1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 12:40:35 +00:00

Improve data types for GPS navigation messages

This commit is contained in:
Carles Fernandez 2018-12-14 02:31:01 +01:00
parent 432c6b9c70
commit c176e51265
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
17 changed files with 135 additions and 132 deletions

View File

@ -220,12 +220,12 @@ void gnss_sdr_supl_client::read_supl_data()
{ {
gps_utc.d_A0 = static_cast<double>(assist.utc.a0) * pow(2.0, -30); gps_utc.d_A0 = static_cast<double>(assist.utc.a0) * pow(2.0, -30);
gps_utc.d_A1 = static_cast<double>(assist.utc.a1) * pow(2.0, -50); gps_utc.d_A1 = static_cast<double>(assist.utc.a1) * pow(2.0, -50);
gps_utc.d_DeltaT_LS = static_cast<double>(assist.utc.delta_tls); gps_utc.d_DeltaT_LS = static_cast<int32_t>(assist.utc.delta_tls);
gps_utc.d_DeltaT_LSF = static_cast<double>(assist.utc.delta_tlsf); gps_utc.d_DeltaT_LSF = static_cast<int32_t>(assist.utc.delta_tlsf);
gps_utc.d_t_OT = static_cast<double>(assist.utc.tot) * pow(2.0, 12); gps_utc.d_t_OT = static_cast<int32_t>(assist.utc.tot) * pow(2.0, 12);
gps_utc.i_DN = static_cast<double>(assist.utc.dn); gps_utc.i_DN = static_cast<int32_t>(assist.utc.dn);
gps_utc.i_WN_T = static_cast<double>(assist.utc.wnt); gps_utc.i_WN_T = static_cast<int32_t>(assist.utc.wnt);
gps_utc.i_WN_LSF = static_cast<double>(assist.utc.wnlsf); gps_utc.i_WN_LSF = static_cast<int32_t>(assist.utc.wnlsf);
gps_utc.valid = true; gps_utc.valid = true;
} }
@ -268,7 +268,7 @@ void gnss_sdr_supl_client::read_supl_data()
gps_almanac_iterator->second.d_OMEGA0 = static_cast<double>(a->OMEGA_0) * pow(2.0, -23); gps_almanac_iterator->second.d_OMEGA0 = static_cast<double>(a->OMEGA_0) * pow(2.0, -23);
gps_almanac_iterator->second.d_sqrt_A = static_cast<double>(a->A_sqrt) * pow(2.0, -11); gps_almanac_iterator->second.d_sqrt_A = static_cast<double>(a->A_sqrt) * pow(2.0, -11);
gps_almanac_iterator->second.d_OMEGA_DOT = static_cast<double>(a->OMEGA_dot) * pow(2.0, -38); gps_almanac_iterator->second.d_OMEGA_DOT = static_cast<double>(a->OMEGA_dot) * pow(2.0, -38);
gps_almanac_iterator->second.i_Toa = static_cast<int32_t>(a->toa) * pow(2.0, 12); gps_almanac_iterator->second.i_Toa = static_cast<int32_t>(a->toa * pow(2.0, 12));
gps_almanac_iterator->second.d_e_eccentricity = static_cast<double>(a->e) * pow(2.0, -21); gps_almanac_iterator->second.d_e_eccentricity = static_cast<double>(a->e) * pow(2.0, -21);
gps_almanac_iterator->second.d_M_0 = static_cast<double>(a->M0) * pow(2.0, -23); gps_almanac_iterator->second.d_M_0 = static_cast<double>(a->M0) * pow(2.0, -23);
} }

View File

@ -54,7 +54,7 @@ const int32_t GPS_CNAV_DATA_PAGE_BITS = 300;
const std::vector<std::pair<int32_t, int32_t> > CNAV_PRN({{9, 6}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_PRN({{9, 6}});
const std::vector<std::pair<int32_t, int32_t> > CNAV_MSG_TYPE({{15, 6}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_MSG_TYPE({{15, 6}});
const std::vector<std::pair<int32_t, int32_t> > CNAV_TOW({{21, 17}}); // GPS Time Of Week in seconds const std::vector<std::pair<int32_t, int32_t> > CNAV_TOW({{21, 17}}); // GPS Time Of Week in seconds
const double CNAV_TOW_LSB = 6.0; const int32_t CNAV_TOW_LSB = 6;
const std::vector<std::pair<int32_t, int32_t> > CNAV_ALERT_FLAG({{38, 1}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_ALERT_FLAG({{38, 1}});
// MESSAGE TYPE 10 (Ephemeris 1) // MESSAGE TYPE 10 (Ephemeris 1)
@ -62,11 +62,11 @@ const std::vector<std::pair<int32_t, int32_t> > CNAV_ALERT_FLAG({{38, 1}});
const std::vector<std::pair<int32_t, int32_t> > CNAV_WN({{39, 13}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_WN({{39, 13}});
const std::vector<std::pair<int32_t, int32_t> > CNAV_HEALTH({{52, 3}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_HEALTH({{52, 3}});
const std::vector<std::pair<int32_t, int32_t> > CNAV_TOP1({{55, 11}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_TOP1({{55, 11}});
const double CNAV_TOP1_LSB = 300.0; const int32_t CNAV_TOP1_LSB = 300;
const std::vector<std::pair<int32_t, int32_t> > CNAV_URA({{66, 5}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_URA({{66, 5}});
const std::vector<std::pair<int32_t, int32_t> > CNAV_TOE1({{71, 11}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_TOE1({{71, 11}});
const double CNAV_TOE1_LSB = 300.0; const int32_t CNAV_TOE1_LSB = 300;
const std::vector<std::pair<int32_t, int32_t> > CNAV_DELTA_A({{82, 26}}); // Relative to AREF = 26,559,710 meters const std::vector<std::pair<int32_t, int32_t> > CNAV_DELTA_A({{82, 26}}); // Relative to AREF = 26,559,710 meters
const double CNAV_DELTA_A_LSB = TWO_N9; const double CNAV_DELTA_A_LSB = TWO_N9;
@ -90,7 +90,7 @@ const std::vector<std::pair<int32_t, int32_t> > CNAV_L2_PHASING_FLAG({{273, 1}})
// MESSAGE TYPE 11 (Ephemeris 2) // MESSAGE TYPE 11 (Ephemeris 2)
const std::vector<std::pair<int32_t, int32_t> > CNAV_TOE2({{39, 11}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_TOE2({{39, 11}});
const double CNAV_TOE2_LSB = 300.0; const int32_t CNAV_TOE2_LSB = 300;
const std::vector<std::pair<int32_t, int32_t> > CNAV_OMEGA0({{50, 33}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_OMEGA0({{50, 33}});
const double CNAV_OMEGA0_LSB = TWO_N32 * PI; // semi-circles to radians const double CNAV_OMEGA0_LSB = TWO_N32 * PI; // semi-circles to radians
const std::vector<std::pair<int32_t, int32_t> > CNAV_I0({{83, 33}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_I0({{83, 33}});
@ -116,12 +116,12 @@ const double CNAV_CUC_LSB = TWO_N30;
// MESSAGE TYPE 30 (CLOCK, IONO, GRUP DELAY) // MESSAGE TYPE 30 (CLOCK, IONO, GRUP DELAY)
const std::vector<std::pair<int32_t, int32_t> > CNAV_TOP2({{39, 11}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_TOP2({{39, 11}});
const double CNAV_TOP2_LSB = 300.0; const int32_t CNAV_TOP2_LSB = 300;
const std::vector<std::pair<int32_t, int32_t> > CNAV_URA_NED0({{50, 5}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_URA_NED0({{50, 5}});
const std::vector<std::pair<int32_t, int32_t> > CNAV_URA_NED1({{55, 3}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_URA_NED1({{55, 3}});
const std::vector<std::pair<int32_t, int32_t> > CNAV_URA_NED2({{58, 3}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_URA_NED2({{58, 3}});
const std::vector<std::pair<int32_t, int32_t> > CNAV_TOC({{61, 11}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_TOC({{61, 11}});
const double CNAV_TOC_LSB = 300.0; const int32_t CNAV_TOC_LSB = 300;
const std::vector<std::pair<int, int> > CNAV_AF0({{72, 26}}); const std::vector<std::pair<int, int> > CNAV_AF0({{72, 26}});
const double CNAV_AF0_LSB = TWO_N35; const double CNAV_AF0_LSB = TWO_N35;
const std::vector<std::pair<int, int> > CNAV_AF1({{98, 20}}); const std::vector<std::pair<int, int> > CNAV_AF1({{98, 20}});
@ -167,9 +167,9 @@ const double CNAV_A1_LSB = TWO_N51;
const std::vector<std::pair<int32_t, int32_t> > CNAV_A2({{157, 7}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_A2({{157, 7}});
const double CNAV_A2_LSB = TWO_N68; const double CNAV_A2_LSB = TWO_N68;
const std::vector<std::pair<int32_t, int32_t> > CNAV_DELTA_TLS({{164, 8}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_DELTA_TLS({{164, 8}});
const double CNAV_DELTA_TLS_LSB = 1; const int32_t CNAV_DELTA_TLS_LSB = 1;
const std::vector<std::pair<int32_t, int32_t> > CNAV_TOT({{172, 16}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_TOT({{172, 16}});
const double CNAV_TOT_LSB = TWO_P4; const int32_t CNAV_TOT_LSB = TWO_P4;
const std::vector<std::pair<int32_t, int32_t> > CNAV_WN_OT({{188, 13}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_WN_OT({{188, 13}});
const int32_t CNAV_WN_OT_LSB = 1; const int32_t CNAV_WN_OT_LSB = 1;
const std::vector<std::pair<int32_t, int32_t> > CNAV_WN_LSF({{201, 13}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_WN_LSF({{201, 13}});
@ -177,7 +177,7 @@ const int32_t CNAV_WN_LSF_LSB = 1;
const std::vector<std::pair<int32_t, int32_t> > CNAV_DN({{214, 4}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_DN({{214, 4}});
const int32_t CNAV_DN_LSB = 1; const int32_t CNAV_DN_LSB = 1;
const std::vector<std::pair<int32_t, int32_t> > CNAV_DELTA_TLSF({{218, 8}}); const std::vector<std::pair<int32_t, int32_t> > CNAV_DELTA_TLSF({{218, 8}});
const double CNAV_DELTA_TLSF_LSB = 1; const int32_t CNAV_DELTA_TLSF_LSB = 1;
// TODO: Add more frames (Almanac, etc...) // TODO: Add more frames (Almanac, etc...)

