1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-20 22:17:03 +00:00

The switch bug is solved. Now the switch uses an absolute sample counter

This commit is contained in:
Marc Majoral 2019-03-01 11:13:34 +01:00
parent ea86546d99
commit a9c7b4113b
2 changed files with 26 additions and 38 deletions

View File

@ -1,12 +1,13 @@
/*! /*!
* \file gnss_sdr_fpga_sample_counter.cc * \file gnss_sdr_fpga_sample_counter.cc
* \brief Simple block to report the current receiver time based on the output of the tracking or telemetry blocks * \brief Simple block to report the current receiver time based on the output of the tracking or telemetry blocks
* \author Marc Majoral 2019. mmajoral(at)cttc.es
* \author Javier Arribas 2018. jarribas(at)cttc.es * \author Javier Arribas 2018. jarribas(at)cttc.es
* *
* *
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
* *
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors) * Copyright (C) 2010-2019 (see AUTHORS file for a list of contributors)
* *
* GNSS-SDR is a software defined Global Navigation * GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver * Satellite Systems receiver
@ -54,19 +55,16 @@ gnss_sdr_fpga_sample_counter::gnss_sdr_fpga_sample_counter(
interval_ms = _interval_ms; interval_ms = _interval_ms;
fs = _fs; fs = _fs;
samples_per_output = std::round(fs * static_cast<double>(interval_ms) / 1e3); samples_per_output = std::round(fs * static_cast<double>(interval_ms) / 1e3);
//todo: Load here the hardware counter register with this amount of samples. It should produce an
//interrupt every samples_per_output count.
//The hardware timer must keep always interrupting the PS. It must not wait for the interrupt to
//be served.
open_device(); open_device();
sample_counter = 0ULL; sample_counter = 0ULL;
last_sample_counter = 0ULL;
current_T_rx_ms = 0; current_T_rx_ms = 0;
current_s = 0; current_s = 0;
current_m = 0; current_m = 0;
current_h = 0; current_h = 0;
current_days = 0; current_days = 0;
report_interval_ms = 1000; // default reporting 1 second report_interval_ms = 1000; // default reporting 1 second
samples_per_report = std::round(fs * static_cast<double>(report_interval_ms) / 1e3);
flag_enable_send_msg = false; // enable it for reporting time with asynchronous message flag_enable_send_msg = false; // enable it for reporting time with asynchronous message
flag_m = false; flag_m = false;
flag_h = false; flag_h = false;
@ -84,8 +82,6 @@ gnss_sdr_fpga_sample_counter_sptr gnss_sdr_make_fpga_sample_counter(double _fs,
// Called by gnuradio to enable drivers, etc for i/o devices. // Called by gnuradio to enable drivers, etc for i/o devices.
bool gnss_sdr_fpga_sample_counter::start() bool gnss_sdr_fpga_sample_counter::start()
{ {
//todo: place here the RE-INITIALIZATION routines. This function will be called by GNURadio at every start of the flowgraph.
// configure the number of samples per output in the FPGA and enable the interrupts // configure the number of samples per output in the FPGA and enable the interrupts
configure_samples_per_output(samples_per_output); configure_samples_per_output(samples_per_output);
@ -93,14 +89,12 @@ bool gnss_sdr_fpga_sample_counter::start()
return true; return true;
} }
// Called by GNURadio to disable drivers, etc for i/o devices. // Called by GNURadio to disable drivers, etc for i/o devices.
bool gnss_sdr_fpga_sample_counter::stop() bool gnss_sdr_fpga_sample_counter::stop()
{ {
//todo: place here the routines to stop the associated hardware (if needed).This function will be called by GNURadio at every stop of the flowgraph.
// return true if everything is ok.
close_device(); close_device();
// return true if everything is ok.
return true; return true;
} }
@ -110,29 +104,27 @@ int gnss_sdr_fpga_sample_counter::general_work(int noutput_items __attribute__((
__attribute__((unused)) gr_vector_const_void_star &input_items, __attribute__((unused)) gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items) gr_vector_void_star &output_items)
{ {
//todo: Call here a function that waits for an interrupt. Do not open a thread, wait_for_interrupt();
//it must be a simple call to a BLOCKING function.
// The function will return the actual absolute sample count of the internal counter of the timmer.
// store the sample count in class member sample_counter
// Possible problem: what happen if the PS is overloaded and gnuradio does not call this function
// with the sufficient rate to catch all the interrupts in the counter. To be evaluated later.
uint32_t counter = wait_for_interrupt_and_read_counter(); uint64_t sample_counter_tmp, sample_counter_msw_tmp;
uint64_t samples_passed = 2 * static_cast<uint64_t>(samples_per_output) - static_cast<uint64_t>(counter); // ellapsed samples sample_counter_tmp = map_base[0];
// Note: at this moment the sample counter is implemented as a sample counter that decreases to zero and then it is automatically sample_counter_msw_tmp = map_base[1];
// reloaded again and keeps counter. It is done in this way to minimize the logic in the FPGA and maximize the FPGA clock performance sample_counter_msw_tmp = sample_counter_msw_tmp << 32;
// (it takes less resources and latency in the FPGA to compare a number against a fixed value like zero than to compare it to a programmable sample_counter_tmp = sample_counter_tmp + sample_counter_msw_tmp; // 2^32
// variable number). sample_counter = sample_counter_tmp;
sample_counter = sample_counter + samples_passed; //samples_per_output;
auto *out = reinterpret_cast<Gnss_Synchro *>(output_items[0]); auto *out = reinterpret_cast<Gnss_Synchro *>(output_items[0]);
out[0] = Gnss_Synchro(); out[0] = Gnss_Synchro();
out[0].Flag_valid_symbol_output = false; out[0].Flag_valid_symbol_output = false;
out[0].Flag_valid_word = false; out[0].Flag_valid_word = false;
out[0].Channel_ID = -1; out[0].Channel_ID = -1;
out[0].fs = fs; out[0].fs = fs;
if ((current_T_rx_ms % report_interval_ms) == 0)
if ((sample_counter - last_sample_counter) > samples_per_report)
{ {
last_sample_counter = sample_counter;
current_s++; current_s++;
if ((current_s % 60) == 0) if ((current_s % 60) == 0)
{ {
@ -190,7 +182,6 @@ int gnss_sdr_fpga_sample_counter::general_work(int noutput_items __attribute__((
} }
} }
out[0].Tracking_sample_counter = sample_counter; out[0].Tracking_sample_counter = sample_counter;
//current_T_rx_ms = (sample_counter * 1000) / samples_per_output;
current_T_rx_ms = interval_ms * (sample_counter) / samples_per_output; current_T_rx_ms = interval_ms * (sample_counter) / samples_per_output;
return 1; return 1;
} }
@ -240,7 +231,6 @@ void gnss_sdr_fpga_sample_counter::open_device()
else else
{ {
LOG(INFO) << "Acquisition test register sanity check success!"; LOG(INFO) << "Acquisition test register sanity check success!";
//std::cout << "Acquisition test register sanity check success!" << std::endl;
} }
} }
@ -256,11 +246,11 @@ void gnss_sdr_fpga_sample_counter::close_device()
close(fd); close(fd);
} }
uint32_t gnss_sdr_fpga_sample_counter::wait_for_interrupt_and_read_counter() //uint32_t gnss_sdr_fpga_sample_counter::wait_for_interrupt_and_read_counter()
void gnss_sdr_fpga_sample_counter::wait_for_interrupt()
{ {
int32_t irq_count; int32_t irq_count;
ssize_t nb; ssize_t nb;
int32_t counter;
// enable interrupts // enable interrupts
int32_t reenable = 1; int32_t reenable = 1;
@ -273,11 +263,4 @@ uint32_t gnss_sdr_fpga_sample_counter::wait_for_interrupt_and_read_counter()
std::cout << "fpga sample counter module read failed to retrieve 4 bytes!" << std::endl; std::cout << "fpga sample counter module read failed to retrieve 4 bytes!" << std::endl;
std::cout << "fpga sample counter module interrupt number " << irq_count << std::endl; std::cout << "fpga sample counter module interrupt number " << irq_count << std::endl;
} }
// it is a rising edge interrupt, the interrupt does not need to be acknowledged
//map_base[1] = 0; // writing anything to reg 1 acknowledges the interrupt
// add number of passed samples or read the current counter value for more accuracy
counter = samples_per_output; //map_base[0];
return counter;
} }

