1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-19 16:24:58 +00:00

Merge pull request #152 from antonioramosdet/speed_up_observables

Change std::deque to boost::circular_shift
This commit is contained in:
Javier Arribas 2018-04-11 14:25:25 +02:00 committed by GitHub
commit c2dfc82bf3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 219 additions and 65 deletions

View File

@ -0,0 +1,135 @@
/*!
* \file gnss_circular_deque.h
* \brief This class implements a circular deque for Gnss_Synchro
*
* \author Luis Esteve, 2018. antonio.ramos(at)cttc.es
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_CIRCULAR_DEQUE_H_
#define GNSS_SDR_CIRCULAR_DEQUE_H_
#include <vector>
#include <boost/circular_buffer.hpp>
template <class T>
class Gnss_circular_deque
{
public:
Gnss_circular_deque(); // Default constructor
Gnss_circular_deque(const unsigned int max_size, const unsigned int nchann); // nchann = number of channels; max_size = channel capacity
unsigned int size(const unsigned int ch); // Returns the number of available elements in a channel
T& at(const unsigned int ch, const unsigned int pos); // Returns a reference to an element
T& front(const unsigned int ch); // Returns a reference to the first element in the deque
T& back(const unsigned int ch); // Returns a reference to the last element in the deque
void push_back(const unsigned int ch, const T& new_data); // Inserts an element at the end of the deque
void pop_front(const unsigned int ch); // Removes the first element of the deque
void clear(const unsigned int ch); // Removes all the elements of the deque (Sets size to 0). Capacity is not modified
void reset(const unsigned int max_size, const unsigned int nchann); // Removes all the elements in all the channels. Re-sets the number of channels and their capacity
void reset(); // Removes all the channels (Sets nchann to 0)
private:
std::vector<boost::circular_buffer<T>> d_data;
};
template <class T>
Gnss_circular_deque<T>::Gnss_circular_deque()
{
reset();
}
template <class T>
Gnss_circular_deque<T>::Gnss_circular_deque(const unsigned int max_size, const unsigned int nchann)
{
reset(max_size, nchann);
}
template <class T>
unsigned int Gnss_circular_deque<T>::size(const unsigned int ch)
{
return d_data.at(ch).size();
}
template <class T>
T& Gnss_circular_deque<T>::back(const unsigned int ch)
{
return d_data.at(ch).back();
}
template <class T>
T& Gnss_circular_deque<T>::front(const unsigned int ch)
{
return d_data.at(ch).front();
}
template <class T>
T& Gnss_circular_deque<T>::at(const unsigned int ch, const unsigned int pos)
{
return d_data.at(ch).at(pos);
}
template <class T>
void Gnss_circular_deque<T>::clear(const unsigned int ch)
{
d_data.at(ch).clear();
}
template <class T>
void Gnss_circular_deque<T>::reset(const unsigned int max_size, const unsigned int nchann)
{
d_data.clear();
if (max_size > 0 and nchann > 0)
{
for (unsigned int i = 0; i < nchann; i++)
{
d_data.push_back(boost::circular_buffer<T>(max_size));
}
}
}
template <class T>
void Gnss_circular_deque<T>::reset()
{
d_data.clear();
}
template <class T>
void Gnss_circular_deque<T>::pop_front(const unsigned int ch)
{
d_data.at(ch).pop_front();
}
template <class T>
void Gnss_circular_deque<T>::push_back(const unsigned int ch, const T& new_data)
{
d_data.at(ch).push_back(new_data);
}
#endif /* GNSS_SDR_CIRCULAR_DEQUE_H_ */

View File

@ -26,6 +26,7 @@ include_directories(
${CMAKE_SOURCE_DIR}/src/core/interfaces ${CMAKE_SOURCE_DIR}/src/core/interfaces
${CMAKE_SOURCE_DIR}/src/core/receiver ${CMAKE_SOURCE_DIR}/src/core/receiver
${CMAKE_SOURCE_DIR}/src/algorithms/observables/gnuradio_blocks ${CMAKE_SOURCE_DIR}/src/algorithms/observables/gnuradio_blocks
${CMAKE_SOURCE_DIR}/src/algorithms/libs
${CMAKE_SOURCE_DIR}/src/algorithms/PVT/libs ${CMAKE_SOURCE_DIR}/src/algorithms/PVT/libs
${GLOG_INCLUDE_DIRS} ${GLOG_INCLUDE_DIRS}
${GFlags_INCLUDE_DIRS} ${GFlags_INCLUDE_DIRS}

