1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-06-24 22:13:15 +00:00

Adding new gnss-sdr volk kernel for a faster local signal replica generation

This commit is contained in:
Javier Arribas 2018-08-03 11:02:01 +02:00
parent f9573987a2
commit a23231479f
3 changed files with 905 additions and 0 deletions

View File

@ -0,0 +1,278 @@
/*!
* \file volk_gnsssdr_32f_fast_resamplerxnpuppet_32f.h
* \brief VOLK_GNSSSDR puppet for the multiple 32-bit float vector fast resampler kernel.
* \authors <ul>
* <li> Cillian O'Driscoll 2017 cillian.odriscoll at gmail dot com
* <li> Javier Arribas, 2018. javiarribas(at)gmail.com
* </ul>
*
* VOLK_GNSSSDR puppet for integrating the multiple resampler into the test system
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef INCLUDED_volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_H
#define INCLUDED_volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_H
#include "volk_gnsssdr/volk_gnsssdr_32f_xn_fast_resampler_32f_xn.h"
#include <volk_gnsssdr/volk_gnsssdr_malloc.h>
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <string.h>
#ifdef LV_HAVE_GENERIC
static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_generic(float* result, const float* local_code, unsigned int num_points)
{
int code_length_chips = 2046;
float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
int num_out_vectors = 3;
float rem_code_phase_chips = -0.234;
unsigned int n;
float shifts_chips[3] = {-0.1, 0.0, 0.1};
float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
for (n = 0; n < num_out_vectors; n++)
{
result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
}
volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
for (n = 0; n < num_out_vectors; n++)
{
volk_gnsssdr_free(result_aux[n]);
}
volk_gnsssdr_free(result_aux);
}
#endif /* LV_HAVE_GENERIC */
//#ifdef LV_HAVE_SSE3
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_a_sse3(float* result, const float* local_code, unsigned int num_points)
//{
// int code_length_chips = 2046;
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// int num_out_vectors = 3;
// float rem_code_phase_chips = -0.234;
// unsigned int n;
// float shifts_chips[3] = {-0.1, 0.0, 0.1};
//
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// for (n = 0; n < num_out_vectors; n++)
// {
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
// }
//
// volk_gnsssdr_32f_xn_resampler_32f_xn_a_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
//
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
//
// for (n = 0; n < num_out_vectors; n++)
// {
// volk_gnsssdr_free(result_aux[n]);
// }
// volk_gnsssdr_free(result_aux);
//}
//
//#endif
//
//#ifdef LV_HAVE_SSE3
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_u_sse3(float* result, const float* local_code, unsigned int num_points)
//{
// int code_length_chips = 2046;
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// int num_out_vectors = 3;
// float rem_code_phase_chips = -0.234;
// unsigned int n;
// float shifts_chips[3] = {-0.1, 0.0, 0.1};
//
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// for (n = 0; n < num_out_vectors; n++)
// {
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
// }
//
// volk_gnsssdr_32f_xn_resampler_32f_xn_u_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
//
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
//
// for (n = 0; n < num_out_vectors; n++)
// {
// volk_gnsssdr_free(result_aux[n]);
// }
// volk_gnsssdr_free(result_aux);
//}
//
//#endif
//
//
//#ifdef LV_HAVE_SSE4_1
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_u_sse4_1(float* result, const float* local_code, unsigned int num_points)
//{
// int code_length_chips = 2046;
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// int num_out_vectors = 3;
// float rem_code_phase_chips = -0.234;
// unsigned int n;
// float shifts_chips[3] = {-0.1, 0.0, 0.1};
//
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// for (n = 0; n < num_out_vectors; n++)
// {
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
// }
//
// volk_gnsssdr_32f_xn_resampler_32f_xn_u_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
//
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
//
// for (n = 0; n < num_out_vectors; n++)
// {
// volk_gnsssdr_free(result_aux[n]);
// }
// volk_gnsssdr_free(result_aux);
//}
//
//#endif
//
//#ifdef LV_HAVE_SSE4_1
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_a_sse4_1(float* result, const float* local_code, unsigned int num_points)
//{
// int code_length_chips = 2046;
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// int num_out_vectors = 3;
// float rem_code_phase_chips = -0.234;
// unsigned int n;
// float shifts_chips[3] = {-0.1, 0.0, 0.1};
//
