1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-18 21:23:02 +00:00

More usage of volk_gnsssdr::vector

This commit is contained in:
Carles Fernandez 2019-10-27 21:34:19 +01:00
parent 8df7d82ba2
commit b4e4c849b1
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
11 changed files with 74 additions and 130 deletions

View File

@ -38,7 +38,7 @@
#include <gnuradio/fft/fft.h> // for fft_complex
#include <gnuradio/gr_complex.h> // for gr_complex
#include <volk/volk.h> // for volk_32fc_conjugate_32fc
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <volk_gnsssdr/volk_gnsssdr_alloc.h>
#include <algorithm> // for copy_n
#include <cmath> // for abs, pow, floor
#include <complex> // for complex
@ -99,8 +99,8 @@ GalileoE1PcpsAmbiguousAcquisitionFpga::GalileoE1PcpsAmbiguousAcquisitionFpga(
// compute all the GALILEO E1 PRN Codes (this is done only once in the class constructor in order to avoid re-computing the PRN codes every time
// a channel is assigned)
auto fft_if = std::unique_ptr<gr::fft::fft_complex>(new gr::fft::fft_complex(nsamples_total, true)); // Direct FFT
std::vector<std::complex<float>> code(nsamples_total); // buffer for the local code
auto* fft_codes_padded = static_cast<gr_complex*>(volk_gnsssdr_malloc(nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
volk_gnsssdr::vector<std::complex<float>> code(nsamples_total); // buffer for the local code
volk_gnsssdr::vector<gr_complex> fft_codes_padded(nsamples_total);
d_all_fft_codes_ = std::vector<uint32_t>(nsamples_total * GALILEO_E1_NUMBER_OF_CODES); // memory containing all the possible fft codes for PRN 0 to 32
float max; // temporary maxima search
@ -138,9 +138,9 @@ GalileoE1PcpsAmbiguousAcquisitionFpga::GalileoE1PcpsAmbiguousAcquisitionFpga(
code[s] = std::complex<float>(0.0, 0.0);
}
std::copy_n(code.data(), nsamples_total, fft_if->get_inbuf()); // copy to FFT buffer
fft_if->execute(); // Run the FFT of local code
volk_32fc_conjugate_32fc(fft_codes_padded, fft_if->get_outbuf(), nsamples_total); // conjugate values
std::copy_n(code.data(), nsamples_total, fft_if->get_inbuf()); // copy to FFT buffer
fft_if->execute(); // Run the FFT of local code
volk_32fc_conjugate_32fc(fft_codes_padded.data(), fft_if->get_outbuf(), nsamples_total); // conjugate values
// normalize the code
max = 0; // initialize maximum value
@ -182,9 +182,6 @@ GalileoE1PcpsAmbiguousAcquisitionFpga::GalileoE1PcpsAmbiguousAcquisitionFpga(
doppler_step_ = 0;
gnss_synchro_ = nullptr;
// temporary buffers that we can release
volk_gnsssdr_free(fft_codes_padded);
if (in_streams_ > 1)
{
LOG(ERROR) << "This implementation only supports one input stream";

