1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-18 21:23:02 +00:00

Merge branch 'Acquisition' of https://github.com/piyush0411/gnss-sdr into piyush0411-Acquisition

This commit is contained in:
Carles Fernandez 2020-06-23 11:47:24 +02:00
commit b5c2367788
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
16 changed files with 1567 additions and 242 deletions

View File

@ -23,6 +23,7 @@ set(ACQ_ADAPTER_SOURCES
galileo_e1_pcps_8ms_ambiguous_acquisition.cc
galileo_e5a_noncoherent_iq_acquisition_caf.cc
galileo_e5a_pcps_acquisition.cc
galileo_e5b_pcps_acquisition.cc
glonass_l1_ca_pcps_acquisition.cc
glonass_l2_ca_pcps_acquisition.cc
beidou_b1i_pcps_acquisition.cc
@ -44,6 +45,7 @@ set(ACQ_ADAPTER_HEADERS
galileo_e1_pcps_8ms_ambiguous_acquisition.h
galileo_e5a_noncoherent_iq_acquisition_caf.h
galileo_e5a_pcps_acquisition.h
galileo_e5b_pcps_acquisition.h
glonass_l1_ca_pcps_acquisition.h
glonass_l2_ca_pcps_acquisition.h
beidou_b1i_pcps_acquisition.h
@ -56,6 +58,7 @@ if(ENABLE_FPGA)
gps_l2_m_pcps_acquisition_fpga.cc
galileo_e1_pcps_ambiguous_acquisition_fpga.cc
galileo_e5a_pcps_acquisition_fpga.cc
galileo_e5b_pcps_acquisition_fpga.cc
gps_l5i_pcps_acquisition_fpga.cc
)
set(ACQ_ADAPTER_HEADERS ${ACQ_ADAPTER_HEADERS}
@ -63,6 +66,7 @@ if(ENABLE_FPGA)
gps_l2_m_pcps_acquisition_fpga.h
galileo_e1_pcps_ambiguous_acquisition_fpga.h
galileo_e5a_pcps_acquisition_fpga.h
galileo_e5b_pcps_acquisition_fpga.h
gps_l5i_pcps_acquisition_fpga.h
)
endif()

View File

@ -0,0 +1,247 @@
/*!
* \file galileo_e5b_pcps_acquisition.cc
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface for
* Galileo E5b data and pilot Signals
* \author Piyush Gupta, 2020. piyush04111999@gmail.com
* \note Code added as part of GSoC 2020 program.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -------------------------------------------------------------------------
*/
#include "galileo_e5b_pcps_acquisition.h"
#include "Galileo_E5b.h"
#include "acq_conf.h"
#include "configuration_interface.h"
#include "galileo_e5_signal_processing.h"
#include "gnss_sdr_flags.h"
#include <glog/logging.h>
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
#include <algorithm>
#if HAS_STD_SPAN
#include <span>
namespace own = std;
#else
#include <gsl/gsl>
namespace own = gsl;
#endif
GalileoE5bPcpsAcquisition::GalileoE5bPcpsAcquisition(ConfigurationInterface* configuration,
const std::string& role,
unsigned int in_streams,
unsigned int out_streams) : role_(role),
in_streams_(in_streams),
out_streams_(out_streams)
{
configuration_ = configuration;
acq_parameters_.ms_per_code = 1;
acq_parameters_.SetFromConfiguration(configuration_, role, GALILEO_E5B_CODE_CHIP_RATE_CPS, GALILEO_E5B_OPT_ACQ_FS_SPS);
DLOG(INFO) << "Role " << role;
if (FLAGS_doppler_max != 0)
{
acq_parameters_.doppler_max = FLAGS_doppler_max;
}
doppler_max_ = acq_parameters_.doppler_max;
doppler_step_ = acq_parameters_.doppler_step;
item_type_ = acq_parameters_.item_type;
item_size_ = acq_parameters_.it_size;
fs_in_ = acq_parameters_.fs_in;
acq_pilot_ = configuration_->property(role + ".acquire_pilot", false);
acq_iq_ = configuration_->property(role + ".acquire_iq", false);
if (acq_iq_)
{
acq_pilot_ = false;
}
code_length_ = static_cast<unsigned int>(std::floor(static_cast<double>(acq_parameters_.resampled_fs) / (GALILEO_E5B_CODE_CHIP_RATE_CPS / GALILEO_E5B_CODE_LENGTH_CHIPS)));
vector_length_ = std::floor(acq_parameters_.sampled_ms * acq_parameters_.samples_per_ms) * (acq_parameters_.bit_transition_flag ? 2 : 1);
code_ = std::vector<std::complex<float>>(vector_length_);
sampled_ms_ = acq_parameters_.sampled_ms;
acquisition_ = pcps_make_acquisition(acq_parameters_);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
channel_ = 0;
threshold_ = 0.0;
doppler_center_ = 0;
gnss_synchro_ = nullptr;
if (in_streams_ > 1)
{
LOG(ERROR) << "This implementation only supports one input stream";
}
if (out_streams_ > 0)
{
LOG(ERROR) << "This implementation does not provide an output stream";
}
}
void GalileoE5bPcpsAcquisition::stop_acquisition()
{
}
void GalileoE5bPcpsAcquisition::set_threshold(float threshold)
{
threshold_ = threshold;
acquisition_->set_threshold(threshold_);
}
void GalileoE5bPcpsAcquisition::set_doppler_max(unsigned int doppler_max)
{
doppler_max_ = doppler_max;
acquisition_->set_doppler_max(doppler_max_);
}
void GalileoE5bPcpsAcquisition::set_doppler_step(unsigned int doppler_step)
{
doppler_step_ = doppler_step;
acquisition_->set_doppler_step(doppler_step_);
}
void GalileoE5bPcpsAcquisition::set_doppler_center(int doppler_center)
{
doppler_center_ = doppler_center;
acquisition_->set_doppler_center(doppler_center_);
}
void GalileoE5bPcpsAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
{
gnss_synchro_ = gnss_synchro;
acquisition_->set_gnss_synchro(gnss_synchro_);
}
signed int GalileoE5bPcpsAcquisition::mag()
{
return acquisition_->mag();
}
void GalileoE5bPcpsAcquisition::init()
{
acquisition_->init();
}
void GalileoE5bPcpsAcquisition::set_local_code()
{
std::vector<std::complex<float>> code(code_length_);
std::array<char, 3> signal_{};
signal_[0] = '7';
signal_[2] = '\0';
if (acq_iq_)
{
signal_[1] = 'X';
}
else if (acq_pilot_)
{
signal_[1] = 'Q';
}
else
{
signal_[1] = 'I';
}
if (acq_parameters_.use_automatic_resampler)
{
galileo_e5_b_code_gen_complex_sampled(code, gnss_synchro_->PRN, signal_, acq_parameters_.resampled_fs, 0);
}
else
{
galileo_e5_b_code_gen_complex_sampled(code, gnss_synchro_->PRN, signal_, fs_in_, 0);
}
own::span<gr_complex> code_span(code_.data(), vector_length_);
for (unsigned int i = 0; i < sampled_ms_; i++)
{
std::copy_n(code.data(), code_length_, code_span.subspan(i * code_length_, code_length_).data());
}
acquisition_->set_local_code(code_.data());
}
void GalileoE5bPcpsAcquisition::reset()
{
acquisition_->set_active(true);
}
void GalileoE5bPcpsAcquisition::set_state(int state)
{
acquisition_->set_state(state);
}
void GalileoE5bPcpsAcquisition::connect(gr::top_block_sptr top_block __attribute__((unused)))
{
if (item_type_ == "gr_complex")
{
// nothing to connect
}
else if (item_type_ == "cshort")
{
// nothing to connect
}
else
{
LOG(WARNING) << item_type_ << " unknown acquisition item type";
}
}
void GalileoE5bPcpsAcquisition::disconnect(gr::top_block_sptr top_block __attribute__((unused)))
{
if (item_type_ == "gr_complex")
{
// nothing to disconnect
}
else if (item_type_ == "cshort")
{
// nothing to disconnect
}
else
{
LOG(WARNING) << item_type_ << " unknown acquisition item type";
}
}
gr::basic_block_sptr GalileoE5bPcpsAcquisition::get_left_block()
{
return acquisition_;
}
gr::basic_block_sptr GalileoE5bPcpsAcquisition::get_right_block()
{
return acquisition_;
}
void GalileoE5bPcpsAcquisition::set_resampler_latency(uint32_t latency_samples)
{
acquisition_->set_resampler_latency(latency_samples);
}