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// for (n = 0; n < num_out_vectors; n++)
// {
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
// }
//
// volk_gnsssdr_32f_xn_resampler_32f_xn_a_sse4_1(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
//
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
//
// for (n = 0; n < num_out_vectors; n++)
// {
// volk_gnsssdr_free(result_aux[n]);
// }
// volk_gnsssdr_free(result_aux);
//}
//
//#endif
//
//#ifdef LV_HAVE_AVX
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_a_avx(float* result, const float* local_code, unsigned int num_points)
//{
// int code_length_chips = 2046;
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// int num_out_vectors = 3;
// float rem_code_phase_chips = -0.234;
// unsigned int n;
// float shifts_chips[3] = {-0.1, 0.0, 0.1};
//
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// for (n = 0; n < num_out_vectors; n++)
// {
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
// }
//
// volk_gnsssdr_32f_xn_resampler_32f_xn_a_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
//
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
//
// for (n = 0; n < num_out_vectors; n++)
// {
// volk_gnsssdr_free(result_aux[n]);
// }
// volk_gnsssdr_free(result_aux);
//}
//#endif
//
//
//#ifdef LV_HAVE_AVX
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_u_avx(float* result, const float* local_code, unsigned int num_points)
//{
// int code_length_chips = 2046;
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// int num_out_vectors = 3;
// float rem_code_phase_chips = -0.234;
// unsigned int n;
// float shifts_chips[3] = {-0.1, 0.0, 0.1};
//
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// for (n = 0; n < num_out_vectors; n++)
// {
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
// }
//
// volk_gnsssdr_32f_xn_resampler_32f_xn_u_avx(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
//
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
//
// for (n = 0; n < num_out_vectors; n++)
// {
// volk_gnsssdr_free(result_aux[n]);
// }
// volk_gnsssdr_free(result_aux);
//}
//#endif
//
//#ifdef LV_HAVE_NEONV7
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_neon(float* result, const float* local_code, unsigned int num_points)
//{
// int code_length_chips = 2046;
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// int num_out_vectors = 3;
// float rem_code_phase_chips = -0.234;
// unsigned int n;
// float shifts_chips[3] = {-0.1, 0.0, 0.1};
//
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// for (n = 0; n < num_out_vectors; n++)
// {
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
// }
//
// volk_gnsssdr_32f_xn_resampler_32f_xn_neon(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
//
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
//
// for (n = 0; n < num_out_vectors; n++)
// {
// volk_gnsssdr_free(result_aux[n]);
// }
// volk_gnsssdr_free(result_aux);
//}
//#endif
#endif // INCLUDED_volk_gnsssdr_32f_fast_resamplerpuppet_32f_H

View File

@ -0,0 +1,626 @@
/*!
* \file volk_gnsssdr_32f_xn_fast_resampler_32f_xn.h
* \brief VOLK_GNSSSDR kernel: Resamples 1 complex 32-bit float vectors using zero hold resample algorithm
* and produces the delayed replicas by copying and rotating the resulting resampled signal.
* \authors <ul>
* <li> Cillian O'Driscoll, 2017. cillian.odirscoll(at)gmail.com
* <li> Javier Arribas, 2018. javiarribas(at)gmail.com
* </ul>
*
* VOLK_GNSSSDR kernel that resamples N 32-bit float vectors using zero hold resample algorithm.
* It is optimized to resample a single GNSS local code signal replica into 1 vector fractional-resampled and fractional-delayed
* and produces the delayed replicas by copying and rotating the resulting resampled signal.
* (i.e. it creates the Early, Prompt, and Late code replicas)
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2018 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <https://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
/*!
* \page volk_gnsssdr_32f_xn_fast_resampler_32f_xn
*
* \b Overview
*
* Resamples a 32-bit floating point vector , providing \p num_out_vectors outputs.
*
* <b>Dispatcher Prototype</b>
* \code
* void volk_gnsssdr_32f_xn_fast_resampler_32f_xn(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
* \endcode
*
* \b Inputs
* \li local_code: Vector to be resampled.
* \li rem_code_phase_chips: Remnant code phase [chips].
* \li code_phase_step_chips: Phase increment per sample [chips/sample].
* \li shifts_chips: Vector of floats that defines the spacing (in chips) between the replicas of \p local_code
* \li code_length_chips: Code length in chips.
* \li num_out_vectors Number of output vectors.
* \li num_points: The number of data values to be in the resampled vector.
