1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-16 14:54:59 +00:00

Merge branch 'next' of git+ssh://github.com/gnss-sdr/gnss-sdr into next

# Please enter a commit message to explain why this merge is necessary,
# especially if it merges an updated upstream into a topic branch.
#
# Lines starting with '#' will be ignored, and an empty message aborts
# the commit.
This commit is contained in:
Carles Fernandez 2015-06-28 09:24:36 +02:00
commit a45e4bbdc4
15 changed files with 1463 additions and 314 deletions

View File

@ -0,0 +1,209 @@
; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_hz=2000000
;######### CONTROL_THREAD CONFIG ############
ControlThread.wait_for_flowgraph=false
;######### SUPL RRLP GPS assistance configuration #####
GNSS-SDR.SUPL_gps_enabled=false
GNSS-SDR.SUPL_read_gps_assistance_xml=true
GNSS-SDR.SUPL_gps_ephemeris_server=supl.nokia.com
GNSS-SDR.SUPL_gps_ephemeris_port=7275
GNSS-SDR.SUPL_gps_acquisition_server=supl.google.com
GNSS-SDR.SUPL_gps_acquisition_port=7275
GNSS-SDR.SUPL_MCC=244
GNSS-SDR.SUPL_MNS=5
GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=UHD_Signal_Source
SignalSource.item_type=gr_complex
SignalSource.sampling_frequency=2000000
SignalSource.freq=1227600000
SignalSource.gain=60
SignalSource.subdevice=A:0
SignalSource.samples=0
SignalSource.repeat=false
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
DataTypeAdapter.implementation=Pass_Through
DataTypeAdapter.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter.dump=false
;#dump_filename: Log path and filename.
InputFilter.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges,
;#the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=20000000
InputFilter.IF=-1600000
;# Decimation factor after the frequency tranaslating block
InputFilter.decimation_factor=1
;######### RESAMPLER CONFIG ############
Resampler.implementation=Pass_Through
Resampler.dump=false
Resampler.dump_filename=../data/resampler.dat
Resampler.item_type=gr_complex
Resampler.sample_freq_in=2000000
Resampler.sample_freq_out=2000000
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_2S.count=1
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
Channel.signal=2S
Channel0.signal=2S
Channel1.signal=2S
Channel2.signal=2S
Channel3.signal=2S
Channel4.signal=2S
Channel5.signal=2S
Channel6.signal=2S
Channel7.signal=2S
;Channel8.signal=2S
;Channel9.signal=2S
;Channel10.signal=2S
;Channel11.signal=2S
;######### ACQUISITION GLOBAL CONFIG ############
;# GPS L2C M
Acquisition_2S.dump=false
Acquisition_2S.dump_filename=./acq_dump.dat
Acquisition_2S.item_type=gr_complex
Acquisition_2S.if=0
Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.threshold=0.0013
;Acquisition_2S.pfa=0.001
Acquisition_2S.doppler_max=10000
Acquisition_2S.doppler_min=-10000
Acquisition_2S.doppler_step=100
Acquisition_2S.max_dwells=1
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex
Tracking_2S.if=0
Tracking_2S.dump=true
Tracking_2S.dump_filename=./tracking_ch_
Tracking_2S.pll_bw_hz=1.5;
Tracking_2S.dll_bw_hz=0.3;
Tracking_2S.fll_bw_hz=2.0;
Tracking_2S.order=3;
Tracking_2S.early_late_space_chips=0.5;
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_2S.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_2S.dump=false
TelemetryDecoder_2S.decimation_factor=1;
;######### OBSERVABLES CONFIG ############.
Observables.implementation=GPS_L1_CA_Observables
Observables.dump=false
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
PVT.implementation=GPS_L1_CA_PVT
PVT.averaging_depth=10
PVT.flag_averaging=true
PVT.output_rate_ms=100
PVT.display_rate_ms=500
PVT.dump_filename=./PVT
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
PVT.flag_nmea_tty_port=false;
PVT.nmea_dump_devname=/dev/pts/4
PVT.dump=false
;######### OUTPUT_FILTER CONFIG ############
;# Receiver output filter: Leave this block disabled in this version
OutputFilter.implementation=Null_Sink_Output_Filter
OutputFilter.filename=data/gnss-sdr.dat
OutputFilter.item_type=gr_complex

View File

@ -7,7 +7,7 @@
;######### GLOBAL OPTIONS ################## ;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz]. ;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_hz=2000000 GNSS-SDR.internal_fs_hz=4000000
;######### CONTROL_THREAD CONFIG ############ ;######### CONTROL_THREAD CONFIG ############
ControlThread.wait_for_flowgraph=false ControlThread.wait_for_flowgraph=false
@ -28,8 +28,10 @@ GNSS-SDR.SUPL_CI=0x31b0
SignalSource.implementation=UHD_Signal_Source SignalSource.implementation=UHD_Signal_Source
SignalSource.device_address=192.168.50.2 SignalSource.device_address=192.168.50.2
SignalSource.item_type=cshort SignalSource.item_type=cshort
SignalSource.sampling_frequency=2000000 SignalSource.sampling_frequency=4000000
SignalSource.freq=1227600000 SignalSource.freq=1227600000
;### Options: internal, external, or MIMO
SignalSource.clock_source=internal
SignalSource.gain=35 SignalSource.gain=35
SignalSource.subdevice=A:0 SignalSource.subdevice=A:0
SignalSource.samples=0 SignalSource.samples=0
@ -71,7 +73,7 @@ InputFilter.band2_error=1.0
InputFilter.filter_type=bandpass InputFilter.filter_type=bandpass
InputFilter.grid_density=16 InputFilter.grid_density=16
InputFilter.sampling_frequency=2000000 InputFilter.sampling_frequency=4000000
InputFilter.IF=0 InputFilter.IF=0
;######### RESAMPLER CONFIG ############ ;######### RESAMPLER CONFIG ############
@ -79,13 +81,13 @@ Resampler.implementation=Pass_Through
Resampler.dump=false Resampler.dump=false
Resampler.dump_filename=../data/resampler.dat Resampler.dump_filename=../data/resampler.dat
Resampler.item_type=gr_complex Resampler.item_type=gr_complex
Resampler.sample_freq_in=2000000 Resampler.sample_freq_in=4000000
Resampler.sample_freq_out=2000000 Resampler.sample_freq_out=4000000
;######### CHANNELS GLOBAL CONFIG ############ ;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels. ;#count: Number of available GPS satellite channels.
Channels_2S.count=2 Channels_2S.count=1
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver ;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1 Channels.in_acquisition=1
@ -108,32 +110,28 @@ Channel7.signal=2S
;######### ACQUISITION GLOBAL CONFIG ############ ;######### ACQUISITION GLOBAL CONFIG ############
;# GPS L2C M
Acquisition_2S.dump=false Acquisition_2S.dump=false
Acquisition_2S.dump_filename=./acq_dump.dat Acquisition_2S.dump_filename=./acq_dump.dat
Acquisition_2S.item_type=gr_complex Acquisition_2S.item_type=gr_complex
Acquisition_2S.if=0 Acquisition_2S.if=0
Acquisition_2S.coherent_integration_time_ms=1
Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.threshold=0.001 Acquisition_2S.threshold=0.0015
;Acquisition_2S.pfa=0.00001 ;Acquisition_2S.pfa=0.001
Acquisition_2S.doppler_max=5000 Acquisition_2S.doppler_max=5000
Acquisition_2S.doppler_step=30 Acquisition_2S.doppler_min=-5000
Acquisition_2S.bit_transition_flag=false Acquisition_2S.doppler_step=60
Acquisition_2S.max_dwells=1 Acquisition_2S.max_dwells=1
;######### TRACKING GLOBAL CONFIG ############
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex Tracking_2S.item_type=gr_complex
Tracking_2S.if=0 Tracking_2S.if=0
Tracking_2S.dump=true Tracking_2S.dump=true
Tracking_2S.dump_filename=./tracking_ch_ Tracking_2S.dump_filename=./tracking_ch_
Tracking_2S.pll_bw_hz=2.0; Tracking_2S.pll_bw_hz=2.0;
Tracking_2S.dll_bw_hz=0.3; Tracking_2S.dll_bw_hz=0.25;
Tracking_2S.fll_bw_hz=2.0; Tracking_2S.fll_bw_hz=0.0;
Tracking_2S.order=3; Tracking_2S.order=2;
Tracking_2S.early_late_space_chips=0.5; Tracking_2S.early_late_space_chips=0.5;
;######### TELEMETRY DECODER GPS CONFIG ############ ;######### TELEMETRY DECODER GPS CONFIG ############