View File

@ -39,8 +39,8 @@ list(SORT OBS_GR_BLOCKS_HEADERS)
add_library(obs_gr_blocks ${OBS_GR_BLOCKS_SOURCES} ${OBS_GR_BLOCKS_HEADERS}) add_library(obs_gr_blocks ${OBS_GR_BLOCKS_SOURCES} ${OBS_GR_BLOCKS_HEADERS})
source_group(Headers FILES ${OBS_GR_BLOCKS_HEADERS}) source_group(Headers FILES ${OBS_GR_BLOCKS_HEADERS})
if(MATIO_FOUND) if(MATIO_FOUND)
add_dependencies(obs_gr_blocks glog-${glog_RELEASE} armadillo-${armadillo_RELEASE}) add_dependencies(obs_gr_blocks gnss_sp_libs glog-${glog_RELEASE} armadillo-${armadillo_RELEASE})
else(MATIO_FOUND) else(MATIO_FOUND)
add_dependencies(obs_gr_blocks glog-${glog_RELEASE} armadillo-${armadillo_RELEASE} matio-${GNSSSDR_MATIO_LOCAL_VERSION}) add_dependencies(obs_gr_blocks gnss_sp_libs glog-${glog_RELEASE} armadillo-${armadillo_RELEASE} matio-${GNSSSDR_MATIO_LOCAL_VERSION})
endif(MATIO_FOUND) endif(MATIO_FOUND)
target_link_libraries(obs_gr_blocks ${GNURADIO_RUNTIME_LIBRARIES} ${ARMADILLO_LIBRARIES} ${MATIO_LIBRARIES}) target_link_libraries(obs_gr_blocks gnss_sp_libs ${GNURADIO_RUNTIME_LIBRARIES} ${ARMADILLO_LIBRARIES} ${MATIO_LIBRARIES})