View File

@ -38,7 +38,7 @@
#include <gnuradio/fft/fft.h> // for fft_complex
#include <gnuradio/gr_complex.h> // for gr_complex
#include <volk/volk.h> // for volk_32fc_conjugate_32fc
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <volk_gnsssdr/volk_gnsssdr_alloc.h>
#include <algorithm> // for copy_n
#include <cmath> // for abs, pow, floor
#include <complex> // for complex
@ -100,8 +100,8 @@ GalileoE5aPcpsAcquisitionFpga::GalileoE5aPcpsAcquisitionFpga(ConfigurationInterf
// compute all the GALILEO E5 PRN Codes (this is done only once in the class constructor in order to avoid re-computing the PRN codes every time
// a channel is assigned)
auto fft_if = std::unique_ptr<gr::fft::fft_complex>(new gr::fft::fft_complex(nsamples_total, true)); // Direct FFT
std::vector<std::complex<float>> code(nsamples_total); // buffer for the local code
auto* fft_codes_padded = static_cast<gr_complex*>(volk_gnsssdr_malloc(nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
volk_gnsssdr::vector<std::complex<float>> code(nsamples_total);
volk_gnsssdr::vector<std::complex<float>> fft_codes_padded(nsamples_total);
d_all_fft_codes_ = std::vector<uint32_t>(nsamples_total * GALILEO_E5A_NUMBER_OF_CODES); // memory containing all the possible fft codes for PRN 0 to 32
float max; // temporary maxima search
@ -142,9 +142,9 @@ GalileoE5aPcpsAcquisitionFpga::GalileoE5aPcpsAcquisitionFpga(ConfigurationInterf
code[s] = std::complex<float>(0.0, 0.0);
}
std::copy_n(code.data(), nsamples_total, fft_if->get_inbuf()); // copy to FFT buffer
fft_if->execute(); // Run the FFT of local code
volk_32fc_conjugate_32fc(fft_codes_padded, fft_if->get_outbuf(), nsamples_total); // conjugate values
std::copy_n(code.data(), nsamples_total, fft_if->get_inbuf()); // copy to FFT buffer
fft_if->execute(); // Run the FFT of local code
volk_32fc_conjugate_32fc(fft_codes_padded.data(), fft_if->get_outbuf(), nsamples_total); // conjugate values
max = 0; // initialize maximum value
for (uint32_t i = 0; i < nsamples_total; i++) // search for maxima
@ -185,9 +185,6 @@ GalileoE5aPcpsAcquisitionFpga::GalileoE5aPcpsAcquisitionFpga(ConfigurationInterf
doppler_step_ = 0;
gnss_synchro_ = nullptr;
// temporary buffers that we can release
volk_gnsssdr_free(fft_codes_padded);
if (in_streams_ > 1)
{
LOG(ERROR) << "This implementation only supports one input stream";

View File

@ -41,7 +41,7 @@
#include <gnuradio/fft/fft.h>
#include <gnuradio/gr_complex.h> // for gr_complex
#include <volk/volk.h> // for volk_32fc_conjugate_32fc
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <volk_gnsssdr/volk_gnsssdr_alloc.h>
#include <algorithm> // for copy_n
#include <cmath> // for abs, pow, floor
#include <complex> // for complex
@ -93,8 +93,8 @@ GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
// a channel is assigned)
auto fft_if = std::unique_ptr<gr::fft::fft_complex>(new gr::fft::fft_complex(nsamples_total, true));
// allocate memory to compute all the PRNs and compute all the possible codes
std::vector<std::complex<float>> code(nsamples_total); // buffer for the local code
auto* fft_codes_padded = static_cast<gr_complex*>(volk_gnsssdr_malloc(nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
volk_gnsssdr::vector<std::complex<float>> code(nsamples_total);
volk_gnsssdr::vector<std::complex<float>> fft_codes_padded(nsamples_total);
d_all_fft_codes_ = std::vector<uint32_t>(nsamples_total * NUM_PRNs); // memory containing all the possible fft codes for PRN 0 to 32
float max;
int32_t tmp;
@ -117,9 +117,9 @@ GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
code[s] = std::complex<float>(0.0, 0.0);
}
std::copy_n(code.data(), nsamples_total, fft_if->get_inbuf()); // copy to FFT buffer
fft_if->execute(); // Run the FFT of local code
volk_32fc_conjugate_32fc(fft_codes_padded, fft_if->get_outbuf(), nsamples_total); // conjugate values
std::copy_n(code.data(), nsamples_total, fft_if->get_inbuf()); // copy to FFT buffer
fft_if->execute(); // Run the FFT of local code
volk_32fc_conjugate_32fc(fft_codes_padded.data(), fft_if->get_outbuf(), nsamples_total); // conjugate values
max = 0; // initialize maximum value
for (uint32_t i = 0; i < nsamples_total; i++) // search for maxima
@ -161,9 +161,6 @@ GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
doppler_step_ = 0;
gnss_synchro_ = nullptr;
// temporary buffers that we can release
volk_gnsssdr_free(fft_codes_padded);
if (in_streams_ > 1)
{
LOG(ERROR) << "This implementation only supports one input stream";

