1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-14 20:20:35 +00:00

Merge branch 'protobuf' of https://github.com/carlesfernandez/gnss-sdr into protobuf

This commit is contained in:
Carles Fernandez 2019-04-21 15:52:17 +02:00
commit b65e07a94f
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
4 changed files with 58 additions and 55 deletions

View File

@ -1911,7 +1911,6 @@ endif()
################################################################################
# Doxygen - http://www.doxygen.nl (OPTIONAL, used if found)
################################################################################

View File

@ -286,7 +286,7 @@ In case the GnuTLS library with openssl extensions package is not available in y
#### Install [Protocol Buffers](https://developers.google.com/protocol-buffers/ "Protocol Buffers' Homepage"), a portable mechanism for serialization of structured data:
GNSS-SDR requires Protocol Buffers v3.0.0 or later. If the packages that come with your distribution are older, you will need to install it manually. First, install the dependencies:
GNSS-SDR requires Protocol Buffers v3.0.0 or later. If the packages that come with your distribution are older than that (_e.g._, Ubuntu 16.04 Xenial and Debian 8 Jessie came with older versions), then you will need to install it manually. First, install the dependencies:
~~~~~~
$ sudo apt-get install autoconf automake libtool curl make g++ unzip

View File

@ -2,39 +2,41 @@ syntax = "proto3";
package gnss_sdr;
/* GnssSynchro represents the processing measurements at a given time taken by a given processing channel */
message GnssSynchro {
string system = 1;
string signal = 2;
string system = 1; // GNSS constellation: "G" for GPS, "R" for Glonass, "S" for SBAS, "E" for Galileo and "C" for Beidou.
string signal = 2; // GNSS signal: "1C" for GPS L1 C/A, "1B" for Galileo E1b/c, "1G" for Glonass L1 C/A, "2S" for GPS L2 L2C(M), "2G" for Glonass L2 C/A, "L5" for GPS L5 and "5X" for Galileo E5a
uint32 prn = 3;
int32 channel_id = 4;
uint32 prn = 3; // PRN number
int32 channel_id = 4; // Channel number
double acq_delay_samples = 5;
double acq_doppler_hz = 6;
uint64 acq_samplestamp_samples = 7;
uint32 acq_doppler_step = 8;
bool flag_valid_acquisition = 9;
double acq_delay_samples = 5; // Coarse code delay estimation, in samples
double acq_doppler_hz = 6; // Coarse Doppler estimation in each channel, in Hz
uint64 acq_samplestamp_samples = 7; // Number of samples at signal SampleStamp
uint32 acq_doppler_step = 8; // Step of the frequency bin in the search grid, in Hz
bool flag_valid_acquisition = 9; // Acquisition status
int64 fs = 10;
double prompt_i = 11;
double prompt_q = 12;
double cn0_db_hz = 13;
double carrier_doppler_hz = 14;
double carrier_phase_rads = 15;
double code_phase_samples = 16;
uint64 tracking_sample_counter = 17;
bool flag_valid_symbol_output = 18;
int32 correlation_length_ms = 19;
int64 fs = 10; // Sampling frequency, in samples per second
double prompt_i = 11; // In-phase (real) component of the prompt correlator output
double prompt_q = 12; // Quadrature (imaginary) component of the prompt correlator output
double cn0_db_hz = 13; // Carrier-to-Noise density ratio, in dB-Hz
double carrier_doppler_hz = 14; // Doppler estimation, in [Hz].
double carrier_phase_rads = 15; // Carrier phase estimation, in rad
double code_phase_samples = 16; // Code phase in samples
uint64 tracking_sample_counter = 17; // Sample counter indicating the number of processed samples
bool flag_valid_symbol_output = 18; // Indicates the validity of signal tracking
int32 correlation_length_ms = 19; // Time duration of coherent correlation integration, in ms
bool flag_valid_word = 20;
uint32 tow_at_current_symbol_ms = 21;
bool flag_valid_word = 20; // Indicates the validity of the decoded navigation message word
uint32 tow_at_current_symbol_ms = 21; // Time of week of the current symbol, in ms
double pseudorange_m = 22;
double rx_time = 23;
bool flag_valid_pseudorange = 24;
double interp_tow_ms = 25;
double pseudorange_m = 22; // Pseudorange computation, in m
double rx_time = 23; // Receiving time after the start of the week, in s
bool flag_valid_pseudorange = 24; // Pseudorange computation status
double interp_tow_ms = 25; // Interpolated time of week, in ms
}
/* Observables represents a collection of GnssSynchro annotations */
message Observables {
repeated GnssSynchro observable = 1;
}

View File

@ -2,39 +2,41 @@ syntax = "proto3";
package gnss_sdr;
/* MonitorPvt represents a search query, with pagination options to
* indicate which results to include in the response. */
message MonitorPvt {
uint32 tow_at_current_symbol_ms = 1;
uint32 week = 2;
double rx_time = 3;
double user_clk_offset = 4;
uint32 tow_at_current_symbol_ms = 1; // Time of week of the current symbol, in ms
uint32 week = 2; // PVT GPS week
double rx_time = 3; // PVT GPS time
double user_clk_offset = 4; // User clock offset, in s
double pos_x = 5;
double pos_y = 6;
double pos_z = 7;
double vel_x = 8;
double vel_y = 9;
double vel_z = 10;
double pos_x = 5; // Position X component in ECEF, expressed in m
double pos_y = 6; // Position Y component in ECEF, expressed in m
double pos_z = 7; // Position Z component in ECEF, expressed in m
double vel_x = 8; // Velocity X component in ECEF, in m/s
double vel_y = 9; // Velocity Y component in ECEF, in m/s
double vel_z = 10; // Velocity Z component in ECEF, in m/s
double cov_xx = 11;
double cov_yy = 12;
double cov_zz = 13;
double cov_xy = 14;
double cov_yz = 15;
double cov_zx = 16;
double cov_xx = 11; // Position variance in the Y component, in m2
double cov_yy = 12; // Position variance in the Y component, in m2
double cov_zz = 13; // Position variance in the Z component, in m2
double cov_xy = 14; // Position XY covariance, in m2
double cov_yz = 15; // Position YZ covariance, in m2
double cov_zx = 16; // Position ZX covariance, in m2
double latitude = 17;
double longitude = 18;
double height = 19;
double latitude = 17; // Latitude, in deg. Positive: North
double longitude = 18; // Longitude, in deg. Positive: East
double height = 19; // Height, in m
uint32 valid_sats = 20;
uint32 solution_status = 21;
uint32 solution_type = 22;
float ar_ratio_factor = 23;
float ar_ratio_threshold = 24;
uint32 valid_sats = 20; // Number of valid satellites
uint32 solution_status = 21; // RTKLIB solution status
uint32 solution_type = 22; // RTKLIB solution type (0: xyz-ecef, 1: enu-baseline)
float ar_ratio_factor = 23; // Ambiguity resolution ratio factor for validation
float ar_ratio_threshold = 24; // Ambiguity resolution ratio threshold for validation
double gdop = 25;
double pdop = 26;
double hdop = 27;
double vdop = 28;
double gdop = 25; // Geometric Dilution of Precision
double pdop = 26; // Position (3D) Dilution of Precision
double hdop = 27; // Horizontal Dilution of Precision
double vdop = 28; // Vertical Dilution of Precision
}