View File

@ -63,14 +63,11 @@ hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels_in,
d_dump_filename = dump_filename; d_dump_filename = dump_filename;
T_rx_s = 0.0; T_rx_s = 0.0;
T_rx_step_s = 0.001; // 1 ms T_rx_step_s = 0.001; // 1 ms
max_delta = 0.15; // 150 ms max_delta = 3.5; // 3.5 s
d_latency = 0.08; // 80 ms
valid_channels.resize(d_nchannels, false); valid_channels.resize(d_nchannels, false);
d_num_valid_channels = 0; d_num_valid_channels = 0;
d_gnss_synchro_history = new Gnss_circular_deque<Gnss_Synchro>(static_cast<unsigned int>(max_delta * 1000.0), d_nchannels);
for (unsigned int i = 0; i < d_nchannels; i++)
{
d_gnss_synchro_history.push_back(std::deque<Gnss_Synchro>());
}
// ############# ENABLE DATA FILE LOG ################# // ############# ENABLE DATA FILE LOG #################
if (d_dump) if (d_dump)
@ -95,6 +92,7 @@ hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels_in,
hybrid_observables_cc::~hybrid_observables_cc() hybrid_observables_cc::~hybrid_observables_cc()
{ {
delete d_gnss_synchro_history;
if (d_dump_file.is_open()) if (d_dump_file.is_open())
{ {
try try
@ -302,40 +300,29 @@ int hybrid_observables_cc::save_matfile()
} }
bool hybrid_observables_cc::interpolate_data(Gnss_Synchro &out, std::deque<Gnss_Synchro> &data, const double &ti) bool hybrid_observables_cc::interpolate_data(Gnss_Synchro &out, const unsigned int &ch, const double &ti)
{ {
if ((ti < data.front().RX_time) or (ti > data.back().RX_time)) if ((ti < d_gnss_synchro_history->front(ch).RX_time) or (ti > d_gnss_synchro_history->back(ch).RX_time))
{ {
return false; return false;
} }
std::deque<Gnss_Synchro>::iterator it; std::pair<unsigned int, unsigned int> ind = find_interp_elements(ch, ti);
arma::vec t = arma::vec(data.size()); //Linear interpolation: y(t) = y(t1) + (y(t2) - y(t1)) * (t - t1) / (t2 - t1)
arma::vec dop = t;
arma::vec cph = t;
arma::vec tow = t;
arma::vec tiv = arma::vec(1);
arma::vec result;
tiv(0) = ti;
unsigned int aux = 0; // CARRIER PHASE INTERPOLATION
for (it = data.begin(); it != data.end(); it++)
{
t(aux) = it->RX_time;
dop(aux) = it->Carrier_Doppler_hz;
cph(aux) = it->Carrier_phase_rads;
tow(aux) = it->TOW_at_current_symbol_s;
aux++; out.Carrier_phase_rads = d_gnss_synchro_history->at(ch, ind.first).Carrier_phase_rads + (d_gnss_synchro_history->at(ch, ind.second).Carrier_phase_rads - d_gnss_synchro_history->at(ch, ind.first).Carrier_phase_rads) * (ti - d_gnss_synchro_history->at(ch, ind.first).RX_time) / (d_gnss_synchro_history->at(ch, ind.second).RX_time - d_gnss_synchro_history->at(ch, ind.first).RX_time);
}
arma::interp1(t, dop, tiv, result);
out.Carrier_Doppler_hz = result(0);
arma::interp1(t, cph, tiv, result);
out.Carrier_phase_rads = result(0);
arma::interp1(t, tow, tiv, result);
out.TOW_at_current_symbol_s = result(0);
return result.is_finite(); // CARRIER DOPPLER INTERPOLATION
out.Carrier_Doppler_hz = d_gnss_synchro_history->at(ch, ind.first).Carrier_Doppler_hz + (d_gnss_synchro_history->at(ch, ind.second).Carrier_Doppler_hz - d_gnss_synchro_history->at(ch, ind.first).Carrier_Doppler_hz) * (ti - d_gnss_synchro_history->at(ch, ind.first).RX_time) / (d_gnss_synchro_history->at(ch, ind.second).RX_time - d_gnss_synchro_history->at(ch, ind.first).RX_time);
// TOW INTERPOLATION
out.TOW_at_current_symbol_s = d_gnss_synchro_history->at(ch, ind.first).TOW_at_current_symbol_s + (d_gnss_synchro_history->at(ch, ind.second).TOW_at_current_symbol_s - d_gnss_synchro_history->at(ch, ind.first).TOW_at_current_symbol_s) * (ti - d_gnss_synchro_history->at(ch, ind.first).RX_time) / (d_gnss_synchro_history->at(ch, ind.second).RX_time - d_gnss_synchro_history->at(ch, ind.first).RX_time);
return true;
} }
@ -351,6 +338,40 @@ double hybrid_observables_cc::compute_T_rx_s(const Gnss_Synchro &a)
} }
} }
std::pair<unsigned int, unsigned int> hybrid_observables_cc::find_interp_elements(const unsigned int &ch, const double &ti)
{
unsigned int closest = 0;
double dif = std::numeric_limits<double>::max();
double dt = 0.0;
for (unsigned int i = 0; i < d_gnss_synchro_history->size(ch); i++)
{
dt = ti - d_gnss_synchro_history->at(ch, i).RX_time;
if (dt < dif and dt > 0.0)
{
dif = dt;
closest = i;
}
}
unsigned int index1;
unsigned int index2;
if (closest == 0)
{
index1 = 0;
index2 = 1;
}
else if (closest == (d_gnss_synchro_history->size(ch) - 1))
{
index1 = d_gnss_synchro_history->size(ch) - 2;
index2 = d_gnss_synchro_history->size(ch) - 1;
}
else
{
index1 = closest;
index2 = closest + 1;
}
return std::pair<unsigned int, unsigned int>(index1, index2);
}
void hybrid_observables_cc::forecast(int noutput_items __attribute__((unused)), void hybrid_observables_cc::forecast(int noutput_items __attribute__((unused)),
