mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-12-11 19:18:06 +00:00
Removing cudahelpers library and usage by a copyright issue. It does not
affect functionality.
This commit is contained in:
@@ -22,15 +22,11 @@ if(ENABLE_CUDA)
|
||||
# set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} --gpu-architecture sm_30)
|
||||
list(APPEND CUDA_NVCC_FLAGS "-gencode arch=compute_30,code=sm_30; -std=c++11;-O3; -use_fast_math -default-stream per-thread")
|
||||
set(CUDA_PROPAGATE_HOST_FLAGS OFF)
|
||||
CUDA_INCLUDE_DIRECTORIES(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/../../libs/cudahelpers
|
||||
)
|
||||
|
||||
CUDA_INCLUDE_DIRECTORIES( ${CMAKE_CURRENT_SOURCE_DIR})
|
||||
set(LIB_TYPE STATIC) #set the lib type
|
||||
CUDA_ADD_LIBRARY(CUDA_CORRELATOR_LIB ${LIB_TYPE} cuda_multicorrelator.h cuda_multicorrelator.cu)
|
||||
set(OPT_TRACKING_LIBRARIES ${OPT_TRACKING_LIBRARIES} CUDA_CORRELATOR_LIB)
|
||||
set(OPT_TRACKING_INCLUDES ${OPT_TRACKING_INCLUDES} ${CUDA_INCLUDE_DIRS} ${CMAKE_CURRENT_SOURCE_DIR}/../../libs/cudahelpers)
|
||||
set(OPT_TRACKING_INCLUDES ${OPT_TRACKING_INCLUDES} ${CUDA_INCLUDE_DIRS} )
|
||||
endif(ENABLE_CUDA)
|
||||
|
||||
|
||||
|
||||
@@ -49,9 +49,6 @@
|
||||
// For the CUDA runtime routines (prefixed with "cuda_")
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
// helper functions and utilities to work with CUDA
|
||||
#include <helper_cuda.h>
|
||||
#include <helper_functions.h>
|
||||
|
||||
#define ACCUM_N 256
|
||||
|
||||
@@ -224,7 +221,6 @@ __global__ void scalarProdGPUCPXxN(
|
||||
//int vectorBase = IMUL(elementN, vec);
|
||||
//int vectorEnd = vectorBase + elementN;
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Each accumulator cycles through vectors with
|
||||
// stride equal to number of total number of accumulators ACCUM_N
|
||||
@@ -392,28 +388,28 @@ bool cuda_multicorrelator::init_cuda(const int argc, const char **argv, int sign
|
||||
// printf("multiProcessorCount= %i \n",prop.multiProcessorCount);
|
||||
// }
|
||||
|
||||
//checkCudaErrors(cudaFuncSetCacheConfig(CUDA_32fc_x2_multiply_x2_dot_prod_32fc_, cudaFuncCachePreferShared));
|
||||
// (cudaFuncSetCacheConfig(CUDA_32fc_x2_multiply_x2_dot_prod_32fc_, cudaFuncCachePreferShared));
|
||||
|
||||
|
||||
// ALLOCATE GPU MEMORY FOR INPUT/OUTPUT and INTERNAL vectors
|
||||
|
||||
size_t size = signal_length_samples * sizeof(GPU_Complex);
|
||||
|
||||
checkCudaErrors(cudaMalloc((void **)&d_sig_in, size));
|
||||
//checkCudaErrors(cudaMalloc((void **)&d_nco_in, size));
|
||||
checkCudaErrors(cudaMalloc((void **)&d_sig_doppler_wiped, size));
|
||||
cudaMalloc((void **)&d_sig_in, size);
|
||||
// (cudaMalloc((void **)&d_nco_in, size));
|
||||
cudaMalloc((void **)&d_sig_doppler_wiped, size);
|
||||
|
||||
// old version: all local codes are independent vectors
|
||||
//checkCudaErrors(cudaMalloc((void **)&d_local_codes_in, size*n_correlators));
|
||||
// (cudaMalloc((void **)&d_local_codes_in, size*n_correlators));
|
||||
|
||||
// new version: only one vector with extra samples to shift the local code for the correlator set
|
||||
// Required: The last correlator tap in d_shifts_samples has the largest sample shift
|
||||
size_t size_local_code_bytes = local_codes_length_samples * sizeof(GPU_Complex);
|
||||
checkCudaErrors(cudaMalloc((void **)&d_local_codes_in, size_local_code_bytes));
|
||||
