1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-18 21:23:02 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into fpga

This commit is contained in:
Javier Arribas 2018-04-11 14:33:44 +02:00
commit c3635d002d
5 changed files with 62 additions and 184 deletions

View File

@ -33,181 +33,103 @@
#ifndef GNSS_SDR_CIRCULAR_DEQUE_H_ #ifndef GNSS_SDR_CIRCULAR_DEQUE_H_
#define GNSS_SDR_CIRCULAR_DEQUE_H_ #define GNSS_SDR_CIRCULAR_DEQUE_H_
#include <vector>
#include <boost/circular_buffer.hpp>
template <class T> template <class T>
class Gnss_circular_deque class Gnss_circular_deque
{ {
public: public:
Gnss_circular_deque(); Gnss_circular_deque(); // Default constructor
Gnss_circular_deque(const unsigned int max_size, const unsigned int nchann); Gnss_circular_deque(const unsigned int max_size, const unsigned int nchann); // nchann = number of channels; max_size = channel capacity
~Gnss_circular_deque(); unsigned int size(const unsigned int ch); // Returns the number of available elements in a channel
unsigned int size(const unsigned int ch); T& at(const unsigned int ch, const unsigned int pos); // Returns a reference to an element
T& at(const unsigned int ch, const unsigned int pos); T& front(const unsigned int ch); // Returns a reference to the first element in the deque
T& front(const unsigned int ch); T& back(const unsigned int ch); // Returns a reference to the last element in the deque
T& back(const unsigned int ch); void push_back(const unsigned int ch, const T& new_data); // Inserts an element at the end of the deque
void push_back(const unsigned int ch, const T& new_data); void pop_front(const unsigned int ch); // Removes the first element of the deque
T pop_front(const unsigned int ch); void clear(const unsigned int ch); // Removes all the elements of the deque (Sets size to 0). Capacity is not modified
void clear(const unsigned int ch); void reset(const unsigned int max_size, const unsigned int nchann); // Removes all the elements in all the channels. Re-sets the number of channels and their capacity
T* get_vector(const unsigned int ch); void reset(); // Removes all the channels (Sets nchann to 0)
private: private:
T** d_history; std::vector<boost::circular_buffer<T>> d_data;
T d_return_void; // Void object for avoid compiler errors
unsigned int* d_index_pop;
unsigned int* d_index_push;
unsigned int* d_size;
unsigned int d_max_size;
unsigned int d_nchannels;
}; };
template <class T> template <class T>
Gnss_circular_deque<T>::Gnss_circular_deque() Gnss_circular_deque<T>::Gnss_circular_deque()
{ {
d_max_size = 0; reset();
d_nchannels = 0;
d_size = nullptr;
d_index_pop = nullptr;
d_index_push = nullptr;
d_history = nullptr;
} }
template <class T> template <class T>
Gnss_circular_deque<T>::Gnss_circular_deque(const unsigned int max_size, const unsigned int nchann) Gnss_circular_deque<T>::Gnss_circular_deque(const unsigned int max_size, const unsigned int nchann)
{ {
d_max_size = max_size; reset(max_size, nchann);
d_nchannels = nchann;
if (d_max_size > 0 and d_nchannels > 0)
{
d_size = new unsigned int[d_nchannels];
d_index_pop = new unsigned int[d_nchannels];
d_index_push = new unsigned int[d_nchannels];
d_history = new T*[d_nchannels];
for (unsigned int i = 0; i < d_nchannels; i++)
{
d_size[i] = 0;
d_index_pop[i] = 0;
d_index_push[i] = 0;
d_history[i] = new T[d_max_size];
}
}
}
template <class T>
Gnss_circular_deque<T>::~Gnss_circular_deque()
{
if (d_max_size > 0 and d_nchannels > 0)
{
delete[] d_size;
delete[] d_index_pop;
delete[] d_index_push;
for (unsigned int i = 0; i < d_nchannels; i++)
{
delete[] d_history[i];
}
delete[] d_history;
}
} }
template <class T> template <class T>
unsigned int Gnss_circular_deque<T>::size(const unsigned int ch) unsigned int Gnss_circular_deque<T>::size(const unsigned int ch)
{ {
return d_size[ch]; return d_data.at(ch).size();
} }
template <class T> template <class T>
T& Gnss_circular_deque<T>::back(const unsigned int ch) T& Gnss_circular_deque<T>::back(const unsigned int ch)
{ {
if (d_size[ch] > 0) return d_data.at(ch).back();
{
unsigned int index = 0;
if (d_index_push[ch] > 0)
{
index = d_index_push[ch] - 1;
}
else
{
index = d_max_size;
}
return d_history[ch][index];
}
else
{
return d_return_void;
}
} }
template <class T> template <class T>
T& Gnss_circular_deque<T>::front(const unsigned int ch) T& Gnss_circular_deque<T>::front(const unsigned int ch)
{ {
if (d_size[ch] > 0) return d_data.at(ch).front();
{
return d_history[ch][d_index_pop[ch]];
}
else
{
return d_return_void;
}
} }
template <class T> template <class T>
T& Gnss_circular_deque<T>::at(const unsigned int ch, const unsigned int pos) T& Gnss_circular_deque<T>::at(const unsigned int ch, const unsigned int pos)
{ {
if (d_size[ch] > 0 and pos < d_size[ch]) return d_data.at(ch).at(pos);
{
unsigned int index = (d_index_pop[ch] + pos) % d_max_size;
return d_history[ch][index];
}
else
{
return d_return_void;
}
} }
template <class T> template <class T>
void Gnss_circular_deque<T>::clear(const unsigned int ch) void Gnss_circular_deque<T>::clear(const unsigned int ch)
{ {
d_size[ch] = 0; d_data.at(ch).clear();
d_index_pop[ch] = 0;
d_index_push[ch] = 0;
} }
template <class T> template <class T>
T Gnss_circular_deque<T>::pop_front(const unsigned int ch) void Gnss_circular_deque<T>::reset(const unsigned int max_size, const unsigned int nchann)
{ {
T result; d_data.clear();
if (d_size[ch] > 0) if (max_size > 0 and nchann > 0)
{ {
d_size[ch]--; for (unsigned int i = 0; i < nchann; i++)
result = d_history[ch][d_index_pop[ch]]; {
d_index_pop[ch]++; d_data.push_back(boost::circular_buffer<T>(max_size));
d_index_pop[ch] %= d_max_size; }
} }
return result; }
template <class T>
void Gnss_circular_deque<T>::reset()
{
d_data.clear();
}
template <class T>
void Gnss_circular_deque<T>::pop_front(const unsigned int ch)
{
d_data.at(ch).pop_front();
} }
template <class T> template <class T>
void Gnss_circular_deque<T>::push_back(const unsigned int ch, const T& new_data) void Gnss_circular_deque<T>::push_back(const unsigned int ch, const T& new_data)
{ {
d_history[ch][d_index_push[ch]] = new_data; d_data.at(ch).push_back(new_data);
d_index_push[ch]++;
d_index_push[ch] %= d_max_size;
if (d_size[ch] < d_max_size)
{
d_size[ch]++;
}
else
{
d_index_pop[ch]++;
d_index_pop[ch] %= d_max_size;
}
} }
template <class T>
T* Gnss_circular_deque<T>::get_vector(const unsigned int ch)
{
return d_history[ch];
}
#endif /* GNSS_SDR_CIRCULAR_DEQUE_H_ */ #endif /* GNSS_SDR_CIRCULAR_DEQUE_H_ */