View File

@ -41,7 +41,7 @@
#include <gnuradio/fft/fft.h> // for fft_complex
#include <gnuradio/gr_complex.h> // for gr_complex
#include <volk/volk.h> // for volk_32fc_conjugate_32fc
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <volk_gnsssdr/volk_gnsssdr_alloc.h>
#include <algorithm> // for copy_n
#include <cmath> // for abs, pow, floor
#include <complex> // for complex
@ -94,8 +94,8 @@ GpsL2MPcpsAcquisitionFpga::GpsL2MPcpsAcquisitionFpga(
// a channel is assigned)
auto fft_if = std::unique_ptr<gr::fft::fft_complex>(new gr::fft::fft_complex(nsamples_total, true)); // Direct FFT
// allocate memory to compute all the PRNs and compute all the possible codes
std::vector<std::complex<float>> code(nsamples_total); // buffer for the local code
auto* fft_codes_padded = static_cast<gr_complex*>(volk_gnsssdr_malloc(nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
volk_gnsssdr::vector<std::complex<float>> code(nsamples_total);
volk_gnsssdr::vector<std::complex<float>> fft_codes_padded(nsamples_total);
d_all_fft_codes_ = std::vector<uint32_t>(nsamples_total * NUM_PRNs); // memory containing all the possible fft codes for PRN 0 to 32
float max; // temporary maxima search
@ -112,11 +112,11 @@ GpsL2MPcpsAcquisitionFpga::GpsL2MPcpsAcquisitionFpga(
{
code[s] = std::complex<float>(0.0, 0.0);
}
std::copy_n(code.data(), nsamples_total, fft_if->get_inbuf()); // copy to FFT buffer
fft_if->execute(); // Run the FFT of local code
volk_32fc_conjugate_32fc(fft_codes_padded, fft_if->get_outbuf(), nsamples_total); // conjugate values
max = 0; // initialize maximum value
for (unsigned int i = 0; i < nsamples_total; i++) // search for maxima
std::copy_n(code.data(), nsamples_total, fft_if->get_inbuf()); // copy to FFT buffer
fft_if->execute(); // Run the FFT of local code
volk_32fc_conjugate_32fc(fft_codes_padded.data(), fft_if->get_outbuf(), nsamples_total); // conjugate values
max = 0; // initialize maximum value
for (unsigned int i = 0; i < nsamples_total; i++) // search for maxima
{
if (std::abs(fft_codes_padded[i].real()) > max)
{
@ -152,9 +152,6 @@ GpsL2MPcpsAcquisitionFpga::GpsL2MPcpsAcquisitionFpga(
threshold_ = 0.0;
// temporary buffers that we can release
volk_gnsssdr_free(fft_codes_padded);
if (in_streams_ > 1)
{
LOG(ERROR) << "This implementation only supports one input stream";