gr_vector_int &ninput_items_required) gr_vector_int &ninput_items_required)
@ -363,13 +384,13 @@ void hybrid_observables_cc::forecast(int noutput_items __attribute__((unused)),
} }
void hybrid_observables_cc::clean_history(std::deque<Gnss_Synchro> &data) void hybrid_observables_cc::clean_history(unsigned int pos)
{ {
while (data.size() > 0) while (d_gnss_synchro_history->size(pos) > 0)
{ {
if ((T_rx_s - data.front().RX_time) > max_delta) if ((T_rx_s - d_gnss_synchro_history->front(pos).RX_time) > max_delta)
{ {
data.pop_front(); d_gnss_synchro_history->pop_front(pos);
} }
else else
{ {
@ -454,11 +475,9 @@ int hybrid_observables_cc::general_work(int noutput_items __attribute__((unused)
} }
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
std::vector<std::deque<Gnss_Synchro>>::iterator it;
if (total_input_items > 0) if (total_input_items > 0)
{ {
i = 0; for (i = 0; i < d_nchannels; i++)
for (it = d_gnss_synchro_history.begin(); it != d_gnss_synchro_history.end(); it++)
{ {
if (ninput_items[i] > 0) if (ninput_items[i] > 0)
{ {
@ -467,26 +486,25 @@ int hybrid_observables_cc::general_work(int noutput_items __attribute__((unused)
{ {
if (in[i][aux].Flag_valid_word) if (in[i][aux].Flag_valid_word)
{ {
it->push_back(in[i][aux]); d_gnss_synchro_history->push_back(i, in[i][aux]);
it->back().RX_time = compute_T_rx_s(in[i][aux]); d_gnss_synchro_history->back(i).RX_time = compute_T_rx_s(in[i][aux]);
// Check if the last Gnss_Synchro comes from the same satellite as the previous ones // Check if the last Gnss_Synchro comes from the same satellite as the previous ones
if (it->size() > 1) if (d_gnss_synchro_history->size(i) > 1)
{ {
if (it->front().PRN != it->back().PRN) if (d_gnss_synchro_history->front(i).PRN != d_gnss_synchro_history->back(i).PRN)
{ {
it->clear(); d_gnss_synchro_history->clear(i);
} }
} }
} }
} }
consume(i, ninput_items[i]); consume(i, ninput_items[i]);
} }
i++;
} }
} }
for (i = 0; i < d_nchannels; i++) for (i = 0; i < d_nchannels; i++)
{ {
if (d_gnss_synchro_history.at(i).size() > 2) if (d_gnss_synchro_history->size(i) > 2)
{ {
valid_channels[i] = true; valid_channels[i] = true;
} }
@ -506,8 +524,8 @@ int hybrid_observables_cc::general_work(int noutput_items __attribute__((unused)
{ {
if (valid_channels[i]) if (valid_channels[i])
{ {
clean_history(d_gnss_synchro_history.at(i)); clean_history(i);
if (d_gnss_synchro_history.at(i).size() < 2) if (d_gnss_synchro_history->size(i) < 2)
{ {
valid_channels[i] = false; valid_channels[i] = false;
} }
@ -516,20 +534,19 @@ int hybrid_observables_cc::general_work(int noutput_items __attribute__((unused)
// Check if there is any valid channel after computing the time distance between the Gnss_Synchro data and the receiver time // Check if there is any valid channel after computing the time distance between the Gnss_Synchro data and the receiver time
d_num_valid_channels = valid_channels.count(); d_num_valid_channels = valid_channels.count();
double T_rx_s_out = T_rx_s - (max_delta / 2.0); double T_rx_s_out = T_rx_s - d_latency;
if ((d_num_valid_channels == 0) or (T_rx_s_out < 0.0)) if ((d_num_valid_channels == 0) or (T_rx_s_out < 0.0))
{ {
return 0; return 0;
} }
std::vector<Gnss_Synchro> epoch_data; std::vector<Gnss_Synchro> epoch_data;
i = 0; for (i = 0; i < d_nchannels; i++)
for (it = d_gnss_synchro_history.begin(); it != d_gnss_synchro_history.end(); it++)
{ {
if (valid_channels[i]) if (valid_channels[i])
{ {
Gnss_Synchro interpolated_gnss_synchro = it->back(); Gnss_Synchro interpolated_gnss_synchro = d_gnss_synchro_history->back(i);
if (interpolate_data(interpolated_gnss_synchro, *it, T_rx_s_out)) if (interpolate_data(interpolated_gnss_synchro, i, T_rx_s_out))
{ {
epoch_data.push_back(interpolated_gnss_synchro); epoch_data.push_back(interpolated_gnss_synchro);
} }
@ -538,7 +555,6 @@ int hybrid_observables_cc::general_work(int noutput_items __attribute__((unused)
valid_channels[i] = false; valid_channels[i] = false;
} }
} }
i++;
} }
d_num_valid_channels = valid_channels.count(); d_num_valid_channels = valid_channels.count();
if (d_num_valid_channels == 0) if (d_num_valid_channels == 0)
@ -546,14 +562,14 @@ int hybrid_observables_cc::general_work(int noutput_items __attribute__((unused)
return 0; return 0;
} }
correct_TOW_and_compute_prange(epoch_data); correct_TOW_and_compute_prange(epoch_data);
std::vector<Gnss_Synchro>::iterator it2 = epoch_data.begin(); std::vector<Gnss_Synchro>::iterator it = epoch_data.begin();
for (i = 0; i < d_nchannels; i++) for (i = 0; i < d_nchannels; i++)
{ {
if (valid_channels[i]) if (valid_channels[i])
{ {
out[i][0] = (*it2); out[i][0] = (*it);
out[i][0].Flag_valid_pseudorange = true; out[i][0].Flag_valid_pseudorange = true;
it2++; it++;
} }
else else
{ {

