1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-28 01:44:52 +00:00

adding troposphere correction

This commit is contained in:
Carles Fernandez 2014-08-26 07:47:01 +02:00
parent 748f4c2f50
commit c2e234d6e4
2 changed files with 146 additions and 28 deletions

View File

@ -107,7 +107,7 @@ arma::vec gps_l1_ca_ls_pvt::rotateSatellite(double traveltime, arma::vec X_sat)
R3(1, 2) = 0.0;
R3(2, 0) = 0.0;
R3(2, 1) = 0.0;
R3(2, 2) = 1;
R3(2, 2) = 1.0;
//--- Do the rotation ------------------------------------------------------
arma::vec X_sat_rot;
@ -147,6 +147,9 @@ arma::vec gps_l1_ca_ls_pvt::leastSquarePos(arma::mat satpos, arma::vec obs, arma
double rho2;
double traveltime;
double trop;
double dlambda;
double dphi;
double h;
arma::mat mat_tmp;
arma::vec x;
@ -164,21 +167,34 @@ arma::vec gps_l1_ca_ls_pvt::leastSquarePos(arma::mat satpos, arma::vec obs, arma
else
{
//--- Update equations -----------------------------------------
rho2 = (X(0, i) - pos(0)) *
(X(0, i) - pos(0)) + (X(1, i) - pos(1)) *
(X(1, i) - pos(1)) + (X(2,i) - pos(2)) *
(X(2,i) - pos(2));
rho2 = (X(0, i) - pos(0)) * (X(0, i) - pos(0))
+ (X(1, i) - pos(1)) * (X(1, i) - pos(1))
+ (X(2, i) - pos(2)) * (X(2, i) - pos(2));
traveltime = sqrt(rho2) / GPS_C_m_s;
//--- Correct satellite position (do to earth rotation) --------
Rot_X = rotateSatellite(traveltime, X.col(i)); //armadillo
//--- Find DOA and range of satellites
//--- Find satellites' DOA
topocent(&d_visible_satellites_Az[i], &d_visible_satellites_El[i],
&d_visible_satellites_Distance[i], pos.subvec(0,2), Rot_X - pos.subvec(0,2));
//[az(i), el(i), dist] = topocent(pos(1:3, :), Rot_X - pos(1:3, :));
//--- Find receiver's height
togeod(&dphi, &dlambda, &h, 6378137.0, 298.257223563, pos(0), pos(1), pos(2));
//--- Find delay due to troposphere (in meters)
if(rho2 < 1.0e+17 && nmbOfSatellites > 3)
{
std::cout << h << " h " << iter << " iter" <<std::endl;
//std::cout << d_visible_satellites_El[i] << " d_visible_satellites_El[i]" << std::endl;
tropo(&trop, sin(d_visible_satellites_El[i] * GPS_PI/180.0), h/1000, 1013.0, 293.0, 50.0, 0.0, 0.0, 0.0);
if(trop > 100.0 ) trop = 0.0;
//std::cout << rho2 << " rho2" << std::endl;
std::cout << trop << " trop " << i << "i" << std::endl;
}
}
//--- Apply the corrections ----------------------------------------
omc(i) = (obs(i) - norm(Rot_X - pos.subvec(0,2),2) - pos(3) - trop); // Armadillo
@ -189,16 +205,16 @@ arma::vec gps_l1_ca_ls_pvt::leastSquarePos(arma::mat satpos, arma::vec obs, arma
A(i,2) = (-(Rot_X(2) - pos(2))) / obs(i);
A(i,3) = 1.0;
}
//--- Find position update ---------------------------------------------
x = arma::solve(w*A, w*omc); // Armadillo
//--- Apply position update --------------------------------------------
pos = pos + x;
if (arma::norm(x, 2) < 1e-4)
{
break; // exit the loop because we assume that the LS algorithm has converged (err < 0.1 cm)
}
{
break; // exit the loop because we assume that the LS algorithm has converged (err < 0.1 cm)
}
}
try
@ -566,7 +582,7 @@ void gps_l1_ca_ls_pvt::togeod(double *dphi, double *dlambda, double *h, double a