View File

@ -0,0 +1,204 @@
/*!
* \file galileo_e5b_pcps_acquisition.h
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface for
* Galileo E5b data and pilot Signals
* \author Piyush Gupta, 2020. piyush04111999@gmail.com
* \note Code added as part of GSoC 2020 program.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GALILEO_E5B_PCPS_ACQUISITION_H
#define GNSS_SDR_GALILEO_E5B_PCPS_ACQUISITION_H
#include "channel_fsm.h"
#include "gnss_synchro.h"
#include "pcps_acquisition.h"
#include <memory>
#include <string>
#include <vector>
class ConfigurationInterface;
class GalileoE5bPcpsAcquisition : public AcquisitionInterface
{
public:
/*!
* \brief Constructor
*/
GalileoE5bPcpsAcquisition(ConfigurationInterface* configuration,
const std::string& role,
unsigned int in_streams,
unsigned int out_streams);
/*!
* \brief Destructor
*/
~GalileoE5bPcpsAcquisition() = default;
/*!
* \brief Role
*/
inline std::string role() override
{
return role_;
}
/*!
* \brief Returns "GALILEO_E5b_PCPS_Acquisition"
*/
inline std::string implementation() override
{
return "Galileo_E5b_PCPS_Acquisition";
}
/*!
* \brief Returns size of lv_16sc_t
*/
inline size_t item_size() override
{
return sizeof(int16_t);
}
/*!
* \brief Connect
*/
void connect(gr::top_block_sptr top_block) override;
/*!
* \brief Disconnect
*/
void disconnect(gr::top_block_sptr top_block) override;
/*!
* \brief Get left block
*/
gr::basic_block_sptr get_left_block() override;
/*!
* \brief Get right block
*/
gr::basic_block_sptr get_right_block() override;
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to efficiently exchange synchronization data between acquisition and
* tracking blocks
*/
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) override;
/*!
* \brief Set acquisition channel unique ID
*/
inline void set_channel(unsigned int channel) override
{
channel_ = channel;
acquisition_->set_channel(channel_);
}
/*!
* \brief Set channel fsm associated to this acquisition instance
*/
inline void set_channel_fsm(std::weak_ptr<ChannelFsm> channel_fsm) override
{
channel_fsm_ = channel_fsm;
acquisition_->set_channel_fsm(channel_fsm);
}
/*!
* \brief Set statistics threshold of PCPS algorithm
*/
void set_threshold(float threshold) override;
/*!
* \brief Set maximum Doppler off grid search
*/
void set_doppler_max(unsigned int doppler_max) override;
/*!
* \brief Set Doppler steps for the grid search
*/
void set_doppler_step(unsigned int doppler_step) override;
/*!
* \brief Set Doppler center for the grid search
*/
void set_doppler_center(int doppler_center) override;
/*!
* \brief Initializes acquisition algorithm.
*/
void init() override;
/*!
* \brief Sets local Galileo E5b code for PCPS acquisition algorithm.
*/
void set_local_code() override;
/*!
* \brief Returns the maximum peak of grid search
*/
signed int mag() override;
/*!
* \brief Restart acquisition algorithm
*/
void reset() override;
/*!
* \brief If set to 1, ensures that acquisition starts at the
* first available sample.
* \param state - int=1 forces start of acquisition
*/
void set_state(int state) override;
/*!
* \brief Stop running acquisition
*/
void stop_acquisition() override;
/*!
* \brief Sets the resampler latency to account it in the acquisition code delay estimation
*/
void set_resampler_latency(uint32_t latency_samples) override;
private:
ConfigurationInterface* configuration_;
pcps_acquisition_sptr acquisition_;
Acq_Conf acq_parameters_;
size_t item_size_;
std::string item_type_;
std::string dump_filename_;
std::string role_;
bool acq_pilot_;
bool acq_iq_;
unsigned int vector_length_;
unsigned int code_length_;
unsigned int channel_;
std::weak_ptr<ChannelFsm> channel_fsm_;
unsigned int doppler_max_;
unsigned int doppler_step_;
int doppler_center_;
unsigned int sampled_ms_;
unsigned int in_streams_;
unsigned int out_streams_;
int64_t fs_in_;
float threshold_;
std::vector<std::complex<float>> code_;
Gnss_Synchro* gnss_synchro_;
};
#endif // GNSS_SDR_GALILEO_E5B_PCPS_ACQUISITION_H

View File

@ -0,0 +1,290 @@
/*!
* \file galileo_e5b_pcps_acquisition_fpga.cc
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface for
* Galileo E5b data and pilot Signals for the FPGA
* \author Piyush Gupta, 2020. piyush04111999@gmail.com
* \note Code added as part of GSoC 2020 Program.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -------------------------------------------------------------------------
*/
#include "galileo_e5b_pcps_acquisition_fpga.h"
#include "Galileo_E5b.h"
#include "configuration_interface.h"
#include "galileo_e5_signal_processing.h"
#include "gnss_sdr_flags.h"
#include <glog/logging.h>
#include <gnuradio/fft/fft.h> // for fft_complex
#include <gnuradio/gr_complex.h> // for gr_complex
#include <volk/volk.h> // for volk_32fc_conjugate_32fc
#include <volk_gnsssdr/volk_gnsssdr_alloc.h>
#include <algorithm> // for copy_n
#include <cmath> // for abs, pow, floor
#include <complex> // for complex
GalileoE5bPcpsAcquisitionFpga::GalileoE5bPcpsAcquisitionFpga(ConfigurationInterface* configuration,
const std::string& role,
unsigned int in_streams,
unsigned int out_streams) : role_(role),
in_streams_(in_streams),
out_streams_(out_streams)
{
pcpsconf_fpga_t acq_parameters;
configuration_ = configuration;
std::string default_dump_filename = "../data/acquisition.dat";
DLOG(INFO) << "Role " << role;
int64_t fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 32000000);
int64_t fs_in = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
acq_parameters.repeat_satellite = configuration_->property(role + ".repeat_satellite", false);
DLOG(INFO) << role << " satellite repeat = " << acq_parameters.repeat_satellite;
uint32_t downsampling_factor = configuration_->property(role + ".downsampling_factor", 1);
acq_parameters.downsampling_factor = downsampling_factor;
fs_in = fs_in / downsampling_factor;
acq_parameters.fs_in = fs_in;
doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
if (FLAGS_doppler_max != 0)
{
doppler_max_ = FLAGS_doppler_max;
}
acq_parameters.doppler_max = doppler_max_;
acq_pilot_ = configuration_->property(role + ".acquire_pilot", false);
acq_iq_ = configuration_->property(role + ".acquire_iq", false);
if (acq_iq_)
{
acq_pilot_ = false;
}
auto code_length = static_cast<uint32_t>(std::round(static_cast<double>(fs_in) / GALILEO_E5B_CODE_CHIP_RATE_CPS * static_cast<double>(GALILEO_E5B_CODE_LENGTH_CHIPS)));
acq_parameters.code_length = code_length;
// The FPGA can only use FFT lengths that are a power of two.
float nbits = ceilf(log2f(static_cast<float>(code_length) * 2.0));
uint32_t nsamples_total = pow(2, nbits);
uint32_t select_queue_Fpga = configuration_->property(role + ".select_queue_Fpga", 1);
acq_parameters.select_queue_Fpga = select_queue_Fpga;
std::string default_device_name = "/dev/uio0";
std::string device_name = configuration_->property(role + ".devicename", default_device_name);
acq_parameters.device_name = device_name;
acq_parameters.samples_per_code = nsamples_total;
acq_parameters.excludelimit = static_cast<unsigned int>(1 + ceil((1.0 / GALILEO_E5B_CODE_CHIP_RATE_CPS) * static_cast<float>(fs_in)));
// compute all the GALILEO E5b PRN Codes (this is done only once in the class constructor in order to avoid re-computing the PRN codes every time
// a channel is assigned)
auto fft_if = std::unique_ptr<gr::fft::fft_complex>(new gr::fft::fft_complex(nsamples_total, true)); // Direct FFT
volk_gnsssdr::vector<std::complex<float>> code(nsamples_total); // Buffer for local code
volk_gnsssdr::vector<std::complex<float>> fft_codes_padded(nsamples_total);
d_all_fft_codes_ = std::vector<uint32_t>(nsamples_total * GALILEO_E5B_NUMBER_OF_CODES); // memory containing all the possible fft codes for PRN 0 to 32
float max; // temporary maxima search
int32_t tmp;
int32_t tmp2;
int32_t local_code;
int32_t fft_data;
for (uint32_t PRN = 1; PRN <= GALILEO_E5B_NUMBER_OF_CODES; PRN++)
{
std::array<char, 3> signal_;
signal_[0] = '7';
signal_[2] = '\0';
if (acq_iq_)
{
signal_[1] = 'X';
}
else if (acq_pilot_)
{
signal_[1] = 'Q';
}
else
{
signal_[1] = 'I';
}
galileo_e5_b_code_gen_complex_sampled(code, PRN, signal_, fs_in, 0);
for (uint32_t s = code_length; s < 2 * code_length; s++)
{
code[s] = code[s - code_length];
}
// fill in zero padding
for (uint32_t s = 2 * code_length; s < nsamples_total; s++)
{
code[s] = std::complex<float>(0.0, 0.0);
}
std::copy_n(code.data(), nsamples_total, fft_if->get_inbuf()); // copy to FFT buffer
fft_if->execute(); // Run the FFT of local code
volk_32fc_conjugate_32fc(fft_codes_padded.data(), fft_if->get_outbuf(), nsamples_total); // conjugate values
max = 0; // initialize maximum value
for (uint32_t i = 0; i < nsamples_total; i++) // search for maxima
{
if (std::abs(fft_codes_padded[i].real()) > max)
{
max = std::abs(fft_codes_padded[i].real());
}
if (std::abs(fft_codes_padded[i].imag()) > max)
{
max = std::abs(fft_codes_padded[i].imag());
}
}
// map the FFT to the dynamic range of the fixed point values an copy to buffer containing all FFTs
// and package codes in a format that is ready to be written to the FPGA
for (uint32_t i = 0; i < nsamples_total; i++)
{
tmp = static_cast<int32_t>(floor(fft_codes_padded[i].real() * (pow(2, quant_bits_local_code - 1) - 1) / max));
tmp2 = static_cast<int32_t>(floor(fft_codes_padded[i].imag() * (pow(2, quant_bits_local_code - 1) - 1) / max));
local_code = (tmp & select_lsbits) | ((tmp2 * shl_code_bits) & select_msbits); // put together the real part and the imaginary part
fft_data = local_code & select_all_code_bits;
d_all_fft_codes_[i + (nsamples_total * (PRN - 1))] = fft_data;
}
}
acq_parameters.all_fft_codes = d_all_fft_codes_.data();
// reference for the FPGA FFT-IFFT attenuation factor
acq_parameters.total_block_exp = configuration_->property(role + ".total_block_exp", 13);
acq_parameters.num_doppler_bins_step2 = configuration_->property(role + ".second_nbins", 4);
acq_parameters.doppler_step2 = configuration_->property(role + ".second_doppler_step", 125.0);
acq_parameters.make_2_steps = configuration_->property(role + ".make_two_steps", false);
acq_parameters.max_num_acqs = configuration_->property(role + ".max_num_acqs", 2);
acquisition_fpga_ = pcps_make_acquisition_fpga(acq_parameters);
channel_ = 0;
doppler_step_ = 0;
gnss_synchro_ = nullptr;
if (in_streams_ > 1)
{
LOG(ERROR) << "This implementation only supports one input stream";
}
if (out_streams_ > 0)
{
LOG(ERROR) << "This implementation does not provide an output stream";
}
}
void GalileoE5bPcpsAcquisitionFpga::stop_acquisition()
{
// this command causes the SW to reset the HW.
acquisition_fpga_->reset_acquisition();
}
void GalileoE5bPcpsAcquisitionFpga::set_threshold(float threshold)
{
DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold;
acquisition_fpga_->set_threshold(threshold);
}
void GalileoE5bPcpsAcquisitionFpga::set_doppler_max(unsigned int doppler_max)
{
doppler_max_ = doppler_max;
acquisition_fpga_->set_doppler_max(doppler_max_);
}
void GalileoE5bPcpsAcquisitionFpga::set_doppler_step(unsigned int doppler_step)
{
doppler_step_ = doppler_step;
acquisition_fpga_->set_doppler_step(doppler_step_);
}
void GalileoE5bPcpsAcquisitionFpga::set_doppler_center(int doppler_center)
{
doppler_center_ = doppler_center;
acquisition_fpga_->set_doppler_center(doppler_center_);
}
void GalileoE5bPcpsAcquisitionFpga::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
{
gnss_synchro_ = gnss_synchro;
acquisition_fpga_->set_gnss_synchro(gnss_synchro_);
}
signed int GalileoE5bPcpsAcquisitionFpga::mag()
{
return acquisition_fpga_->mag();
}
void GalileoE5bPcpsAcquisitionFpga::init()
{
acquisition_fpga_->init();
}
void GalileoE5bPcpsAcquisitionFpga::set_local_code()
{
acquisition_fpga_->set_local_code();
}
void GalileoE5bPcpsAcquisitionFpga::reset()
{
acquisition_fpga_->set_active(true);
}
void GalileoE5bPcpsAcquisitionFpga::set_state(int state)
{
acquisition_fpga_->set_state(state);
}
void GalileoE5bPcpsAcquisitionFpga::connect(gr::top_block_sptr top_block)
{
if (top_block)
{
/* top_block is not null */
};
// Nothing to connect
}
void GalileoE5bPcpsAcquisitionFpga::disconnect(gr::top_block_sptr top_block)
{
if (top_block)
{
/* top_block is not null */
};
// Nothing to disconnect
}
gr::basic_block_sptr GalileoE5bPcpsAcquisitionFpga::get_left_block()
{
return nullptr;
}
gr::basic_block_sptr GalileoE5bPcpsAcquisitionFpga::get_right_block()
{
return nullptr;
}