View File

@ -118,7 +118,7 @@ const std::vector<std::pair<int32_t, int32_t>> T_GD({{197, 8}});
const double T_GD_LSB = TWO_N31; const double T_GD_LSB = TWO_N31;
const std::vector<std::pair<int32_t, int32_t>> IODC({{83, 2}, {211, 8}}); const std::vector<std::pair<int32_t, int32_t>> IODC({{83, 2}, {211, 8}});
const std::vector<std::pair<int32_t, int32_t>> T_OC({{219, 16}}); const std::vector<std::pair<int32_t, int32_t>> T_OC({{219, 16}});
const double T_OC_LSB = TWO_P4; const int32_t T_OC_LSB = static_cast<int32_t>(TWO_P4);
const std::vector<std::pair<int32_t, int32_t>> A_F2({{241, 8}}); const std::vector<std::pair<int32_t, int32_t>> A_F2({{241, 8}});
const double A_F2_LSB = TWO_N55; const double A_F2_LSB = TWO_N55;
const std::vector<std::pair<int32_t, int32_t>> A_F1({{249, 16}}); const std::vector<std::pair<int32_t, int32_t>> A_F1({{249, 16}});
@ -143,7 +143,7 @@ const double C_US_LSB = TWO_N29;
const std::vector<std::pair<int32_t, int32_t>> SQRT_A({{227, 8}, {241, 24}}); const std::vector<std::pair<int32_t, int32_t>> SQRT_A({{227, 8}, {241, 24}});
const double SQRT_A_LSB = TWO_N19; const double SQRT_A_LSB = TWO_N19;
const std::vector<std::pair<int32_t, int32_t>> T_OE({{271, 16}}); const std::vector<std::pair<int32_t, int32_t>> T_OE({{271, 16}});
const double T_OE_LSB = TWO_P4; const int32_t T_OE_LSB = static_cast<int32_t>(TWO_P4);
const std::vector<std::pair<int32_t, int32_t>> FIT_INTERVAL_FLAG({{271, 1}}); const std::vector<std::pair<int32_t, int32_t>> FIT_INTERVAL_FLAG({{271, 1}});
const std::vector<std::pair<int32_t, int32_t>> AODO({{272, 5}}); const std::vector<std::pair<int32_t, int32_t>> AODO({{272, 5}});
const int32_t AODO_LSB = 900; const int32_t AODO_LSB = 900;

View File

@ -322,7 +322,7 @@ void Galileo_Fnav_Message::decode_page(const std::string& data)
FNAV_A0_4 *= FNAV_A0_4_LSB; FNAV_A0_4 *= FNAV_A0_4_LSB;
FNAV_A1_4 = static_cast<double>(read_navigation_signed(data_bits, FNAV_A1_4_bit)); FNAV_A1_4 = static_cast<double>(read_navigation_signed(data_bits, FNAV_A1_4_bit));
FNAV_A1_4 *= FNAV_A1_4_LSB; FNAV_A1_4 *= FNAV_A1_4_LSB;
FNAV_deltatls_4 = static_cast<double>(read_navigation_signed(data_bits, FNAV_deltatls_4_bit)); FNAV_deltatls_4 = static_cast<int32_t>(read_navigation_signed(data_bits, FNAV_deltatls_4_bit));
FNAV_t0t_4 = static_cast<int32_t>(read_navigation_unsigned(data_bits, FNAV_t0t_4_bit)); FNAV_t0t_4 = static_cast<int32_t>(read_navigation_unsigned(data_bits, FNAV_t0t_4_bit));
FNAV_t0t_4 *= FNAV_t0t_4_LSB; FNAV_t0t_4 *= FNAV_t0t_4_LSB;
FNAV_WNot_4 = static_cast<int32_t>(read_navigation_unsigned(data_bits, FNAV_WNot_4_bit)); FNAV_WNot_4 = static_cast<int32_t>(read_navigation_unsigned(data_bits, FNAV_WNot_4_bit));

View File

@ -125,8 +125,8 @@ void Galileo_Navigation_Message::reset()
BGD_E1E5b_5 = 0.0; BGD_E1E5b_5 = 0.0;
E5b_HS_5 = 0; E5b_HS_5 = 0;
E1B_HS_5 = 0; E1B_HS_5 = 0;
E5b_DVS_5 = 0; E5b_DVS_5 = false;
E1B_DVS_5 = 0; E1B_DVS_5 = false;
// GST // GST
WN_5 = 0; WN_5 = 0;

View File

@ -37,17 +37,17 @@ Gps_CNAV_Ephemeris::Gps_CNAV_Ephemeris()
{ {
i_satellite_PRN = 0U; i_satellite_PRN = 0U;
d_Toe1 = -1.0; d_Toe1 = -1;
d_Toe2 = -1.0; d_Toe2 = -1;
d_TOW = 0.0; d_TOW = 0;
d_Crs = 0.0; d_Crs = 0.0;
d_M_0 = 0.0; d_M_0 = 0.0;
d_Cuc = 0.0; d_Cuc = 0.0;
d_e_eccentricity = 0.0; d_e_eccentricity = 0.0;
d_Cus = 0.0; d_Cus = 0.0;
d_Toc = 0.0; d_Toc = 0;
d_Cic = 0.0; d_Cic = 0.0;
d_OMEGA0 = 0.0; d_OMEGA0 = 0.0;
d_Cis = 0.0; d_Cis = 0.0;
@ -79,7 +79,7 @@ Gps_CNAV_Ephemeris::Gps_CNAV_Ephemeris()
i_URA = 0; i_URA = 0;
i_signal_health = 0; i_signal_health = 0;
d_Top = 0.0; d_Top = 0;
d_DELTA_A = 0.0; d_DELTA_A = 0.0;
d_A_DOT = 0.0; d_A_DOT = 0.0;
d_Delta_n = 0.0; d_Delta_n = 0.0;