{
*dlambda = *dlambda + 360.0;
}
double r = sqrt(P*P + Z*Z); // r is distance from origin (0,0,0)
double r = sqrt(P * P + Z * Z); // r is distance from origin (0,0,0)
double sinphi;
if (r > 1.0E-20)
@ -587,7 +603,7 @@ void gps_l1_ca_ls_pvt::togeod(double *dphi, double *dlambda, double *h, double a
return;
}
*h = r - a*(1-sinphi*sinphi/finv);
*h = r - a * (1 - sinphi * sinphi / finv);
// iterate
double cosphi;
@ -602,18 +618,18 @@ void gps_l1_ca_ls_pvt::togeod(double *dphi, double *dlambda, double *h, double a
cosphi = cos(*dphi);
// compute radius of curvature in prime vertical direction
N_phi = a / sqrt(1 - esq*sinphi*sinphi);
N_phi = a / sqrt(1 - esq * sinphi * sinphi);
// compute residuals in P and Z
dP = P - (N_phi + (*h)) * cosphi;
dZ = Z - (N_phi*oneesq + (*h)) * sinphi;
// update height and latitude
*h = *h + (sinphi*dZ + cosphi*dP);
*dphi = *dphi + (cosphi*dZ - sinphi*dP)/(N_phi + (*h));
*h = *h + (sinphi * dZ + cosphi * dP);
*dphi = *dphi + (cosphi * dZ - sinphi * dP)/(N_phi + (*h));
// test for convergence
if ((dP*dP + dZ*dZ) < tolsq)
if ((dP * dP + dZ * dZ) < tolsq)
{
break;
}
@ -645,9 +661,9 @@ void gps_l1_ca_ls_pvt::topocent(double *Az, double *El, double *D, arma::vec x,
double lambda;
double phi;
double h;
double dtr = GPS_PI/180.0;
double a = 6378137.0; // semi-major axis of the reference ellipsoid WGS-84
double finv = 298.257223563; // inverse of flattening of the reference ellipsoid WGS-84
double dtr = GPS_PI / 180.0;
double a = 6378137.0; // semi-major axis of the reference ellipsoid WGS-84
double finv = 298.257223563; // inverse of flattening of the reference ellipsoid WGS-84
// Transform x into geodetic coordinates
togeod(&phi, &lambda, &h, a, finv, x(0), x(1), x(2));
@ -660,12 +676,12 @@ void gps_l1_ca_ls_pvt::topocent(double *Az, double *El, double *D, arma::vec x,
arma::mat F = arma::zeros(3,3);
F(0,0) = -sl;
F(0,1) = -sb*cl;
F(0,2) = cb*cl;
F(0,1) = -sb * cl;
F(0,2) = cb * cl;
F(1,0) = cl;
F(1,1) = -sb*sl;
F(1,2) = cb*sl;
F(1,1) = -sb * sl;
F(1,2) = cb * sl;
F(2,0) = 0;
F(2,1) = cb;
@ -680,7 +696,7 @@ void gps_l1_ca_ls_pvt::topocent(double *Az, double *El, double *D, arma::vec x,
double U = local_vector(2);
double hor_dis;
hor_dis = sqrt(E*E + N*N);
hor_dis = sqrt(E * E + N * N);
if (hor_dis < 1.0E-20)
{
@ -689,8 +705,8 @@ void gps_l1_ca_ls_pvt::topocent(double *Az, double *El, double *D, arma::vec x,
}
else
{
*Az = atan2(E, N)/dtr;
*El = atan2(U, hor_dis)/dtr;
*Az = atan2(E, N) / dtr;
*El = atan2(U, hor_dis) / dtr;
}
if (*Az < 0)
@ -698,5 +714,106 @@ void gps_l1_ca_ls_pvt::topocent(double *Az, double *El, double *D, arma::vec x,
*Az = *Az + 360.0;
}
*D = sqrt(dx(0)*dx(0) + dx(1)*dx(1) + dx(2)*dx(2));
*D = sqrt(dx(0) * dx(0) + dx(1) * dx(1) + dx(2) * dx(2));
}
void gps_l1_ca_ls_pvt::tropo(double *ddr_m, double sinel, double hsta_km, double p_mb, double t_kel, double hum, double hp_km, double htkel_km, double hhum_km)
{
/* Inputs:
sinel - sin of elevation angle of satellite
hsta_km - height of station in km