View File

@ -33,7 +33,7 @@ SignalSource.implementation=File_Signal_Source
;SignalSource.filename=/home/marc/E5a_acquisitions/galileo_E5_8M_r2_upsampled_12.dat ;SignalSource.filename=/home/marc/E5a_acquisitions/galileo_E5_8M_r2_upsampled_12.dat
;SignalSource.filename=/home/marc/E5a_acquisitions/Tiered_sim_4sat_stup4_2s_up.dat ;SignalSource.filename=/home/marc/E5a_acquisitions/Tiered_sim_4sat_stup4_2s_up.dat
;SignalSource.filename=/home/marc/E5a_acquisitions/signal_source_sec21M_long.dat ;SignalSource.filename=/home/marc/E5a_acquisitions/signal_source_sec21M_long.dat
SignalSource.filename=/home/gnss/captures/Galileo_E5ab_IFEN_CTTC_run1.dat SignalSource.filename=/datalogger/captures/Galileo_E5ab_IFEN_CTTC_run1.dat
@ -183,7 +183,7 @@ Resampler.sample_freq_out=4000000
;######### CHANNELS GLOBAL CONFIG ############ ;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available satellite channels. ;#count: Number of available satellite channels.
Channels_5X.count=1 Channels_5X.count=4
;#in_acquisition: Number of channels simultaneously acquiring ;#in_acquisition: Number of channels simultaneously acquiring
Channels.in_acquisition=1 Channels.in_acquisition=1
;#system: GPS, GLONASS, Galileo, SBAS or Compass ;#system: GPS, GLONASS, Galileo, SBAS or Compass
@ -263,21 +263,21 @@ Channel0.satellite=19
;######### CHANNEL 1 CONFIG ############ ;######### CHANNEL 1 CONFIG ############
;Channel1.system=Galileo Channel1.system=Galileo
;Channel1.signal=5Q Channel1.signal=5X
;Channel1.satellite=12 Channel1.satellite=12
;######### CHANNEL 2 CONFIG ############ ;######### CHANNEL 2 CONFIG ############
;Channel2.system=Galileo Channel2.system=Galileo
;Channel2.signal=5Q Channel2.signal=5X
;Channel2.satellite=11 Channel2.satellite=11
;######### CHANNEL 3 CONFIG ############ ;######### CHANNEL 3 CONFIG ############
;Channel3.system=Galileo Channel3.system=Galileo
;Channel3.signal=5Q Channel3.signal=5X
;Channel3.satellite=20 Channel3.satellite=20
;######### ACQUISITION GLOBAL CONFIG ############ ;######### ACQUISITION GLOBAL CONFIG ############

View File

@ -0,0 +1,497 @@
; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_hz=2500000
;######### CONTROL_THREAD CONFIG ############
ControlThread.wait_for_flowgraph=false
;######### SUPL RRLP GPS assistance configuration #####
GNSS-SDR.SUPL_gps_enabled=false
GNSS-SDR.SUPL_read_gps_assistance_xml=true
GNSS-SDR.SUPL_gps_ephemeris_server=supl.nokia.com
GNSS-SDR.SUPL_gps_ephemeris_port=7275
GNSS-SDR.SUPL_gps_acquisition_server=supl.google.com
GNSS-SDR.SUPL_gps_acquisition_port=7275
GNSS-SDR.SUPL_MCC=244
GNSS-SDR.SUPL_MNS=5
GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource.implementation=Flexiband_Signal_Source
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;# FPGA firmware file
SignalSource.firmware_file=flexiband_III-1b.bit
;#RF_channels: Number of RF channels present in the frontend device, must agree the FPGA firmware file
SignalSource.RF_channels=2
;#frontend channels gain. Not usable yet!
SignalSource.gain1=0
SignalSource.gain2=0
SignalSource.gain3=0
;#frontend channels AGC
SignalSource.AGC=true
;# USB 3.0 packet buffer size (number of SuperSpeed packets)
SignalSource.usb_packet_buffer=128
;######################################################
;######### RF CHANNEL 0 SIGNAL CONDITIONER ############
;######################################################
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges,
;#the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter0.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
;# WARNING: Fraunhofer front-end hardwareconfigurations can difer. Signals available on http://www.iis.fraunhofer.de/de/ff/lok/leist/test/flexiband.html are centered on 0 Hz, ALL BANDS.
InputFilter0.IF=-205000
;#InputFilter0.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=8
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
Resampler0.implementation=Pass_Through
;######################################################
;######### RF CHANNEL 1 SIGNAL CONDITIONER ############
;######################################################
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner1.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
DataTypeAdapter1.implementation=Pass_Through
DataTypeAdapter1.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter1.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter_ch1.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges,
;#the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter1.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
;# WARNING: Fraunhofer front-end hardwareconfigurations can difer. Signals available on http://www.iis.fraunhofer.de/de/ff/lok/leist/test/flexiband.html are centered on 0 Hz, ALL BANDS.
InputFilter1.IF=100000
;#InputFilter1.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter1.decimation_factor=8
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
Resampler1.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 2 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner2.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 2 CONFIG ############
DataTypeAdapter2.implementation=Pass_Through
DataTypeAdapter2.item_type=gr_complex
;######### INPUT_FILTER 2 CONFIG ############
InputFilter2.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter2.dump=false
;#dump_filename: Log path and filename.
InputFilter2.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter2.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter2.output_item_type=gr_complex
;######### RESAMPLER CONFIG 2 ############
;## Resamples the input data.
Resampler2.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=8
Channels_2S.count=8
;#count: Number of available Galileo satellite channels.
;Channels_Galileo.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
;# "1C" GPS L1 C/A
;# "2S" GPS L2 L2C (M)
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "5X" GALILEO E5a I+Q
;# CHANNEL CONNECTION
Channel0.RF_channel_ID=0
Channel0.signal=1C
Channel1.RF_channel_ID=0
Channel1.signal=1C
Channel2.RF_channel_ID=0
Channel2.signal=1C
Channel3.RF_channel_ID=0
Channel3.signal=1C
Channel4.RF_channel_ID=0
Channel4.signal=1C
Channel5.RF_channel_ID=0
Channel5.signal=1C
Channel6.RF_channel_ID=0
Channel6.signal=1C
Channel7.RF_channel_ID=0
Channel7.signal=1C
Channel8.RF_channel_ID=1
Channel8.signal=2S
Channel9.RF_channel_ID=1
Channel9.signal=2S
Channel10.RF_channel_ID=1
Channel10.signal=2S
Channel11.RF_channel_ID=1
Channel11.signal=2S
Channel12.RF_channel_ID=1
Channel12.signal=2S
Channel13.RF_channel_ID=1
Channel13.signal=2S
Channel14.RF_channel_ID=1
Channel14.signal=2S
Channel15.RF_channel_ID=1
Channel15.signal=2S
Channel8.RF_channel_ID=1
Channel8.signal=2S
Channel9.RF_channel_ID=1
Channel9.signal=2S
Channel10.RF_channel_ID=1
Channel10.signal=2S
Channel11.RF_channel_ID=1
Channel11.signal=2S
Channel12.RF_channel_ID=1
Channel12.signal=2S
Channel13.RF_channel_ID=1
Channel13.signal=2S
Channel14.RF_channel_ID=1
Channel14.signal=2S
Channel15.RF_channel_ID=1
Channel15.signal=2S
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### ACQUISITION GLOBAL CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent_integration_time_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_1C.threshold=0.008
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=250
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
;#maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition]
;#(should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_1C.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_1C.max_dwells=1
;######### ACQUISITION CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### TRACKING GLOBAL CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.dump=true
Tracking_1C.dump_filename=./tracking_ch_
Tracking_1C.pll_bw_hz=40.0;
Tracking_1C.dll_bw_hz=3.0;
Tracking_1C.fll_bw_hz=10.0;
Tracking_1C.order=3;
Tracking_1C.early_late_space_chips=0.5;
;# GPS L2C M
Acquisition_2S.dump=false
Acquisition_2S.dump_filename=./acq_dump.dat
Acquisition_2S.item_type=gr_complex
Acquisition_2S.if=0
Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.threshold=0.0005
;Acquisition_2S.pfa=0.001
Acquisition_2S.doppler_max=5000
Acquisition_2S.doppler_min=-5000
Acquisition_2S.doppler_step=30
Acquisition_2S.max_dwells=1
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex
Tracking_2S.if=0
Tracking_2S.dump=true
Tracking_2S.dump_filename=./tracking_ch_
Tracking_2S.pll_bw_hz=1.5;
Tracking_2S.dll_bw_hz=0.3;
Tracking_2S.fll_bw_hz=2.0;
Tracking_2S.order=3;
Tracking_2S.early_late_space_chips=0.5;
;######### TELEMETRY DECODER GPS L1 CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
TelemetryDecoder_1C.decimation_factor=20;
;######### TELEMETRY DECODER GPS L2 CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L2 M
TelemetryDecoder_2S.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_2S.dump=false
TelemetryDecoder_2S.decimation_factor=1;
;######### OBSERVABLES CONFIG ############
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.Mixed_Observables
Observables.implementation=GPS_L1_CA_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
PVT.implementation=GPS_L1_CA_PVT
;#averaging_depth: Number of PVT observations in the moving average algorithm
PVT.averaging_depth=10
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
PVT.flag_averaging=true
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# RINEX, KML, and NMEA output configuration
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;######### OUTPUT_FILTER CONFIG ############
;# Receiver output filter: Leave this block disabled in this version
OutputFilter.implementation=Null_Sink_Output_Filter
OutputFilter.filename=data/gnss-sdr.dat
OutputFilter.item_type=gr_complex