*
* \b Outputs
* \li result: Pointer to a vector of pointers where the results will be stored.
*
*/
#ifndef INCLUDED_volk_gnsssdr_32f_xn_fast_resampler_32f_xn_H
#define INCLUDED_volk_gnsssdr_32f_xn_fast_resampler_32f_xn_H
#include <assert.h>
#include <math.h>
#include <stdlib.h> /* abs */
#include <stdint.h> /* int64_t */
#include <stdio.h>
#include <volk_gnsssdr/volk_gnsssdr_common.h>
#include <volk_gnsssdr/volk_gnsssdr_complex.h>
#ifdef LV_HAVE_GENERIC
static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{
int local_code_chip_index;
int current_correlator_tap;
int n;
//first correlator
for (n = 0; n < num_points; n++)
{
// resample code for current tap
local_code_chip_index = (int)floor(code_phase_step_chips * (float)n + shifts_chips[0] - rem_code_phase_chips);
//Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index < 0) local_code_chip_index += (int)code_length_chips * (abs(local_code_chip_index) / code_length_chips + 1);
local_code_chip_index = local_code_chip_index % code_length_chips;
result[0][n] = local_code[local_code_chip_index];
}
//adjacent correlators
unsigned int shift_samples = 0;
for (current_correlator_tap = 1; current_correlator_tap < num_out_vectors; current_correlator_tap++)
{
shift_samples += (int)round((shifts_chips[current_correlator_tap] - shifts_chips[current_correlator_tap - 1]) / code_phase_step_chips);
memcpy(&result[current_correlator_tap][0], &result[0][shift_samples], (num_points - shift_samples) * sizeof(float));
memcpy(&result[current_correlator_tap][num_points - shift_samples], &result[0][0], shift_samples * sizeof(float));
}
}
#endif /*LV_HAVE_GENERIC*/
//#ifdef LV_HAVE_SSE3
//#include <pmmintrin.h>
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
//{
// float** _result = result;
// const unsigned int quarterPoints = num_points / 4;
// int current_correlator_tap;
// unsigned int n;
// unsigned int k;
// const __m128 ones = _mm_set1_ps(1.0f);
// const __m128 fours = _mm_set1_ps(4.0f);
// const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
// const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
//
// __VOLK_ATTR_ALIGNED(16)
// int local_code_chip_index[4];
// int local_code_chip_index_;
//
// const __m128i zeros = _mm_setzero_si128();
// const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
// const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
// __m128i local_code_chip_index_reg, aux_i, negatives, i;
// __m128 aux, aux2, shifts_chips_reg, fi, igx, j, c, cTrunc, base;
//
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
// {
// shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
// aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
// __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
// for (n = 0; n < quarterPoints; n++)
// {
// aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
// aux = _mm_add_ps(aux, aux2);
// // floor
// i = _mm_cvttps_epi32(aux);
// fi = _mm_cvtepi32_ps(i);
// igx = _mm_cmpgt_ps(fi, aux);
// j = _mm_and_ps(igx, ones);
// aux = _mm_sub_ps(fi, j);
// // fmod
// c = _mm_div_ps(aux, code_length_chips_reg_f);
// i = _mm_cvttps_epi32(c);
// cTrunc = _mm_cvtepi32_ps(i);
// base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
// local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
//
// negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
// aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
// local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
// _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
// for (k = 0; k < 4; ++k)
// {
// _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
// }
// indexn = _mm_add_ps(indexn, fours);
// }
// for (n = quarterPoints * 4; n < num_points; n++)
// {
// // resample code for current tap
// local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
// //Take into account that in multitap correlators, the shifts can be negative!
