iters / ROTATOR_RELOAD; ++number) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //for (j = 0; j < ROTATOR_RELOAD; j++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //// Phase rotation on operand in_common starts here: | 
		
	
		
			
				|  |  |  |  | ////printf("generic phase %i: %f,%f\n", n*4,lv_creal(*phase),lv_cimag(*phase)); | 
		
	
		
			
				|  |  |  |  | //pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg | 
		
	
		
			
				|  |  |  |  | ////complex 32fc multiplication b=a*two_phase_acc_reg | 
		
	
		
			
				|  |  |  |  | //yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr | 
		
	
		
			
				|  |  |  |  | //yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di | 
		
	
		
			
				|  |  |  |  | //tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr | 
		
	
		
			
				|  |  |  |  | //pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br | 
		
	
		
			
				|  |  |  |  | //tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di | 
		
	
		
			
				|  |  |  |  | //pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di | 
		
	
		
			
				|  |  |  |  | //pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | ////complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg | 
		
	
		
			
				|  |  |  |  | //yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr | 
		
	
		
			
				|  |  |  |  | //yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di | 
		
	
		
			
				|  |  |  |  | //tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr | 
		
	
		
			
				|  |  |  |  | //tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br | 
		
	
		
			
				|  |  |  |  | //tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di | 
		
	
		
			
				|  |  |  |  | //two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | ////next two samples | 
		
	
		
			
				|  |  |  |  | //_in_common += 2; | 
		
	
		
			
				|  |  |  |  | //pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg | 
		
	
		
			
				|  |  |  |  | //__VOLK_GNSSSDR_PREFETCH(_in_common + 8); | 
		
	
		
			
				|  |  |  |  | ////complex 32fc multiplication b=a*two_phase_acc_reg | 
		
	
		
			
				|  |  |  |  | //yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr | 
		
	
		
			
				|  |  |  |  | //yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di | 
		
	
		
			
				|  |  |  |  | //tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr | 
		
	
		
			
				|  |  |  |  | //pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br | 
		
	
		
			
				|  |  |  |  | //tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di | 
		
	
		
			
				|  |  |  |  | //pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di | 
		
	
		
			
				|  |  |  |  | //pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | ////complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg | 
		
	
		
			
				|  |  |  |  | //yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr | 
		
	
		
			
				|  |  |  |  | //yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di | 
		
	
		
			
				|  |  |  |  | //tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr | 
		
	
		
			
				|  |  |  |  | //tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br | 
		
	
		
			
				|  |  |  |  | //tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di | 
		
	
		
			
				|  |  |  |  | //two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //// store four rotated in_common samples in the register b | 
		
	
		
			
				|  |  |  |  | //b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | ////next two samples | 
		
	
		
			
				|  |  |  |  | //_in_common += 2; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //a = _mm_load_si128((__m128i*)&(_in_a[n_vec][(number * ROTATOR_RELOAD + j) * 4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, .... | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst. | 
		
	
		
			
				|  |  |  |  | //real = _mm_subs_epi16(c, c_sr); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i .... | 
		
	
		
			
				|  |  |  |  | //a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i .... | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, .... | 
		
	
		
			
				|  |  |  |  | //imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, .... | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //imag = _mm_adds_epi16(imag1, imag2); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real); | 
		
	
		
			
				|  |  |  |  | //imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //// regenerate phase | 
		
	
		
			
				|  |  |  |  | //tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg); | 
		
	
		
			
				|  |  |  |  | //tmp2 = _mm_hadd_ps(tmp1, tmp1); | 
		
	
		
			
				|  |  |  |  | //tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8); | 
		
	
		
			
				|  |  |  |  | //tmp2 = _mm_sqrt_ps(tmp1); | 
		
	
		
			
				|  |  |  |  | //two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for (j = 0; j < sse_iters % ROTATOR_RELOAD; j++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg | 
		
	
		
			
				|  |  |  |  | ////complex 32fc multiplication b=a*two_phase_acc_reg | 
		
	
		
			
				|  |  |  |  | //yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr | 
		
	
		
			
				|  |  |  |  | //yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di | 
		
	
		
			
				|  |  |  |  | //tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr | 
		
	
		
			
				|  |  |  |  | //pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br | 
		
	
		
			
				|  |  |  |  | //tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di | 
		
	
		
			
				|  |  |  |  | //pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di | 
		
	
		
			
				|  |  |  |  | //pc1 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | ////complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg | 
		
	
		
			
				|  |  |  |  | //yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr | 
		
	
		
			
				|  |  |  |  | //yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di | 
		
	
		
			
				|  |  |  |  | //tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr | 
		
	
		
			
				|  |  |  |  | //tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br | 
		
	
		
			
				|  |  |  |  | //tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di | 
		
	
		
			
				|  |  |  |  | //two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | ////next two samples | 
		
	
		
			
				|  |  |  |  | //_in_common += 2; | 
		
	
		
			
				|  |  |  |  | //pa = _mm_set_ps((float)(lv_cimag(_in_common[1])), (float)(lv_creal(_in_common[1])), (float)(lv_cimag(_in_common[0])), (float)(lv_creal(_in_common[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg | 
		
	
		
			
				|  |  |  |  | //__VOLK_GNSSSDR_PREFETCH(_in_common + 8); | 
		
	
		
			
				|  |  |  |  | ////complex 32fc multiplication b=a*two_phase_acc_reg | 
		
	
		
			
				|  |  |  |  | //yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr | 
		
	
		
			
				|  |  |  |  | //yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di | 
		
	
		
			
				|  |  |  |  | //tmp1 = _mm_mul_ps(pa, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr | 
		
	
		
			
				|  |  |  |  | //pa = _mm_shuffle_ps(pa, pa, 0xB1); // Re-arrange x to be ai,ar,bi,br | 
		
	
		
			
				|  |  |  |  | //tmp2 = _mm_mul_ps(pa, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di | 
		