View File

@ -0,0 +1,547 @@
; Default configuration file
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_hz=2500000
;######### CONTROL_THREAD CONFIG ############
ControlThread.wait_for_flowgraph=false
;######### SUPL RRLP GPS assistance configuration #####
GNSS-SDR.SUPL_gps_enabled=false
GNSS-SDR.SUPL_read_gps_assistance_xml=true
GNSS-SDR.SUPL_gps_ephemeris_server=supl.nokia.com
GNSS-SDR.SUPL_gps_ephemeris_port=7275
GNSS-SDR.SUPL_gps_acquisition_server=supl.google.com
GNSS-SDR.SUPL_gps_acquisition_port=7275
GNSS-SDR.SUPL_MCC=244
GNSS-SDR.SUPL_MNS=5
GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
;#implementation: Use [File_Signal_Source] or [UHD_Signal_Source] or [GN3S_Signal_Source] (experimental)
SignalSource.implementation=Flexiband_Signal_Source
SignalSource.flag_read_file=false
#SignalSource.signal_file=/datalogger/signals/Fraunhofer/L125_III1b_210s.usb
SignalSource.signal_file=/datalogger/captures/flexiband_III_1b_cap1.usb
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex
;# FPGA firmware file
SignalSource.firmware_file=flexiband_III-1b.bit
;#RF_channels: Number of RF channels present in the frontend device, must agree the FPGA firmware file
SignalSource.RF_channels=2
;#frontend channels gain. Not usable yet!
SignalSource.gain1=0
SignalSource.gain2=0
SignalSource.gain3=0
;#frontend channels AGC
SignalSource.AGC=true
;# USB 3.0 packet buffer size (number of SuperSpeed packets)
SignalSource.usb_packet_buffer=128
;######################################################
;######### RF CHANNEL 0 SIGNAL CONDITIONER ############
;######################################################
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges,
;#the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter0.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
;# WARNING: Fraunhofer front-end hardwareconfigurations can difer. Signals available on http://www.iis.fraunhofer.de/de/ff/lok/leist/test/flexiband.html are centered on 0 Hz, ALL BANDS.
InputFilter0.IF=-205000
;#InputFilter0.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=8
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
Resampler0.implementation=Pass_Through
;######################################################
;######### RF CHANNEL 1 SIGNAL CONDITIONER ############
;######################################################
;######### SIGNAL_CONDITIONER 1 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner1.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 1 CONFIG ############
DataTypeAdapter1.implementation=Pass_Through
DataTypeAdapter1.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter1.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter1.dump=false
;#dump_filename: Log path and filename.
InputFilter1.dump_filename=../data/input_filter_ch1.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges,
;#the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter1.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter1.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter1.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter1.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter1.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter1.band1_begin=0.0
InputFilter1.band1_end=0.45
InputFilter1.band2_begin=0.55
InputFilter1.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter1.ampl1_begin=1.0
InputFilter1.ampl1_end=1.0
InputFilter1.ampl2_begin=0.0
InputFilter1.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter1.band1_error=1.0
InputFilter1.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter1.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter1.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter1.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ]
;# WARNING: Fraunhofer front-end hardwareconfigurations can difer. Signals available on http://www.iis.fraunhofer.de/de/ff/lok/leist/test/flexiband.html are centered on 0 Hz, ALL BANDS.
InputFilter1.IF=100000
;#InputFilter1.IF=0
;# Decimation factor after the frequency tranaslating block
InputFilter1.decimation_factor=8
;######### RESAMPLER CONFIG 1 ############
;## Resamples the input data.
Resampler1.implementation=Pass_Through
;######### SIGNAL_CONDITIONER 2 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner2.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER 2 CONFIG ############
DataTypeAdapter2.implementation=Pass_Through
DataTypeAdapter2.item_type=gr_complex
;######### INPUT_FILTER 2 CONFIG ############
InputFilter2.implementation=Pass_Through
;#dump: Dump the filtered data to a file.
InputFilter2.dump=false
;#dump_filename: Log path and filename.
InputFilter2.dump_filename=../data/input_filter.dat
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter2.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter2.output_item_type=gr_complex
;######### RESAMPLER CONFIG 2 ############
;## Resamples the input data.
Resampler2.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_1C.count=8
Channels_1B.count=2
Channels_2S.count=8
;#count: Number of available Galileo satellite channels.
;Channels_Galileo.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
Channels.in_acquisition=1
;#signal:
;# "1C" GPS L1 C/A
;# "2S" GPS L2 L2C (M)
;# "1B" GALILEO E1 B (I/NAV OS/CS/SoL)
;# "5X" GALILEO E5a I+Q
;# CHANNEL CONNECTION
Channel0.RF_channel_ID=0
Channel0.signal=1C
Channel1.RF_channel_ID=0
Channel1.signal=1C
Channel2.RF_channel_ID=0
Channel2.signal=1C
Channel3.RF_channel_ID=0
Channel3.signal=1C
Channel4.RF_channel_ID=0
Channel4.signal=1C
Channel5.RF_channel_ID=0
Channel5.signal=1C
Channel6.RF_channel_ID=0
Channel6.signal=1C
Channel7.RF_channel_ID=0
Channel7.signal=1C
Channel8.RF_channel_ID=0
Channel8.signal=1B
Channel9.RF_channel_ID=0
Channel9.signal=1B
Channel10.RF_channel_ID=1
Channel10.signal=2S
Channel11.RF_channel_ID=1
Channel11.signal=2S
Channel12.RF_channel_ID=1
Channel12.signal=2S
Channel13.RF_channel_ID=1
Channel13.signal=2S
Channel14.RF_channel_ID=1
Channel14.signal=2S
Channel15.RF_channel_ID=1
Channel15.signal=2S
Channel16.RF_channel_ID=1
Channel16.signal=2S
Channel17.RF_channel_ID=1
Channel17.signal=2S
;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### ACQUISITION GLOBAL CONFIG ############