View File

@ -0,0 +1,213 @@
/*!
* \file galileo_e5b_pcps_acquisition_fpga.h
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface for
* Galileo E5b data and pilot Signals for the FPGA
* \author Piyush Gupta, 2020. piyush04111999@gmail.com
* \note Code added as part of GSoC 2020 Program.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GALILEO_E5B_PCPS_ACQUISITION_FPGA_H
#define GNSS_SDR_GALILEO_E5B_PCPS_ACQUISITION_FPGA_H
#include "channel_fsm.h"
#include "gnss_synchro.h"
#include "pcps_acquisition_fpga.h"
#include <memory>
#include <string>
#include <vector>
class ConfigurationInterface;
/*!
* \brief This class adapts a PCPS acquisition block off-loaded on an FPGA
* to an AcquisitionInterface for Galileo E5b signals
*/
class GalileoE5bPcpsAcquisitionFpga : public AcquisitionInterface
{
public:
/*!
* \brief Constructor
*/
GalileoE5bPcpsAcquisitionFpga(ConfigurationInterface* configuration,
const std::string& role,
unsigned int in_streams,
unsigned int out_streams);
/*!
* \brief Destructor
*/
~GalileoE5bPcpsAcquisitionFpga() = default;
/*!
* \brief Role
*/
inline std::string role() override
{
return role_;
}
/*!
* \brief Returns "Galileo_E5b_Pcps_Acquisition_Fpga"
*/
inline std::string implementation() override
{
return "Galileo_E5b_PCPS_Acquisition_FPGA";
}
/*!
* \brief Returns size of lv_16sc_t
*/
inline size_t item_size() override
{
return sizeof(int16_t);
}
/*!
* \brief Connect
*/
void connect(gr::top_block_sptr top_block) override;
/*!
* \brief Disconnect
*/
void disconnect(gr::top_block_sptr top_block) override;
/*!
* \brief Get left block
*/
gr::basic_block_sptr get_left_block() override;
/*!
* \brief Get right block
*/
gr::basic_block_sptr get_right_block() override;
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to efficiently exchange synchronization data between acquisition and
* tracking blocks
*/
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) override;
/*!
* \brief Set acquisition channel unique ID
*/
inline void set_channel(unsigned int channel) override
{
channel_ = channel;
acquisition_fpga_->set_channel(channel_);
}
/*!
* \brief Set channel fsm associated to this acquisition instance
*/
inline void set_channel_fsm(std::weak_ptr<ChannelFsm> channel_fsm) override
{
channel_fsm_ = channel_fsm;
acquisition_fpga_->set_channel_fsm(channel_fsm);
}
/*!
* \brief Set statistics threshold of PCPS algorithm
*/
void set_threshold(float threshold) override;
/*!
* \brief Set maximum Doppler off grid search
*/
void set_doppler_max(unsigned int doppler_max) override;
/*!
* \brief Set Doppler steps for the grid search
*/
void set_doppler_step(unsigned int doppler_step) override;
/*!
* \brief Set Doppler center for the grid search
*/
void set_doppler_center(int doppler_center) override;
/*!
* \brief Initializes acquisition algorithm.
*/
void init() override;
/*!
* \brief Sets local Galileo E5b code for PCPS acquisition algorithm.
*/
void set_local_code() override;
/*!
* \brief Returns the maximum peak of grid search
*/
signed int mag() override;
/*!
* \brief Restart acquisition algorithm
*/
void reset() override;
/*!
* \brief If set to 1, ensures that acquisition starts at the
* first available sample.
* \param state - int=1 forces start of acquisition
*/
void set_state(int state) override;
/*!
* \brief This function is only used in the unit tests
*/
void set_single_doppler_flag(unsigned int single_doppler_flag);
/*!
* \brief Stop running acquisition
*/
void stop_acquisition() override;
/*!
* \brief Set resampler latency
*/
void set_resampler_latency(uint32_t latency_samples __attribute__((unused))) override{};
private:
// the following flags are FPGA-specific and they are using arrange the values of the fft of the local code in the way the FPGA
// expects. This arrangement is done in the initialisation to avoid consuming unnecessary clock cycles during tracking.
static const uint32_t quant_bits_local_code = 16;
static const uint32_t select_lsbits = 0x0000FFFF; // Select the 10 LSbits out of a 20-bit word
static const uint32_t select_msbits = 0xFFFF0000; // Select the 10 MSbits out of a 20-bit word
static const uint32_t select_all_code_bits = 0xFFFFFFFF; // Select a 20 bit word
static const uint32_t shl_code_bits = 65536; // shift left by 10 bits
ConfigurationInterface* configuration_;
pcps_acquisition_fpga_sptr acquisition_fpga_;
std::string item_type_;
std::string dump_filename_;
std::string role_;
bool acq_pilot_;
bool acq_iq_;
uint32_t channel_;
std::weak_ptr<ChannelFsm> channel_fsm_;
uint32_t doppler_max_;
uint32_t doppler_step_;
int32_t doppler_center_;
unsigned int in_streams_;
unsigned int out_streams_;
Gnss_Synchro* gnss_synchro_;
std::vector<uint32_t> d_all_fft_codes_; // memory that contains all the code ffts
};
#endif // GNSS_SDR_GALILEO_E5B_PCPS_ACQUISITION_FPGA_H

View File

@ -6,7 +6,7 @@
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@ -25,6 +25,7 @@
#include "GPS_L1_CA.h"
#include "Galileo_E1.h"
#include "Galileo_E5a.h"
#include "Galileo_E5b.h"
#include "configuration_interface.h"
#include <glog/logging.h>
#include <cstdint>
@ -80,6 +81,10 @@ SignalGenerator::SignalGenerator(ConfigurationInterface* configuration,
{
vector_length = round(static_cast<float>(fs_in) / (GALILEO_E5A_CODE_CHIP_RATE_CPS / GALILEO_E5A_CODE_LENGTH_CHIPS));
}
else if (signal1[0].at(0) == '7')
{
vector_length = round(static_cast<float>(fs_in) / (GALILEO_E5B_CODE_CHIP_RATE_CPS / GALILEO_E5B_CODE_LENGTH_CHIPS));
}
else
{
vector_length = round(static_cast<float>(fs_in) / (GALILEO_E1_CODE_CHIP_RATE_CPS / GALILEO_E1_B_CODE_LENGTH_CHIPS)) * GALILEO_E1_C_SECONDARY_CODE_LENGTH;