	
		
			
				|  |  |  |  | //pb = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di | 
		
	
		
			
				|  |  |  |  | //pc2 = _mm_cvtps_epi32(pb); // convert from 32fc to 32ic | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | ////complex 32fc multiplication two_phase_acc_reg=two_phase_acc_reg*two_phase_inc_reg | 
		
	
		
			
				|  |  |  |  | //yl = _mm_moveldup_ps(two_phase_acc_reg); // Load yl with cr,cr,dr,dr | 
		
	
		
			
				|  |  |  |  | //yh = _mm_movehdup_ps(two_phase_acc_reg); // Load yh with ci,ci,di,di | 
		
	
		
			
				|  |  |  |  | //tmp1 = _mm_mul_ps(two_phase_inc_reg, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr | 
		
	
		
			
				|  |  |  |  | //tmp3 = _mm_shuffle_ps(two_phase_inc_reg, two_phase_inc_reg, 0xB1); // Re-arrange x to be ai,ar,bi,br | 
		
	
		
			
				|  |  |  |  | //tmp2 = _mm_mul_ps(tmp3, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di | 
		
	
		
			
				|  |  |  |  | //two_phase_acc_reg = _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //// store four rotated in_common samples in the register b | 
		
	
		
			
				|  |  |  |  | //b = _mm_packs_epi32(pc1, pc2);// convert from 32ic to 16ic | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | ////next two samples | 
		
	
		
			
				|  |  |  |  | //_in_common += 2; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //a = _mm_load_si128((__m128i*)&(_in_a[n_vec][((sse_iters / ROTATOR_RELOAD)  * ROTATOR_RELOAD + j) * 4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, .... | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst. | 
		
	
		
			
				|  |  |  |  | //real = _mm_subs_epi16(c, c_sr); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i .... | 
		
	
		
			
				|  |  |  |  | //a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i .... | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, .... | 
		
	
		
			
				|  |  |  |  | //imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, .... | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //imag = _mm_adds_epi16(imag1, imag2); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //realcacc[n_vec] = _mm_adds_epi16(realcacc[n_vec], real); | 
		
	
		
			
				|  |  |  |  | //imagcacc[n_vec] = _mm_adds_epi16(imagcacc[n_vec], imag); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //realcacc[n_vec] = _mm_and_si128(realcacc[n_vec], mask_real); | 
		
	
		
			
				|  |  |  |  | //imagcacc[n_vec] = _mm_and_si128(imagcacc[n_vec], mask_imag); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //a = _mm_or_si128(realcacc[n_vec], imagcacc[n_vec]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //_mm_store_si128((__m128i*)dotProductVector, a); // Store the results back into the dot product vector | 
		
	
		
			
				|  |  |  |  | //dotProduct = lv_cmake(0,0); | 
		
	
		
			
				|  |  |  |  | //for (i = 0; i < 4; ++i) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])), | 
		
	
		
			
				|  |  |  |  | //sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i]))); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //_out[n_vec] = dotProduct; | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //volk_gnsssdr_free(realcacc); | 
		
	
		
			
				|  |  |  |  | //volk_gnsssdr_free(imagcacc); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //tmp1 = _mm_mul_ps(two_phase_acc_reg, two_phase_acc_reg); | 
		
	
		
			
				|  |  |  |  | //tmp2 = _mm_hadd_ps(tmp1, tmp1); | 
		
	
		
			
				|  |  |  |  | //tmp1 = _mm_shuffle_ps(tmp2, tmp2, 0xD8); | 
		
	
		
			
				|  |  |  |  | //tmp2 = _mm_sqrt_ps(tmp1); | 
		
	
		
			
				|  |  |  |  | //two_phase_acc_reg = _mm_div_ps(two_phase_acc_reg, tmp2); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //_mm_store_ps((float*)two_phase_acc, two_phase_acc_reg); | 
		
	
		
			
				|  |  |  |  | ////(*phase) = lv_cmake((float*)two_phase_acc[0], (float*)two_phase_acc[1]); | 
		
	
		
			
				|  |  |  |  | //(*phase) = two_phase_acc[0]; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for(n = sse_iters * 4; n < num_points; n++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //tmp16 = in_common[n];  //printf("a_sse phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase)); | 
		
	
		
			
				|  |  |  |  | //tmp32 = lv_cmake((float)lv_creal(tmp16), (float)lv_cimag(tmp16)) * (*phase); | 
		
	
		
			
				|  |  |  |  | //tmp16 = lv_cmake((int16_t)rintf(lv_creal(tmp32)), (int16_t)rintf(lv_cimag(tmp32))); | 
		
	
		
			
				|  |  |  |  | //(*phase) *= phase_inc; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //lv_16sc_t tmp = tmp16 * in_a[n_vec][n]; | 
		
	
		
			
				|  |  |  |  | ////lv_16sc_t tmp = lv_cmake(sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_creal(in_a[n_vec][n])), - sat_muls16i(lv_cimag(tmp16), lv_cimag(in_a[n_vec][n]))) , sat_adds16i(sat_muls16i(lv_creal(tmp16), lv_cimag(in_a[n_vec][n])), sat_muls16i(lv_cimag(tmp16), lv_creal(in_a[n_vec][n])))); | 
		
	
		
			
				|  |  |  |  | //_out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)), | 
		
	
		
			
				|  |  |  |  | //sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp))); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //#endif [> LV_HAVE_SSE3 <] | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | #ifdef LV_HAVE_SSE3 | 
		
	
		
			
				|  |  |  |  | #include <pmmintrin.h> | 
		
	
	
		
			
				
					
					|  |  |  | @@ -985,13 +737,11 @@ static inline void volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn_u_avx2(lv_16sc | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |             __VOLK_GNSSSDR_PREFETCH(_in_common + 16); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |             // Store and convert 32ic to 16ic: | 
		