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C.dump=false
;#filename: Log path and filename
Acquisition_1C.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_1C.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1C.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C.coherent_integration_time_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_1C.threshold=0.008
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=250
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
;#maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition]
;#(should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_1C.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_1C.max_dwells=1
;######### ACQUISITION CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;######### TRACKING GLOBAL CONFIG ############
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.dump=true
Tracking_1C.dump_filename=./tracking_ch_
Tracking_1C.pll_bw_hz=40.0;
Tracking_1C.dll_bw_hz=3.0;
Tracking_1C.fll_bw_hz=10.0;
Tracking_1C.order=3;
Tracking_1C.early_late_space_chips=0.5;
;# GPS L2C M
Acquisition_2S.dump=false
Acquisition_2S.dump_filename=./acq_dump.dat
Acquisition_2S.item_type=gr_complex
Acquisition_2S.if=0
Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.threshold=0.0005
;Acquisition_2S.pfa=0.001
Acquisition_2S.doppler_max=5000
Acquisition_2S.doppler_min=-5000
Acquisition_2S.doppler_step=30
Acquisition_2S.max_dwells=1
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex
Tracking_2S.if=0
Tracking_2S.dump=true
Tracking_2S.dump_filename=./tracking_ch_
Tracking_2S.pll_bw_hz=1.5;
Tracking_2S.dll_bw_hz=0.3;
Tracking_2S.fll_bw_hz=2.0;
Tracking_2S.order=3;
Tracking_2S.early_late_space_chips=0.5;
;# GALILEO E1B
;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1B.dump=false
;#filename: Log path and filename
Acquisition_1B.dump_filename=./acq_dump.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_1B.item_type=gr_complex
;#if: Signal intermediate frequency in [Hz]
Acquisition_1B.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1B.sampled_ms=4
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.implementation=Galileo_E1_PCPS_Ambiguous_Acquisition
;#threshold: Acquisition threshold
;Acquisition_1B.threshold=0
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1B.pfa=0.0000005
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1B.doppler_max=5000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1B.doppler_step=125
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking] or [GPS_L1_CA_TCP_CONNECTOR_Tracking] or [Galileo_E1_DLL_PLL_VEML_Tracking]
Tracking_1B.implementation=Galileo_E1_DLL_PLL_VEML_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_1B.item_type=gr_complex
;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1B.if=0
;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1B.dump=false
;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1B.dump_filename=../data/veml_tracking_ch_
;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1B.pll_bw_hz=15.0;
;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1B.dll_bw_hz=2.0;
;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_1B.fll_bw_hz=10.0;
;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1B.order=3;
;#early_late_space_chips: correlator early-late space [chips]. Use [0.5] for GPS and [0.15] for Galileo
Tracking_1B.early_late_space_chips=0.15;
;#very_early_late_space_chips: only for [Galileo_E1_DLL_PLL_VEML_Tracking], correlator very early-late space [chips]. Use [0.6]
Tracking_1B.very_early_late_space_chips=0.6;
;######### TELEMETRY DECODER GPS L1 CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
TelemetryDecoder_1C.decimation_factor=20;
;######### TELEMETRY DECODER GPS L2 CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L2 M
TelemetryDecoder_2S.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_2S.dump=false
TelemetryDecoder_2S.decimation_factor=1;
;######### TELEMETRY DECODER GALILEO E1B CONFIG ############
;#implementation: Use [Galileo_E1B_Telemetry_Decoder] for Galileo E1B
TelemetryDecoder_1B.implementation=Galileo_E1B_Telemetry_Decoder
TelemetryDecoder_1B.dump=false
TelemetryDecoder_1B.decimation_factor=5;
;######### OBSERVABLES CONFIG ############
;#implementation: Use [GPS_L1_CA_Observables] for GPS L1 C/A.Mixed_Observables
Observables.implementation=GPS_L1_CA_Observables
;#dump: Enable or disable the Observables internal binary data file logging [true] or [false]
Observables.dump=false
;#dump_filename: Log path and filename.
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
;#implementation: Position Velocity and Time (PVT) implementation algorithm: Use [GPS_L1_CA_PVT] in this version.
PVT.implementation=GPS_L1_CA_PVT
;#averaging_depth: Number of PVT observations in the moving average algorithm
PVT.averaging_depth=10
;#flag_average: Enables the PVT averaging between output intervals (arithmetic mean) [true] or [false]
PVT.flag_averaging=true
;#output_rate_ms: Period between two PVT outputs. Notice that the minimum period is equal to the tracking integration time (for GPS CA L1 is 1ms) [ms]
PVT.output_rate_ms=100
;#display_rate_ms: Position console print (std::out) interval [ms]. Notice that output_rate_ms<=display_rate_ms.
PVT.display_rate_ms=500
;# RINEX, KML, and NMEA output configuration
;#dump_filename: Log path and filename without extension. Notice that PVT will add ".dat" to the binary dump and ".kml" to GoogleEarth dump.
PVT.dump_filename=./PVT
;#nmea_dump_filename: NMEA log path and filename
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
;#flag_nmea_tty_port: Enable or disable the NMEA log to a serial TTY port (Can be used with real hardware or virtual one)
PVT.flag_nmea_tty_port=false;
;#nmea_dump_devname: serial device descriptor for NMEA logging
PVT.nmea_dump_devname=/dev/pts/4
;#dump: Enable or disable the PVT internal binary data file logging [true] or [false]
PVT.dump=false
;######### OUTPUT_FILTER CONFIG ############
;# Receiver output filter: Leave this block disabled in this version
OutputFilter.implementation=Null_Sink_Output_Filter
OutputFilter.filename=data/gnss-sdr.dat
OutputFilter.item_type=gr_complex