View File

@ -50,11 +50,15 @@ private:
void close_device(void); void close_device(void);
void open_device(void); void open_device(void);
bool start(); bool start();
bool stop(); bool stop();
uint32_t wait_for_interrupt_and_read_counter(void); void wait_for_interrupt(void);
uint32_t samples_per_output; uint32_t samples_per_output;
uint32_t samples_per_report;
double fs; double fs;
uint64_t sample_counter; uint64_t sample_counter;
uint64_t last_sample_counter;
uint32_t interval_ms; uint32_t interval_ms;
uint64_t current_T_rx_ms; // Receiver time in ms since the beginning of the run uint64_t current_T_rx_ms; // Receiver time in ms since the beginning of the run
uint32_t current_s; // Receiver time in seconds, modulo 60 uint32_t current_s; // Receiver time in seconds, modulo 60
@ -65,6 +69,7 @@ private:
bool flag_days; // True if the receiver has been running for at least 1 day bool flag_days; // True if the receiver has been running for at least 1 day
uint32_t current_days; // Receiver time in days since the beginning of the run uint32_t current_days; // Receiver time in days since the beginning of the run
int32_t report_interval_ms; int32_t report_interval_ms;
bool flag_enable_send_msg; bool flag_enable_send_msg;
int32_t fd; // driver descriptor int32_t fd; // driver descriptor
volatile uint32_t *map_base; // driver memory map volatile uint32_t *map_base; // driver memory map