View File

@ -54,7 +54,7 @@ public:
int32_t i_GPS_week; //!< GPS week number, aka WN [week] int32_t i_GPS_week; //!< GPS week number, aka WN [week]
int32_t i_URA; //!< ED Accuracy Index int32_t i_URA; //!< ED Accuracy Index
int32_t i_signal_health; //!< Signal health (L1/L2/L5) int32_t i_signal_health; //!< Signal health (L1/L2/L5)
double d_Top; //!< Data predict time of week int32_t d_Top; //!< Data predict time of week
double d_DELTA_A; //!< Semi-major axis difference at reference time double d_DELTA_A; //!< Semi-major axis difference at reference time
double d_A_DOT; //!< Change rate in semi-major axis double d_A_DOT; //!< Change rate in semi-major axis
double d_Delta_n; //!< Mean Motion Difference From Computed Value [semi-circles/s] double d_Delta_n; //!< Mean Motion Difference From Computed Value [semi-circles/s]
@ -63,8 +63,8 @@ public:
double d_e_eccentricity; //!< Eccentricity double d_e_eccentricity; //!< Eccentricity
double d_OMEGA; //!< Argument of Perigee [semi-cicles] double d_OMEGA; //!< Argument of Perigee [semi-cicles]
double d_OMEGA0; //!< Longitude of Ascending Node of Orbit Plane at Weekly Epoch [semi-cicles] double d_OMEGA0; //!< Longitude of Ascending Node of Orbit Plane at Weekly Epoch [semi-cicles]
double d_Toe1; //!< Ephemeris data reference time of week (Ref. 20.3.3.4.3 IS-GPS-200E) [s] int32_t d_Toe1; //!< Ephemeris data reference time of week (Ref. 20.3.3.4.3 IS-GPS-200E) [s]
double d_Toe2; //!< Ephemeris data reference time of week (Ref. 20.3.3.4.3 IS-GPS-200E) [s] int32_t d_Toe2; //!< Ephemeris data reference time of week (Ref. 20.3.3.4.3 IS-GPS-200E) [s]
double d_DELTA_OMEGA_DOT; //!< Rate of Right Ascension difference [semi-circles/s] double d_DELTA_OMEGA_DOT; //!< Rate of Right Ascension difference [semi-circles/s]
double d_i_0; //!< Inclination Angle at Reference Time [semi-circles] double d_i_0; //!< Inclination Angle at Reference Time [semi-circles]
double d_IDOT; //!< Rate of Inclination Angle [semi-circles/s] double d_IDOT; //!< Rate of Inclination Angle [semi-circles/s]
@ -76,7 +76,7 @@ public:
double d_Cuc; //!< Amplitude of the Cosine Harmonic Correction Term to the Argument of Latitude [rad] double d_Cuc; //!< Amplitude of the Cosine Harmonic Correction Term to the Argument of Latitude [rad]
// Clock Correction and Accuracy Parameters // Clock Correction and Accuracy Parameters
double d_Toc; //!< clock data reference time (Ref. 20.3.3.3.3.1 IS-GPS-200E) [s] int32_t d_Toc; //!< clock data reference time (Ref. 20.3.3.3.3.1 IS-GPS-200E) [s]
double d_A_f0; //!< Coefficient 0 of code phase offset model [s] double d_A_f0; //!< Coefficient 0 of code phase offset model [s]
double d_A_f1; //!< Coefficient 1 of code phase offset model [s/s] double d_A_f1; //!< Coefficient 1 of code phase offset model [s/s]
double d_A_f2; //!< Coefficient 2 of code phase offset model [s/s^2] double d_A_f2; //!< Coefficient 2 of code phase offset model [s/s^2]
@ -92,7 +92,7 @@ public:
double d_ISCL5I; double d_ISCL5I;
double d_ISCL5Q; double d_ISCL5Q;
double d_TOW; //!< Time of GPS Week of the ephemeris set (taken from subframes TOW) [s] int32_t d_TOW; //!< Time of GPS Week of the ephemeris set (taken from subframes TOW) [s]
/*! \brief If true, enhanced level of integrity assurance. /*! \brief If true, enhanced level of integrity assurance.
* *