View File

@ -29,7 +29,8 @@ GNSS-SDR.SUPL_CI=0x31b0
SignalSource.implementation=Flexiband_Signal_Source SignalSource.implementation=Flexiband_Signal_Source
SignalSource.flag_read_file=true SignalSource.flag_read_file=true
SignalSource.signal_file=/datalogger/signals/Fraunhofer/L125_III1b_210s.usb #SignalSource.signal_file=/datalogger/signals/Fraunhofer/L125_III1b_210s.usb
SignalSource.signal_file=/datalogger/captures/test.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex SignalSource.item_type=gr_complex
@ -77,7 +78,7 @@ InputFilter0.implementation=Freq_Xlating_Fir_Filter
InputFilter0.dump=false InputFilter0.dump=false
;#dump_filename: Log path and filename. ;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter_ch0.dat InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation. ;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez. ;#These options are based on parameters of gnuradio's function: gr_remez.
@ -135,8 +136,8 @@ InputFilter0.grid_density=16
InputFilter0.sampling_frequency=20000000 InputFilter0.sampling_frequency=20000000
;# IF deviation due to front-end LO inaccuracies [HZ] ;# IF deviation due to front-end LO inaccuracies [HZ]
;# WARNING: Fraunhofer front-end hardwareconfigurations can difer. Signals available on http://www.iis.fraunhofer.de/de/ff/lok/leist/test/flexiband.html are centered on 0 Hz, ALL BANDS. ;# WARNING: Fraunhofer front-end hardwareconfigurations can difer. Signals available on http://www.iis.fraunhofer.de/de/ff/lok/leist/test/flexiband.html are centered on 0 Hz, ALL BANDS.
:#InputFilter0.IF=-205000 InputFilter0.IF=-205000
InputFilter0.IF=0 ;#InputFilter0.IF=0
;# Decimation factor after the frequency tranaslating block ;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=8 InputFilter0.decimation_factor=8
@ -336,111 +337,38 @@ Channel15.signal=2S
;######### SPECIFIC CHANNELS CONFIG ###### ;######### SPECIFIC CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options ;#The following options are specific to each channel and overwrite the generic options
;# GPS L1 C/A ;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C0.dump=false
Acquisition_1C0.dump_filename=./acq_dump.dat
Acquisition_1C0.item_type=gr_complex
Acquisition_1C0.if=0
Acquisition_1C0.sampled_ms=1
Acquisition_1C0.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_1C0.threshold=0.015
;Acquisition_1C0.pfa=0.0001
Acquisition_1C0.doppler_max=5000
Acquisition_1C0.doppler_min=-5000
Acquisition_1C0.doppler_step=250
Acquisition_1C0.max_dwells=2
Acquisition_1C1.dump=false ;#dump: Enable or disable the acquisition internal data file logging [true] or [false]
Acquisition_1C1.dump_filename=./acq_dump.dat Acquisition_1C.dump=false
Acquisition_1C1.item_type=gr_complex ;#filename: Log path and filename
Acquisition_1C1.if=0 Acquisition_1C.dump_filename=./acq_dump.dat
Acquisition_1C1.sampled_ms=1 ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
Acquisition_1C1.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler Acquisition_1C.item_type=gr_complex
Acquisition_1C1.threshold=0.015 ;#if: Signal intermediate frequency in [Hz]
;Acquisition_1C1.pfa=0.0001 Acquisition_1C.if=0
Acquisition_1C1.doppler_max=5000 ;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition_1C1.doppler_min=-5000 Acquisition_1C.coherent_integration_time_ms=1
Acquisition_1C1.doppler_step=250 ;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_1C1.max_dwells=2 Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_1C.threshold=0.012
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_1C.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_1C.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_1C.doppler_step=250
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take
;#maximum test statistics. Only use with implementation: [GPS_L1_CA_PCPS_Acquisition]
;#(should not be used for Galileo_E1_PCPS_Ambiguous_Acquisition])
Acquisition_1C.bit_transition_flag=false
;#max_dwells: Maximum number of consecutive dwells to be processed. It will be ignored if bit_transition_flag=true
Acquisition_1C.max_dwells=1
Acquisition_1C2.dump=false
Acquisition_1C2.dump_filename=./acq_dump.dat
Acquisition_1C2.item_type=gr_complex
Acquisition_1C2.if=0
Acquisition_1C2.sampled_ms=1
Acquisition_1C2.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_1C2.threshold=0.015
;Acquisition_1C2.pfa=0.0001
Acquisition_1C2.doppler_max=5000
Acquisition_1C2.doppler_min=-5000
Acquisition_1C2.doppler_step=250
Acquisition_1C2.max_dwells=2
Acquisition_1C3.dump=false
Acquisition_1C3.dump_filename=./acq_dump.dat
Acquisition_1C3.item_type=gr_complex
Acquisition_1C3.if=0
Acquisition_1C3.sampled_ms=1
Acquisition_1C3.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_1C3.threshold=0.015
;Acquisition_1C3.pfa=0.0001
Acquisition_1C3.doppler_max=5000
Acquisition_1C3.doppler_min=-5000
Acquisition_1C3.doppler_step=250
Acquisition_1C3.max_dwells=2
Acquisition_1C4.dump=false
Acquisition_1C4.dump_filename=./acq_dump.dat
Acquisition_1C4.item_type=gr_complex
Acquisition_1C4.if=0
Acquisition_1C4.sampled_ms=1
Acquisition_1C4.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_1C4.threshold=0.015
;Acquisition_1C4.pfa=0.0001
Acquisition_1C4.doppler_max=5000
Acquisition_1C4.doppler_min=-5000
Acquisition_1C4.doppler_step=250
Acquisition_1C4.max_dwells=2
Acquisition_1C5.dump=false
Acquisition_1C5.dump_filename=./acq_dump.dat
Acquisition_1C5.item_type=gr_complex
Acquisition_1C5.if=0
Acquisition_1C5.sampled_ms=1
Acquisition_1C5.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_1C5.threshold=0.015
;Acquisition_1C5.pfa=0.0001
Acquisition_1C5.doppler_max=5000
Acquisition_1C5.doppler_min=-5000
Acquisition_1C5.doppler_step=250
Acquisition_1C5.max_dwells=2
Acquisition_1C6.dump=false
Acquisition_1C6.dump_filename=./acq_dump.dat
Acquisition_1C6.item_type=gr_complex
Acquisition_1C6.if=0
Acquisition_1C6.sampled_ms=1
Acquisition_1C6.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_1C6.threshold=0.015
;Acquisition_1C6.pfa=0.0001
Acquisition_1C6.doppler_max=5000
Acquisition_1C6.doppler_min=-5000
Acquisition_1C6.doppler_step=250
Acquisition_1C6.max_dwells=2
Acquisition_1C7.dump=false
Acquisition_1C7.dump_filename=./acq_dump.dat
Acquisition_1C7.item_type=gr_complex
Acquisition_1C7.if=0
Acquisition_1C7.sampled_ms=1
Acquisition_1C7.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_1C7.threshold=0.015
;Acquisition_1C7.pfa=0.0001
Acquisition_1C7.doppler_max=5000
Acquisition_1C7.doppler_min=-5000
Acquisition_1C7.doppler_step=250
Acquisition_1C7.max_dwells=2
;######### ACQUISITION CHANNELS CONFIG ######
;#The following options are specific to each channel and overwrite the generic options
;# GPS L2C M ;# GPS L2C M
Acquisition_2S1.dump=false Acquisition_2S1.dump=false
@ -448,7 +376,7 @@ Acquisition_2S1.dump_filename=./acq_dump.dat
Acquisition_2S1.item_type=gr_complex Acquisition_2S1.item_type=gr_complex
Acquisition_2S1.if=0 Acquisition_2S1.if=0
Acquisition_2S1.implementation=GPS_L2_M_PCPS_Acquisition Acquisition_2S1.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S1.threshold=0.0005 Acquisition_2S1.threshold=0.0001
;Acquisition_2S1.pfa=0.001 ;Acquisition_2S1.pfa=0.001
Acquisition_2S1.doppler_max=5000 Acquisition_2S1.doppler_max=5000
Acquisition_2S1.doppler_min=-5000 Acquisition_2S1.doppler_min=-5000
@ -540,99 +468,37 @@ Acquisition_2S8.doppler_step=100
Acquisition_2S8.max_dwells=1 Acquisition_2S8.max_dwells=1
;######### ACQUISITION CHANNELS CONFIG ###### ;######### TRACKING GLOBAL CONFIG ############
;#The following options are specific to each channel and overwrite the generic options
;#implementation: Selected tracking algorithm: [GPS_L1_CA_DLL_PLL_Tracking] or [GPS_L1_CA_DLL_FLL_PLL_Tracking]
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
;#item_type: Type and resolution for each of the signal samples. Use only [gr_complex] in this version.
Tracking_1C.item_type=gr_complex
;######### TRACKING CHANNEL 0 CONFIG ############ ;#sampling_frequency: Signal Intermediate Frequency in [Hz]
Tracking_1C0.implementation=GPS_L1_CA_DLL_PLL_Tracking Tracking_1C.if=0
Tracking_1C0.item_type=gr_complex