checkCudaErrors(cudaMalloc((void **)&d_shifts_samples, sizeof(int)*n_correlators));
|
||||
cudaMalloc((void **)&d_local_codes_in, size_local_code_bytes);
|
||||
cudaMalloc((void **)&d_shifts_samples, sizeof(int)*n_correlators);
|
||||
|
||||
//scalars
|
||||
checkCudaErrors(cudaMalloc((void **)&d_corr_out, sizeof(std::complex<float>)*n_correlators));
|
||||
cudaMalloc((void **)&d_corr_out, sizeof(std::complex<float>)*n_correlators);
|
||||
|
||||
// Launch the Vector Add CUDA Kernel
|
||||
threadsPerBlock = 256;
|
||||
@@ -481,30 +477,30 @@ bool cuda_multicorrelator::init_cuda_integrated_resampler(
|
||||
// printf("multiProcessorCount= %i \n",prop.multiProcessorCount);
|
||||
// }
|
||||
|
||||
//checkCudaErrors(cudaFuncSetCacheConfig(CUDA_32fc_x2_multiply_x2_dot_prod_32fc_, cudaFuncCachePreferShared));
|
||||
// (cudaFuncSetCacheConfig(CUDA_32fc_x2_multiply_x2_dot_prod_32fc_, cudaFuncCachePreferShared));
|
||||
|
||||
// ALLOCATE GPU MEMORY FOR INPUT/OUTPUT and INTERNAL vectors
|
||||
|
||||
size_t size = signal_length_samples * sizeof(GPU_Complex);
|
||||
|
||||
checkCudaErrors(cudaMalloc((void **)&d_sig_in, size));
|
||||
checkCudaErrors(cudaMemset(d_sig_in,0,size));
|
||||
cudaMalloc((void **)&d_sig_in, size);
|
||||
cudaMemset(d_sig_in,0,size);
|
||||
|
||||
//checkCudaErrors(cudaMalloc((void **)&d_nco_in, size));
|
||||
checkCudaErrors(cudaMalloc((void **)&d_sig_doppler_wiped, size));
|
||||
checkCudaErrors(cudaMemset(d_sig_doppler_wiped,0,size));
|
||||
// (cudaMalloc((void **)&d_nco_in, size));
|
||||
cudaMalloc((void **)&d_sig_doppler_wiped, size);
|
||||
cudaMemset(d_sig_doppler_wiped,0,size);
|
||||
|
||||
checkCudaErrors(cudaMalloc((void **)&d_local_codes_in, sizeof(std::complex<float>)*code_length_chips));
|
||||
checkCudaErrors(cudaMemset(d_local_codes_in,0,sizeof(std::complex<float>)*code_length_chips));
|
||||
cudaMalloc((void **)&d_local_codes_in, sizeof(std::complex<float>)*code_length_chips);
|
||||
cudaMemset(d_local_codes_in,0,sizeof(std::complex<float>)*code_length_chips);
|
||||
|
||||
d_code_length_chips=code_length_chips;
|
||||
|
||||
checkCudaErrors(cudaMalloc((void **)&d_shifts_chips, sizeof(float)*n_correlators));
|
||||
checkCudaErrors(cudaMemset(d_shifts_chips,0,sizeof(float)*n_correlators));
|
||||
cudaMalloc((void **)&d_shifts_chips, sizeof(float)*n_correlators);
|
||||
cudaMemset(d_shifts_chips,0,sizeof(float)*n_correlators);
|
||||
|
||||
//scalars
|
||||
checkCudaErrors(cudaMalloc((void **)&d_corr_out, sizeof(std::complex<float>)*n_correlators));
|
||||
checkCudaErrors(cudaMemset(d_corr_out,0,sizeof(std::complex<float>)*n_correlators));
|
||||
cudaMalloc((void **)&d_corr_out, sizeof(std::complex<float>)*n_correlators);
|
||||
cudaMemset(d_corr_out,0,sizeof(std::complex<float>)*n_correlators);
|
||||
|
||||
// Launch the Vector Add CUDA Kernel
|
||||
threadsPerBlock = 256;
|
||||
@@ -523,12 +519,12 @@ bool cuda_multicorrelator::set_local_code_and_taps(
|
||||
)
|
||||
{
|
||||
// local code CPU -> GPU copy memory
|
||||
checkCudaErrors(cudaMemcpyAsync(d_local_codes_in, local_codes_in, sizeof(GPU_Complex)*code_length_chips, cudaMemcpyHostToDevice,stream1));
|
||||
cudaMemcpyAsync(d_local_codes_in, local_codes_in, sizeof(GPU_Complex)*code_length_chips, cudaMemcpyHostToDevice,stream1);
|
||||
d_code_length_chips=(float)code_length_chips;
|
||||
|
||||
// Correlator shifts vector CPU -> GPU copy memory (fractional chip shifts are allowed!)