p_mb - atmospheric pressure in mb at height hp_km
t_kel - surface temperature in degrees Kelvin at height htkel_km
hum - humidity in % at height hhum_km
hp_km - height of pressure measurement in km
htkel_km - height of temperature measurement in km
hhum_km - height of humidity measurement in km
Outputs:
ddr_m - range correction (meters)
Reference
Goad, C.C. & Goodman, L. (1974) A Modified Tropospheric
Refraction Correction Model. Paper presented at the
American Geophysical Union Annual Fall Meeting, San
Francisco, December 12-17
Translated to C++ by Carles Fernandez from a Matlab implementation by Kai Borre
*/
const double a_e = 6378.137; // semi-major axis of earth ellipsoid
const double b0 = 7.839257e-5;
const double tlapse = -6.5;
const double em = -978.77 / (2.8704e6 * tlapse * 1.0e-5);
double tkhum = t_kel + tlapse * (hhum_km - htkel_km);
double atkel = 7.5*(tkhum - 273.15) / (237.3 + tkhum - 273.15);
double e0 = 0.0611 * hum * pow(10, atkel);
double tksea = t_kel - tlapse * htkel_km;
double tkelh = tksea + tlapse * hhum_km;
double e0sea = e0 * pow((tksea / tkelh), (4 * em));
double tkelp = tksea + tlapse * hp_km;
double psea = p_mb * pow((tksea / tkelp), em);
if(sinel < 0) { sinel = 0.0; }
double tropo_delay = 0.0;
bool done = false;
double refsea = 77.624e-6 / tksea;
double htop = 1.1385e-5 / refsea;
refsea = refsea * psea;
double ref = refsea * pow(((htop - hsta_km) / htop), 4);
double a;
double b;
double rtop;
while(1)
{
rtop = pow((a_e + htop), 2) - pow((a_e + hsta_km), 2) * (1 - pow(sinel, 2));
// check to see if geometry is crazy
if(rtop < 0) { rtop = 0; }
rtop = sqrt(rtop) - (a_e + hsta_km) * sinel;
a = -sinel / (htop - hsta_km);
b = -b0 * (1 - pow(sinel,2)) / (htop - hsta_km);
arma::vec rn = arma::vec(8);
rn.zeros();
for(int i = 0; i<8; i++)
{
rn(i) = pow(rtop, (i+1+1));
}
arma::rowvec alpha = {2 * a, pow(2*a, 2) + 4 * b /3, a * (pow(a, 2) + 3 * b),
pow(a, 4)/5 + 2.4 * pow(a, 2) * b + 1.2 * pow(b, 2), 2 * a * b * (pow(a, 2) + 3 * b)/3,
pow(b, 2) * (6 * pow(a, 2) + 4 * b) * 1.428571e-1, 0, 0};
if(pow(b, 2) > 1.0e-35)
{
alpha(6) = a * pow(b, 3) /2;
alpha(7) = pow(b, 4) / 9;
}
double dr = rtop;
arma::mat aux_ = alpha * rn;
dr = dr + aux_(0, 0);
tropo_delay = tropo_delay + dr * ref * 1000;
if(done == true)
{
*ddr_m = tropo_delay;
break;
}
done = true;
refsea = (371900.0e-6 / tksea - 12.92e-6) / tksea;
htop = 1.1385e-5 * (1255 / tksea + 0.05) / refsea;
ref = refsea * e0sea * pow(((htop - hsta_km) / htop), 4);
}
}

View File

@ -65,6 +65,7 @@ private:
arma::vec rotateSatellite(double traveltime, arma::vec X_sat);
void topocent(double *Az, double *El, double *D, arma::vec x, arma::vec dx);
void togeod(double *dphi, double *dlambda, double *h, double a, double finv, double X, double Y, double Z);
void tropo(double *ddr_m, double sinel, double hsta_km, double p_mb, double t_kel, double hum, double hp_km, double htkel_km, double hhum_km);
public:
int d_nchannels; //!< Number of available channels for positioning
int d_valid_observations; //!< Number of valid pseudorange observations (valid satellites)