	
		
			
				|  |  |  |  |             b2 = _mm256_packs_epi32(c1, c2); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |             b2 = _mm256_permutevar8x32_epi32(b2, perm_idx); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |             _in_common += 4; | 
		
	
		
			
				|  |  |  |  |             for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  |                 { | 
		
	
	
		
			
				
					
					|  |  |  | @@ -1049,558 +799,4 @@ static inline void volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn_u_avx2(lv_16sc | 
		
	
		
			
				|  |  |  |  | } | 
		
	
		
			
				|  |  |  |  | #endif /* LV_HAVE_AVX2 */ | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //#ifdef LV_HAVE_NEONV7 | 
		
	
		
			
				|  |  |  |  | //#include <arm_neon.h> | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //static inline void volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn_neon(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const int16_t** in_a,  int num_a_vectors, unsigned int num_points) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //const unsigned int neon_iters = num_points / 4; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //const int16_t** _in_a = in_a; | 
		
	
		
			
				|  |  |  |  | //const lv_16sc_t* _in_common = in_common; | 
		
	
		
			
				|  |  |  |  | //lv_16sc_t* _out = result; | 
		
	
		
			
				|  |  |  |  | //int n_vec; | 
		
	
		
			
				|  |  |  |  | //int i; | 
		
	
		
			
				|  |  |  |  | //unsigned int number; | 
		
	
		
			
				|  |  |  |  | //unsigned int n; | 
		
	
		
			
				|  |  |  |  | //lv_16sc_t tmp16_, tmp; | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t tmp32_; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //if (neon_iters > 0) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //lv_16sc_t dotProduct = lv_cmake(0,0); | 
		
	
		
			
				|  |  |  |  | //float arg_phase0 = cargf(*phase); | 
		
	
		
			
				|  |  |  |  | //float arg_phase_inc = cargf(phase_inc); | 
		
	
		
			
				|  |  |  |  | //float phase_est; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) }; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) }; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //float32x4_t _phase4_real = vld1q_f32(__phase4_real); | 
		
	
		
			
				|  |  |  |  | //float32x4_t _phase4_imag = vld1q_f32(__phase4_imag); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t phase2 = (lv_32fc_t)(*phase) * phase_inc; | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t phase3 = phase2 * phase_inc; | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t phase4 = phase3 * phase_inc; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t __phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) }; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t __phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) }; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //float32x4_t _phase_real = vld1q_f32(__phase_real); | 
		
	
		
			
				|  |  |  |  | //float32x4_t _phase_imag = vld1q_f32(__phase_imag); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //int16x4x2_t a_val, b_val, c_val; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; | 
		
	
		
			
				|  |  |  |  | //float32x4_t half = vdupq_n_f32(0.5f); | 
		
	
		
			
				|  |  |  |  | //int16x4x2_t tmp16; | 
		
	
		
			
				|  |  |  |  | //int32x4x2_t tmp32i; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //float32x4x2_t tmp32f, tmp32_real, tmp32_imag; | 
		
	
		
			
				|  |  |  |  | //float32x4_t sign, PlusHalf, Round; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //int16x4x2_t* accumulator = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment()); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for(n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //accumulator[n_vec].val[0] = vdup_n_s16(0); | 
		
	
		
			
				|  |  |  |  | //accumulator[n_vec].val[1] = vdup_n_s16(0); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for(number = 0; number < neon_iters; number++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //[> load 4 complex numbers (int 16 bits each component) <] | 
		
	
		
			
				|  |  |  |  | //tmp16 = vld2_s16((int16_t*)_in_common); | 
		
	
		
			
				|  |  |  |  | //__VOLK_GNSSSDR_PREFETCH(_in_common + 8); | 
		
	
		
			
				|  |  |  |  | //_in_common += 4; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> promote them to int 32 bits <] | 
		
	
		
			
				|  |  |  |  | //tmp32i.val[0] = vmovl_s16(tmp16.val[0]); | 
		
	
		
			
				|  |  |  |  | //tmp32i.val[1] = vmovl_s16(tmp16.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> promote them to float 32 bits <] | 
		
	
		
			
				|  |  |  |  | //tmp32f.val[0] = vcvtq_f32_s32(tmp32i.val[0]); | 
		
	
		
			
				|  |  |  |  | //tmp32f.val[1] = vcvtq_f32_s32(tmp32i.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> complex multiplication of four complex samples (float 32 bits each component) <] | 
		
	
		
			
				|  |  |  |  | //tmp32_real.val[0] = vmulq_f32(tmp32f.val[0], _phase_real); | 
		
	
		
			
				|  |  |  |  | //tmp32_real.val[1] = vmulq_f32(tmp32f.val[1], _phase_imag); | 
		
	
		
			
				|  |  |  |  | //tmp32_imag.val[0] = vmulq_f32(tmp32f.val[0], _phase_imag); | 
		
	
		
			
				|  |  |  |  | //tmp32_imag.val[1] = vmulq_f32(tmp32f.val[1], _phase_real); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //tmp32f.val[0] = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]); | 
		
	
		
			
				|  |  |  |  | //tmp32f.val[1] = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> downcast results to int32 <] | 
		
	
		
			
				|  |  |  |  | //[> in __aarch64__ we can do that with vcvtaq_s32_f32(ret1); vcvtaq_s32_f32(ret2); <] | 
		
	
		
			
				|  |  |  |  | //sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[0]), 31))); | 
		
	
		
			
				|  |  |  |  | //PlusHalf = vaddq_f32(tmp32f.val[0], half); | 
		
	
		
			
				|  |  |  |  | //Round = vsubq_f32(PlusHalf, sign); | 
		
	
		
			
				|  |  |  |  | //tmp32i.val[0] = vcvtq_s32_f32(Round); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[1]), 31))); | 
		