View File

@ -6,7 +6,7 @@
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver

View File

@ -5,7 +5,7 @@
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
@ -22,6 +22,7 @@
#include "GPS_L1_CA.h"
#include "Galileo_E1.h"
#include "Galileo_E5a.h"
#include "Galileo_E5b.h"
#include "galileo_e1_signal_processing.h"
#include "galileo_e5_signal_processing.h"
#include "glonass_l1_signal_processing.h"
@ -124,6 +125,14 @@ void signal_generator_c::init()
data_bit_duration_ms_.push_back(1e3 / GALILEO_E5A_SYMBOL_RATE_BPS);
}
else if (signal_[sat].at(0) == '7')
{
int codelen = static_cast<int>(GALILEO_E5B_CODE_LENGTH_CHIPS);
samples_per_code_.push_back(round(static_cast<float>(fs_in_) / (GALILEO_E5B_CODE_CHIP_RATE_CPS / codelen)));
num_of_codes_per_vector_.push_back(1);
data_bit_duration_ms_.push_back(1e3 / GALILEO_E5B_SYMBOL_RATE_BPS);
}
else
{
samples_per_code_.push_back(round(static_cast<float>(fs_in_) / (GALILEO_E1_CODE_CHIP_RATE_CPS / GALILEO_E1_B_CODE_LENGTH_CHIPS)));
@ -206,6 +215,21 @@ void signal_generator_c::generate_codes()
}
}
}
else if (signal_[sat].at(0) == '7')
{
std::array<char, 3> signal = {{'7', 'X', '\0'}};
galileo_e5_b_code_gen_complex_sampled(sampled_code_data_[sat], PRN_[sat], signal, fs_in_,
static_cast<int>(GALILEO_E5B_CODE_LENGTH_CHIPS) - delay_chips_[sat]);
// noise
if (noise_flag_)
{
for (unsigned int i = 0; i < vector_length_; i++)
{
sampled_code_data_[sat][i] *= sqrt(pow(10, CN0_dB_[sat] / 10) / BW_BB_ / 2);
}
}
}
else
{
// Generate one code-period of E1B signal
@ -370,6 +394,37 @@ int signal_generator_c::general_work(int noutput_items __attribute__((unused)),
ms_counter_[sat] = ms_counter_[sat] + static_cast<int>(round(1e3 * GALILEO_E5A_CODE_PERIOD_S));
for (k = delay_samples; k < samples_per_code_[sat]; k++)
{
out[out_idx] += (gr_complex(sampled_code_data_[sat][out_idx].real() * data_modulation_[sat],
sampled_code_data_[sat][out_idx].imag() * pilot_modulation_[sat])) *
complex_phase_[out_idx];
out_idx++;
}
}
else if (signal_[sat].at(0) == '7')
{
// EACH WORK outputs 1 modulated primary code
int codelen = static_cast<int>(GALILEO_E5B_CODE_LENGTH_CHIPS);
unsigned int delay_samples = (delay_chips_[sat] % codelen) * samples_per_code_[sat] / codelen;
for (k = 0; k < delay_samples; k++)
{
out[out_idx] += (gr_complex(sampled_code_data_[sat][out_idx].real() * data_modulation_[sat],
sampled_code_data_[sat][out_idx].imag() * pilot_modulation_[sat])) *
complex_phase_[out_idx];
out_idx++;
}
if (ms_counter_[sat] % data_bit_duration_ms_[sat] == 0 && data_flag_)
{
// New random data bit
current_data_bit_int_[sat] = (uniform_dist(e1) % 2) == 0 ? 1 : -1;
}
data_modulation_[sat] = current_data_bit_int_[sat] * (GALILEO_E5B_I_SECONDARY_CODE.at((ms_counter_[sat] + delay_sec_[sat]) % 20) == '0' ? 1 : -1);
pilot_modulation_[sat] = (GALILEO_E5B_Q_SECONDARY_CODE[PRN_[sat] - 1].at((ms_counter_[sat] + delay_sec_[sat]) % 100) == '0' ? 1 : -1);
ms_counter_[sat] = ms_counter_[sat] + static_cast<int>(round(1e3 * GALILEO_E5B_CODE_PERIOD_S));
for (k = delay_samples; k < samples_per_code_[sat]; k++)
{
out[out_idx] += (gr_complex(sampled_code_data_[sat][out_idx].real() * data_modulation_[sat],

View File

@ -5,7 +5,7 @@
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver

View File

@ -55,6 +55,7 @@
#include "galileo_e5a_noncoherent_iq_acquisition_caf.h"
#include "galileo_e5a_pcps_acquisition.h"
#include "galileo_e5a_telemetry_decoder.h"
#include "galileo_e5b_pcps_acquisition.h"
#include "glonass_l1_ca_dll_pll_c_aid_tracking.h"
#include "glonass_l1_ca_dll_pll_tracking.h"
#include "glonass_l1_ca_pcps_acquisition.h"
@ -118,6 +119,7 @@
#include "galileo_e1_pcps_ambiguous_acquisition_fpga.h"
#include "galileo_e5a_dll_pll_tracking_fpga.h"
#include "galileo_e5a_pcps_acquisition_fpga.h"
#include "galileo_e5b_pcps_acquisition_fpga.h"
#include "gps_l1_ca_dll_pll_tracking_fpga.h"
#include "gps_l1_ca_pcps_acquisition_fpga.h"
#include "gps_l2_m_dll_pll_tracking_fpga.h"
@ -263,6 +265,7 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetObservables(Configurati
LOG(INFO) << "Getting Observables with implementation " << implementation;
unsigned int Galileo_channels = configuration->property("Channels_1B.count", 0);
Galileo_channels += configuration->property("Channels_5X.count", 0);
Galileo_channels += configuration->property("Channels_7X.count", 0);
unsigned int GPS_channels = configuration->property("Channels_1C.count", 0);
GPS_channels += configuration->property("Channels_2S.count", 0);
GPS_channels += configuration->property("Channels_L5.count", 0);
@ -291,6 +294,7 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetPVT(ConfigurationInterf
LOG(INFO) << "Getting PVT with implementation " << implementation;
unsigned int Galileo_channels = configuration->property("Channels_1B.count", 0);
Galileo_channels += configuration->property("Channels_5X.count", 0);
Galileo_channels += configuration->property("Channels_7X.count", 0);
unsigned int GPS_channels = configuration->property("Channels_1C.count", 0);
GPS_channels += configuration->property("Channels_2S.count", 0);
GPS_channels += configuration->property("Channels_L5.count", 0);
@ -557,6 +561,70 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetChannel_5X(
}
// ********* GALILEO E5b CHANNEL *****************
std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetChannel_7X(
ConfigurationInterface* configuration,
const std::string& acq, const std::string& trk, const std::string& tlm, int channel,
Concurrent_Queue<pmt::pmt_t>* queue)
{
std::stringstream stream;
stream << channel;
std::string id = stream.str();
LOG(INFO) << "Instantiating Channel " << id << " with Acquisition Implementation: "
<< acq << ", Tracking Implementation: " << trk << ", Telemetry Decoder implementation: " << tlm;
std::string aux = configuration->property("Acquisition_7X" + std::to_string(channel) + ".implementation", std::string("W"));
std::string appendix1;
if (aux != "W")
{
appendix1 = std::to_string(channel);
}
else
{
appendix1 = "";
}
aux = configuration->property("Tracking_7X" + std::to_string(channel) + ".implementation", std::string("W"));
std::string appendix2;
if (aux != "W")
{
appendix2 = std::to_string(channel);
}
else
{
appendix2 = "";
}
aux = configuration->property("TelemetryDecoder_7X" + std::to_string(channel) + ".implementation", std::string("W"));
std::string appendix3;
if (aux != "W")
{
appendix3 = std::to_string(channel);
}
else
{
appendix3 = "";
}
// Automatically detect input data type
std::string default_item_type = "gr_complex";
std::string acq_item_type = configuration->property("Acquisition_7X" + appendix1 + ".item_type", default_item_type);
std::string trk_item_type = configuration->property("Tracking_7X" + appendix2 + ".item_type", default_item_type);
if (acq_item_type != trk_item_type)
{
LOG(ERROR) << "Acquisition and Tracking blocks must have the same input data type!";
}
std::unique_ptr<AcquisitionInterface> acq_ = GetAcqBlock(configuration, "Acquisition_7X" + appendix1, acq, 1, 0);
std::unique_ptr<TrackingInterface> trk_ = GetTrkBlock(configuration, "Tracking_7X" + appendix2, trk, 1, 1);
std::unique_ptr<TelemetryDecoderInterface> tlm_ = GetTlmBlock(configuration, "TelemetryDecoder_7X" + appendix3, tlm, 1, 1);
std::unique_ptr<GNSSBlockInterface> channel_ = std::make_unique<Channel>(configuration, channel,
std::move(acq_),
std::move(trk_),
std::move(tlm_),
"Channel", "7X", queue);
return channel_;
}
// ********* GLONASS L1 C/A CHANNEL *****************
std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetChannel_1G(
ConfigurationInterface* configuration,
@ -895,6 +963,7 @@ std::unique_ptr<std::vector<std::unique_ptr<GNSSBlockInterface>>> GNSSBlockFacto
unsigned int Channels_2G_count = configuration->property("Channels_2G.count", 0);
unsigned int Channels_2S_count = configuration->property("Channels_2S.count", 0);
unsigned int Channels_5X_count = configuration->property("Channels_5X.count", 0);
unsigned int Channels_7X_count = configuration->property("Channels_7X.count", 0);
unsigned int Channels_L5_count = configuration->property("Channels_L5.count", 0);
unsigned int Channels_B1_count = configuration->property("Channels_B1.count", 0);
unsigned int Channels_B3_count = configuration->property("Channels_B3.count", 0);
@ -905,6 +974,7 @@ std::unique_ptr<std::vector<std::unique_ptr<GNSSBlockInterface>>> GNSSBlockFacto
Channels_2S_count +
Channels_2G_count +
Channels_5X_count +
Channels_7X_count +
Channels_L5_count +
Channels_B1_count +
Channels_B3_count;
@ -1058,6 +1128,35 @@ std::unique_ptr<std::vector<std::unique_ptr<GNSSBlockInterface>>> GNSSBlockFacto
channel_absolute_id++;
}
// **************** GALILEO E5b I (I/NAV OS) CHANNELS **********************
LOG(INFO) << "Getting " << Channels_7X_count << " GALILEO f I (I/NAV OS) channels";
tracking_implementation = configuration->property("Tracking_7X.implementation", default_implementation);
telemetry_decoder_implementation = configuration->property("TelemetryDecoder_7X.implementation", default_implementation);
acquisition_implementation = configuration->property("Acquisition_7X.implementation", default_implementation);
for (unsigned int i = 0; i < Channels_7X_count; i++)
{
// (i.e. Acquisition_1C0.implementation=xxxx)
std::string acquisition_implementation_specific = configuration->property(
"Acquisition_7X" + std::to_string(channel_absolute_id) + ".implementation",
acquisition_implementation);
// (i.e. Tracking_1C0.implementation=xxxx)
std::string tracking_implementation_specific = configuration->property(
"Tracking_7X" + std::to_string(channel_absolute_id) + ".implementation",
tracking_implementation);
std::string telemetry_decoder_implementation_specific = configuration->property(
"TelemetryDecoder_7X" + std::to_string(channel_absolute_id) + ".implementation",
telemetry_decoder_implementation);
// Push back the channel to the vector of channels
channels->at(channel_absolute_id) = GetChannel_7X(configuration,
acquisition_implementation_specific,
tracking_implementation_specific,
telemetry_decoder_implementation_specific,
channel_absolute_id,
queue);
channel_absolute_id++;
}
// **************** GLONASS L1 C/A CHANNELS **********************
LOG(INFO) << "Getting " << Channels_1G_count << " GLONASS L1 C/A channels";
acquisition_implementation = configuration->property("Acquisition_1G.implementation", default_implementation);
@ -1640,6 +1739,20 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetBlock(
out_streams);
block = std::move(block_);
}
#endif
else if (implementation == "Galileo_E5b_PCPS_Acquisition")
{
std::unique_ptr<GNSSBlockInterface> block_ = std::make_unique<GalileoE5bPcpsAcquisition>(configuration, role, in_streams,
out_streams);
block = std::move(block_);
}
#if ENABLE_FPGA
else if (implementation == "Galileo_E5b_PCPS_Acquisition_FPGA")
{
std::unique_ptr<GNSSBlockInterface> block = std::make_unique<GalileoE5bPcpsAcquisitionFpga>(configuration, role, in_streams,
out_streams);
block = std::move(block_);
}
#endif
else if (implementation == "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition")
{
@ -2054,6 +2167,20 @@ std::unique_ptr<AcquisitionInterface> GNSSBlockFactory::GetAcqBlock(
out_streams);
block = std::move(block_);
}
#endif
else if (implementation == "Galileo_E5b_PCPS_Acquisition")
{
std::unique_ptr<AcquisitionInterface> block_ = std::make_unique<GalileoE5bPcpsAcquisition>(configuration, role, in_streams,
out_streams);
block = std::move(block_);
}
#if ENABLE_FPGA
else if (implementation == "Galileo_E5b_PCPS_Acquisition_FPGA")
{
std::unique_ptr<AcquisitionInterface> block_ = std::make_unique<GalileoE5bPcpsAcquisitionFpga>(configuration, role, in_streams,
out_streams);
block = std::move(block_);
}
#endif
else if (implementation == "GLONASS_L1_CA_PCPS_Acquisition")
{