View File

@ -41,7 +41,7 @@
#include <gnuradio/fft/fft.h> // for fft_complex
#include <gnuradio/gr_complex.h> // for gr_complex
#include <volk/volk.h> // for volk_32fc_conjugate_32fc
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <volk_gnsssdr/volk_gnsssdr_alloc.h>
#include <algorithm> // for copy_n
#include <cmath> // for abs, pow, floor
#include <complex> // for complex
@ -97,8 +97,8 @@ GpsL5iPcpsAcquisitionFpga::GpsL5iPcpsAcquisitionFpga(
// compute all the GPS L5 PRN Codes (this is done only once upon the class constructor in order to avoid re-computing the PRN codes every time
// a channel is assigned)
auto fft_if = std::unique_ptr<gr::fft::fft_complex>(new gr::fft::fft_complex(nsamples_total, true)); // Direct FFT
std::vector<std::complex<float>> code(nsamples_total);
auto* fft_codes_padded = static_cast<gr_complex*>(volk_gnsssdr_malloc(nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
volk_gnsssdr::vector<std::complex<float>> code(nsamples_total);
volk_gnsssdr::vector<std::complex<float>> fft_codes_padded(nsamples_total);
d_all_fft_codes_ = std::vector<uint32_t>(nsamples_total * NUM_PRNs); // memory containing all the possible fft codes for PRN 0 to 32
float max; // temporary maxima search
@ -121,9 +121,9 @@ GpsL5iPcpsAcquisitionFpga::GpsL5iPcpsAcquisitionFpga(
// fill in zero padding
code[s] = std::complex<float>(0.0, 0.0);
}
std::copy_n(code.data(), nsamples_total, fft_if->get_inbuf()); // copy to FFT buffer
fft_if->execute(); // Run the FFT of local code
volk_32fc_conjugate_32fc(fft_codes_padded, fft_if->get_outbuf(), nsamples_total); // conjugate values
std::copy_n(code.data(), nsamples_total, fft_if->get_inbuf()); // copy to FFT buffer
fft_if->execute(); // Run the FFT of local code
volk_32fc_conjugate_32fc(fft_codes_padded.data(), fft_if->get_outbuf(), nsamples_total); // conjugate values
max = 0; // initialize maximum value
for (uint32_t i = 0; i < nsamples_total; i++) // search for maxima
@ -164,9 +164,6 @@ GpsL5iPcpsAcquisitionFpga::GpsL5iPcpsAcquisitionFpga(
doppler_step_ = 0;
gnss_synchro_ = nullptr;
// temporary buffers that we can release
volk_gnsssdr_free(fft_codes_padded);
if (in_streams_ > 1)
{
LOG(ERROR) << "This implementation only supports one input stream";

View File

@ -42,7 +42,7 @@
#include "galileo_e1_signal_processing.h"
#include "gnss_sdr_flags.h"
#include <glog/logging.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <volk_gnsssdr/volk_gnsssdr_alloc.h>
#include <array>
GalileoE1DllPllVemlTrackingFpga::GalileoE1DllPllVemlTrackingFpga(
@ -193,19 +193,18 @@ GalileoE1DllPllVemlTrackingFpga::GalileoE1DllPllVemlTrackingFpga(
//################# PRE-COMPUTE ALL THE CODES #################
uint32_t code_samples_per_chip = 2;
d_ca_codes = static_cast<int32_t*>(volk_gnsssdr_malloc(static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * code_samples_per_chip * GALILEO_E1_NUMBER_OF_CODES * sizeof(int32_t), volk_gnsssdr_get_alignment()));
float* ca_codes_f;
float* data_codes_f = nullptr;
volk_gnsssdr::vector<float> ca_codes_f(static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * code_samples_per_chip);
volk_gnsssdr::vector<float> data_codes_f;
d_data_codes = nullptr;
if (d_track_pilot)
{
d_data_codes = static_cast<int32_t*>(volk_gnsssdr_malloc((static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS)) * code_samples_per_chip * GALILEO_E1_NUMBER_OF_CODES * sizeof(int32_t), volk_gnsssdr_get_alignment()));
}
ca_codes_f = static_cast<float*>(volk_gnsssdr_malloc(static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * code_samples_per_chip * sizeof(float), volk_gnsssdr_get_alignment()));
if (d_track_pilot)
{
data_codes_f = static_cast<float*>(volk_gnsssdr_malloc((static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS)) * code_samples_per_chip * sizeof(float), volk_gnsssdr_get_alignment()));
data_codes_f.resize(static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * code_samples_per_chip, 0.0);
}
for (uint32_t PRN = 1; PRN <= GALILEO_E1_NUMBER_OF_CODES; PRN++)
@ -214,8 +213,8 @@ GalileoE1DllPllVemlTrackingFpga::GalileoE1DllPllVemlTrackingFpga(
if (d_track_pilot)
{
std::array<char, 3> pilot_signal = {'1', 'C', '\0'};
galileo_e1_code_gen_sinboc11_float(gsl::span<float>(ca_codes_f, static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * code_samples_per_chip), pilot_signal, PRN);
galileo_e1_code_gen_sinboc11_float(gsl::span<float>(data_codes_f, static_cast<uint32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * code_samples_per_chip), data_signal, PRN);
galileo_e1_code_gen_sinboc11_float(ca_codes_f, pilot_signal, PRN);
galileo_e1_code_gen_sinboc11_float(data_codes_f, data_signal, PRN);
// The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA
for (uint32_t s = 0; s < 2 * GALILEO_E1_B_CODE_LENGTH_CHIPS; s++)
@ -238,7 +237,7 @@ GalileoE1DllPllVemlTrackingFpga::GalileoE1DllPllVemlTrackingFpga(
}
else
{
galileo_e1_code_gen_sinboc11_float(gsl::span<float>(ca_codes_f, static_cast<int32_t>(GALILEO_E1_B_CODE_LENGTH_CHIPS) * code_samples_per_chip), data_signal, PRN);
galileo_e1_code_gen_sinboc11_float(ca_codes_f, data_signal, PRN);
// The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA
for (uint32_t s = 0; s < 2 * GALILEO_E1_B_CODE_LENGTH_CHIPS; s++)
@ -254,11 +253,6 @@ GalileoE1DllPllVemlTrackingFpga::GalileoE1DllPllVemlTrackingFpga(
}
}
volk_gnsssdr_free(ca_codes_f);
if (d_track_pilot)
{
volk_gnsssdr_free(data_codes_f);
}
trk_param_fpga.ca_codes = d_ca_codes;
trk_param_fpga.data_codes = d_data_codes;
trk_param_fpga.code_length_chips = GALILEO_E1_B_CODE_LENGTH_CHIPS;