	
		
			
				|  |  |  |  | //PlusHalf = vaddq_f32(tmp32f.val[1], half); | 
		
	
		
			
				|  |  |  |  | //Round = vsubq_f32(PlusHalf, sign); | 
		
	
		
			
				|  |  |  |  | //tmp32i.val[1] = vcvtq_s32_f32(Round); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> downcast results to int16 <] | 
		
	
		
			
				|  |  |  |  | //tmp16.val[0] = vqmovn_s32(tmp32i.val[0]); | 
		
	
		
			
				|  |  |  |  | //tmp16.val[1] = vqmovn_s32(tmp32i.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> compute next four phases <] | 
		
	
		
			
				|  |  |  |  | //tmp32_real.val[0] = vmulq_f32(_phase_real, _phase4_real); | 
		
	
		
			
				|  |  |  |  | //tmp32_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag); | 
		
	
		
			
				|  |  |  |  | //tmp32_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag); | 
		
	
		
			
				|  |  |  |  | //tmp32_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //_phase_real = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]); | 
		
	
		
			
				|  |  |  |  | //_phase_imag = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //a_val = vld2_s16((int16_t*)&(_in_a[n_vec][number*4])); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg | 
		
	
		
			
				|  |  |  |  | ////__VOLK_GNSSSDR_PREFETCH(&_in_a[n_vec][number*4] + 8); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //// multiply the real*real and imag*imag to get real result | 
		
	
		
			
				|  |  |  |  | //// a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r | 
		
	
		
			
				|  |  |  |  | //b_val.val[0] = vmul_s16(a_val.val[0], tmp16.val[0]); | 
		
	
		
			
				|  |  |  |  | //// a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i | 
		
	
		
			
				|  |  |  |  | //b_val.val[1] = vmul_s16(a_val.val[1], tmp16.val[1]); | 
		
	
		
			
				|  |  |  |  | //c_val.val[0] = vqsub_s16(b_val.val[0], b_val.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //// Multiply cross terms to get the imaginary result | 
		
	
		
			
				|  |  |  |  | //// a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i | 
		
	
		
			
				|  |  |  |  | //b_val.val[0] = vmul_s16(a_val.val[0], tmp16.val[1]); | 
		
	
		
			
				|  |  |  |  | //// a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r | 
		
	
		
			
				|  |  |  |  | //b_val.val[1] = vmul_s16(a_val.val[1], tmp16.val[0]); | 
		
	
		
			
				|  |  |  |  | //c_val.val[1] = vqadd_s16(b_val.val[0], b_val.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //accumulator[n_vec].val[0] = vqadd_s16(accumulator[n_vec].val[0], c_val.val[0]); | 
		
	
		
			
				|  |  |  |  | //accumulator[n_vec].val[1] = vqadd_s16(accumulator[n_vec].val[1], c_val.val[1]); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //// Regenerate phase | 
		
	
		
			
				|  |  |  |  | //if ((number % 256) == 0) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //phase_est = arg_phase0 + (number + 1) * 4 * arg_phase_inc; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //*phase = lv_cmake(cos(phase_est), sin(phase_est)); | 
		
	
		
			
				|  |  |  |  | //phase2 = (lv_32fc_t)(*phase) * phase_inc; | 
		
	
		
			
				|  |  |  |  | //phase3 = phase2 * phase_inc; | 
		
	
		
			
				|  |  |  |  | //phase4 = phase3 * phase_inc; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) }; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) }; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //_phase_real = vld1q_f32(____phase_real); | 
		
	
		
			
				|  |  |  |  | //_phase_imag = vld1q_f32(____phase_imag); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //vst2_s16((int16_t*)dotProductVector, accumulator[n_vec]); // Store the results back into the dot product vector | 
		
	
		
			
				|  |  |  |  | //dotProduct = lv_cmake(0,0); | 
		
	
		
			
				|  |  |  |  | //for (i = 0; i < 4; ++i) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])), | 
		
	
		
			
				|  |  |  |  | //sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i]))); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //_out[n_vec] = dotProduct; | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //volk_gnsssdr_free(accumulator); | 
		
	
		
			
				|  |  |  |  | //vst1q_f32((float32_t*)__phase_real, _phase_real); | 
		
	
		
			
				|  |  |  |  | //vst1q_f32((float32_t*)__phase_imag, _phase_imag); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //(*phase) = lv_cmake((float32_t)__phase_real[0], (float32_t)__phase_imag[0]); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for (n = neon_iters * 4; n < num_points; n++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //tmp16_ = in_common[n];  //printf("neon phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase)); | 
		
	
		
			
				|  |  |  |  | //tmp32_ = lv_cmake((float32_t)lv_creal(tmp16_), (float32_t)lv_cimag(tmp16_)) * (*phase); | 
		
	
		
			
				|  |  |  |  | //tmp16_ = lv_cmake((int16_t)rintf(lv_creal(tmp32_)), (int16_t)rintf(lv_cimag(tmp32_))); | 
		
	
		
			
				|  |  |  |  | //(*phase) *= phase_inc; | 
		
	
		
			
				|  |  |  |  | //for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //tmp = tmp16_ * in_a[n_vec][n]; | 
		
	
		
			
				|  |  |  |  | //_out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp))); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //#endif [> LV_HAVE_NEONV7 <] | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //#ifdef LV_HAVE_NEONV7 | 
		
	
		
			
				|  |  |  |  | //#include <arm_neon.h> | 
		
	
		
			
				|  |  |  |  | //#include <volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h> | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //static inline void volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn_neon_vma(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const int16_t** in_a,  int num_a_vectors, unsigned int num_points) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //const unsigned int neon_iters = num_points / 4; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //const int16_t** _in_a = in_a; | 
		