View File

@ -86,6 +86,10 @@ private:
const std::string& acq, const std::string& trk, const std::string& tlm, int channel,
Concurrent_Queue<pmt::pmt_t>* queue);
std::unique_ptr<GNSSBlockInterface> GetChannel_7X(ConfigurationInterface* configuration,
const std::string& acq, const std::string& trk, const std::string& tlm, int channel,
Concurrent_Queue<pmt::pmt_t>* queue);
std::unique_ptr<GNSSBlockInterface> GetChannel_L5(ConfigurationInterface* configuration,
const std::string& acq, const std::string& trk, const std::string& tlm, int channel,
Concurrent_Queue<pmt::pmt_t>* queue);

View File

@ -28,6 +28,7 @@
#include "GPS_L5.h"
#include "Galileo_E1.h"
#include "Galileo_E5a.h"
#include "Galileo_E5b.h"
#include "channel.h"
#include "channel_fsm.h"
#include "channel_interface.h"
@ -410,6 +411,9 @@ void GNSSFlowgraph::connect()
case evGAL_5X:
acq_fs = GALILEO_E5A_OPT_ACQ_FS_SPS;
break;
case evGAL_7X:
acq_fs = GALILEO_E5B_OPT_ACQ_FS_SPS;
break;
case evGLO_1G:
acq_fs = fs;
break;
@ -635,6 +639,12 @@ void GNSSFlowgraph::connect()
available_GAL_5X_signals_.remove(signal_value);
break;
case evGAL_7X:
gnss_system = "Galileo";
signal_value = Gnss_Signal(Gnss_Satellite(gnss_system, sat), gnss_signal);
available_GAL_7X_signals_.remove(signal_value);
break;
case evGLO_1G:
gnss_system = "Glonass";
signal_value = Gnss_Signal(Gnss_Satellite(gnss_system, sat), gnss_signal);
@ -1086,6 +1096,11 @@ void GNSSFlowgraph::push_back_signal(const Gnss_Signal& gs)
available_GAL_5X_signals_.push_back(gs);
break;
case evGAL_7X:
available_GAL_7X_signals_.remove(gs);
available_GAL_7X_signals_.push_back(gs);
break;
case evGLO_1G:
available_GLO_1G_signals_.remove(gs);
available_GLO_1G_signals_.push_back(gs);
@ -1137,6 +1152,10 @@ void GNSSFlowgraph::remove_signal(const Gnss_Signal& gs)
available_GAL_5X_signals_.remove(gs);
break;
case evGAL_7X:
available_GAL_7X_signals_.remove(gs);
break;
case evGLO_1G:
available_GLO_1G_signals_.remove(gs);
break;
@ -1171,6 +1190,9 @@ double GNSSFlowgraph::project_doppler(const std::string& searched_signal, double
case evGAL_5X:
return (primary_freq_doppler_hz / FREQ1) * FREQ5;
break;
case evGAL_7X:
return (primary_freq_doppler_hz / FREQ1) * FREQ7;
break;
case evGPS_2S:
return (primary_freq_doppler_hz / FREQ1) * FREQ2;
break;
@ -1430,6 +1452,14 @@ void GNSSFlowgraph::priorize_satellites(const std::vector<std::pair<int, Gnss_Sa
{
available_GAL_5X_signals_.push_front(gs);
}
gs = Gnss_Signal(visible_satellite.second, "7X");
old_size = available_GAL_7X_signals_.size();
available_GAL_7X_signals_.remove(gs);
if (old_size > available_GAL_7X_signals_.size())
{
available_GAL_7X_signals_.push_front(gs);
}
}
}
}
@ -1574,6 +1604,7 @@ void GNSSFlowgraph::init()
mapStringValues_["L5"] = evGPS_L5;
mapStringValues_["1B"] = evGAL_1B;
mapStringValues_["5X"] = evGAL_5X;
mapStringValues_["7X"] = evGAL_7X;
mapStringValues_["1G"] = evGLO_1G;
mapStringValues_["2G"] = evGLO_2G;
mapStringValues_["B1"] = evBDS_B1;
@ -1805,6 +1836,19 @@ void GNSSFlowgraph::set_signals_list()
}
}
if (configuration_->property("Channels_7X.count", 0) > 0)
{
// Loop to create the list of Galileo E5b signals
for (available_gnss_prn_iter = available_galileo_prn.cbegin();
available_gnss_prn_iter != available_galileo_prn.cend();
available_gnss_prn_iter++)
{
available_GAL_7X_signals_.emplace_back(
Gnss_Satellite(std::string("Galileo"), *available_gnss_prn_iter),
std::string("7X"));
}
}
if (configuration_->property("Channels_1G.count", 0) > 0)
{
// Loop to create the list of GLONASS L1 C/A signals
@ -1906,6 +1950,10 @@ bool GNSSFlowgraph::is_multiband() const
{
multiband = true;
}
if (configuration_->property("Channels_7X.count", 0) > 0)
{
multiband = true;
}
}
if (configuration_->property("Channels_1G.count", 0) > 0)
{
@ -2099,6 +2147,50 @@ Gnss_Signal GNSSFlowgraph::search_next_signal(const std::string& searched_signal
}
break;
case evGAL_7X:
if (configuration_->property("Channels_1B.count", 0) > 0)
{
// 1. Get the current channel status map
std::map<int, std::shared_ptr<Gnss_Synchro>> current_channels_status = channels_status_->get_current_status_map();
// 2. search the currently tracked Galileo E1 satellites and assist the Galileo E5 acquisition if the satellite is not tracked on E5
for (auto& current_status : current_channels_status)
{
if (std::string(current_status.second->Signal) == "1B")
{
std::list<Gnss_Signal>::iterator it2;
it2 = std::find_if(std::begin(available_GAL_7X_signals_), std::end(available_GAL_7X_signals_),
[&](Gnss_Signal const& sig) { return sig.get_satellite().get_PRN() == current_status.second->PRN; });
if (it2 != available_GAL_7X_signals_.end())
{
estimated_doppler = current_status.second->Carrier_Doppler_hz;
RX_time = current_status.second->RX_time;
// std::cout << " Channel: " << it->first << " => Doppler: " << estimated_doppler << "[Hz] \n";
// 3. return the Gal 7X satellite and remove it from list
result = *it2;
if (pop)
{
available_GAL_7X_signals_.erase(it2);
}
found_signal = true;
assistance_available = true;
break;
}
}
}
}
// fallback: pick the front satellite because there is no tracked satellites in E1 to assist E5
if (found_signal == false)
{
result = available_GAL_7X_signals_.front();
available_GAL_7X_signals_.pop_front();
if (!pop)
{
available_GAL_7X_signals_.push_back(result);
}
}
break;
case evGLO_1G:
result = available_GLO_1G_signals_.front();
available_GLO_1G_signals_.pop_front();

View File

@ -188,6 +188,7 @@ private:
std::list<Gnss_Signal> available_SBAS_1C_signals_;
std::list<Gnss_Signal> available_GAL_1B_signals_;
std::list<Gnss_Signal> available_GAL_5X_signals_;
std::list<Gnss_Signal> available_GAL_7X_signals_;
std::list<Gnss_Signal> available_GLO_1G_signals_;
std::list<Gnss_Signal> available_GLO_2G_signals_;
std::list<Gnss_Signal> available_BDS_B1_signals_;
@ -201,6 +202,7 @@ private:
evSBAS_1C,
evGAL_1B,
evGAL_5X,
evGAL_7X,
evGLO_1G,
evGLO_2G,
evBDS_B1,