// if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[current_correlator_tap][n] = local_code[local_code_chip_index_];
// }
// }
//}
//
//#endif
//
//
//#ifdef LV_HAVE_SSE3
//#include <pmmintrin.h>
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
//{
// float** _result = result;
// const unsigned int quarterPoints = num_points / 4;
// int current_correlator_tap;
// unsigned int n;
// unsigned int k;
// const __m128 ones = _mm_set1_ps(1.0f);
// const __m128 fours = _mm_set1_ps(4.0f);
// const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
// const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
//
// __VOLK_ATTR_ALIGNED(16)
// int local_code_chip_index[4];
// int local_code_chip_index_;
//
// const __m128i zeros = _mm_setzero_si128();
// const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
// const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
// __m128i local_code_chip_index_reg, aux_i, negatives, i;
// __m128 aux, aux2, shifts_chips_reg, fi, igx, j, c, cTrunc, base;
//
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
// {
// shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
// aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
// __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
// for (n = 0; n < quarterPoints; n++)
// {
// aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
// aux = _mm_add_ps(aux, aux2);
// // floor
// i = _mm_cvttps_epi32(aux);
// fi = _mm_cvtepi32_ps(i);
// igx = _mm_cmpgt_ps(fi, aux);
// j = _mm_and_ps(igx, ones);
// aux = _mm_sub_ps(fi, j);
// // fmod
// c = _mm_div_ps(aux, code_length_chips_reg_f);
// i = _mm_cvttps_epi32(c);
// cTrunc = _mm_cvtepi32_ps(i);
// base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
// local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
//
// negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
// aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
// local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
// _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
// for (k = 0; k < 4; ++k)
// {
// _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
// }
// indexn = _mm_add_ps(indexn, fours);
// }
// for (n = quarterPoints * 4; n < num_points; n++)
// {
// // resample code for current tap
// local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
// //Take into account that in multitap correlators, the shifts can be negative!
// if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[current_correlator_tap][n] = local_code[local_code_chip_index_];
// }
// }
//}
//#endif
//
//
//#ifdef LV_HAVE_SSE4_1
//#include <smmintrin.h>
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
//{
// float** _result = result;
// const unsigned int quarterPoints = num_points / 4;
// int current_correlator_tap;
// unsigned int n;
// unsigned int k;
// const __m128 fours = _mm_set1_ps(4.0f);
// const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
// const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
//
// __VOLK_ATTR_ALIGNED(16)
// int local_code_chip_index[4];
// int local_code_chip_index_;
//
// const __m128i zeros = _mm_setzero_si128();
// const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
// const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
// __m128i local_code_chip_index_reg, aux_i, negatives, i;
// __m128 aux, aux2, shifts_chips_reg, c, cTrunc, base;
//
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
// {
// shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
// aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
// __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
// for (n = 0; n < quarterPoints; n++)
// {
// aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
// aux = _mm_add_ps(aux, aux2);
// // floor
// aux = _mm_floor_ps(aux);
//
// // fmod
// c = _mm_div_ps(aux, code_length_chips_reg_f);
// i = _mm_cvttps_epi32(c);
// cTrunc = _mm_cvtepi32_ps(i);
// base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
// local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
//
// negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
// aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
// local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
// _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
// for (k = 0; k < 4; ++k)
// {
// _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
// }
// indexn = _mm_add_ps(indexn, fours);
// }
// for (n = quarterPoints * 4; n < num_points; n++)
// {
// // resample code for current tap
// local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
// //Take into account that in multitap correlators, the shifts can be negative!
// if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[current_correlator_tap][n] = local_code[local_code_chip_index_];
// }
// }
//}
//
//#endif
//
//
//#ifdef LV_HAVE_SSE4_1
//#include <smmintrin.h>
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse4_1(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
//{
// float** _result = result;
// const unsigned int quarterPoints = num_points / 4;
// int current_correlator_tap;
// unsigned int n;
// unsigned int k;
// const __m128 fours = _mm_set1_ps(4.0f);
// const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
// const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
//
// __VOLK_ATTR_ALIGNED(16)
// int local_code_chip_index[4];
// int local_code_chip_index_;
//
// const __m128i zeros = _mm_setzero_si128();
// const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
// const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
// __m128i local_code_chip_index_reg, aux_i, negatives, i;
// __m128 aux, aux2, shifts_chips_reg, c, cTrunc, base;
//
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
// {
// shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
// aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
// __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
// for (n = 0; n < quarterPoints; n++)
// {
// aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
// aux = _mm_add_ps(aux, aux2);
// // floor
// aux = _mm_floor_ps(aux);
//
// // fmod
// c = _mm_div_ps(aux, code_length_chips_reg_f);
// i = _mm_cvttps_epi32(c);
// cTrunc = _mm_cvtepi32_ps(i);
// base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
// local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
//
// negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
// aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
// local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
// _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
// for (k = 0; k < 4; ++k)
// {
// _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
// }
// indexn = _mm_add_ps(indexn, fours);
// }
// for (n = quarterPoints * 4; n < num_points; n++)
// {
// // resample code for current tap
// local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
// //Take into account that in multitap correlators, the shifts can be negative!