	
		
			
				|  |  |  |  | //const lv_16sc_t* _in_common = in_common; | 
		
	
		
			
				|  |  |  |  | //lv_16sc_t* _out = result; | 
		
	
		
			
				|  |  |  |  | //int n_vec; | 
		
	
		
			
				|  |  |  |  | //int i; | 
		
	
		
			
				|  |  |  |  | //unsigned int number; | 
		
	
		
			
				|  |  |  |  | //unsigned int n; | 
		
	
		
			
				|  |  |  |  | //lv_16sc_t tmp16_, tmp; | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t tmp32_; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //if (neon_iters > 0) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //lv_16sc_t dotProduct = lv_cmake(0,0); | 
		
	
		
			
				|  |  |  |  | //float arg_phase0 = cargf(*phase); | 
		
	
		
			
				|  |  |  |  | //float arg_phase_inc = cargf(phase_inc); | 
		
	
		
			
				|  |  |  |  | //float phase_est; | 
		
	
		
			
				|  |  |  |  | ////printf("arg phase0: %f", arg_phase0); | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) }; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) }; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //float32x4_t _phase4_real = vld1q_f32(__phase4_real); | 
		
	
		
			
				|  |  |  |  | //float32x4_t _phase4_imag = vld1q_f32(__phase4_imag); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t phase2 = (lv_32fc_t)(*phase) * phase_inc; | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t phase3 = phase2 * phase_inc; | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t phase4 = phase3 * phase_inc; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t __phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) }; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t __phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) }; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //float32x4_t _phase_real = vld1q_f32(__phase_real); | 
		
	
		
			
				|  |  |  |  | //float32x4_t _phase_imag = vld1q_f32(__phase_imag); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //int16x4x2_t a_val, b_val; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; | 
		
	
		
			
				|  |  |  |  | //float32x4_t half = vdupq_n_f32(0.5f); | 
		
	
		
			
				|  |  |  |  | //int16x4x2_t tmp16; | 
		
	
		
			
				|  |  |  |  | //int32x4x2_t tmp32i; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //float32x4x2_t tmp32f, tmp32_real, tmp32_imag; | 
		
	
		
			
				|  |  |  |  | //float32x4_t sign, PlusHalf, Round; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //int16x4x2_t* accumulator = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment()); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for(n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //accumulator[n_vec].val[0] = vdup_n_s16(0); | 
		
	
		
			
				|  |  |  |  | //accumulator[n_vec].val[1] = vdup_n_s16(0); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for(number = 0; number < neon_iters; number++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //[> load 4 complex numbers (int 16 bits each component) <] | 
		
	
		
			
				|  |  |  |  | //tmp16 = vld2_s16((int16_t*)_in_common); | 
		
	
		
			
				|  |  |  |  | //__VOLK_GNSSSDR_PREFETCH(_in_common + 8); | 
		
	
		
			
				|  |  |  |  | //_in_common += 4; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> promote them to int 32 bits <] | 
		
	
		
			
				|  |  |  |  | //tmp32i.val[0] = vmovl_s16(tmp16.val[0]); | 
		
	
		
			
				|  |  |  |  | //tmp32i.val[1] = vmovl_s16(tmp16.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> promote them to float 32 bits <] | 
		
	
		
			
				|  |  |  |  | //tmp32f.val[0] = vcvtq_f32_s32(tmp32i.val[0]); | 
		
	
		
			
				|  |  |  |  | //tmp32f.val[1] = vcvtq_f32_s32(tmp32i.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> complex multiplication of four complex samples (float 32 bits each component) <] | 
		
	
		
			
				|  |  |  |  | //tmp32_real.val[0] = vmulq_f32(tmp32f.val[0], _phase_real); | 
		
	
		
			
				|  |  |  |  | //tmp32_real.val[1] = vmulq_f32(tmp32f.val[1], _phase_imag); | 
		
	
		
			
				|  |  |  |  | //tmp32_imag.val[0] = vmulq_f32(tmp32f.val[0], _phase_imag); | 
		
	
		
			
				|  |  |  |  | //tmp32_imag.val[1] = vmulq_f32(tmp32f.val[1], _phase_real); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //tmp32f.val[0] = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]); | 
		
	
		
			
				|  |  |  |  | //tmp32f.val[1] = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> downcast results to int32 <] | 
		
	
		
			
				|  |  |  |  | //[> in __aarch64__ we can do that with vcvtaq_s32_f32(ret1); vcvtaq_s32_f32(ret2); <] | 
		
	
		
			
				|  |  |  |  | //sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[0]), 31))); | 
		
	
		
			
				|  |  |  |  | //PlusHalf = vaddq_f32(tmp32f.val[0], half); | 
		
	
		
			
				|  |  |  |  | //Round = vsubq_f32(PlusHalf, sign); | 
		
	
		
			
				|  |  |  |  | //tmp32i.val[0] = vcvtq_s32_f32(Round); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[1]), 31))); | 
		
	
		
			
				|  |  |  |  | //PlusHalf = vaddq_f32(tmp32f.val[1], half); | 
		
	
		
			
				|  |  |  |  | //Round = vsubq_f32(PlusHalf, sign); | 
		
	
		
			
				|  |  |  |  | //tmp32i.val[1] = vcvtq_s32_f32(Round); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> downcast results to int16 <] | 
		
	
		
			
				|  |  |  |  | //tmp16.val[0] = vqmovn_s32(tmp32i.val[0]); | 
		
	
		
			
				|  |  |  |  | //tmp16.val[1] = vqmovn_s32(tmp32i.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> compute next four phases <] | 
		
	
		
			
				|  |  |  |  | //tmp32_real.val[0] = vmulq_f32(_phase_real, _phase4_real); | 
		
	
		
			
				|  |  |  |  | //tmp32_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag); | 
		
	
		
			
				|  |  |  |  | //tmp32_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag); | 
		
	
		
			
				|  |  |  |  | //tmp32_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //_phase_real = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]); | 
		
	
		
			
				|  |  |  |  | //_phase_imag = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //// Regenerate phase | 
		