View File

@ -21,6 +21,7 @@
#ifndef GNSS_SDR_GALILEO_E5B_H
#define GNSS_SDR_GALILEO_E5B_H
#include "Galileo_E1.h"
#include "MATH_CONSTANTS.h"
#include "gnss_frequencies.h"
#include <cstdint>
@ -29,15 +30,6 @@
#include <vector>
// Physical constants
const double GALILEO_PI = 3.1415926535898; //!< Pi as defined in GALILEO ICD
const double GALILEO_TWO_PI = 6.283185307179600; //!< 2*Pi as defined in GALILEO ICD
const double GALILEO_GM = 3.986004418e14; //!< Geocentric gravitational constant[m^3/s^2]
const double GALILEO_OMEGA_EARTH_DOT = 7.2921151467e-5; //!< Mean angular velocity of the Earth [rad/s]
const double GALILEO_C_M_S = 299792458.0; //!< The speed of light, [m/s]
const double GALILEO_C_M_MS = 299792.4580; //!< The speed of light, [m/ms]
const double GALILEO_F = -4.442807309e-10; //!< Constant, [s/(m)^(1/2)]
// Carrier and code frequencies
const double GALILEO_E5B_FREQ_HZ = FREQ7; //!< Galileo E5b carrier frequency [Hz]
const double GALILEO_E5B_CODE_CHIP_RATE_CPS = 1.023e7; //!< Galileo E5b code rate [chips/s]
@ -48,6 +40,8 @@ const int32_t GALILEO_E5B_I_SECONDARY_CODE_LENGTH = 4; //!< Galileo E5b-I sec
const int32_t GALILEO_E5B_Q_SECONDARY_CODE_LENGTH = 100; //!< Galileo E5b-Q secondary code length [chips]
const int32_t GALILEO_E5B_SYMBOL_RATE_BPS = 250; //!< Galileo E5b symbol rate [bits/second]
const int32_t GALILEO_E5B_NUMBER_OF_CODES = 50;
const double GALILEO_E5B_CODE_PERIOD_S = 0.001; //!< Galileo E1 primary code period [s]
const int32_t GALILEO_E5B_CODE_PERIOD_MS = 1; //!< Galileo E1 primary code period [ms]
// OBSERVABLE HISTORY DEEP FOR INTERPOLATION
@ -56,235 +50,6 @@ const int32_t GALILEO_E5B_HISTORY_DEEP = 100;
// optimum parameters
const uint32_t GALILEO_E5B_OPT_ACQ_FS_SPS = 10000000; //!< Sampling frequency that maximizes the acquisition SNR while using a non-multiple of chip rate
// Galileo I/NAV message structure
const std::string GALILEO_INAV_PREAMBLE = {"0101100000"};
const int32_t GALILEO_INAV_PREAMBLE_LENGTH_BITS = 10;
const double GALILEO_INAV_PAGE_PART_WITH_PREABLE_SECONDS = 2.04; //!< Page Duration + (Galileo I/NAV Preamble bits)*(Galileo E5b-I tiered Code Period(seconds))
const int32_t GALILEO_INAV_PREAMBLE_PERIOD_SYMBOLS = 250;
const int32_t GALILEO_INAV_PAGE_PART_SYMBOLS = 250; //!< Each Galileo INAV pages are composed of two parts (even and odd) each of 250 symbols, including preamble. See Galileo ICD 4.3.2
const int32_t GALILEO_INAV_PAGE_SYMBOLS = 500; //!< The complete Galileo INAV page length
const int32_t GALILEO_INAV_PAGE_PART_SECONDS = 1; // a page part last 1 sec
const int32_t GALILEO_INAV_PAGE_PART_MS = 1000; // a page part last 1 sec
const int32_t GALILEO_INAV_PAGE_SECONDS = 2; // a full page last 2 sec
const int32_t GALILEO_INAV_INTERLEAVER_ROWS = 8;
const int32_t GALILEO_INAV_INTERLEAVER_COLS = 30;
const int32_t GALILEO_TELEMETRY_RATE_BITS_SECOND = 250; // bps
const int32_t GALILEO_PAGE_TYPE_BITS = 6;
const int32_t GALILEO_DATA_JK_BITS = 128;
const int32_t GALILEO_DATA_FRAME_BITS = 196;
const int32_t GALILEO_DATA_FRAME_BYTES = 25;
const std::vector<std::pair<int32_t, int32_t>> TYPE({{1, 6}});
const std::vector<std::pair<int32_t, int32_t>> PAGE_TYPE_BIT({{1, 6}});
/* Page 0 */
const std::vector<std::pair<int32_t, int32_t>> TIME_0_BIT({{7, 2}});
const std::vector<std::pair<int32_t, int32_t>> WN_0_BIT({{97, 12}});
const std::vector<std::pair<int32_t, int32_t>> TOW_0_BIT({{109, 20}});
/* Page 1 - Word type 1: Ephemeris (1/4) */
const std::vector<std::pair<int32_t, int32_t>> IOD_NAV_1_BIT({{7, 10}});
const std::vector<std::pair<int32_t, int32_t>> T0_E_1_BIT({{17, 14}});
const int32_t T0E_1_LSB = 60;
const std::vector<std::pair<int32_t, int32_t>> M0_1_BIT({{31, 32}});
const double M0_1_LSB = PI_TWO_N31;
const std::vector<std::pair<int32_t, int32_t>> E_1_BIT({{63, 32}});
const double E_1_LSB = TWO_N33;
const std::vector<std::pair<int32_t, int32_t>> A_1_BIT({{95, 32}});
const double A_1_LSB_GAL = TWO_N19;
// last two bits are reserved
/* Page 2 - Word type 2: Ephemeris (2/4) */
const std::vector<std::pair<int32_t, int32_t>> IOD_NAV_2_BIT({{7, 10}});
const std::vector<std::pair<int32_t, int32_t>> OMEGA_0_2_BIT({{17, 32}});
const double OMEGA_0_2_LSB = PI_TWO_N31;
const std::vector<std::pair<int32_t, int32_t>> I_0_2_BIT({{49, 32}});
const double I_0_2_LSB = PI_TWO_N31;
const std::vector<std::pair<int32_t, int32_t>> OMEGA_2_BIT({{81, 32}});
const double OMEGA_2_LSB = PI_TWO_N31;
const std::vector<std::pair<int32_t, int32_t>> I_DOT_2_BIT({{113, 14}});
const double I_DOT_2_LSB = PI_TWO_N43;
// last two bits are reserved
/* Word type 3: Ephemeris (3/4) and SISA */
const std::vector<std::pair<int32_t, int32_t>> IOD_NAV_3_BIT({{7, 10}});
const std::vector<std::pair<int32_t, int32_t>> OMEGA_DOT_3_BIT({{17, 24}});
const double OMEGA_DOT_3_LSB = PI_TWO_N43;
const std::vector<std::pair<int32_t, int32_t>> DELTA_N_3_BIT({{41, 16}});
const double DELTA_N_3_LSB = PI_TWO_N43;
const std::vector<std::pair<int32_t, int32_t>> C_UC_3_BIT({{57, 16}});
const double C_UC_3_LSB = TWO_N29;
const std::vector<std::pair<int32_t, int32_t>> C_US_3_BIT({{73, 16}});
const double C_US_3_LSB = TWO_N29;
const std::vector<std::pair<int32_t, int32_t>> C_RC_3_BIT({{89, 16}});
const double C_RC_3_LSB = TWO_N5;
const std::vector<std::pair<int32_t, int32_t>> C_RS_3_BIT({{105, 16}});
const double C_RS_3_LSB = TWO_N5;
const std::vector<std::pair<int32_t, int32_t>> SISA_3_BIT({{121, 8}});
/* Word type 4: Ephemeris (4/4) and Clock correction parameters */
const std::vector<std::pair<int32_t, int32_t>> IOD_NAV_4_BIT({{7, 10}});
const std::vector<std::pair<int32_t, int32_t>> SV_ID_PRN_4_BIT({{17, 6}});
const std::vector<std::pair<int32_t, int32_t>> C_IC_4_BIT({{23, 16}});
const double C_IC_4_LSB = TWO_N29;
const std::vector<std::pair<int32_t, int32_t>> C_IS_4_BIT({{39, 16}});
const double C_IS_4_LSB = TWO_N29;
const std::vector<std::pair<int32_t, int32_t>> T0C_4_BIT({{55, 14}}); //
const int32_t T0C_4_LSB = 60;
const std::vector<std::pair<int32_t, int32_t>> AF0_4_BIT({{69, 31}}); //
const double AF0_4_LSB = TWO_N34;
const std::vector<std::pair<int32_t, int32_t>> AF1_4_BIT({{100, 21}}); //
const double AF1_4_LSB = TWO_N46;
const std::vector<std::pair<int32_t, int32_t>> AF2_4_BIT({{121, 6}});
const double AF2_4_LSB = TWO_N59;
const std::vector<std::pair<int32_t, int32_t>> SPARE_4_BIT({{127, 2}});
// last two bits are reserved
/* Word type 5: Ionospheric correction, BGD, signal health and data validity status and GST */
/* Ionospheric correction */
/* Az */
const std::vector<std::pair<int32_t, int32_t>> AI0_5_BIT({{7, 11}}); //
const double AI0_5_LSB = TWO_N2;
const std::vector<std::pair<int32_t, int32_t>> AI1_5_BIT({{18, 11}}); //
const double AI1_5_LSB = TWO_N8;
const std::vector<std::pair<int32_t, int32_t>> AI2_5_BIT({{29, 14}}); //