View File

@ -63,10 +63,11 @@ hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels_in,
d_dump_filename = dump_filename; d_dump_filename = dump_filename;
T_rx_s = 0.0; T_rx_s = 0.0;
T_rx_step_s = 0.001; // 1 ms T_rx_step_s = 0.001; // 1 ms
max_delta = 0.15; // 150 ms max_delta = 3.5; // 3.5 s
d_latency = 0.08; // 80 ms
valid_channels.resize(d_nchannels, false); valid_channels.resize(d_nchannels, false);
d_num_valid_channels = 0; d_num_valid_channels = 0;
d_gnss_synchro_history = new Gnss_circular_deque<Gnss_Synchro>(200, d_nchannels); d_gnss_synchro_history = new Gnss_circular_deque<Gnss_Synchro>(static_cast<unsigned int>(max_delta * 1000.0), d_nchannels);
// ############# ENABLE DATA FILE LOG ################# // ############# ENABLE DATA FILE LOG #################
if (d_dump) if (d_dump)
@ -86,7 +87,6 @@ hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels_in,
} }
} }
} }
std::cout << "SALIDA CONST HO. ()" << std::endl;
} }
@ -308,55 +308,21 @@ bool hybrid_observables_cc::interpolate_data(Gnss_Synchro &out, const unsigned i
} }
std::pair<unsigned int, unsigned int> ind = find_interp_elements(ch, ti); std::pair<unsigned int, unsigned int> ind = find_interp_elements(ch, ti);
double m = 0.0; //Linear interpolation: y(t) = y(t1) + (y(t2) - y(t1)) * (t - t1) / (t2 - t1)
double c = 0.0;
// CARRIER PHASE INTERPOLATION // CARRIER PHASE INTERPOLATION
m = (d_gnss_synchro_history->at(ch, ind.first).Carrier_phase_rads - d_gnss_synchro_history->at(ch, ind.second).Carrier_phase_rads) / (d_gnss_synchro_history->at(ch, ind.first).RX_time - d_gnss_synchro_history->at(ch, ind.second).RX_time); out.Carrier_phase_rads = d_gnss_synchro_history->at(ch, ind.first).Carrier_phase_rads + (d_gnss_synchro_history->at(ch, ind.second).Carrier_phase_rads - d_gnss_synchro_history->at(ch, ind.first).Carrier_phase_rads) * (ti - d_gnss_synchro_history->at(ch, ind.first).RX_time) / (d_gnss_synchro_history->at(ch, ind.second).RX_time - d_gnss_synchro_history->at(ch, ind.first).RX_time);
c = d_gnss_synchro_history->at(ch, ind.first).Carrier_phase_rads - m * d_gnss_synchro_history->at(ch, ind.first).RX_time;
out.Carrier_phase_rads = m * ti + c;
// CARRIER DOPPLER INTERPOLATION // CARRIER DOPPLER INTERPOLATION
m = (d_gnss_synchro_history->at(ch, ind.first).Carrier_Doppler_hz - d_gnss_synchro_history->at(ch, ind.second).Carrier_Doppler_hz) / (d_gnss_synchro_history->at(ch, ind.first).RX_time - d_gnss_synchro_history->at(ch, ind.second).RX_time);
c = d_gnss_synchro_history->at(ch, ind.first).Carrier_Doppler_hz - m * d_gnss_synchro_history->at(ch, ind.first).RX_time; out.Carrier_Doppler_hz = d_gnss_synchro_history->at(ch, ind.first).Carrier_Doppler_hz + (d_gnss_synchro_history->at(ch, ind.second).Carrier_Doppler_hz - d_gnss_synchro_history->at(ch, ind.first).Carrier_Doppler_hz) * (ti - d_gnss_synchro_history->at(ch, ind.first).RX_time) / (d_gnss_synchro_history->at(ch, ind.second).RX_time - d_gnss_synchro_history->at(ch, ind.first).RX_time);
out.Carrier_Doppler_hz = m * ti + c;
// TOW INTERPOLATION // TOW INTERPOLATION