View File

@ -37,7 +37,7 @@
#include "galileo_e5_signal_processing.h"
#include "gnss_sdr_flags.h"
#include <glog/logging.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <volk_gnsssdr/volk_gnsssdr_alloc.h>
#include <array>
GalileoE5aDllPllTrackingFpga::GalileoE5aDllPllTrackingFpga(
@ -193,7 +193,7 @@ GalileoE5aDllPllTrackingFpga::GalileoE5aDllPllTrackingFpga(
uint32_t code_samples_per_chip = 1;
auto code_length_chips = static_cast<uint32_t>(GALILEO_E5A_CODE_LENGTH_CHIPS);
auto *aux_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(sizeof(gr_complex) * code_length_chips * code_samples_per_chip, volk_gnsssdr_get_alignment()));
volk_gnsssdr::vector<gr_complex> aux_code(code_length_chips * code_samples_per_chip, gr_complex(0.0, 0.0));
d_ca_codes = static_cast<int32_t *>(volk_gnsssdr_malloc(static_cast<int32_t>(code_length_chips) * code_samples_per_chip * GALILEO_E5A_NUMBER_OF_CODES * sizeof(int32_t), volk_gnsssdr_get_alignment()));
@ -205,7 +205,7 @@ GalileoE5aDllPllTrackingFpga::GalileoE5aDllPllTrackingFpga(
for (uint32_t PRN = 1; PRN <= GALILEO_E5A_NUMBER_OF_CODES; PRN++)
{
std::array<char, 3> sig_a = {'5', 'X', '\0'};
galileo_e5_a_code_gen_complex_primary(gsl::span<gr_complex>(aux_code, code_length_chips * code_samples_per_chip), PRN, sig_a);
galileo_e5_a_code_gen_complex_primary(aux_code, PRN, sig_a);
if (trk_param_fpga.track_pilot)
{
@ -245,7 +245,6 @@ GalileoE5aDllPllTrackingFpga::GalileoE5aDllPllTrackingFpga(
}
}
volk_gnsssdr_free(aux_code);
trk_param_fpga.ca_codes = d_ca_codes;
trk_param_fpga.data_codes = d_data_codes;
trk_param_fpga.code_length_chips = code_length_chips;