Tracking_1C0.if=0 ;#dump: Enable or disable the Tracking internal binary data file logging [true] or [false]
Tracking_1C0.dump=false Tracking_1C.dump=false
Tracking_1C0.dump_filename=./tracking_ch_
Tracking_1C0.pll_bw_hz=40.0; ;#dump_filename: Log path and filename. Notice that the tracking channel will add "x.dat" where x is the channel number.
Tracking_1C0.dll_bw_hz=3.0; Tracking_1C.dump_filename=./tracking_ch_
Tracking_1C0.fll_bw_hz=10.0;
Tracking_1C0.order=3; ;#pll_bw_hz: PLL loop filter bandwidth [Hz]
Tracking_1C0.early_late_space_chips=0.5; Tracking_1C.pll_bw_hz=40.0;
;######### TRACKING CHANNEL 1 CONFIG ############
Tracking_1C1.implementation=GPS_L1_CA_DLL_PLL_Tracking ;#dll_bw_hz: DLL loop filter bandwidth [Hz]
Tracking_1C1.item_type=gr_complex Tracking_1C.dll_bw_hz=3.0;
Tracking_1C1.if=0
Tracking_1C1.dump=false ;#fll_bw_hz: FLL loop filter bandwidth [Hz]
Tracking_1C1.dump_filename=./tracking_ch_ Tracking_1C.fll_bw_hz=10.0;
Tracking_1C1.pll_bw_hz=40.0;
Tracking_1C1.dll_bw_hz=3.0; ;#order: PLL/DLL loop filter order [2] or [3]
Tracking_1C1.fll_bw_hz=10.0; Tracking_1C.order=3;
Tracking_1C1.order=3;
Tracking_1C1.early_late_space_chips=0.5; ;#early_late_space_chips: correlator early-late space [chips]. Use [0.5]
;######### TRACKING CHANNEL 2 CONFIG ############ Tracking_1C.early_late_space_chips=0.5;
Tracking_1C2.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C2.item_type=gr_complex
Tracking_1C2.if=0
Tracking_1C2.dump=false
Tracking_1C2.dump_filename=./tracking_ch_
Tracking_1C2.pll_bw_hz=40.0;
Tracking_1C2.dll_bw_hz=3.0;
Tracking_1C2.fll_bw_hz=10.0;
Tracking_1C2.order=3;
Tracking_1C2.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 3 CONFIG ############
Tracking_1C3.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C3.item_type=gr_complex
Tracking_1C3.if=0
Tracking_1C3.dump=false
Tracking_1C3.dump_filename=./tracking_ch_
Tracking_1C3.pll_bw_hz=40.0;
Tracking_1C3.dll_bw_hz=3.0;
Tracking_1C3.fll_bw_hz=10.0;
Tracking_1C3.order=3;
Tracking_1C3.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 4 CONFIG ############
Tracking_1C4.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C4.item_type=gr_complex
Tracking_1C4.if=0
Tracking_1C4.dump=false
Tracking_1C4.dump_filename=./tracking_ch_
Tracking_1C4.pll_bw_hz=40.0;
Tracking_1C4.dll_bw_hz=3.0;
Tracking_1C4.fll_bw_hz=10.0;
Tracking_1C4.order=3;
Tracking_1C4.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 5 CONFIG ############
Tracking_1C5.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C5.item_type=gr_complex
Tracking_1C5.if=0
Tracking_1C5.dump=false
Tracking_1C5.dump_filename=./tracking_ch_
Tracking_1C5.pll_bw_hz=40.0;
Tracking_1C5.dll_bw_hz=3.0;
Tracking_1C5.fll_bw_hz=10.0;
Tracking_1C5.order=3;
Tracking_1C5.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 6 CONFIG ############
Tracking_1C6.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C6.item_type=gr_complex
Tracking_1C6.if=0
Tracking_1C6.dump=false
Tracking_1C6.dump_filename=./tracking_ch_
Tracking_1C6.pll_bw_hz=40.0;
Tracking_1C6.dll_bw_hz=3.0;
Tracking_1C6.fll_bw_hz=10.0;
Tracking_1C6.order=3;
Tracking_1C6.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 7 CONFIG ############
Tracking_1C7.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C7.item_type=gr_complex
Tracking_1C7.if=0
Tracking_1C7.dump=false
Tracking_1C7.dump_filename=./tracking_ch_
Tracking_1C7.pll_bw_hz=40.0;
Tracking_1C7.dll_bw_hz=3.0;
Tracking_1C7.fll_bw_hz=10.0;
Tracking_1C7.order=3;
Tracking_1C7.early_late_space_chips=0.5;
;######### TRACKING CHANNEL 8 CONFIG ############ ;######### TRACKING CHANNEL 8 CONFIG ############
Tracking_2S1.implementation=GPS_L2_M_DLL_PLL_Tracking Tracking_2S1.implementation=GPS_L2_M_DLL_PLL_Tracking
@ -641,7 +507,7 @@ Tracking_2S1.if=0
Tracking_2S1.dump=true Tracking_2S1.dump=true
Tracking_2S1.dump_filename=./tracking_ch_ Tracking_2S1.dump_filename=./tracking_ch_
Tracking_2S1.pll_bw_hz=2.0; Tracking_2S1.pll_bw_hz=2.0;
Tracking_2S1.dll_bw_hz=0.3; Tracking_2S1.dll_bw_hz=0.5;
Tracking_2S1.fll_bw_hz=2.0; Tracking_2S1.fll_bw_hz=2.0;
Tracking_2S1.order=3; Tracking_2S1.order=3;
Tracking_2S1.early_late_space_chips=0.5; Tracking_2S1.early_late_space_chips=0.5;
@ -652,7 +518,7 @@ Tracking_2S2.if=0
Tracking_2S2.dump=true Tracking_2S2.dump=true
Tracking_2S2.dump_filename=./tracking_ch_ Tracking_2S2.dump_filename=./tracking_ch_
Tracking_2S2.pll_bw_hz=2.0; Tracking_2S2.pll_bw_hz=2.0;
Tracking_2S2.dll_bw_hz=0.3; Tracking_2S2.dll_bw_hz=0.5;
Tracking_2S2.fll_bw_hz=2.0; Tracking_2S2.fll_bw_hz=2.0;
Tracking_2S2.order=3; Tracking_2S2.order=3;
Tracking_2S2.early_late_space_chips=0.5; Tracking_2S2.early_late_space_chips=0.5;
@ -663,7 +529,7 @@ Tracking_2S3.if=0
Tracking_2S3.dump=true Tracking_2S3.dump=true
Tracking_2S3.dump_filename=./tracking_ch_ Tracking_2S3.dump_filename=./tracking_ch_
Tracking_2S3.pll_bw_hz=2.0; Tracking_2S3.pll_bw_hz=2.0;
Tracking_2S3.dll_bw_hz=0.3; Tracking_2S3.dll_bw_hz=0.5;
Tracking_2S3.fll_bw_hz=2.0; Tracking_2S3.fll_bw_hz=2.0;
Tracking_2S3.order=3; Tracking_2S3.order=3;
Tracking_2S3.early_late_space_chips=0.5; Tracking_2S3.early_late_space_chips=0.5;
@ -725,73 +591,20 @@ Tracking_2S8.order=3;
Tracking_2S8.early_late_space_chips=0.5; Tracking_2S8.early_late_space_chips=0.5;
;######### TELEMETRY DECODER GPS CONFIG ############ ;######### TELEMETRY DECODER GPS L1 CONFIG ############
;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A ;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L1 C/A
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C0.implementation=GPS_L1_CA_Telemetry_Decoder TelemetryDecoder_1C.dump=false
TelemetryDecoder_1C0.dump=false ;#decimation factor
TelemetryDecoder_1C0.decimation_factor=20; TelemetryDecoder_1C.decimation_factor=20;
TelemetryDecoder_1C1.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C1.dump=false
TelemetryDecoder_1C1.decimation_factor=20;
TelemetryDecoder_1C2.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C2.dump=false
TelemetryDecoder_1C2.decimation_factor=20;
TelemetryDecoder_1C3.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C3.dump=false
TelemetryDecoder_1C3.decimation_factor=20;
TelemetryDecoder_1C4.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C4.dump=false
TelemetryDecoder_1C4.decimation_factor=20;
TelemetryDecoder_1C5.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C5.dump=false
TelemetryDecoder_1C5.decimation_factor=20;
TelemetryDecoder_1C6.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C6.dump=false
TelemetryDecoder_1C6.decimation_factor=20;
TelemetryDecoder_1C7.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C7.dump=false
TelemetryDecoder_1C7.decimation_factor=20;
TelemetryDecoder_2S1.implementation=GPS_L2_M_Telemetry_Decoder ;######### TELEMETRY DECODER GPS L2 CONFIG ############
TelemetryDecoder_2S1.dump=false ;#implementation: Use [GPS_L1_CA_Telemetry_Decoder] for GPS L2 M
TelemetryDecoder_2S1.decimation_factor=1; TelemetryDecoder_2S.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_2S.dump=false
TelemetryDecoder_2S2.implementation=GPS_L2_M_Telemetry_Decoder ;#decimation factor
TelemetryDecoder_2S2.dump=false TelemetryDecoder_2S.decimation_factor=1;
TelemetryDecoder_2S2.decimation_factor=1;
TelemetryDecoder_2S3.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_2S3.dump=false
TelemetryDecoder_2S3.decimation_factor=1;
TelemetryDecoder_2S4.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_2S4.dump=false
TelemetryDecoder_2S4.decimation_factor=1;
TelemetryDecoder_2S5.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_2S5.dump=false
TelemetryDecoder_2S5.decimation_factor=1;
TelemetryDecoder_2S6.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_2S6.dump=false
TelemetryDecoder_2S6.decimation_factor=1;
TelemetryDecoder_2S7.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_2S7.dump=false
TelemetryDecoder_2S7.decimation_factor=1;
TelemetryDecoder_2S8.implementation=GPS_L2_M_Telemetry_Decoder
TelemetryDecoder_2S8.dump=false
TelemetryDecoder_2S8.decimation_factor=1;
;######### OBSERVABLES CONFIG ############ ;######### OBSERVABLES CONFIG ############