m = (d_gnss_synchro_history->at(ch, ind.first).TOW_at_current_symbol_s - d_gnss_synchro_history->at(ch, ind.second).TOW_at_current_symbol_s) / (d_gnss_synchro_history->at(ch, ind.first).RX_time - d_gnss_synchro_history->at(ch, ind.second).RX_time);
c = d_gnss_synchro_history->at(ch, ind.first).TOW_at_current_symbol_s - m * d_gnss_synchro_history->at(ch, ind.first).RX_time; out.TOW_at_current_symbol_s = d_gnss_synchro_history->at(ch, ind.first).TOW_at_current_symbol_s + (d_gnss_synchro_history->at(ch, ind.second).TOW_at_current_symbol_s - d_gnss_synchro_history->at(ch, ind.first).TOW_at_current_symbol_s) * (ti - d_gnss_synchro_history->at(ch, ind.first).RX_time) / (d_gnss_synchro_history->at(ch, ind.second).RX_time - d_gnss_synchro_history->at(ch, ind.first).RX_time);
out.TOW_at_current_symbol_s = m * ti + c;
return true; return true;
/*
arma::vec t = arma::vec(d_gnss_synchro_history.size(ch));
arma::vec dop = t;
arma::vec cph = t;
arma::vec tow = t;
arma::vec tiv = arma::vec(1);
arma::vec result;
tiv(0) = ti;
unsigned int aux = 0;
for (it = data.begin(); it != data.end(); it++)
{
t(aux) = it->RX_time;
dop(aux) = it->Carrier_Doppler_hz;
cph(aux) = it->Carrier_phase_rads;
tow(aux) = it->TOW_at_current_symbol_s;
aux++;
}
arma::interp1(t, dop, tiv, result);
out.Carrier_Doppler_hz = result(0);
arma::interp1(t, cph, tiv, result);
out.Carrier_phase_rads = result(0);
arma::interp1(t, tow, tiv, result);
out.TOW_at_current_symbol_s = result(0);
return result.is_finite();
*/
} }
@ -379,8 +345,8 @@ std::pair<unsigned int, unsigned int> hybrid_observables_cc::find_interp_element
double dt = 0.0; double dt = 0.0;
for (unsigned int i = 0; i < d_gnss_synchro_history->size(ch); i++) for (unsigned int i = 0; i < d_gnss_synchro_history->size(ch); i++)
{ {
dt = std::fabs(ti - d_gnss_synchro_history->at(ch, i).RX_time); dt = ti - d_gnss_synchro_history->at(ch, i).RX_time;
if (dt < dif) if (dt < dif and dt > 0.0)
{ {
dif = dt; dif = dt;
closest = i; closest = i;
@ -400,16 +366,8 @@ std::pair<unsigned int, unsigned int> hybrid_observables_cc::find_interp_element
} }
else else
{ {
if (d_gnss_synchro_history->at(ch, closest).RX_time < ti) index1 = closest;
{ index2 = closest + 1;
index1 = closest;
index2 = closest + 1;
}
else
{
index1 = closest - 1;
index2 = closest;
}
} }
return std::pair<unsigned int, unsigned int>(index1, index2); return std::pair<unsigned int, unsigned int>(index1, index2);
} }
@ -576,7 +534,7 @@ int hybrid_observables_cc::general_work(int noutput_items __attribute__((unused)
// Check if there is any valid channel after computing the time distance between the Gnss_Synchro data and the receiver time // Check if there is any valid channel after computing the time distance between the Gnss_Synchro data and the receiver time
d_num_valid_channels = valid_channels.count(); d_num_valid_channels = valid_channels.count();
double T_rx_s_out = T_rx_s - (max_delta / 2.0); double T_rx_s_out = T_rx_s - d_latency;
if ((d_num_valid_channels == 0) or (T_rx_s_out < 0.0)) if ((d_num_valid_channels == 0) or (T_rx_s_out < 0.0))
{ {
return 0; return 0;