View File

@ -44,7 +44,7 @@
#include "gnss_synchro.h"
#include "gps_l2c_signal.h"
#include <glog/logging.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <volk_gnsssdr/volk_gnsssdr_alloc.h>
#include <array>
#include <cmath> // for round
#include <cstring> // for memcpy
@ -123,22 +123,18 @@ GpsL2MDllPllTrackingFpga::GpsL2MDllPllTrackingFpga(
// GNSS-SDR instantiates the tracking channels i L1, L2, L5, E1, E5a
trk_param_fpga.num_prev_assigned_ch = configuration->property("Channels_1C.count", 0);
auto* ca_codes_f = static_cast<float*>(volk_gnsssdr_malloc(static_cast<unsigned int>(GPS_L2_M_CODE_LENGTH_CHIPS) * sizeof(float), volk_gnsssdr_get_alignment()));
volk_gnsssdr::vector<float> ca_codes_f(static_cast<unsigned int>(GPS_L2_M_CODE_LENGTH_CHIPS), 0.0);
// ################# PRE-COMPUTE ALL THE CODES #################
d_ca_codes = static_cast<int*>(volk_gnsssdr_malloc(static_cast<int>(GPS_L2_M_CODE_LENGTH_CHIPS * NUM_PRNs) * sizeof(int), volk_gnsssdr_get_alignment()));
for (uint32_t PRN = 1; PRN <= NUM_PRNs; PRN++)
{
gps_l2c_m_code_gen_float(gsl::span<float>(ca_codes_f, static_cast<unsigned int>(GPS_L2_M_CODE_LENGTH_CHIPS)), PRN);
gps_l2c_m_code_gen_float(ca_codes_f, PRN);
for (unsigned int s = 0; s < 2 * static_cast<unsigned int>(GPS_L2_M_CODE_LENGTH_CHIPS); s++)
{
d_ca_codes[static_cast<int>(GPS_L2_M_CODE_LENGTH_CHIPS) * (PRN - 1) + s] = static_cast<int>(ca_codes_f[s]);
}
}
volk_gnsssdr_free(ca_codes_f);
trk_param_fpga.ca_codes = d_ca_codes;
trk_param_fpga.code_length_chips = GPS_L2_M_CODE_LENGTH_CHIPS;
trk_param_fpga.code_samples_per_chip = 1; // 1 sample per chip

View File

@ -44,7 +44,7 @@
#include "gnss_sdr_flags.h"
#include "gps_l5_signal.h"
#include <glog/logging.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <volk_gnsssdr/volk_gnsssdr_alloc.h>
#include <array>
GpsL5DllPllTrackingFpga::GpsL5DllPllTrackingFpga(
@ -193,18 +193,12 @@ GpsL5DllPllTrackingFpga::GpsL5DllPllTrackingFpga(
uint32_t code_samples_per_chip = 1;
auto code_length_chips = static_cast<uint32_t>(GPS_L5I_CODE_LENGTH_CHIPS);
float *tracking_code;
float *data_code = nullptr;
tracking_code = static_cast<float *>(volk_gnsssdr_malloc(code_length_chips * sizeof(float), volk_gnsssdr_get_alignment()));
volk_gnsssdr::vector<float> data_code;
volk_gnsssdr::vector<float> tracking_code(code_length_chips, 0.0);
if (track_pilot)
{
data_code = static_cast<float *>(volk_gnsssdr_malloc(code_length_chips * sizeof(float), volk_gnsssdr_get_alignment()));
for (uint32_t i = 0; i < code_length_chips; i++)
{
data_code[i] = 0.0;
}
data_code.resize(code_length_chips, 0.0);
}
d_ca_codes = static_cast<int32_t *>(volk_gnsssdr_malloc(static_cast<int32_t>(code_length_chips * NUM_PRNs) * sizeof(int32_t), volk_gnsssdr_get_alignment()));
@ -219,8 +213,8 @@ GpsL5DllPllTrackingFpga::GpsL5DllPllTrackingFpga(
{
if (track_pilot)
{
gps_l5q_code_gen_float(gsl::span<float>(tracking_code, code_length_chips), PRN);
gps_l5i_code_gen_float(gsl::span<float>(data_code, code_length_chips), PRN);
gps_l5q_code_gen_float(tracking_code, PRN);
gps_l5i_code_gen_float(data_code, PRN);
// The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA
for (uint32_t s = 0; s < code_length_chips; s++)
@ -244,7 +238,7 @@ GpsL5DllPllTrackingFpga::GpsL5DllPllTrackingFpga(
}
else
{
gps_l5i_code_gen_float(gsl::span<float>(tracking_code, code_length_chips), PRN);
gps_l5i_code_gen_float(tracking_code, PRN);
// The code is generated as a series of 1s and -1s. In order to store the values using only one bit, a -1 is stored as a 0 in the FPGA
for (uint32_t s = 0; s < code_length_chips; s++)
@ -260,11 +254,6 @@ GpsL5DllPllTrackingFpga::GpsL5DllPllTrackingFpga(
}
}
volk_gnsssdr_free(tracking_code);
if (track_pilot)
{
volk_gnsssdr_free(data_code);
}
trk_param_fpga.ca_codes = d_ca_codes;
trk_param_fpga.data_codes = d_data_codes;
trk_param_fpga.code_length_chips = code_length_chips;