View File

@ -55,7 +55,7 @@ void Gps_CNAV_Navigation_Message::reset()
d_satvel_Y = 0.0; d_satvel_Y = 0.0;
d_satvel_Z = 0.0; d_satvel_Z = 0.0;
d_TOW = 0.0; d_TOW = 0;
} }
@ -148,7 +148,7 @@ void Gps_CNAV_Navigation_Message::decode_page(std::bitset<GPS_CNAV_DATA_PAGE_BIT
PRN = static_cast<int32_t>(read_navigation_unsigned(data_bits, CNAV_PRN)); PRN = static_cast<int32_t>(read_navigation_unsigned(data_bits, CNAV_PRN));
ephemeris_record.i_satellite_PRN = PRN; ephemeris_record.i_satellite_PRN = PRN;
d_TOW = static_cast<double>(read_navigation_unsigned(data_bits, CNAV_TOW)); d_TOW = static_cast<int32_t>(read_navigation_unsigned(data_bits, CNAV_TOW));
d_TOW *= CNAV_TOW_LSB; d_TOW *= CNAV_TOW_LSB;
ephemeris_record.d_TOW = d_TOW; ephemeris_record.d_TOW = d_TOW;
@ -162,10 +162,10 @@ void Gps_CNAV_Navigation_Message::decode_page(std::bitset<GPS_CNAV_DATA_PAGE_BIT
case 10: // Ephemeris 1/2 case 10: // Ephemeris 1/2
ephemeris_record.i_GPS_week = static_cast<int32_t>(read_navigation_unsigned(data_bits, CNAV_WN)); ephemeris_record.i_GPS_week = static_cast<int32_t>(read_navigation_unsigned(data_bits, CNAV_WN));
ephemeris_record.i_signal_health = static_cast<int32_t>(read_navigation_unsigned(data_bits, CNAV_HEALTH)); ephemeris_record.i_signal_health = static_cast<int32_t>(read_navigation_unsigned(data_bits, CNAV_HEALTH));
ephemeris_record.d_Top = static_cast<double>(read_navigation_unsigned(data_bits, CNAV_TOP1)); ephemeris_record.d_Top = static_cast<int32_t>(read_navigation_unsigned(data_bits, CNAV_TOP1));
ephemeris_record.d_Top *= CNAV_TOP1_LSB; ephemeris_record.d_Top *= CNAV_TOP1_LSB;
ephemeris_record.d_URA0 = static_cast<double>(read_navigation_signed(data_bits, CNAV_URA)); ephemeris_record.d_URA0 = static_cast<double>(read_navigation_signed(data_bits, CNAV_URA));
ephemeris_record.d_Toe1 = static_cast<double>(read_navigation_unsigned(data_bits, CNAV_TOE1)); ephemeris_record.d_Toe1 = static_cast<int32_t>(read_navigation_unsigned(data_bits, CNAV_TOE1));
ephemeris_record.d_Toe1 *= CNAV_TOE1_LSB; ephemeris_record.d_Toe1 *= CNAV_TOE1_LSB;
ephemeris_record.d_DELTA_A = static_cast<double>(read_navigation_signed(data_bits, CNAV_DELTA_A)); ephemeris_record.d_DELTA_A = static_cast<double>(read_navigation_signed(data_bits, CNAV_DELTA_A));
ephemeris_record.d_DELTA_A *= CNAV_DELTA_A_LSB; ephemeris_record.d_DELTA_A *= CNAV_DELTA_A_LSB;
@ -188,7 +188,7 @@ void Gps_CNAV_Navigation_Message::decode_page(std::bitset<GPS_CNAV_DATA_PAGE_BIT
b_flag_ephemeris_1 = true; b_flag_ephemeris_1 = true;
break; break;
case 11: // Ephemeris 2/2 case 11: // Ephemeris 2/2
ephemeris_record.d_Toe2 = static_cast<double>(read_navigation_unsigned(data_bits, CNAV_TOE2)); ephemeris_record.d_Toe2 = static_cast<int32_t>(read_navigation_unsigned(data_bits, CNAV_TOE2));
ephemeris_record.d_Toe2 *= CNAV_TOE2_LSB; ephemeris_record.d_Toe2 *= CNAV_TOE2_LSB;
ephemeris_record.d_OMEGA0 = static_cast<double>(read_navigation_signed(data_bits, CNAV_OMEGA0)); ephemeris_record.d_OMEGA0 = static_cast<double>(read_navigation_signed(data_bits, CNAV_OMEGA0));
ephemeris_record.d_OMEGA0 *= CNAV_OMEGA0_LSB; ephemeris_record.d_OMEGA0 *= CNAV_OMEGA0_LSB;
@ -214,7 +214,7 @@ void Gps_CNAV_Navigation_Message::decode_page(std::bitset<GPS_CNAV_DATA_PAGE_BIT
break; break;
case 30: // (CLOCK, IONO, GRUP DELAY) case 30: // (CLOCK, IONO, GRUP DELAY)
//clock //clock
ephemeris_record.d_Toc = static_cast<double>(read_navigation_unsigned(data_bits, CNAV_TOC)); ephemeris_record.d_Toc = static_cast<int32_t>(read_navigation_unsigned(data_bits, CNAV_TOC));
ephemeris_record.d_Toc *= CNAV_TOC_LSB; ephemeris_record.d_Toc *= CNAV_TOC_LSB;
ephemeris_record.d_URA0 = static_cast<double>(read_navigation_signed(data_bits, CNAV_URA_NED0)); ephemeris_record.d_URA0 = static_cast<double>(read_navigation_signed(data_bits, CNAV_URA_NED0));
ephemeris_record.d_URA1 = static_cast<double>(read_navigation_unsigned(data_bits, CNAV_URA_NED1)); ephemeris_record.d_URA1 = static_cast<double>(read_navigation_unsigned(data_bits, CNAV_URA_NED1));
@ -282,9 +282,9 @@ void Gps_CNAV_Navigation_Message::decode_page(std::bitset<GPS_CNAV_DATA_PAGE_BIT
b_flag_iono_valid = true; b_flag_iono_valid = true;
break; break;
case 33: // (CLOCK & UTC) case 33: // (CLOCK & UTC)
ephemeris_record.d_Top = static_cast<double>(read_navigation_unsigned(data_bits, CNAV_TOP1)); ephemeris_record.d_Top = static_cast<int32_t>(read_navigation_unsigned(data_bits, CNAV_TOP1));
ephemeris_record.d_Top = ephemeris_record.d_Top * CNAV_TOP1_LSB; ephemeris_record.d_Top = ephemeris_record.d_Top * CNAV_TOP1_LSB;
ephemeris_record.d_Toc = static_cast<double>(read_navigation_unsigned(data_bits, CNAV_TOC)); ephemeris_record.d_Toc = static_cast<int32_t>(read_navigation_unsigned(data_bits, CNAV_TOC));
ephemeris_record.d_Toc = ephemeris_record.d_Toc * CNAV_TOC_LSB; ephemeris_record.d_Toc = ephemeris_record.d_Toc * CNAV_TOC_LSB;
ephemeris_record.d_A_f0 = static_cast<double>(read_navigation_signed(data_bits, CNAV_AF0)); ephemeris_record.d_A_f0 = static_cast<double>(read_navigation_signed(data_bits, CNAV_AF0));
ephemeris_record.d_A_f0 = ephemeris_record.d_A_f0 * CNAV_AF0_LSB; ephemeris_record.d_A_f0 = ephemeris_record.d_A_f0 * CNAV_AF0_LSB;
@ -300,10 +300,10 @@ void Gps_CNAV_Navigation_Message::decode_page(std::bitset<GPS_CNAV_DATA_PAGE_BIT
utc_model_record.d_A2 = static_cast<double>(read_navigation_signed(data_bits, CNAV_A2)); utc_model_record.d_A2 = static_cast<double>(read_navigation_signed(data_bits, CNAV_A2));
utc_model_record.d_A2 = utc_model_record.d_A2 * CNAV_A2_LSB; utc_model_record.d_A2 = utc_model_record.d_A2 * CNAV_A2_LSB;
utc_model_record.d_DeltaT_LS = static_cast<double>(read_navigation_signed(data_bits, CNAV_DELTA_TLS)); utc_model_record.d_DeltaT_LS = static_cast<int32_t>(read_navigation_signed(data_bits, CNAV_DELTA_TLS));
utc_model_record.d_DeltaT_LS = utc_model_record.d_DeltaT_LS * CNAV_DELTA_TLS_LSB; utc_model_record.d_DeltaT_LS = utc_model_record.d_DeltaT_LS * CNAV_DELTA_TLS_LSB;
utc_model_record.d_t_OT = static_cast<double>(read_navigation_signed(data_bits, CNAV_TOT)); utc_model_record.d_t_OT = static_cast<int32_t>(read_navigation_signed(data_bits, CNAV_TOT));
utc_model_record.d_t_OT = utc_model_record.d_t_OT * CNAV_TOT_LSB; utc_model_record.d_t_OT = utc_model_record.d_t_OT * CNAV_TOT_LSB;
utc_model_record.i_WN_T = static_cast<int32_t>(read_navigation_signed(data_bits, CNAV_WN_OT)); utc_model_record.i_WN_T = static_cast<int32_t>(read_navigation_signed(data_bits, CNAV_WN_OT));
@ -315,7 +315,7 @@ void Gps_CNAV_Navigation_Message::decode_page(std::bitset<GPS_CNAV_DATA_PAGE_BIT
utc_model_record.i_DN = static_cast<int32_t>(read_navigation_signed(data_bits, CNAV_DN)); utc_model_record.i_DN = static_cast<int32_t>(read_navigation_signed(data_bits, CNAV_DN));
utc_model_record.i_DN = utc_model_record.i_DN * CNAV_DN_LSB; utc_model_record.i_DN = utc_model_record.i_DN * CNAV_DN_LSB;
utc_model_record.d_DeltaT_LSF = static_cast<double>(read_navigation_signed(data_bits, CNAV_DELTA_TLSF)); utc_model_record.d_DeltaT_LSF = static_cast<int32_t>(read_navigation_signed(data_bits, CNAV_DELTA_TLSF));
utc_model_record.d_DeltaT_LSF = utc_model_record.d_DeltaT_LSF * CNAV_DELTA_TLSF_LSB; utc_model_record.d_DeltaT_LSF = utc_model_record.d_DeltaT_LSF * CNAV_DELTA_TLSF_LSB;
b_flag_utc_valid = true; b_flag_utc_valid = true;
break; break;

View File

@ -65,7 +65,7 @@ private:
Gps_CNAV_Utc_Model utc_model_record; Gps_CNAV_Utc_Model utc_model_record;
public: public:
double d_TOW; int32_t d_TOW;
bool b_flag_ephemeris_1; bool b_flag_ephemeris_1;
bool b_flag_ephemeris_2; bool b_flag_ephemeris_2;
bool b_flag_iono_valid; //!< If set, it indicates that the ionospheric parameters are filled and are not yet read by the get_iono bool b_flag_iono_valid; //!< If set, it indicates that the ionospheric parameters are filled and are not yet read by the get_iono

View File

@ -37,12 +37,12 @@ Gps_CNAV_Utc_Model::Gps_CNAV_Utc_Model()
d_A2 = 0.0; d_A2 = 0.0;
d_A1 = 0.0; d_A1 = 0.0;
d_A0 = 0.0; d_A0 = 0.0;
d_t_OT = 0.0; d_t_OT = 0;
i_WN_T = 0; i_WN_T = 0;
d_DeltaT_LS = 0.0; d_DeltaT_LS = 0;
i_WN_LSF = 0; i_WN_LSF = 0;
i_DN = 0; i_DN = 0;
d_DeltaT_LSF = 0.0; d_DeltaT_LSF = 0;
} }

View File

@ -49,12 +49,12 @@ public:
double d_A2; //!< 2nd order term of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200H) [s/s] double d_A2; //!< 2nd order term of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200H) [s/s]
double d_A1; //!< 1st order term of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200H) [s/s] double d_A1; //!< 1st order term of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200H) [s/s]
double d_A0; //!< Constant of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200H) [s] double d_A0; //!< Constant of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200H) [s]
double d_t_OT; //!< Reference time for UTC data (reference 20.3.4.5 and 20.3.3.5.2.4 IS-GPS-200H) [s] int32_t d_t_OT; //!< Reference time for UTC data (reference 20.3.4.5 and 20.3.3.5.2.4 IS-GPS-200H) [s]
int32_t i_WN_T; //!< UTC reference week number [weeks] int32_t i_WN_T; //!< UTC reference week number [weeks]
double d_DeltaT_LS; //!< delta time due to leap seconds [s]. Number of leap seconds since 6-Jan-1980 as transmitted by the GPS almanac. int32_t d_DeltaT_LS; //!< delta time due to leap seconds [s]. Number of leap seconds since 6-Jan-1980 as transmitted by the GPS almanac.
int32_t i_WN_LSF; //!< Week number at the end of which the leap second becomes effective [weeks] int32_t i_WN_LSF; //!< Week number at the end of which the leap second becomes effective [weeks]
int32_t i_DN; //!< Day number (DN) at the end of which the leap second becomes effective [days] int32_t i_DN; //!< Day number (DN) at the end of which the leap second becomes effective [days]
double d_DeltaT_LSF; //!< Scheduled future or recent past (relative to NAV message upload) value of the delta time due to leap seconds [s] int32_t d_DeltaT_LSF; //!< Scheduled future or recent past (relative to NAV message upload) value of the delta time due to leap seconds [s]
/*! /*!
* Default constructor * Default constructor