|
||||
checkCudaErrors(cudaMemcpyAsync(d_shifts_chips, shifts_chips, sizeof(float)*n_correlators,
|
||||
cudaMemcpyHostToDevice,stream1));
|
||||
cudaMemcpyAsync(d_shifts_chips, shifts_chips, sizeof(float)*n_correlators,
|
||||
cudaMemcpyHostToDevice,stream1);
|
||||
|
||||
return true;
|
||||
}
|
||||
@@ -550,40 +546,40 @@ bool cuda_multicorrelator::Carrier_wipeoff_multicorrelator_cuda(
|
||||
|
||||
// input signal CPU -> GPU copy memory
|
||||
|
||||
checkCudaErrors(cudaMemcpyAsync(d_sig_in, sig_in, memSize,
|
||||
cudaMemcpyHostToDevice, stream1));
|
||||
cudaMemcpyAsync(d_sig_in, sig_in, memSize,
|
||||
cudaMemcpyHostToDevice, stream1);
|
||||
|
||||
//***** NOTICE: NCO is computed on-the-fly, not need to copy NCO into GPU! ****
|
||||
//checkCudaErrors(cudaMemcpyAsync(d_nco_in, nco_in, memSize,
|
||||
// (cudaMemcpyAsync(d_nco_in, nco_in, memSize,
|
||||
// cudaMemcpyHostToDevice, stream1));
|
||||
|
||||
|
||||
// old version: all local codes are independent vectors
|
||||
//checkCudaErrors(cudaMemcpyAsync(d_local_codes_in, local_codes_in, memSize*n_correlators,
|
||||
// (cudaMemcpyAsync(d_local_codes_in, local_codes_in, memSize*n_correlators,
|
||||
// cudaMemcpyHostToDevice, stream2));
|
||||
|
||||
// new version: only one vector with extra samples to shift the local code for the correlator set
|
||||
// Required: The last correlator tap in d_shifts_samples has the largest sample shift
|
||||
|
||||
// local code CPU -> GPU copy memory
|
||||
checkCudaErrors(cudaMemcpyAsync(d_local_codes_in, local_codes_in, memSize+sizeof(std::complex<float>)*shifts_samples[n_correlators-1],
|
||||
cudaMemcpyHostToDevice, stream2));
|
||||
cudaMemcpyAsync(d_local_codes_in, local_codes_in, memSize+sizeof(std::complex<float>)*shifts_samples[n_correlators-1],
|
||||
cudaMemcpyHostToDevice, stream2);
|
||||
// Correlator shifts vector CPU -> GPU copy memory
|
||||
checkCudaErrors(cudaMemcpyAsync(d_shifts_samples, shifts_samples, sizeof(int)*n_correlators,
|
||||
cudaMemcpyHostToDevice, stream2));
|
||||
cudaMemcpyAsync(d_shifts_samples, shifts_samples, sizeof(int)*n_correlators,
|
||||
cudaMemcpyHostToDevice, stream2);
|
||||
|
||||
|
||||
//Launch carrier wipe-off kernel here, while local codes are being copied to GPU!
|
||||
checkCudaErrors(cudaStreamSynchronize(stream1));
|
||||
cudaStreamSynchronize(stream1);
|
||||
CUDA_32fc_Doppler_wipeoff<<<blocksPerGrid, threadsPerBlock,0, stream1>>>(d_sig_doppler_wiped, d_sig_in,rem_carrier_phase_in_rad,phase_step_rad, signal_length_samples);
|
||||
|
||||
|
||||
//printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid, threadsPerBlock);
|
||||
|
||||
//wait for Doppler wipeoff end...