	
		
			
				|  |  |  |  | //if ((number % 256) == 0) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | ////printf("computed phase: %f\n", cos(cargf(lv_cmake(_phase_real[0],_phase_imag[0])))); | 
		
	
		
			
				|  |  |  |  | //phase_est = arg_phase0 + (number + 1) * 4 * arg_phase_inc; | 
		
	
		
			
				|  |  |  |  | ////printf("Estimated phase: %f\n\n", cos(phase_est)); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //*phase = lv_cmake(cos(phase_est), sin(phase_est)); | 
		
	
		
			
				|  |  |  |  | //phase2 = (lv_32fc_t)(*phase) * phase_inc; | 
		
	
		
			
				|  |  |  |  | //phase3 = phase2 * phase_inc; | 
		
	
		
			
				|  |  |  |  | //phase4 = phase3 * phase_inc; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) }; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) }; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //_phase_real = vld1q_f32(____phase_real); | 
		
	
		
			
				|  |  |  |  | //_phase_imag = vld1q_f32(____phase_imag); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //// Round = vmulq_f32(_phase_real, _phase_real); | 
		
	
		
			
				|  |  |  |  | //// Round = vmlaq_f32(Round, _phase_imag, _phase_imag); | 
		
	
		
			
				|  |  |  |  | ////               Round = vsqrtq_f32(Round);//printf("sqrt: %f \n", Round[0]); | 
		
	
		
			
				|  |  |  |  | ////Round = vrsqrteq_f32(Round);printf("1/sqtr: %f  \n",Round[0]); | 
		
	
		
			
				|  |  |  |  | ////Round = vrecpeq_f32((Round); | 
		
	
		
			
				|  |  |  |  | ////              _phase_real = vdivq_f32(_phase_real, Round); | 
		
	
		
			
				|  |  |  |  | ////              _phase_imag = vdivq_f32(_phase_imag, Round); | 
		
	
		
			
				|  |  |  |  | ////_phase_real = vmulq_f32(_phase_real, Round); | 
		
	
		
			
				|  |  |  |  | ////_phase_imag = vmulq_f32(_phase_imag, Round); | 
		
	
		
			
				|  |  |  |  | ////printf("After  %i: %f,%f, %f\n\n", number, _phase_real[0], _phase_imag[0], sqrt(_phase_real[0]*_phase_real[0]+_phase_imag[0]*_phase_imag[0])); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //a_val = vld2_s16((int16_t*)&(_in_a[n_vec][number*4])); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //b_val.val[0] = vmul_s16(a_val.val[0], tmp16.val[0]); | 
		
	
		
			
				|  |  |  |  | //b_val.val[1] = vmul_s16(a_val.val[1], tmp16.val[0]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //// use multiply accumulate/subtract to get result | 
		
	
		
			
				|  |  |  |  | //b_val.val[0] = vmls_s16(b_val.val[0], a_val.val[1], tmp16.val[1]); | 
		
	
		
			
				|  |  |  |  | //b_val.val[1] = vmla_s16(b_val.val[1], a_val.val[0], tmp16.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //accumulator[n_vec].val[0] = vqadd_s16(accumulator[n_vec].val[0], b_val.val[0]); | 
		
	
		
			
				|  |  |  |  | //accumulator[n_vec].val[1] = vqadd_s16(accumulator[n_vec].val[1], b_val.val[1]); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //vst2_s16((int16_t*)dotProductVector, accumulator[n_vec]); // Store the results back into the dot product vector | 
		
	
		
			
				|  |  |  |  | //dotProduct = lv_cmake(0,0); | 
		
	
		
			
				|  |  |  |  | //for (i = 0; i < 4; ++i) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])), | 
		
	
		
			
				|  |  |  |  | //sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i]))); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //_out[n_vec] = dotProduct; | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //volk_gnsssdr_free(accumulator); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //vst1q_f32((float32_t*)__phase_real, _phase_real); | 
		
	
		
			
				|  |  |  |  | //vst1q_f32((float32_t*)__phase_imag, _phase_imag); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //(*phase) = lv_cmake((float32_t)__phase_real[0], (float32_t)__phase_imag[0]); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for (n = neon_iters * 4; n < num_points; n++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //tmp16_ = in_common[n];  //printf("neon phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase)); | 
		
	
		
			
				|  |  |  |  | //tmp32_ = lv_cmake((float32_t)lv_creal(tmp16_), (float32_t)lv_cimag(tmp16_)) * (*phase); | 
		
	
		
			
				|  |  |  |  | //tmp16_ = lv_cmake((int16_t)rintf(lv_creal(tmp32_)), (int16_t)rintf(lv_cimag(tmp32_))); | 
		
	
		
			
				|  |  |  |  | //(*phase) *= phase_inc; | 
		
	
		
			
				|  |  |  |  | //for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //tmp = tmp16_ * in_a[n_vec][n]; | 
		
	
		
			
				|  |  |  |  | //_out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp))); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //#endif [> LV_HAVE_NEONV7 <] | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //#ifdef LV_HAVE_NEONV7 | 
		
	
		
			
				|  |  |  |  | //#include <arm_neon.h> | 
		
	
		
			
				|  |  |  |  | //#include <volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h> | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //static inline void volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn_neon_optvma(lv_16sc_t* result, const lv_16sc_t* in_common, const lv_32fc_t phase_inc, lv_32fc_t* phase, const int16_t** in_a,  int num_a_vectors, unsigned int num_points) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //const unsigned int neon_iters = num_points / 4; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //const int16_t** _in_a = in_a; | 
		
	
		
			
				|  |  |  |  | //const lv_16sc_t* _in_common = in_common; | 
		
	
		
			
				|  |  |  |  | //lv_16sc_t* _out = result; | 
		
	
		
			
				|  |  |  |  | //int n_vec; | 
		
	
		
			
				|  |  |  |  | //int i; | 
		
	
		
			
				|  |  |  |  | //unsigned int number; | 
		
	
		
			
				|  |  |  |  | //unsigned int n; | 
		
	
		
			
				|  |  |  |  | //lv_16sc_t tmp16_, tmp; | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t tmp32_; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //if (neon_iters > 0) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //lv_16sc_t dotProduct = lv_cmake(0,0); | 
		