View File

@ -38,7 +38,7 @@
Gps_Ephemeris::Gps_Ephemeris() Gps_Ephemeris::Gps_Ephemeris()
{ {
i_satellite_PRN = 0U; i_satellite_PRN = 0U;
d_TOW = 0.0; d_TOW = 0;
d_Crs = 0.0; d_Crs = 0.0;
d_Delta_n = 0.0; d_Delta_n = 0.0;
d_M_0 = 0.0; d_M_0 = 0.0;
@ -46,8 +46,8 @@ Gps_Ephemeris::Gps_Ephemeris()
d_e_eccentricity = 0.0; d_e_eccentricity = 0.0;
d_Cus = 0.0; d_Cus = 0.0;
d_sqrt_A = 0.0; d_sqrt_A = 0.0;
d_Toe = 0.0; d_Toe = 0;
d_Toc = 0.0; d_Toc = 0;
d_Cic = 0.0; d_Cic = 0.0;
d_OMEGA0 = 0.0; d_OMEGA0 = 0.0;
d_Cis = 0.0; d_Cis = 0.0;
@ -61,10 +61,10 @@ Gps_Ephemeris::Gps_Ephemeris()
b_L2_P_data_flag = false; b_L2_P_data_flag = false;
i_SV_accuracy = 0; i_SV_accuracy = 0;
i_SV_health = 0; i_SV_health = 0;
d_IODE_SF2 = 0.0; d_IODE_SF2 = 0;
d_IODE_SF3 = 0.0; d_IODE_SF3 = 0;
d_TGD = 0.0; // Estimated Group Delay Differential: L1-L2 correction term only for the benefit of "L1 P(Y)" or "L2 P(Y)" s users [s] d_TGD = 0.0; // Estimated Group Delay Differential: L1-L2 correction term only for the benefit of "L1 P(Y)" or "L2 P(Y)" s users [s]
d_IODC = 0.0; // Issue of Data, Clock d_IODC = 0; // Issue of Data, Clock
i_AODO = 0; // Age of Data Offset (AODO) term for the navigation message correction table (NMCT) contained in subframe 4 (reference paragraph 20.3.3.5.1.9) [s] i_AODO = 0; // Age of Data Offset (AODO) term for the navigation message correction table (NMCT) contained in subframe 4 (reference paragraph 20.3.3.5.1.9) [s]
b_fit_interval_flag = false; // indicates the curve-fit interval used by the CS (Block II/IIA/IIR/IIR-M/IIF) and SS (Block IIIA) in determining the ephemeris parameters, as follows: 0 = 4 hours, 1 = greater than 4 hours. b_fit_interval_flag = false; // indicates the curve-fit interval used by the CS (Block II/IIA/IIR/IIR-M/IIF) and SS (Block IIIA) in determining the ephemeris parameters, as follows: 0 = 4 hours, 1 = greater than 4 hours.

View File

@ -60,7 +60,7 @@ private:
public: public:
uint32_t i_satellite_PRN; // SV PRN NUMBER uint32_t i_satellite_PRN; // SV PRN NUMBER
double d_TOW; //!< Time of GPS Week of the ephemeris set (taken from subframes TOW) [s] int32_t d_TOW; //!< Time of GPS Week of the ephemeris set (taken from subframes TOW) [s]
double d_Crs; //!< Amplitude of the Sine Harmonic Correction Term to the Orbit Radius [m] double d_Crs; //!< Amplitude of the Sine Harmonic Correction Term to the Orbit Radius [m]
double d_Delta_n; //!< Mean Motion Difference From Computed Value [semi-circles/s] double d_Delta_n; //!< Mean Motion Difference From Computed Value [semi-circles/s]
double d_M_0; //!< Mean Anomaly at Reference Time [semi-circles] double d_M_0; //!< Mean Anomaly at Reference Time [semi-circles]
@ -68,8 +68,8 @@ public:
double d_e_eccentricity; //!< Eccentricity [dimensionless] double d_e_eccentricity; //!< Eccentricity [dimensionless]
double d_Cus; //!< Amplitude of the Sine Harmonic Correction Term to the Argument of Latitude [rad] double d_Cus; //!< Amplitude of the Sine Harmonic Correction Term to the Argument of Latitude [rad]
double d_sqrt_A; //!< Square Root of the Semi-Major Axis [sqrt(m)] double d_sqrt_A; //!< Square Root of the Semi-Major Axis [sqrt(m)]
double d_Toe; //!< Ephemeris data reference time of week (Ref. 20.3.3.4.3 IS-GPS-200E) [s] int32_t d_Toe; //!< Ephemeris data reference time of week (Ref. 20.3.3.4.3 IS-GPS-200E) [s]
double d_Toc; //!< clock data reference time (Ref. 20.3.3.3.3.1 IS-GPS-200E) [s] int32_t d_Toc; //!< clock data reference time (Ref. 20.3.3.3.3.1 IS-GPS-200E) [s]
double d_Cic; //!< Amplitude of the Cosine Harmonic Correction Term to the Angle of Inclination [rad] double d_Cic; //!< Amplitude of the Cosine Harmonic Correction Term to the Angle of Inclination [rad]
double d_OMEGA0; //!< Longitude of Ascending Node of Orbit Plane at Weekly Epoch [semi-circles] double d_OMEGA0; //!< Longitude of Ascending Node of Orbit Plane at Weekly Epoch [semi-circles]
double d_Cis; //!< Amplitude of the Sine Harmonic Correction Term to the Angle of Inclination [rad] double d_Cis; //!< Amplitude of the Sine Harmonic Correction Term to the Angle of Inclination [rad]
@ -84,9 +84,9 @@ public:
int32_t i_SV_accuracy; //!< User Range Accuracy (URA) index of the SV (reference paragraph 6.2.1) for the standard positioning service user (Ref 20.3.3.3.1.3 IS-GPS-200E) int32_t i_SV_accuracy; //!< User Range Accuracy (URA) index of the SV (reference paragraph 6.2.1) for the standard positioning service user (Ref 20.3.3.3.1.3 IS-GPS-200E)
int32_t i_SV_health; int32_t i_SV_health;
double d_TGD; //!< Estimated Group Delay Differential: L1-L2 correction term only for the benefit of "L1 P(Y)" or "L2 P(Y)" s users [s] double d_TGD; //!< Estimated Group Delay Differential: L1-L2 correction term only for the benefit of "L1 P(Y)" or "L2 P(Y)" s users [s]
double d_IODC; //!< Issue of Data, Clock int32_t d_IODC; //!< Issue of Data, Clock
double d_IODE_SF2; //!< Issue of Data, Ephemeris (IODE), subframe 2 int32_t d_IODE_SF2; //!< Issue of Data, Ephemeris (IODE), subframe 2
double d_IODE_SF3; //!< Issue of Data, Ephemeris(IODE), subframe 3 int32_t d_IODE_SF3; //!< Issue of Data, Ephemeris(IODE), subframe 3
int32_t i_AODO; //!< Age of Data Offset (AODO) term for the navigation message correction table (NMCT) contained in subframe 4 (reference paragraph 20.3.3.5.1.9) [s] int32_t i_AODO; //!< Age of Data Offset (AODO) term for the navigation message correction table (NMCT) contained in subframe 4 (reference paragraph 20.3.3.5.1.9) [s]
bool b_fit_interval_flag; //!< indicates the curve-fit interval used by the CS (Block II/IIA/IIR/IIR-M/IIF) and SS (Block IIIA) in determining the ephemeris parameters, as follows: 0 = 4 hours, 1 = greater than 4 hours. bool b_fit_interval_flag; //!< indicates the curve-fit interval used by the CS (Block II/IIA/IIR/IIR-M/IIF) and SS (Block IIIA) in determining the ephemeris parameters, as follows: 0 = 4 hours, 1 = greater than 4 hours.