View File

@ -64,6 +64,7 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
} }
subdevice_ = configuration->property(role + ".subdevice", empty); subdevice_ = configuration->property(role + ".subdevice", empty);
clock_source_ = configuration->property(role + ".clock_source", std::string("internal"));
RF_channels_ = configuration->property(role + ".RF_channels", 1); RF_channels_ = configuration->property(role + ".RF_channels", 1);
sample_rate_ = configuration->property(role + ".sampling_frequency", (double)4.0e6); sample_rate_ = configuration->property(role + ".sampling_frequency", (double)4.0e6);
item_type_ = configuration->property(role + ".item_type", default_item_type); item_type_ = configuration->property(role + ".item_type", default_item_type);
@ -152,8 +153,7 @@ UhdSignalSource::UhdSignalSource(ConfigurationInterface* configuration,
// 2.1 set sampling clock reference // 2.1 set sampling clock reference
// Set the clock source for the usrp device. // Set the clock source for the usrp device.
// Options: internal, external, or MIMO // Options: internal, external, or MIMO
std::string clk_reference = "internal"; uhd_source_->set_clock_source(clock_source_);
uhd_source_->set_clock_source(clk_reference);
// 2.2 set the sample rate for the usrp device // 2.2 set the sample rate for the usrp device
uhd_source_->set_samp_rate(sample_rate_); uhd_source_->set_samp_rate(sample_rate_);

View File

@ -94,6 +94,7 @@ private:
size_t item_size_; size_t item_size_;
std::string subdevice_; std::string subdevice_;
std::string clock_source_;
std::vector<double> freq_; std::vector<double> freq_;
std::vector<double> gain_; std::vector<double> gain_;

View File

@ -76,6 +76,11 @@ GalileoE1BTelemetryDecoder::GalileoE1BTelemetryDecoder(ConfigurationInterface* c
telemetry_decoder_->set_iono_queue(&global_galileo_iono_queue); telemetry_decoder_->set_iono_queue(&global_galileo_iono_queue);
telemetry_decoder_->set_almanac_queue(&global_galileo_almanac_queue); telemetry_decoder_->set_almanac_queue(&global_galileo_almanac_queue);
telemetry_decoder_->set_utc_model_queue(&global_galileo_utc_model_queue); telemetry_decoder_->set_utc_model_queue(&global_galileo_utc_model_queue);
//decimation factor
int decimation_factor = configuration->property(role + ".decimation_factor", 1);
telemetry_decoder_->set_decimation(decimation_factor);
channel_ = 0; channel_ = 0;
} }

View File

@ -180,6 +180,8 @@ galileo_e1b_telemetry_decoder_cc::galileo_e1b_telemetry_decoder_cc(
d_channel = 0; d_channel = 0;
Prn_timestamp_at_preamble_ms = 0.0; Prn_timestamp_at_preamble_ms = 0.0;
flag_TOW_set = false; flag_TOW_set = false;
d_average_count = 0;
d_decimation_output_factor = 1;
} }
@ -495,13 +497,29 @@ int galileo_e1b_telemetry_decoder_cc::general_work (int noutput_items, gr_vector
LOG(WARNING) << "Exception writing observables dump file " << e.what(); LOG(WARNING) << "Exception writing observables dump file " << e.what();
} }
} }
//todo: implement averaging
d_average_count++;
if (d_average_count == d_decimation_output_factor)
{
d_average_count = 0;
//3. Make the output (copy the object contents to the GNURadio reserved memory) //3. Make the output (copy the object contents to the GNURadio reserved memory)
*out[0] = current_synchro_data; *out[0] = current_synchro_data;
//std::cout<<"GPS L1 TLM output on CH="<<this->d_channel << " SAMPLE STAMP="<<d_sample_counter/d_decimation_output_factor<<std::endl;
return 1; return 1;
}
else
{
return 0;
}
} }
void galileo_e1b_telemetry_decoder_cc::set_decimation(int decimation)
{
d_decimation_output_factor = decimation;
}
void galileo_e1b_telemetry_decoder_cc::set_satellite(Gnss_Satellite satellite) void galileo_e1b_telemetry_decoder_cc::set_satellite(Gnss_Satellite satellite)
{ {
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN()); d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());

View File

@ -72,6 +72,12 @@ public:
void set_iono_queue(concurrent_queue<Galileo_Iono> *iono_queue); //!< Set the iono data queue void set_iono_queue(concurrent_queue<Galileo_Iono> *iono_queue); //!< Set the iono data queue
void set_almanac_queue(concurrent_queue<Galileo_Almanac> *almanac_queue); //!< Set the almanac data queue void set_almanac_queue(concurrent_queue<Galileo_Almanac> *almanac_queue); //!< Set the almanac data queue
void set_utc_model_queue(concurrent_queue<Galileo_Utc_Model> *utc_model_queue); //!< Set the UTC model queue void set_utc_model_queue(concurrent_queue<Galileo_Utc_Model> *utc_model_queue); //!< Set the UTC model queue
/*!
* \brief Set decimation factor to average the GPS synchronization estimation output from the tracking module.
*/
void set_decimation(int decimation);
/*! /*!
* \brief This is where all signal processing takes place * \brief This is where all signal processing takes place
*/ */
@ -132,6 +138,10 @@ private:
Gnss_Satellite d_satellite; Gnss_Satellite d_satellite;
int d_channel; int d_channel;
// output averaging and decimation
int d_average_count;
int d_decimation_output_factor;
double d_preamble_time_seconds; double d_preamble_time_seconds;
double d_TOW_at_Preamble; double d_TOW_at_Preamble;

View File

@ -50,7 +50,7 @@ GpsL2MDllPllTracking::GpsL2MDllPllTracking(
role_(role), in_streams_(in_streams), out_streams_(out_streams), role_(role), in_streams_(in_streams), out_streams_(out_streams),
queue_(queue) queue_(queue)
{ {
LOG(INFO) << "role " << role; DLOG(INFO) << "role " << role;
//################# CONFIGURATION PARAMETERS ######################## //################# CONFIGURATION PARAMETERS ########################
int fs_in; int fs_in;
int vector_length; int vector_length;