const double AI2_5_LSB = TWO_N15;
/* Ionospheric disturbance flag */
const std::vector<std::pair<int32_t, int32_t>> REGION1_5_BIT({{43, 1}}); //
const std::vector<std::pair<int32_t, int32_t>> REGION2_5_BIT({{44, 1}}); //
const std::vector<std::pair<int32_t, int32_t>> REGION3_5_BIT({{45, 1}}); //
const std::vector<std::pair<int32_t, int32_t>> REGION4_5_BIT({{46, 1}}); //
const std::vector<std::pair<int32_t, int32_t>> REGION5_5_BIT({{47, 1}}); //
const std::vector<std::pair<int32_t, int32_t>> BGD_E1_E5A_5_BIT({{48, 10}}); //
const double BGD_E1_E5A_5_LSB = TWO_N32;
const std::vector<std::pair<int32_t, int32_t>> BGD_E1_E5B_5_BIT({{58, 10}}); //
const double BGD_E1_E5B_5_LSB = TWO_N32;
const std::vector<std::pair<int32_t, int32_t>> E5B_HS_5_BIT({{68, 2}}); //
const std::vector<std::pair<int32_t, int32_t>> E1_B_HS_5_BIT({{70, 2}}); //
const std::vector<std::pair<int32_t, int32_t>> E5B_DVS_5_BIT({{72, 1}}); //
const std::vector<std::pair<int32_t, int32_t>> E1_B_DVS_5_BIT({{73, 1}}); //
/* GST */
const std::vector<std::pair<int32_t, int32_t>> WN_5_BIT({{74, 12}});
const std::vector<std::pair<int32_t, int32_t>> TOW_5_BIT({{86, 20}});
const std::vector<std::pair<int32_t, int32_t>> SPARE_5_BIT({{106, 23}});
/* Page 6 */
const std::vector<std::pair<int32_t, int32_t>> A0_6_BIT({{7, 32}});
const double A0_6_LSB = TWO_N30;
const std::vector<std::pair<int32_t, int32_t>> A1_6_BIT({{39, 24}});
const double A1_6_LSB = TWO_N50;
const std::vector<std::pair<int32_t, int32_t>> DELTA_T_LS_6_BIT({{63, 8}});
const std::vector<std::pair<int32_t, int32_t>> T0T_6_BIT({{71, 8}});
const int32_t T0T_6_LSB = 3600;
const std::vector<std::pair<int32_t, int32_t>> W_NOT_6_BIT({{79, 8}});
const std::vector<std::pair<int32_t, int32_t>> WN_LSF_6_BIT({{87, 8}});
const std::vector<std::pair<int32_t, int32_t>> DN_6_BIT({{95, 3}});
const std::vector<std::pair<int32_t, int32_t>> DELTA_T_LSF_6_BIT({{98, 8}});
const std::vector<std::pair<int32_t, int32_t>> TOW_6_BIT({{106, 20}});
/* Page 7 */
const std::vector<std::pair<int32_t, int32_t>> IOD_A_7_BIT({{7, 4}});
const std::vector<std::pair<int32_t, int32_t>> WN_A_7_BIT({{11, 2}});
const std::vector<std::pair<int32_t, int32_t>> T0A_7_BIT({{13, 10}});
const int32_t T0A_7_LSB = 600;
const std::vector<std::pair<int32_t, int32_t>> SVI_D1_7_BIT({{23, 6}});
const std::vector<std::pair<int32_t, int32_t>> DELTA_A_7_BIT({{29, 13}});
const double DELTA_A_7_LSB = TWO_N9;
const std::vector<std::pair<int32_t, int32_t>> E_7_BIT({{42, 11}});
const double E_7_LSB = TWO_N16;
const std::vector<std::pair<int32_t, int32_t>> OMEGA_7_BIT({{53, 16}});
const double OMEGA_7_LSB = TWO_N15;
const std::vector<std::pair<int32_t, int32_t>> DELTA_I_7_BIT({{69, 11}});
const double DELTA_I_7_LSB = TWO_N14;
const std::vector<std::pair<int32_t, int32_t>> OMEGA0_7_BIT({{80, 16}});
const double OMEGA0_7_LSB = TWO_N15;
const std::vector<std::pair<int32_t, int32_t>> OMEGA_DOT_7_BIT({{96, 11}});
const double OMEGA_DOT_7_LSB = TWO_N33;
const std::vector<std::pair<int32_t, int32_t>> M0_7_BIT({{107, 16}});
const double M0_7_LSB = TWO_N15;
/* Page 8 */
const std::vector<std::pair<int32_t, int32_t>> IOD_A_8_BIT({{7, 4}});
const std::vector<std::pair<int32_t, int32_t>> AF0_8_BIT({{11, 16}});
const double AF0_8_LSB = TWO_N19;
const std::vector<std::pair<int32_t, int32_t>> AF1_8_BIT({{27, 13}});
const double AF1_8_LSB = TWO_N38;
const std::vector<std::pair<int32_t, int32_t>> E5B_HS_8_BIT({{40, 2}});
const std::vector<std::pair<int32_t, int32_t>> E1_B_HS_8_BIT({{42, 2}});
const std::vector<std::pair<int32_t, int32_t>> SVI_D2_8_BIT({{44, 6}});
const std::vector<std::pair<int32_t, int32_t>> DELTA_A_8_BIT({{50, 13}});
const double DELTA_A_8_LSB = TWO_N9;
const std::vector<std::pair<int32_t, int32_t>> E_8_BIT({{63, 11}});
const double E_8_LSB = TWO_N16;
const std::vector<std::pair<int32_t, int32_t>> OMEGA_8_BIT({{74, 16}});
const double OMEGA_8_LSB = TWO_N15;
const std::vector<std::pair<int32_t, int32_t>> DELTA_I_8_BIT({{90, 11}});
const double DELTA_I_8_LSB = TWO_N14;
const std::vector<std::pair<int32_t, int32_t>> OMEGA0_8_BIT({{101, 16}});
const double OMEGA0_8_LSB = TWO_N15;
const std::vector<std::pair<int32_t, int32_t>> OMEGA_DOT_8_BIT({{117, 11}});
const double OMEGA_DOT_8_LSB = TWO_N33;
/* Page 9 */
const std::vector<std::pair<int32_t, int32_t>> IOD_A_9_BIT({{7, 4}});
const std::vector<std::pair<int32_t, int32_t>> WN_A_9_BIT({{11, 2}});
const std::vector<std::pair<int32_t, int32_t>> T0A_9_BIT({{13, 10}});
const int32_t T0A_9_LSB = 600;
const std::vector<std::pair<int32_t, int32_t>> M0_9_BIT({{23, 16}});
const double M0_9_LSB = TWO_N15;
const std::vector<std::pair<int32_t, int32_t>> AF0_9_BIT({{39, 16}});
const double AF0_9_LSB = TWO_N19;
const std::vector<std::pair<int32_t, int32_t>> AF1_9_BIT({{55, 13}});
const double AF1_9_LSB = TWO_N38;
const std::vector<std::pair<int32_t, int32_t>> E5B_HS_9_BIT({{68, 2}});
const std::vector<std::pair<int32_t, int32_t>> E1_B_HS_9_BIT({{70, 2}});
const std::vector<std::pair<int32_t, int32_t>> SVI_D3_9_BIT({{72, 6}});
const std::vector<std::pair<int32_t, int32_t>> DELTA_A_9_BIT({{78, 13}});
const double DELTA_A_9_LSB = TWO_N9;
const std::vector<std::pair<int32_t, int32_t>> E_9_BIT({{91, 11}});
const double E_9_LSB = TWO_N16;
const std::vector<std::pair<int32_t, int32_t>> OMEGA_9_BIT({{102, 16}});
const double OMEGA_9_LSB = TWO_N15;
const std::vector<std::pair<int32_t, int32_t>> DELTA_I_9_BIT({{118, 11}});
const double DELTA_I_9_LSB = TWO_N14;
/* Page 10 */
const std::vector<std::pair<int32_t, int32_t>> IOD_A_10_BIT({{7, 4}});
const std::vector<std::pair<int32_t, int32_t>> OMEGA0_10_BIT({{11, 16}});
const double OMEGA0_10_LSB = TWO_N15;
const std::vector<std::pair<int32_t, int32_t>> OMEGA_DOT_10_BIT({{27, 11}});
const double OMEGA_DOT_10_LSB = TWO_N33;
const std::vector<std::pair<int32_t, int32_t>> M0_10_BIT({{38, 16}});
const double M0_10_LSB = TWO_N15;
const std::vector<std::pair<int32_t, int32_t>> AF0_10_BIT({{54, 16}});
const double AF0_10_LSB = TWO_N19;
const std::vector<std::pair<int32_t, int32_t>> AF1_10_BIT({{70, 13}});
const double AF1_10_LSB = TWO_N38;
const std::vector<std::pair<int32_t, int32_t>> E5B_HS_10_BIT({{83, 2}});
const std::vector<std::pair<int32_t, int32_t>> E1_B_HS_10_BIT({{85, 2}});
const std::vector<std::pair<int32_t, int32_t>> A_0_G_10_BIT({{87, 16}});
const double A_0G_10_LSB = TWO_N35;
const std::vector<std::pair<int32_t, int32_t>> A_1_G_10_BIT({{103, 12}});
const double A_1G_10_LSB = TWO_N51;
const std::vector<std::pair<int32_t, int32_t>> T_0_G_10_BIT({{115, 8}});
const int32_t T_0_G_10_LSB = 3600;
const std::vector<std::pair<int32_t, int32_t>> WN_0_G_10_BIT({{123, 6}});
// Galileo E5b-I primary codes
const std::string GALILEO_E5B_I_PRIMARY_CODE[GALILEO_E5B_NUMBER_OF_CODES] = {