	
		
			
				|  |  |  |  | //float arg_phase0 = cargf(*phase); | 
		
	
		
			
				|  |  |  |  | //float arg_phase_inc = cargf(phase_inc); | 
		
	
		
			
				|  |  |  |  | //float phase_est; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t ___phase4 = phase_inc * phase_inc * phase_inc * phase_inc; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t __phase4_real[4] = { lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4), lv_creal(___phase4) }; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t __phase4_imag[4] = { lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4), lv_cimag(___phase4) }; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //float32x4_t _phase4_real = vld1q_f32(__phase4_real); | 
		
	
		
			
				|  |  |  |  | //float32x4_t _phase4_imag = vld1q_f32(__phase4_imag); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t phase2 = (lv_32fc_t)(*phase) * phase_inc; | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t phase3 = phase2 * phase_inc; | 
		
	
		
			
				|  |  |  |  | //lv_32fc_t phase4 = phase3 * phase_inc; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t __phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) }; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t __phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) }; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //float32x4_t _phase_real = vld1q_f32(__phase_real); | 
		
	
		
			
				|  |  |  |  | //float32x4_t _phase_imag = vld1q_f32(__phase_imag); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //int16x4x2_t a_val, b_val; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4]; | 
		
	
		
			
				|  |  |  |  | //float32x4_t half = vdupq_n_f32(0.5f); | 
		
	
		
			
				|  |  |  |  | //int32x4x2_t tmp32i; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //float32x4x2_t tmp32f, tmp32_real, tmp32_imag; | 
		
	
		
			
				|  |  |  |  | //float32x4_t sign, PlusHalf, Round; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //int16x4x2_t* accumulator1 = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment()); | 
		
	
		
			
				|  |  |  |  | //int16x4x2_t* accumulator2 = (int16x4x2_t*)volk_gnsssdr_malloc(num_a_vectors * sizeof(int16x4x2_t), volk_gnsssdr_get_alignment()); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for(n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //accumulator1[n_vec].val[0] = vdup_n_s16(0); | 
		
	
		
			
				|  |  |  |  | //accumulator1[n_vec].val[1] = vdup_n_s16(0); | 
		
	
		
			
				|  |  |  |  | //accumulator2[n_vec].val[0] = vdup_n_s16(0); | 
		
	
		
			
				|  |  |  |  | //accumulator2[n_vec].val[1] = vdup_n_s16(0); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for(number = 0; number < neon_iters; number++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //[> load 4 complex numbers (int 16 bits each component) <] | 
		
	
		
			
				|  |  |  |  | //b_val = vld2_s16((int16_t*)_in_common); | 
		
	
		
			
				|  |  |  |  | //__VOLK_GNSSSDR_PREFETCH(_in_common + 8); | 
		
	
		
			
				|  |  |  |  | //_in_common += 4; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> promote them to int 32 bits <] | 
		
	
		
			
				|  |  |  |  | //tmp32i.val[0] = vmovl_s16(b_val.val[0]); | 
		
	
		
			
				|  |  |  |  | //tmp32i.val[1] = vmovl_s16(b_val.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> promote them to float 32 bits <] | 
		
	
		
			
				|  |  |  |  | //tmp32f.val[0] = vcvtq_f32_s32(tmp32i.val[0]); | 
		
	
		
			
				|  |  |  |  | //tmp32f.val[1] = vcvtq_f32_s32(tmp32i.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> complex multiplication of four complex samples (float 32 bits each component) <] | 
		
	
		
			
				|  |  |  |  | //tmp32_real.val[0] = vmulq_f32(tmp32f.val[0], _phase_real); | 
		
	
		
			
				|  |  |  |  | //tmp32_real.val[1] = vmulq_f32(tmp32f.val[1], _phase_imag); | 
		
	
		
			
				|  |  |  |  | //tmp32_imag.val[0] = vmulq_f32(tmp32f.val[0], _phase_imag); | 
		
	
		
			
				|  |  |  |  | //tmp32_imag.val[1] = vmulq_f32(tmp32f.val[1], _phase_real); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //tmp32f.val[0] = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]); | 
		
	
		
			
				|  |  |  |  | //tmp32f.val[1] = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> downcast results to int32 <] | 
		
	
		
			
				|  |  |  |  | //[> in __aarch64__ we can do that with vcvtaq_s32_f32(ret1); vcvtaq_s32_f32(ret2); <] | 
		
	
		
			
				|  |  |  |  | //sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[0]), 31))); | 
		
	
		
			
				|  |  |  |  | //PlusHalf = vaddq_f32(tmp32f.val[0], half); | 
		
	
		
			
				|  |  |  |  | //Round = vsubq_f32(PlusHalf, sign); | 
		
	
		
			
				|  |  |  |  | //tmp32i.val[0] = vcvtq_s32_f32(Round); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(tmp32f.val[1]), 31))); | 
		
	
		
			
				|  |  |  |  | //PlusHalf = vaddq_f32(tmp32f.val[1], half); | 
		
	
		
			
				|  |  |  |  | //Round = vsubq_f32(PlusHalf, sign); | 
		
	
		
			
				|  |  |  |  | //tmp32i.val[1] = vcvtq_s32_f32(Round); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> downcast results to int16 <] | 
		
	
		
			
				|  |  |  |  | //b_val.val[0] = vqmovn_s32(tmp32i.val[0]); | 
		
	
		
			
				|  |  |  |  | //b_val.val[1] = vqmovn_s32(tmp32i.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //[> compute next four phases <] | 
		