View File

@ -39,14 +39,14 @@ m * \file gps_navigation_message.cc
void Gps_Navigation_Message::reset() void Gps_Navigation_Message::reset()
{ {
b_valid_ephemeris_set_flag = false; b_valid_ephemeris_set_flag = false;
d_TOW = 0.0; d_TOW = 0;
d_TOW_SF1 = 0.0; d_TOW_SF1 = 0;
d_TOW_SF2 = 0.0; d_TOW_SF2 = 0;
d_TOW_SF3 = 0.0; d_TOW_SF3 = 0;
d_TOW_SF4 = 0.0; d_TOW_SF4 = 0;
d_TOW_SF5 = 0.0; d_TOW_SF5 = 0;
d_IODE_SF2 = 0.0; d_IODE_SF2 = 0;
d_IODE_SF3 = 0.0; d_IODE_SF3 = 0;
d_Crs = 0.0; d_Crs = 0.0;
d_Delta_n = 0.0; d_Delta_n = 0.0;
d_M_0 = 0.0; d_M_0 = 0.0;
@ -54,8 +54,8 @@ void Gps_Navigation_Message::reset()
d_e_eccentricity = 0.0; d_e_eccentricity = 0.0;
d_Cus = 0.0; d_Cus = 0.0;
d_sqrt_A = 0.0; d_sqrt_A = 0.0;
d_Toe = 0.0; d_Toe = 0;
d_Toc = 0.0; d_Toc = 0;
d_Cic = 0.0; d_Cic = 0.0;
d_OMEGA0 = 0.0; d_OMEGA0 = 0.0;
d_Cis = 0.0; d_Cis = 0.0;
@ -70,7 +70,7 @@ void Gps_Navigation_Message::reset()
i_SV_accuracy = 0; i_SV_accuracy = 0;
i_SV_health = 0; i_SV_health = 0;
d_TGD = 0.0; d_TGD = 0.0;
d_IODC = -1.0; d_IODC = -1;
i_AODO = 0; i_AODO = 0;
b_fit_interval_flag = false; b_fit_interval_flag = false;
@ -117,12 +117,12 @@ void Gps_Navigation_Message::reset()
d_beta3 = 0.0; d_beta3 = 0.0;
d_A1 = 0.0; d_A1 = 0.0;
d_A0 = 0.0; d_A0 = 0.0;
d_t_OT = 0.0; d_t_OT = 0;
i_WN_T = 0; i_WN_T = 0;
d_DeltaT_LS = 0.0; d_DeltaT_LS = 0;
i_WN_LSF = 0; i_WN_LSF = 0;
i_DN = 0; i_DN = 0;
d_DeltaT_LSF = 0.0; d_DeltaT_LSF = 0;
// Almanac // Almanac
i_Toa = 0; i_Toa = 0;
@ -257,9 +257,9 @@ int32_t Gps_Navigation_Message::subframe_decoder(char* subframe)
// The transmitted TOW is actual TOW of the next subframe // The transmitted TOW is actual TOW of the next subframe
// (the variable subframe at this point contains bits of the last subframe). // (the variable subframe at this point contains bits of the last subframe).
//TOW = bin2dec(subframe(31:47)) * 6; //TOW = bin2dec(subframe(31:47)) * 6;
d_TOW_SF1 = static_cast<double>(read_navigation_unsigned(subframe_bits, TOW)); d_TOW_SF1 = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, TOW));
//we are in the first subframe (the transmitted TOW is the start time of the next subframe) ! //we are in the first subframe (the transmitted TOW is the start time of the next subframe) !
d_TOW_SF1 = d_TOW_SF1 * 6.0; d_TOW_SF1 = d_TOW_SF1 * 6;
d_TOW = d_TOW_SF1; // Set transmission time d_TOW = d_TOW_SF1; // Set transmission time
b_integrity_status_flag = read_navigation_bool(subframe_bits, INTEGRITY_STATUS_FLAG); b_integrity_status_flag = read_navigation_bool(subframe_bits, INTEGRITY_STATUS_FLAG);
b_alert_flag = read_navigation_bool(subframe_bits, ALERT_FLAG); b_alert_flag = read_navigation_bool(subframe_bits, ALERT_FLAG);
@ -271,8 +271,8 @@ int32_t Gps_Navigation_Message::subframe_decoder(char* subframe)
i_code_on_L2 = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, CA_OR_P_ON_L2)); i_code_on_L2 = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, CA_OR_P_ON_L2));
d_TGD = static_cast<double>(read_navigation_signed(subframe_bits, T_GD)); d_TGD = static_cast<double>(read_navigation_signed(subframe_bits, T_GD));
d_TGD = d_TGD * T_GD_LSB; d_TGD = d_TGD * T_GD_LSB;
d_IODC = static_cast<double>(read_navigation_unsigned(subframe_bits, IODC)); d_IODC = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, IODC));
d_Toc = static_cast<double>(read_navigation_unsigned(subframe_bits, T_OC)); d_Toc = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, T_OC));
d_Toc = d_Toc * T_OC_LSB; d_Toc = d_Toc * T_OC_LSB;
d_A_f0 = static_cast<double>(read_navigation_signed(subframe_bits, A_F0)); d_A_f0 = static_cast<double>(read_navigation_signed(subframe_bits, A_F0));
d_A_f0 = d_A_f0 * A_F0_LSB; d_A_f0 = d_A_f0 * A_F0_LSB;
@ -283,13 +283,13 @@ int32_t Gps_Navigation_Message::subframe_decoder(char* subframe)
break; break;
case 2: //--- It is subframe 2 ------------------- case 2: //--- It is subframe 2 -------------------
d_TOW_SF2 = static_cast<double>(read_navigation_unsigned(subframe_bits, TOW)); d_TOW_SF2 = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, TOW));
d_TOW_SF2 = d_TOW_SF2 * 6.0; d_TOW_SF2 = d_TOW_SF2 * 6;
d_TOW = d_TOW_SF2; // Set transmission time d_TOW = d_TOW_SF2; // Set transmission time
b_integrity_status_flag = read_navigation_bool(subframe_bits, INTEGRITY_STATUS_FLAG); b_integrity_status_flag = read_navigation_bool(subframe_bits, INTEGRITY_STATUS_FLAG);
b_alert_flag = read_navigation_bool(subframe_bits, ALERT_FLAG); b_alert_flag = read_navigation_bool(subframe_bits, ALERT_FLAG);
b_antispoofing_flag = read_navigation_bool(subframe_bits, ANTI_SPOOFING_FLAG); b_antispoofing_flag = read_navigation_bool(subframe_bits, ANTI_SPOOFING_FLAG);
d_IODE_SF2 = static_cast<double>(read_navigation_unsigned(subframe_bits, IODE_SF2)); d_IODE_SF2 = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, IODE_SF2));
d_Crs = static_cast<double>(read_navigation_signed(subframe_bits, C_RS)); d_Crs = static_cast<double>(read_navigation_signed(subframe_bits, C_RS));
d_Crs = d_Crs * C_RS_LSB; d_Crs = d_Crs * C_RS_LSB;
d_Delta_n = static_cast<double>(read_navigation_signed(subframe_bits, DELTA_N)); d_Delta_n = static_cast<double>(read_navigation_signed(subframe_bits, DELTA_N));
@ -304,7 +304,7 @@ int32_t Gps_Navigation_Message::subframe_decoder(char* subframe)
d_Cus = d_Cus * C_US_LSB; d_Cus = d_Cus * C_US_LSB;
d_sqrt_A = static_cast<double>(read_navigation_unsigned(subframe_bits, SQRT_A)); d_sqrt_A = static_cast<double>(read_navigation_unsigned(subframe_bits, SQRT_A));
d_sqrt_A = d_sqrt_A * SQRT_A_LSB; d_sqrt_A = d_sqrt_A * SQRT_A_LSB;