View File

@ -473,6 +473,7 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
*out[0] = current_synchro_data; *out[0] = current_synchro_data;
consume_each(samples_offset); //shift input to perform alignment with local replica consume_each(samples_offset); //shift input to perform alignment with local replica
return 1; return 1;
break;
} }
case 2: case 2:
{ {
@ -697,6 +698,37 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz); current_synchro_data.Carrier_Doppler_hz = static_cast<double>(d_carrier_doppler_hz);
current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz); current_synchro_data.CN0_dB_hz = static_cast<double>(d_CN0_SNV_dB_Hz);
current_synchro_data.Flag_valid_tracking = false; current_synchro_data.Flag_valid_tracking = false;
// ########## DEBUG OUTPUT
/*!
* \todo The stop timer has to be moved to the signal source!
*/
// debug: Second counter in channel 0
if (d_channel == 0)
{
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
std::cout << "Current input signal time = " << d_last_seg << " [s]" << std::endl;
std::cout << "Galileo E5 Tracking CH " << d_channel << ": Satellite "
<< Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz] "<<"Doppler="<<d_carrier_doppler_hz<<" [Hz]"<< std::endl;
//if (d_last_seg==5) d_carrier_lock_fail_counter=500; //DEBUG: force unlock!
}
}
else
{
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
std::cout << "Galileo E5 Tracking CH " << d_channel << ": Satellite "
<< Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< ", CN0 = " << d_CN0_SNV_dB_Hz << " [dB-Hz] "<<"Doppler="<<d_carrier_doppler_hz<<" [Hz]"<< std::endl;
//std::cout<<"TRK CH "<<d_channel<<" Carrier_lock_test="<<d_carrier_lock_test<< std::endl;
}
}
} }
else else
{ {
@ -708,8 +740,27 @@ int Galileo_E5a_Dll_Pll_Tracking_cc::general_work (int noutput_items, gr_vector_
current_synchro_data.Code_phase_secs = 0.0; current_synchro_data.Code_phase_secs = 0.0;
current_synchro_data.CN0_dB_hz = 0.0; current_synchro_data.CN0_dB_hz = 0.0;
current_synchro_data.Flag_valid_tracking = false; current_synchro_data.Flag_valid_tracking = false;
// ########## DEBUG OUTPUT (TIME ONLY for channel 0 when tracking is disabled)
/*!
* \todo The stop timer has to be moved to the signal source!
*/
// stream to collect cout calls to improve thread safety
std::stringstream tmp_str_stream;
if (floor(d_sample_counter / d_fs_in) != d_last_seg)
{
d_last_seg = floor(d_sample_counter / d_fs_in);
if (d_channel == 0)
{
// debug: Second counter in channel 0
tmp_str_stream << "Current input signal time = " << d_last_seg << " [s]" << std::endl << std::flush;
std::cout << tmp_str_stream.rdbuf() << std::flush;
}
}
} }
*out[0] = current_synchro_data; *out[0] = current_synchro_data;
break;
} }
} }

View File

@ -53,10 +53,10 @@
/*! /*!
* \todo Include in definition header file * \todo Include in definition header file
*/ */
#define CN0_ESTIMATION_SAMPLES 20 #define GPS_L2M_CN0_ESTIMATION_SAMPLES 10
#define MINIMUM_VALID_CN0 25 #define GPS_L2M_MINIMUM_VALID_CN0 25
#define MAXIMUM_LOCK_FAIL_COUNTER 50 #define GPS_L2M_MAXIMUM_LOCK_FAIL_COUNTER 50
#define CARRIER_LOCK_THRESHOLD 0.85 #define GPS_L2M_CARRIER_LOCK_THRESHOLD 0.75
using google::LogMessage; using google::LogMessage;
@ -158,11 +158,11 @@ gps_l2_m_dll_pll_tracking_cc::gps_l2_m_dll_pll_tracking_cc(
// CN0 estimation and lock detector buffers // CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0; d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES]; d_Prompt_buffer = new gr_complex[GPS_L2M_CN0_ESTIMATION_SAMPLES];
d_carrier_lock_test = 1; d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0; d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0; d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD; d_carrier_lock_threshold = GPS_L2M_CARRIER_LOCK_THRESHOLD;
systemName["G"] = std::string("GPS"); systemName["G"] = std::string("GPS");
@ -358,7 +358,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
float acq_trk_shif_correction_samples; float acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples; int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = (d_sample_counter - (d_acq_sample_stamp-d_current_prn_length_samples)); acq_to_trk_delay_samples = (d_sample_counter - (d_acq_sample_stamp-d_current_prn_length_samples));
acq_trk_shif_correction_samples = fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples)); acq_trk_shif_correction_samples = -fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);//+(1.5*(d_fs_in/GPS_L2_M_CODE_RATE_HZ))); samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);//+(1.5*(d_fs_in/GPS_L2_M_CODE_RATE_HZ)));
// /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE // /todo: Check if the sample counter sent to the next block as a time reference should be incremented AFTER sended or BEFORE
//d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / static_cast<double>(d_fs_in)); //d_sample_counter_seconds = d_sample_counter_seconds + (((double)samples_offset) / static_cast<double>(d_fs_in));
@ -457,7 +457,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
//d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample //d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; //rounding error < 1 sample
// ####### CN0 ESTIMATION AND LOCK DETECTORS ###### // ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES) if (d_cn0_estimation_counter < GPS_L2M_CN0_ESTIMATION_SAMPLES)
{ {
// fill buffer with prompt correlator output values // fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt; d_Prompt_buffer[d_cn0_estimation_counter] = *d_Prompt;
@ -467,11 +467,11 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
{ {
d_cn0_estimation_counter = 0; d_cn0_estimation_counter = 0;
// Code lock indicator // Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L2_M_CODE_LENGTH_CHIPS); d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, GPS_L2M_CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L2_M_CODE_LENGTH_CHIPS);
// Carrier lock indicator // Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES); d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, GPS_L2M_CN0_ESTIMATION_SAMPLES);
// Loss of lock detection // Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0) if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < GPS_L2M_MINIMUM_VALID_CN0)
{ {
d_carrier_lock_fail_counter++; d_carrier_lock_fail_counter++;
} }
@ -479,7 +479,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work (int noutput_items, gr_vector_int
{ {
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--; if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
} }
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER) if (d_carrier_lock_fail_counter > GPS_L2M_MAXIMUM_LOCK_FAIL_COUNTER)
{ {
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; LOG(INFO) << "Loss of lock in channel " << d_channel << "!";

View File

@ -370,7 +370,7 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetChannel_1C(
std::unique_ptr<GNSSBlockInterface> pass_through_ = GetBlock(configuration, "Channel", "Pass_Through", 1, 1, queue); std::unique_ptr<GNSSBlockInterface> pass_through_ = GetBlock(configuration, "Channel", "Pass_Through", 1, 1, queue);
std::unique_ptr<AcquisitionInterface> acq_ = GetAcqBlock(configuration, "Acquisition_1C" + appendix1, acq, 1, 0, queue); std::unique_ptr<AcquisitionInterface> acq_ = GetAcqBlock(configuration, "Acquisition_1C" + appendix1, acq, 1, 0, queue);
std::unique_ptr<TrackingInterface> trk_ = GetTrkBlock(configuration, "Tracking_1C "+ appendix2, trk, 1, 1, queue); std::unique_ptr<TrackingInterface> trk_ = GetTrkBlock(configuration, "Tracking_1C"+ appendix2, trk, 1, 1, queue);
std::unique_ptr<TelemetryDecoderInterface> tlm_ = GetTlmBlock(configuration, "TelemetryDecoder_1C" + appendix3, tlm, 1, 1, queue); std::unique_ptr<TelemetryDecoderInterface> tlm_ = GetTlmBlock(configuration, "TelemetryDecoder_1C" + appendix3, tlm, 1, 1, queue);
std::unique_ptr<GNSSBlockInterface> channel_(new Channel(configuration.get(), channel, pass_through_.release(), std::unique_ptr<GNSSBlockInterface> channel_(new Channel(configuration.get(), channel, pass_through_.release(),