	
		
			
				|  |  |  |  | //tmp32_real.val[0] = vmulq_f32(_phase_real, _phase4_real); | 
		
	
		
			
				|  |  |  |  | //tmp32_real.val[1] = vmulq_f32(_phase_imag, _phase4_imag); | 
		
	
		
			
				|  |  |  |  | //tmp32_imag.val[0] = vmulq_f32(_phase_real, _phase4_imag); | 
		
	
		
			
				|  |  |  |  | //tmp32_imag.val[1] = vmulq_f32(_phase_imag, _phase4_real); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //_phase_real = vsubq_f32(tmp32_real.val[0], tmp32_real.val[1]); | 
		
	
		
			
				|  |  |  |  | //_phase_imag = vaddq_f32(tmp32_imag.val[0], tmp32_imag.val[1]); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //// Regenerate phase | 
		
	
		
			
				|  |  |  |  | //if ((number % 256) == 0) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | ////printf("computed phase: %f\n", cos(cargf(lv_cmake(_phase_real[0],_phase_imag[0])))); | 
		
	
		
			
				|  |  |  |  | //phase_est = arg_phase0 + (number + 1) * 4 * arg_phase_inc; | 
		
	
		
			
				|  |  |  |  | ////printf("Estimated phase: %f\n\n", cos(phase_est)); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //*phase = lv_cmake(cos(phase_est), sin(phase_est)); | 
		
	
		
			
				|  |  |  |  | //phase2 = (lv_32fc_t)(*phase) * phase_inc; | 
		
	
		
			
				|  |  |  |  | //phase3 = phase2 * phase_inc; | 
		
	
		
			
				|  |  |  |  | //phase4 = phase3 * phase_inc; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t ____phase_real[4] = { lv_creal((*phase)), lv_creal(phase2), lv_creal(phase3), lv_creal(phase4) }; | 
		
	
		
			
				|  |  |  |  | //__VOLK_ATTR_ALIGNED(16) float32_t ____phase_imag[4] = { lv_cimag((*phase)), lv_cimag(phase2), lv_cimag(phase3), lv_cimag(phase4) }; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //_phase_real = vld1q_f32(____phase_real); | 
		
	
		
			
				|  |  |  |  | //_phase_imag = vld1q_f32(____phase_imag); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //a_val = vld2_s16((int16_t*)&(_in_a[n_vec][number*4])); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //// use 2 accumulators to remove inter-instruction data dependencies | 
		
	
		
			
				|  |  |  |  | //accumulator1[n_vec].val[0] = vmla_s16(accumulator1[n_vec].val[0], a_val.val[0], b_val.val[0]); | 
		
	
		
			
				|  |  |  |  | //accumulator1[n_vec].val[1] = vmla_s16(accumulator1[n_vec].val[1], a_val.val[0], b_val.val[1]); | 
		
	
		
			
				|  |  |  |  | //accumulator2[n_vec].val[0] = vmls_s16(accumulator2[n_vec].val[0], a_val.val[1], b_val.val[1]); | 
		
	
		
			
				|  |  |  |  | //accumulator2[n_vec].val[1] = vmla_s16(accumulator2[n_vec].val[1], a_val.val[1], b_val.val[0]); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //accumulator1[n_vec].val[0] = vqadd_s16(accumulator1[n_vec].val[0], accumulator2[n_vec].val[0]); | 
		
	
		
			
				|  |  |  |  | //accumulator1[n_vec].val[1] = vqadd_s16(accumulator1[n_vec].val[1], accumulator2[n_vec].val[1]); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //vst2_s16((int16_t*)dotProductVector, accumulator1[n_vec]); // Store the results back into the dot product vector | 
		
	
		
			
				|  |  |  |  | //dotProduct = lv_cmake(0,0); | 
		
	
		
			
				|  |  |  |  | //for (i = 0; i < 4; ++i) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[i])), | 
		
	
		
			
				|  |  |  |  | //sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[i]))); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //_out[n_vec] = dotProduct; | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //volk_gnsssdr_free(accumulator1); | 
		
	
		
			
				|  |  |  |  | //volk_gnsssdr_free(accumulator2); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //vst1q_f32((float32_t*)__phase_real, _phase_real); | 
		
	
		
			
				|  |  |  |  | //vst1q_f32((float32_t*)__phase_imag, _phase_imag); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //(*phase) = lv_cmake((float32_t)__phase_real[0], (float32_t)__phase_imag[0]); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //for (n = neon_iters * 4; n < num_points; n++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //tmp16_ = in_common[n];  //printf("neon phase %i: %f,%f\n", n,lv_creal(*phase),lv_cimag(*phase)); | 
		
	
		
			
				|  |  |  |  | //tmp32_ = lv_cmake((float32_t)lv_creal(tmp16_), (float32_t)lv_cimag(tmp16_)) * (*phase); | 
		
	
		
			
				|  |  |  |  | //tmp16_ = lv_cmake((int16_t)rintf(lv_creal(tmp32_)), (int16_t)rintf(lv_cimag(tmp32_))); | 
		
	
		
			
				|  |  |  |  | //(*phase) *= phase_inc; | 
		
	
		
			
				|  |  |  |  | //for (n_vec = 0; n_vec < num_a_vectors; n_vec++) | 
		
	
		
			
				|  |  |  |  | //{ | 
		
	
		
			
				|  |  |  |  | //tmp = tmp16_ * in_a[n_vec][n]; | 
		
	
		
			
				|  |  |  |  | //_out[n_vec] = lv_cmake(sat_adds16i(lv_creal(_out[n_vec]), lv_creal(tmp)), sat_adds16i(lv_cimag(_out[n_vec]), lv_cimag(tmp))); | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  | //} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | //#endif [> LV_HAVE_NEONV7 <] | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | #endif /* INCLUDED_volk_gnsssdr_16ic_16i_dot_prod_16ic_xn_H */ | 
		
	
	
		
			
				
					
					| 
							
							
							
						 |  |  |   |