View File

@ -78,6 +78,7 @@ private:
double T_rx_s; double T_rx_s;
double T_rx_step_s; double T_rx_step_s;
double max_delta; double max_delta;
double d_latency;
bool d_dump; bool d_dump;
unsigned int d_nchannels; unsigned int d_nchannels;
unsigned int d_num_valid_channels; unsigned int d_num_valid_channels;

View File

@ -105,6 +105,8 @@ gps_l1_ca_telemetry_decoder_cc::gps_l1_ca_telemetry_decoder_cc(
flag_PLL_180_deg_phase_locked = false; flag_PLL_180_deg_phase_locked = false;
d_preamble_time_samples = 0; d_preamble_time_samples = 0;
d_TOW_at_current_symbol_ms = 0; d_TOW_at_current_symbol_ms = 0;
d_symbol_history.resize(GPS_CA_PREAMBLE_LENGTH_SYMBOLS + 1); // Change fixed buffer size
d_symbol_history.clear(); // Clear all the elements in the buffer
} }
@ -395,11 +397,6 @@ int gps_l1_ca_telemetry_decoder_cc::general_work(int noutput_items __attribute__
} }
} }
// remove used symbols from history
if (d_symbol_history.size() > required_symbols)
{
d_symbol_history.pop_front();
}
//3. Make the output (copy the object contents to the GNURadio reserved memory) //3. Make the output (copy the object contents to the GNURadio reserved memory)
*out[0] = current_symbol; *out[0] = current_symbol;

View File

@ -36,9 +36,9 @@
#include "gnss_satellite.h" #include "gnss_satellite.h"
#include "gnss_synchro.h" #include "gnss_synchro.h"
#include <gnuradio/block.h> #include <gnuradio/block.h>
#include <deque>
#include <fstream> #include <fstream>
#include <string> #include <string>
#include <boost/circular_buffer.hpp>
class gps_l1_ca_telemetry_decoder_cc; class gps_l1_ca_telemetry_decoder_cc;
@ -79,7 +79,7 @@ private:
bool d_flag_frame_sync; bool d_flag_frame_sync;
// symbols // symbols
std::deque<Gnss_Synchro> d_symbol_history; boost::circular_buffer<Gnss_Synchro> d_symbol_history;
double d_symbol_accumulator; double d_symbol_accumulator;
short int d_symbol_accumulator_counter; short int d_symbol_accumulator_counter;