View File

@ -65,6 +65,7 @@ DECLARE_string(log_dir);
#include "unit-tests/signal-processing-blocks/acquisition/galileo_e1_pcps_quicksync_ambiguous_acquisition_gsoc2014_test.cc"
#include "unit-tests/signal-processing-blocks/acquisition/galileo_e1_pcps_tong_ambiguous_acquisition_gsoc2013_test.cc"
#include "unit-tests/signal-processing-blocks/acquisition/galileo_e5a_pcps_acquisition_gsoc2014_gensource_test.cc"
#include "unit-tests/signal-processing-blocks/acquisition/galileo_e5b_pcps_acquisition_test.cc"
#include "unit-tests/signal-processing-blocks/acquisition/glonass_l1_ca_pcps_acquisition_gsoc2017_test.cc"
#include "unit-tests/signal-processing-blocks/acquisition/gps_l1_ca_pcps_acquisition_gsoc2013_test.cc"
#include "unit-tests/signal-processing-blocks/acquisition/gps_l1_ca_pcps_acquisition_test.cc"

View File

@ -0,0 +1,316 @@
/*!
* \file Galileo_E5b_pcps_acquisition_test.cc
* \brief This class implements an acquisition test for
* GalileoE5bPcpsAcquisition class based on some input parameters.
* \author Piyush Gupta, 2020. piyush04111999@gmail.com
* \note Code added as GSoC 2020 Program.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2020 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -------------------------------------------------------------------------
*/
#include "concurrent_queue.h"
#include "fir_filter.h"
#include "galileo_e5b_pcps_acquisition.h"
#include "gnss_block_factory.h"
#include "gnss_block_interface.h"
#include "gnss_sdr_valve.h"
#include "gnss_synchro.h"
#include "in_memory_configuration.h"
#include "pass_through.h"
#include "signal_generator.h"
#include "signal_generator_c.h"
#include <boost/make_shared.hpp>
#include <gnuradio/analog/sig_source_waveform.h>
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/blocks/null_sink.h>
#include <gnuradio/top_block.h>
#include <gtest/gtest.h>
#include <pmt/pmt.h>
#include <chrono>
#include <cstdlib>
#include <utility>
#if HAS_GENERIC_LAMBDA
#else
#include <boost/bind.hpp>
#endif
#ifdef GR_GREATER_38
#include <gnuradio/analog/sig_source.h>
#else
#include <gnuradio/analog/sig_source_c.h>
#endif
// ######## GNURADIO BLOCK MESSAGE RECEVER #########
class GalileoE5bPcpsAcquisitionTest_msg_rx;
#if GNURADIO_USES_STD_POINTERS
using GalileoE5bPcpsAcquisitionTest_msg_rx_sptr = std::shared_ptr<GalileoE5bPcpsAcquisitionTest_msg_rx>;
#else
using GalileoE5bPcpsAcquisitionTest_msg_rx_sptr = boost::shared_ptr<GalileoE5bPcpsAcquisitionTest_msg_rx>;
#endif
GalileoE5bPcpsAcquisitionTest_msg_rx_sptr GalileoE5bPcpsAcquisitionTest_msg_rx_make();
class GalileoE5bPcpsAcquisitionTest_msg_rx : public gr::block
{
private:
friend GalileoE5bPcpsAcquisitionTest_msg_rx_sptr GalileoE5bPcpsAcquisitionTest_msg_rx_make();
void msg_handler_events(pmt::pmt_t msg);
GalileoE5bPcpsAcquisitionTest_msg_rx();
public:
int rx_message;
~GalileoE5bPcpsAcquisitionTest_msg_rx(); //!< Default destructor
};
GalileoE5bPcpsAcquisitionTest_msg_rx_sptr GalileoE5bPcpsAcquisitionTest_msg_rx_make()
{
return GalileoE5bPcpsAcquisitionTest_msg_rx_sptr(new GalileoE5bPcpsAcquisitionTest_msg_rx());
}
void GalileoE5bPcpsAcquisitionTest_msg_rx::msg_handler_events(pmt::pmt_t msg)
{
try
{
int64_t message = pmt::to_long(std::move(msg));
rx_message = message;
}
catch (boost::bad_any_cast& e)
{
std::cout << "msg_handler_telemetry Bad any cast!" << std::endl;
rx_message = 0;
}
}
GalileoE5bPcpsAcquisitionTest_msg_rx::GalileoE5bPcpsAcquisitionTest_msg_rx() : gr::block("GalileoE5bPcpsAcquisitionTest_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
{
this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"),
#if HAS_GENERIC_LAMBDA
[this](pmt::pmt_t&& PH1) { msg_handler_events(PH1); });
#else
#if BOOST_173_OR_GREATER
boost::bind(&GalileoE5bPcpsAcquisitionTest_msg_rx::msg_handler_events, this, boost::placeholders::_1));
#else
boost::bind(&GalileoE5bPcpsAcquisitionTest_msg_rx::msg_handler_events, this, _1));
#endif
#endif
rx_message = 0;
}
GalileoE5bPcpsAcquisitionTest_msg_rx::~GalileoE5bPcpsAcquisitionTest_msg_rx() = default;
// ###########################################################
class GalileoE5bPcpsAcquisitionTest : public ::testing::Test
{
protected:
GalileoE5bPcpsAcquisitionTest()
{
factory = std::make_shared<GNSSBlockFactory>();
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
gnss_synchro = Gnss_Synchro();
}
~GalileoE5bPcpsAcquisitionTest() = default;
void init();
gr::top_block_sptr top_block;
std::shared_ptr<GNSSBlockFactory> factory;
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro;
size_t item_size;
};
void GalileoE5bPcpsAcquisitionTest::init()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'E';
std::string signal = "7X";
signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = 1;
config->set_property("SignalSource.item_type", "gr_complex");
config->set_property("SignalSource.num_satellites", "1");
config->set_property("SignalSource.system_0", "E");
config->set_property("SignalSource.signal_0", "7X");
config->set_property("SignalSource.PRN_0", "11");
config->set_property("SignalSource.CN0_dB_0", "50");
config->set_property("SignalSource.doppler_Hz_0", std::to_string(1000));
config->set_property("SignalSource.delay_chips_0", std::to_string(50));
config->set_property("SignalSource.delay_sec_0", std::to_string(94));
config->set_property("SignalSource.noise_flag", "false");
config->set_property("SignalSource.data_flag", "false");
config->set_property("SignalSource.BW_BB", "0.97");
config->set_property("SignalSource.dump", "false");
config->set_property("SignalSource.dump_filename", "../data/signal_source.dat");
config->set_property("GNSS-SDR.internal_fs_sps", "4000000");
config->set_property("InputFilter.implementation", "Fir_Filter");
config->set_property("InputFilter.input_item_type", "gr_complex");
config->set_property("InputFilter.output_item_type", "gr_complex");
config->set_property("InputFilter.taps_item_type", "float");
config->set_property("InputFilter.number_of_taps", "11");
config->set_property("InputFilter.number_of_bands", "2");
config->set_property("InputFilter.band1_begin", "0.0");
config->set_property("InputFilter.band1_end", "0.97");
config->set_property("InputFilter.band2_begin", "0.98");
config->set_property("InputFilter.band2_end", "1.0");
config->set_property("InputFilter.ampl1_begin", "1.0");
config->set_property("InputFilter.ampl1_end", "1.0");
config->set_property("InputFilter.ampl2_begin", "0.0");
config->set_property("InputFilter.ampl2_end", "0.0");
config->set_property("InputFilter.band1_error", "1.0");
config->set_property("InputFilter.band2_error", "1.0");
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition_7X.item_type", "gr_complex");
config->set_property("Acquisition_7X.coherent_integration_time_ms", "1");
config->set_property("Acquisition_7X.dump", "true");
config->set_property("Acquisition_7X.dump_filename", "./acquisition");
config->set_property("Acquisition_7X.implementation", "Galileo_E5b_PCPS_Acquisition");
config->set_property("Acquisition_7X.threshold", "0.001");
config->set_property("Acquisition_7X.doppler_max", "10000");
config->set_property("Acquisition_7X.doppler_step", "250");
config->set_property("Acquisition_7X.repeat_satellite", "false");
}
TEST_F(GalileoE5bPcpsAcquisitionTest, Instantiate)
{
init();
#if GNURADIO_USES_STD_POINTERS
std::shared_ptr<GalileoE5bPcpsAcquisition> acquisition = std::make_shared<GalileoE5bPcpsAcquisition>(config.get(), "Acquisition_7X", 1, 0);
#else
boost::shared_ptr<GalileoE5bPcpsAcquisition> acquisition = boost::make_shared<GalileoE5bPcpsAcquisition>(config.get(), "Acquisition_7X", 1, 0);
#endif
}
TEST_F(GalileoE5bPcpsAcquisitionTest, ConnectAndRun)
{
int fs_in = 4000000;
int nsamples = 4000;
std::chrono::time_point<std::chrono::system_clock> begin, end;
std::chrono::duration<double> elapsed_seconds(0);
std::shared_ptr<Concurrent_Queue<pmt::pmt_t>> queue = std::make_shared<Concurrent_Queue<pmt::pmt_t>>();
top_block = gr::make_top_block("Acquisition test");
init();
#if GNURADIO_USES_STD_POINTERS
std::shared_ptr<GalileoE5bPcpsAcquisition> acquisition = std::make_shared<GalileoE5bPcpsAcquisition>(config.get(), "Acquisition_7X", 1, 0);
#else
boost::shared_ptr<GalileoE5bPcpsAcquisition> acquisition = boost::make_shared<GalileoE5bPcpsAcquisition>(config.get(), "Acquisition_7X", 1, 0);
#endif
auto msg_rx = GalileoE5bPcpsAcquisitionTest_msg_rx_make();
ASSERT_NO_THROW({
acquisition->connect(top_block);
auto source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0));
auto valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue.get());
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW({
begin = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - begin;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
TEST_F(GalileoE5bPcpsAcquisitionTest, ValidationOfResults)
{
std::chrono::time_point<std::chrono::system_clock> begin, end;
std::chrono::duration<double> elapsed_seconds(0);
top_block = gr::make_top_block("Acquisition test");
double expected_delay_samples = 2920;
double expected_doppler_hz = -632;
init();
std::shared_ptr<GalileoE5bPcpsAcquisition> acquisition = std::make_shared<GalileoE5bPcpsAcquisition>(config.get(), "Acquisition_7X", 1, 0);
std::shared_ptr<FirFilter> input_filter = std::make_shared<FirFilter>(config.get(), "InputFilter", 1, 1);
auto msg_rx = GalileoE5bPcpsAcquisitionTest_msg_rx_make();
std::shared_ptr<Concurrent_Queue<pmt::pmt_t>> queue = std::make_shared<Concurrent_Queue<pmt::pmt_t>>();
ASSERT_NO_THROW({
acquisition->set_channel(1);
}) << "Failure setting channel.";
ASSERT_NO_THROW({
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW({
acquisition->set_threshold(0.001);
}) << "Failure setting threshold.";
ASSERT_NO_THROW({
acquisition->set_doppler_max(5000);
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW({
acquisition->set_doppler_step(100);
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW({
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block.";
acquisition->set_local_code();
acquisition->set_state(1); // Ensure that acquisition starts at the first sample
acquisition->init();
ASSERT_NO_THROW({
std::shared_ptr<GNSSBlockInterface> signal_generator = std::make_shared<SignalGenerator>(config.get(), "SignalSource", 0, 1, queue.get());
std::shared_ptr<GNSSBlockInterface> filter = std::make_shared<FirFilter>(config.get(), "InputFilter", 1, 1);
std::shared_ptr<GNSSBlockInterface> signal_source = std::make_shared<GenSignalSource>(signal_generator, filter, "SignalSource", queue.get());
filter->connect(top_block);
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW({
begin = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - begin;
}) << "Failure running the top_block.";
uint64_t nsamples = gnss_synchro.Acq_samplestamp_samples;
std::cout << "Acquired " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
ASSERT_EQ(1, msg_rx->rx_message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS.";
double delay_error_samples = std::abs(expected_delay_samples - gnss_synchro.Acq_delay_samples);
float delay_error_chips = static_cast<float>(delay_error_samples) * 10230.0 / 4000.0;
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
EXPECT_LE(doppler_error_hz, 666) << "Doppler error exceeds the expected value: 666 Hz = 2/(3*integration period)";
EXPECT_LT(delay_error_chips, 0.5) << "Delay error exceeds the expected value: 0.5 chips";
}