View File

@ -61,9 +61,14 @@ const float PHASE_CARR_MAX_DIV_PI = 683565275.5764316; // 2^(31)/pi
const float TWO_PI = 6.283185307179586;
Fpga_Multicorrelator_8sc::Fpga_Multicorrelator_8sc(int32_t n_correlators,
const std::string &device_name, uint32_t dev_file_num, uint32_t num_prev_assigned_ch, int32_t *ca_codes, int32_t *data_codes, uint32_t code_length_chips, bool track_pilot,
const std::string &device_name,
uint32_t dev_file_num,
uint32_t num_prev_assigned_ch,
int32_t *ca_codes,
int32_t *data_codes,
uint32_t code_length_chips,
bool track_pilot,
uint32_t code_samples_per_chip)
{
d_n_correlators = n_correlators;
d_device_name = device_name;
@ -77,17 +82,13 @@ Fpga_Multicorrelator_8sc::Fpga_Multicorrelator_8sc(int32_t n_correlators,
// instantiate variable length vectors
if (d_track_pilot)
{
d_initial_index = static_cast<uint32_t *>(volk_gnsssdr_malloc(
(n_correlators + 1) * sizeof(uint32_t), volk_gnsssdr_get_alignment()));
d_initial_interp_counter = static_cast<uint32_t *>(volk_gnsssdr_malloc(
(n_correlators + 1) * sizeof(uint32_t), volk_gnsssdr_get_alignment()));
d_initial_index.reserve(n_correlators + 1);
d_initial_interp_counter.reserve(n_correlators + 1);
}
else
{
d_initial_index = static_cast<uint32_t *>(volk_gnsssdr_malloc(
n_correlators * sizeof(uint32_t), volk_gnsssdr_get_alignment()));
d_initial_interp_counter = static_cast<uint32_t *>(volk_gnsssdr_malloc(
n_correlators * sizeof(uint32_t), volk_gnsssdr_get_alignment()));
d_initial_index.reserve(n_correlators);
d_initial_interp_counter.reserve(n_correlators);
}
d_shifts_chips = nullptr;
d_prompt_data_shift = nullptr;
@ -109,8 +110,6 @@ Fpga_Multicorrelator_8sc::Fpga_Multicorrelator_8sc(int32_t n_correlators,
d_data_codes = data_codes;
d_code_samples_per_chip = code_samples_per_chip;
d_code_length_samples = d_code_length_chips * d_code_samples_per_chip;
d_secondary_code_enabled = false;
DLOG(INFO) << "TRACKING FPGA CLASS CREATED";
@ -120,14 +119,6 @@ Fpga_Multicorrelator_8sc::Fpga_Multicorrelator_8sc(int32_t n_correlators,
Fpga_Multicorrelator_8sc::~Fpga_Multicorrelator_8sc()
{
close_device();
if (d_initial_index != nullptr)
{
volk_gnsssdr_free(d_initial_index);
}
if (d_initial_interp_counter != nullptr)
{
volk_gnsssdr_free(d_initial_interp_counter);
}
}
@ -219,20 +210,6 @@ bool Fpga_Multicorrelator_8sc::free()
{
// unlock the channel
Fpga_Multicorrelator_8sc::unlock_channel();
// free the FPGA dynamically created variables
if (d_initial_index != nullptr)
{
volk_gnsssdr_free(d_initial_index);
d_initial_index = nullptr;
}
if (d_initial_interp_counter != nullptr)
{
volk_gnsssdr_free(d_initial_interp_counter);
d_initial_interp_counter = nullptr;
}
return true;
}
@ -305,7 +282,6 @@ uint32_t Fpga_Multicorrelator_8sc::fpga_acquisition_test_register(
void Fpga_Multicorrelator_8sc::fpga_configure_tracking_gps_local_code(int32_t PRN)
{
uint32_t k;
d_map_base[prog_mems_addr] = local_code_fpga_clear_address_counter;
for (k = 0; k < d_code_length_samples; k++)
{
@ -339,7 +315,6 @@ void Fpga_Multicorrelator_8sc::fpga_compute_code_shift_parameters()
}
d_initial_index[i] = dec_part;
frac_part = fmod(d_shifts_chips[i] - d_rem_code_phase_chips, 1.0);
if (frac_part < 0)
{
@ -464,7 +439,6 @@ void Fpga_Multicorrelator_8sc::unlock_channel()
// unlock the channel to let the next samples go through
d_map_base[drop_samples_reg_addr] = drop_samples; // unlock the channel and disable secondary codes
d_map_base[stop_tracking_reg_addr] = 1; // set the tracking module back to idle
d_secondary_code_enabled = false;
}
@ -498,12 +472,14 @@ void Fpga_Multicorrelator_8sc::set_secondary_code_lengths(uint32_t secondary_cod
d_map_base[secondary_code_lengths_reg_addr] = secondary_code_length_1_minus_1 * 256 + secondary_code_length_0_minus_1;
}
void Fpga_Multicorrelator_8sc::update_prn_code_length(uint32_t first_prn_length, uint32_t next_prn_length)
{
d_map_base[first_prn_length_minus_1_reg_addr] = first_prn_length - 1;
d_map_base[next_prn_length_minus_1_reg_addr] = next_prn_length - 1;
}
void Fpga_Multicorrelator_8sc::initialize_secondary_code(uint32_t secondary_code, std::string *secondary_code_string)
{
uint32_t secondary_code_length;
@ -566,12 +542,14 @@ void Fpga_Multicorrelator_8sc::write_secondary_code(uint32_t secondary_code_leng
d_map_base[reg_addr] = write_val;
}
void Fpga_Multicorrelator_8sc::enable_secondary_codes()
{
d_map_base[drop_samples_reg_addr] = init_secondary_code_addresses | enable_secondary_code; // enable secondary codes and clear secondary code indices
d_secondary_code_enabled = true;
}
void Fpga_Multicorrelator_8sc::disable_secondary_codes()
{
// this function is to be called before starting the tracking process in order to disable the secondary codes by default