d_Toe = static_cast<double>(read_navigation_unsigned(subframe_bits, T_OE)); d_Toe = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, T_OE));
d_Toe = d_Toe * T_OE_LSB; d_Toe = d_Toe * T_OE_LSB;
b_fit_interval_flag = read_navigation_bool(subframe_bits, FIT_INTERVAL_FLAG); b_fit_interval_flag = read_navigation_bool(subframe_bits, FIT_INTERVAL_FLAG);
i_AODO = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, AODO)); i_AODO = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, AODO));
@ -312,8 +312,8 @@ int32_t Gps_Navigation_Message::subframe_decoder(char* subframe)
break; break;
case 3: // --- It is subframe 3 ------------------------------------- case 3: // --- It is subframe 3 -------------------------------------
d_TOW_SF3 = static_cast<double>(read_navigation_unsigned(subframe_bits, TOW)); d_TOW_SF3 = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, TOW));
d_TOW_SF3 = d_TOW_SF3 * 6.0; d_TOW_SF3 = d_TOW_SF3 * 6;
d_TOW = d_TOW_SF3; // Set transmission time d_TOW = d_TOW_SF3; // Set transmission time
b_integrity_status_flag = read_navigation_bool(subframe_bits, INTEGRITY_STATUS_FLAG); b_integrity_status_flag = read_navigation_bool(subframe_bits, INTEGRITY_STATUS_FLAG);
b_alert_flag = read_navigation_bool(subframe_bits, ALERT_FLAG); b_alert_flag = read_navigation_bool(subframe_bits, ALERT_FLAG);
@ -332,7 +332,7 @@ int32_t Gps_Navigation_Message::subframe_decoder(char* subframe)
d_OMEGA = d_OMEGA * OMEGA_LSB; d_OMEGA = d_OMEGA * OMEGA_LSB;
d_OMEGA_DOT = static_cast<double>(read_navigation_signed(subframe_bits, OMEGA_DOT)); d_OMEGA_DOT = static_cast<double>(read_navigation_signed(subframe_bits, OMEGA_DOT));
d_OMEGA_DOT = d_OMEGA_DOT * OMEGA_DOT_LSB; d_OMEGA_DOT = d_OMEGA_DOT * OMEGA_DOT_LSB;
d_IODE_SF3 = static_cast<double>(read_navigation_unsigned(subframe_bits, IODE_SF3)); d_IODE_SF3 = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, IODE_SF3));
d_IDOT = static_cast<double>(read_navigation_signed(subframe_bits, I_DOT)); d_IDOT = static_cast<double>(read_navigation_signed(subframe_bits, I_DOT));
d_IDOT = d_IDOT * I_DOT_LSB; d_IDOT = d_IDOT * I_DOT_LSB;
break; break;
@ -340,8 +340,8 @@ int32_t Gps_Navigation_Message::subframe_decoder(char* subframe)
case 4: // --- It is subframe 4 ---------- Almanac, ionospheric model, UTC parameters, SV health (PRN: 25-32) case 4: // --- It is subframe 4 ---------- Almanac, ionospheric model, UTC parameters, SV health (PRN: 25-32)
int32_t SV_data_ID; int32_t SV_data_ID;
int32_t SV_page; int32_t SV_page;
d_TOW_SF4 = static_cast<double>(read_navigation_unsigned(subframe_bits, TOW)); d_TOW_SF4 = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, TOW));
d_TOW_SF4 = d_TOW_SF4 * 6.0; d_TOW_SF4 = d_TOW_SF4 * 6;
d_TOW = d_TOW_SF4; // Set transmission time d_TOW = d_TOW_SF4; // Set transmission time
b_integrity_status_flag = read_navigation_bool(subframe_bits, INTEGRITY_STATUS_FLAG); b_integrity_status_flag = read_navigation_bool(subframe_bits, INTEGRITY_STATUS_FLAG);
b_alert_flag = read_navigation_bool(subframe_bits, ALERT_FLAG); b_alert_flag = read_navigation_bool(subframe_bits, ALERT_FLAG);
@ -384,13 +384,13 @@ int32_t Gps_Navigation_Message::subframe_decoder(char* subframe)
d_A1 = d_A1 * A_1_LSB; d_A1 = d_A1 * A_1_LSB;
d_A0 = static_cast<double>(read_navigation_signed(subframe_bits, A_0)); d_A0 = static_cast<double>(read_navigation_signed(subframe_bits, A_0));
d_A0 = d_A0 * A_0_LSB; d_A0 = d_A0 * A_0_LSB;
d_t_OT = static_cast<double>(read_navigation_unsigned(subframe_bits, T_OT)); d_t_OT = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, T_OT));
d_t_OT = d_t_OT * T_OT_LSB; d_t_OT = d_t_OT * T_OT_LSB;
i_WN_T = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, WN_T)); i_WN_T = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, WN_T));
d_DeltaT_LS = static_cast<double>(read_navigation_signed(subframe_bits, DELTAT_LS)); d_DeltaT_LS = static_cast<int32_t>(read_navigation_signed(subframe_bits, DELTAT_LS));
i_WN_LSF = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, WN_LSF)); i_WN_LSF = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, WN_LSF));
i_DN = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, DN)); // Right-justified ? i_DN = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, DN)); // Right-justified ?
d_DeltaT_LSF = static_cast<double>(read_navigation_signed(subframe_bits, DELTAT_LSF)); d_DeltaT_LSF = static_cast<int32_t>(read_navigation_signed(subframe_bits, DELTAT_LSF));
flag_iono_valid = true; flag_iono_valid = true;
flag_utc_model_valid = true; flag_utc_model_valid = true;
} }
@ -417,8 +417,8 @@ int32_t Gps_Navigation_Message::subframe_decoder(char* subframe)
case 5: //--- It is subframe 5 -----------------almanac health (PRN: 1-24) and Almanac reference week number and time. case 5: //--- It is subframe 5 -----------------almanac health (PRN: 1-24) and Almanac reference week number and time.
int32_t SV_data_ID_5; int32_t SV_data_ID_5;
int32_t SV_page_5; int32_t SV_page_5;
d_TOW_SF5 = static_cast<double>(read_navigation_unsigned(subframe_bits, TOW)); d_TOW_SF5 = static_cast<int32_t>(read_navigation_unsigned(subframe_bits, TOW));
d_TOW_SF5 = d_TOW_SF5 * 6.0; d_TOW_SF5 = d_TOW_SF5 * 6;
d_TOW = d_TOW_SF5; // Set transmission time d_TOW = d_TOW_SF5; // Set transmission time
b_integrity_status_flag = read_navigation_bool(subframe_bits, INTEGRITY_STATUS_FLAG); b_integrity_status_flag = read_navigation_bool(subframe_bits, INTEGRITY_STATUS_FLAG);
b_alert_flag = read_navigation_bool(subframe_bits, ALERT_FLAG); b_alert_flag = read_navigation_bool(subframe_bits, ALERT_FLAG);