|
||||
checkCudaErrors(cudaStreamSynchronize(stream1));
|
||||
checkCudaErrors(cudaStreamSynchronize(stream2));
|
||||
//checkCudaErrors(cudaDeviceSynchronize());
|
||||
cudaStreamSynchronize(stream1);
|
||||
cudaStreamSynchronize(stream2);
|
||||
// (cudaDeviceSynchronize());
|
||||
|
||||
//old
|
||||
// scalarProdGPUCPXxN<<<blocksPerGrid, threadsPerBlock,0 ,stream2>>>(
|
||||
@@ -604,15 +600,15 @@ bool cuda_multicorrelator::Carrier_wipeoff_multicorrelator_cuda(
|
||||
n_correlators,
|
||||
signal_length_samples
|
||||
);
|
||||
checkCudaErrors(cudaGetLastError());
|
||||
cudaGetLastError();
|
||||
//wait for correlators end...
|
||||
checkCudaErrors(cudaStreamSynchronize(stream2));
|
||||
cudaStreamSynchronize(stream2);
|
||||
// Copy the device result vector in device memory to the host result vector
|
||||
// in host memory.
|
||||
|
||||
//scalar products (correlators outputs)
|
||||
checkCudaErrors(cudaMemcpy(corr_out, d_corr_out, sizeof(std::complex<float>)*n_correlators,
|
||||
cudaMemcpyDeviceToHost));
|
||||
cudaMemcpy(corr_out, d_corr_out, sizeof(std::complex<float>)*n_correlators,
|
||||
cudaMemcpyDeviceToHost);
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -629,19 +625,19 @@ bool cuda_multicorrelator::Carrier_wipeoff_multicorrelator_resampler_cuda(
|
||||
|
||||
size_t memSize = signal_length_samples * sizeof(std::complex<float>);
|
||||
// input signal CPU -> GPU copy memory
|
||||
checkCudaErrors(cudaMemcpyAsync(d_sig_in, sig_in, memSize,
|
||||
cudaMemcpyHostToDevice, stream2));
|
||||
cudaMemcpyAsync(d_sig_in, sig_in, memSize,
|
||||
cudaMemcpyHostToDevice, stream2);
|
||||
|
||||
//***** NOTICE: NCO is computed on-the-fly, not need to copy NCO into GPU! ****
|
||||
|
||||
//Launch carrier wipe-off kernel here, while local codes are being copied to GPU!
|
||||
checkCudaErrors(cudaStreamSynchronize(stream2));
|
||||
cudaStreamSynchronize(stream2);
|
||||
|
||||
CUDA_32fc_Doppler_wipeoff<<<blocksPerGrid, threadsPerBlock,0, stream2>>>(d_sig_doppler_wiped, d_sig_in,rem_carrier_phase_in_rad,phase_step_rad, signal_length_samples);
|
||||
|
||||
//wait for Doppler wipeoff end...
|
||||
checkCudaErrors(cudaStreamSynchronize(stream1));
|
||||
checkCudaErrors(cudaStreamSynchronize(stream2));
|
||||
cudaStreamSynchronize(stream1);
|
||||
cudaStreamSynchronize(stream2);
|
||||
|
||||
//launch the multitap correlator with integrated local code resampler!
|
||||
|
||||
@@ -657,16 +653,16 @@ bool cuda_multicorrelator::Carrier_wipeoff_multicorrelator_resampler_cuda(
|
||||
signal_length_samples
|
||||
);
|
||||
|
||||
checkCudaErrors(cudaGetLastError());
|
||||
cudaGetLastError();
|
||||
//wait for correlators end...
|
||||
checkCudaErrors(cudaStreamSynchronize(stream1));
|
||||
cudaStreamSynchronize(stream1);
|
||||
// Copy the device result vector in device memory to the host result vector
|
||||
// in host memory.
|
||||
|
||||
//scalar products (correlators outputs)
|
||||
checkCudaErrors(cudaMemcpyAsync(corr_out, d_corr_out, sizeof(std::complex<float>)*n_correlators,
|
||||
cudaMemcpyDeviceToHost,stream1));
|
||||
checkCudaErrors(cudaStreamSynchronize(stream1));
|
||||
cudaMemcpyAsync(corr_out, d_corr_out, sizeof(std::complex<float>)*n_correlators,
|
||||
cudaMemcpyDeviceToHost,stream1);
|
||||
cudaStreamSynchronize(stream1);
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -708,7 +704,7 @@ bool cuda_multicorrelator::free_cuda()
|
||||
// needed to ensure correct operation when the application is being
|
||||
// profiled. Calling cudaDeviceReset causes all profile data to be
|
||||
// flushed before the application exits
|
||||
//checkCudaErrors(cudaDeviceReset());
|
||||
// (cudaDeviceReset());
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user