View File

@ -38,6 +38,7 @@
#define GNSS_SDR_FPGA_MULTICORRELATOR_H_
#include <gnuradio/block.h>
#include <volk_gnsssdr/volk_gnsssdr_alloc.h>
#include <cstdint>
#include <string>
@ -86,9 +87,11 @@ public:
* \brief Perform a multicorrelation
*/
void Carrier_wipeoff_multicorrelator_resampler(
float rem_carrier_phase_in_rad, float phase_step_rad,
float rem_carrier_phase_in_rad,
float phase_step_rad,
float carrier_phase_rate_step_rad,
float rem_code_phase_chips, float code_phase_step_chips,
float rem_code_phase_chips,
float code_phase_step_chips,
float code_phase_rate_step_chips,
int32_t signal_length_samples);
@ -226,8 +229,8 @@ private:
bool d_track_pilot;
// configuration data computed in the format that the FPGA expects
uint32_t *d_initial_index;
uint32_t *d_initial_interp_counter;
volk_gnsssdr::vector<uint32_t> d_initial_index;
volk_gnsssdr::vector<uint32_t> d_initial_interp_counter;
uint32_t d_code_phase_step_chips_num;
uint32_t d_code_phase_rate_step_chips_num;
int32_t d_rem_carr_phase_rad_int;