View File

@ -62,14 +62,14 @@ private:
public: public:
bool b_valid_ephemeris_set_flag; // flag indicating that this ephemeris set have passed the validation check bool b_valid_ephemeris_set_flag; // flag indicating that this ephemeris set have passed the validation check
// broadcast orbit 1 // broadcast orbit 1
double d_TOW; //!< Time of GPS Week of the ephemeris set (taken from subframes TOW) [s] int32_t d_TOW; //!< Time of GPS Week of the ephemeris set (taken from subframes TOW) [s]
double d_TOW_SF1; //!< Time of GPS Week from HOW word of Subframe 1 [s] int32_t d_TOW_SF1; //!< Time of GPS Week from HOW word of Subframe 1 [s]
double d_TOW_SF2; //!< Time of GPS Week from HOW word of Subframe 2 [s] int32_t d_TOW_SF2; //!< Time of GPS Week from HOW word of Subframe 2 [s]
double d_TOW_SF3; //!< Time of GPS Week from HOW word of Subframe 3 [s] int32_t d_TOW_SF3; //!< Time of GPS Week from HOW word of Subframe 3 [s]
double d_TOW_SF4; //!< Time of GPS Week from HOW word of Subframe 4 [s] int32_t d_TOW_SF4; //!< Time of GPS Week from HOW word of Subframe 4 [s]
double d_TOW_SF5; //!< Time of GPS Week from HOW word of Subframe 5 [s] int32_t d_TOW_SF5; //!< Time of GPS Week from HOW word of Subframe 5 [s]
double d_IODE_SF2; int32_t d_IODE_SF2;
double d_IODE_SF3; int32_t d_IODE_SF3;
double d_Crs; //!< Amplitude of the Sine Harmonic Correction Term to the Orbit Radius [m] double d_Crs; //!< Amplitude of the Sine Harmonic Correction Term to the Orbit Radius [m]
double d_Delta_n; //!< Mean Motion Difference From Computed Value [semi-circles/s] double d_Delta_n; //!< Mean Motion Difference From Computed Value [semi-circles/s]
double d_M_0; //!< Mean Anomaly at Reference Time [semi-circles] double d_M_0; //!< Mean Anomaly at Reference Time [semi-circles]
@ -79,8 +79,8 @@ public:
double d_Cus; //!< Amplitude of the Sine Harmonic Correction Term to the Argument of Latitude [rad] double d_Cus; //!< Amplitude of the Sine Harmonic Correction Term to the Argument of Latitude [rad]
double d_sqrt_A; //!< Square Root of the Semi-Major Axis [sqrt(m)] double d_sqrt_A; //!< Square Root of the Semi-Major Axis [sqrt(m)]
// broadcast orbit 3 // broadcast orbit 3
double d_Toe; //!< Ephemeris data reference time of week (Ref. 20.3.3.4.3 IS-GPS-200E) [s] int32_t d_Toe; //!< Ephemeris data reference time of week (Ref. 20.3.3.4.3 IS-GPS-200E) [s]
double d_Toc; //!< clock data reference time (Ref. 20.3.3.3.3.1 IS-GPS-200E) [s] int32_t d_Toc; //!< clock data reference time (Ref. 20.3.3.3.3.1 IS-GPS-200E) [s]
double d_Cic; //!< Amplitude of the Cosine Harmonic Correction Term to the Angle of Inclination [rad] double d_Cic; //!< Amplitude of the Cosine Harmonic Correction Term to the Angle of Inclination [rad]
double d_OMEGA0; //!< Longitude of Ascending Node of Orbit Plane at Weekly Epoch [semi-circles] double d_OMEGA0; //!< Longitude of Ascending Node of Orbit Plane at Weekly Epoch [semi-circles]
double d_Cis; //!< Amplitude of the Sine Harmonic Correction Term to the Angle of Inclination [rad] double d_Cis; //!< Amplitude of the Sine Harmonic Correction Term to the Angle of Inclination [rad]
@ -98,7 +98,7 @@ public:
int32_t i_SV_accuracy; //!< User Range Accuracy (URA) index of the SV (reference paragraph 6.2.1) for the standard positioning service user (Ref 20.3.3.3.1.3 IS-GPS-200E) int32_t i_SV_accuracy; //!< User Range Accuracy (URA) index of the SV (reference paragraph 6.2.1) for the standard positioning service user (Ref 20.3.3.3.1.3 IS-GPS-200E)
int32_t i_SV_health; int32_t i_SV_health;
double d_TGD; //!< Estimated Group Delay Differential: L1-L2 correction term only for the benefit of "L1 P(Y)" or "L2 P(Y)" s users [s] double d_TGD; //!< Estimated Group Delay Differential: L1-L2 correction term only for the benefit of "L1 P(Y)" or "L2 P(Y)" s users [s]
double d_IODC; //!< Issue of Data, Clock int32_t d_IODC; //!< Issue of Data, Clock
// broadcast orbit 7 // broadcast orbit 7
int32_t i_AODO; //!< Age of Data Offset (AODO) term for the navigation message correction table (NMCT) contained in subframe 4 (reference paragraph 20.3.3.5.1.9) [s] int32_t i_AODO; //!< Age of Data Offset (AODO) term for the navigation message correction table (NMCT) contained in subframe 4 (reference paragraph 20.3.3.5.1.9) [s]
bool b_fit_interval_flag; //!< indicates the curve-fit interval used by the CS (Block II/IIA/IIR/IIR-M/IIF) and SS (Block IIIA) in determining the ephemeris parameters, as follows: 0 = 4 hours, 1 = greater than 4 hours. bool b_fit_interval_flag; //!< indicates the curve-fit interval used by the CS (Block II/IIA/IIR/IIR-M/IIF) and SS (Block IIIA) in determining the ephemeris parameters, as follows: 0 = 4 hours, 1 = greater than 4 hours.
@ -162,14 +162,15 @@ public:
// UTC parameters // UTC parameters
bool flag_utc_model_valid; //!< If set, it indicates that the UTC model parameters are filled bool flag_utc_model_valid; //!< If set, it indicates that the UTC model parameters are filled
double d_A1; //!< 1st order term of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200E) [s/s]
double d_A0; //!< Constant of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200E) [s] double d_A0; //!< Constant of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200E) [s]
double d_t_OT; //!< Reference time for UTC data (reference 20.3.4.5 and 20.3.3.5.2.4 IS-GPS-200E) [s] double d_A1; //!< 1st order term of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200E) [s/s]
double d_A2; //!< 2nd order term of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200E) [s/s]
int32_t d_t_OT; //!< Reference time for UTC data (reference 20.3.4.5 and 20.3.3.5.2.4 IS-GPS-200E) [s]
int32_t i_WN_T; //!< UTC reference week number [weeks] int32_t i_WN_T; //!< UTC reference week number [weeks]
double d_DeltaT_LS; //!< delta time due to leap seconds [s]. Number of leap seconds since 6-Jan-1980 as transmitted by the GPS almanac. int32_t d_DeltaT_LS; //!< delta time due to leap seconds [s]. Number of leap seconds since 6-Jan-1980 as transmitted by the GPS almanac.
int32_t i_WN_LSF; //!< Week number at the end of which the leap second becomes effective [weeks] int32_t i_WN_LSF; //!< Week number at the end of which the leap second becomes effective [weeks]
int32_t i_DN; //!< Day number (DN) at the end of which the leap second becomes effective [days] int32_t i_DN; //!< Day number (DN) at the end of which the leap second becomes effective [days]
double d_DeltaT_LSF; //!< Scheduled future or recent past (relative to NAV message upload) value of the delta time due to leap seconds [s] int32_t d_DeltaT_LSF; //!< Scheduled future or recent past (relative to NAV message upload) value of the delta time due to leap seconds [s]
// Satellite velocity // Satellite velocity
double d_satvel_X; //!< Earth-fixed velocity coordinate x of the satellite [m] double d_satvel_X; //!< Earth-fixed velocity coordinate x of the satellite [m]

View File

@ -35,14 +35,15 @@
Gps_Utc_Model::Gps_Utc_Model() Gps_Utc_Model::Gps_Utc_Model()
{ {
valid = false; valid = false;
d_A1 = 0.0;
d_A0 = 0.0; d_A0 = 0.0;
d_t_OT = 0.0; d_A1 = 0.0;
d_A2 = 0.0;
d_t_OT = 0;
i_WN_T = 0; i_WN_T = 0;
d_DeltaT_LS = 0.0; d_DeltaT_LS = 0;
i_WN_LSF = 0; i_WN_LSF = 0;
i_DN = 0; i_DN = 0;
d_DeltaT_LSF = 0.0; d_DeltaT_LSF = 0;
} }

View File

@ -45,14 +45,15 @@ class Gps_Utc_Model
public: public:
bool valid; bool valid;
// UTC parameters // UTC parameters
double d_A1; //!< 1st order term of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200E) [s/s]
double d_A0; //!< Constant of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200E) [s] double d_A0; //!< Constant of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200E) [s]
double d_t_OT; //!< Reference time for UTC data (reference 20.3.4.5 and 20.3.3.5.2.4 IS-GPS-200E) [s] double d_A1; //!< 1st order term of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200E) [s/s]
double d_A2; //!< 2nd order term of a model that relates GPS and UTC time (ref. 20.3.3.5.2.4 IS-GPS-200E) [s/s]
int32_t d_t_OT; //!< Reference time for UTC data (reference 20.3.4.5 and 20.3.3.5.2.4 IS-GPS-200E) [s]
int32_t i_WN_T; //!< UTC reference week number [weeks] int32_t i_WN_T; //!< UTC reference week number [weeks]
double d_DeltaT_LS; //!< delta time due to leap seconds [s]. Number of leap seconds since 6-Jan-1980 as transmitted by the GPS almanac. int32_t d_DeltaT_LS; //!< delta time due to leap seconds [s]. Number of leap seconds since 6-Jan-1980 as transmitted by the GPS almanac.
int32_t i_WN_LSF; //!< Week number at the end of which the leap second becomes effective [weeks] int32_t i_WN_LSF; //!< Week number at the end of which the leap second becomes effective [weeks]
int32_t i_DN; //!< Day number (DN) at the end of which the leap second becomes effective [days] int32_t i_DN; //!< Day number (DN) at the end of which the leap second becomes effective [days]
double d_DeltaT_LSF; //!< Scheduled future or recent past (relative to NAV message upload) value of the delta time due to leap seconds [s] int32_t d_DeltaT_LSF; //!< Scheduled future or recent past (relative to NAV message upload) value of the delta time due to leap seconds [s]
/*! /*!
* Default constructor * Default constructor