View File

@ -35,12 +35,12 @@
#define GNSS_SDR_HYBRID_OBSERVABLES_CC_H #define GNSS_SDR_HYBRID_OBSERVABLES_CC_H
#include "gnss_synchro.h" #include "gnss_synchro.h"
#include "gnss_circular_deque.h"
#include <gnuradio/block.h> #include <gnuradio/block.h>
#include <boost/dynamic_bitset.hpp> #include <boost/dynamic_bitset.hpp>
#include <fstream> #include <fstream>
#include <string> #include <string>
#include <vector> #include <utility>
#include <deque>
class hybrid_observables_cc; class hybrid_observables_cc;
@ -65,18 +65,20 @@ private:
friend hybrid_observables_cc_sptr friend hybrid_observables_cc_sptr
hybrid_make_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename); hybrid_make_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename);
hybrid_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename); hybrid_observables_cc(unsigned int nchannels_in, unsigned int nchannels_out, bool dump, std::string dump_filename);
void clean_history(std::deque<Gnss_Synchro>& data); void clean_history(unsigned int pos);
double compute_T_rx_s(const Gnss_Synchro& a); double compute_T_rx_s(const Gnss_Synchro& a);
bool interpolate_data(Gnss_Synchro& out, std::deque<Gnss_Synchro>& data, const double& ti); bool interpolate_data(Gnss_Synchro& out, const unsigned int& ch, const double& ti);
std::pair<unsigned int, unsigned int> find_interp_elements(const unsigned int& ch, const double& ti);
void correct_TOW_and_compute_prange(std::vector<Gnss_Synchro>& data); void correct_TOW_and_compute_prange(std::vector<Gnss_Synchro>& data);
int save_matfile(); int save_matfile();
//Tracking observable history //Tracking observable history
std::vector<std::deque<Gnss_Synchro>> d_gnss_synchro_history; Gnss_circular_deque<Gnss_Synchro>* d_gnss_synchro_history;
boost::dynamic_bitset<> valid_channels; boost::dynamic_bitset<> valid_channels;
double T_rx_s; double T_rx_s;
double T_rx_step_s; double T_rx_step_s;
double max_delta; double max_delta;
double d_latency;
bool d_dump; bool d_dump;
unsigned int d_nchannels; unsigned int d_nchannels;
unsigned int d_num_valid_channels; unsigned int d_num_valid_channels;