// if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[current_correlator_tap][n] = local_code[local_code_chip_index_];
// }
// }
//}
//
//#endif
//
//
//#ifdef LV_HAVE_AVX
//#include <immintrin.h>
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_avx(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
//{
// float** _result = result;
// const unsigned int avx_iters = num_points / 8;
// int current_correlator_tap;
// unsigned int n;
// unsigned int k;
// const __m256 eights = _mm256_set1_ps(8.0f);
// const __m256 rem_code_phase_chips_reg = _mm256_set1_ps(rem_code_phase_chips);
// const __m256 code_phase_step_chips_reg = _mm256_set1_ps(code_phase_step_chips);
//
// __VOLK_ATTR_ALIGNED(32)
// int local_code_chip_index[8];
// int local_code_chip_index_;
//
// const __m256 zeros = _mm256_setzero_ps();
// const __m256 code_length_chips_reg_f = _mm256_set1_ps((float)code_length_chips);
// const __m256 n0 = _mm256_set_ps(7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f, 0.0f);
//
// __m256i local_code_chip_index_reg, i;
// __m256 aux, aux2, aux3, shifts_chips_reg, c, cTrunc, base, negatives, indexn;
//
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
// {
// shifts_chips_reg = _mm256_set1_ps((float)shifts_chips[current_correlator_tap]);
// aux2 = _mm256_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
// indexn = n0;
// for (n = 0; n < avx_iters; n++)
// {
// __VOLK_GNSSSDR_PREFETCH_LOCALITY(&_result[current_correlator_tap][8 * n + 7], 1, 0);
// __VOLK_GNSSSDR_PREFETCH_LOCALITY(&local_code_chip_index[8], 1, 3);
// aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn);
// aux = _mm256_add_ps(aux, aux2);
// // floor
// aux = _mm256_floor_ps(aux);
//
// // fmod
// c = _mm256_div_ps(aux, code_length_chips_reg_f);
// i = _mm256_cvttps_epi32(c);
// cTrunc = _mm256_cvtepi32_ps(i);
// base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f);
// local_code_chip_index_reg = _mm256_cvttps_epi32(_mm256_sub_ps(aux, base));
//
// // no negatives
// c = _mm256_cvtepi32_ps(local_code_chip_index_reg);
// negatives = _mm256_cmp_ps(c, zeros, 0x01);
// aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives);
// aux = _mm256_add_ps(c, aux3);
// local_code_chip_index_reg = _mm256_cvttps_epi32(aux);
//
// _mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg);
// for (k = 0; k < 8; ++k)
// {
// _result[current_correlator_tap][n * 8 + k] = local_code[local_code_chip_index[k]];
// }
// indexn = _mm256_add_ps(indexn, eights);
// }
// }
// _mm256_zeroupper();
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
// {
// for (n = avx_iters * 8; n < num_points; n++)
// {
// // resample code for current tap
// local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
// //Take into account that in multitap correlators, the shifts can be negative!
// if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[current_correlator_tap][n] = local_code[local_code_chip_index_];
// }
// }
//}
//
//#endif
//
//
//#ifdef LV_HAVE_AVX
//#include <immintrin.h>
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_avx(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
//{
// float** _result = result;
// const unsigned int avx_iters = num_points / 8;
// int current_correlator_tap;
// unsigned int n;
// unsigned int k;
// const __m256 eights = _mm256_set1_ps(8.0f);
// const __m256 rem_code_phase_chips_reg = _mm256_set1_ps(rem_code_phase_chips);
// const __m256 code_phase_step_chips_reg = _mm256_set1_ps(code_phase_step_chips);
//
// __VOLK_ATTR_ALIGNED(32)
// int local_code_chip_index[8];
// int local_code_chip_index_;
//
// const __m256 zeros = _mm256_setzero_ps();
// const __m256 code_length_chips_reg_f = _mm256_set1_ps((float)code_length_chips);
// const __m256 n0 = _mm256_set_ps(7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f, 0.0f);
//
// __m256i local_code_chip_index_reg, i;
// __m256 aux, aux2, aux3, shifts_chips_reg, c, cTrunc, base, negatives, indexn;
//
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
// {
// shifts_chips_reg = _mm256_set1_ps((float)shifts_chips[current_correlator_tap]);
// aux2 = _mm256_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
// indexn = n0;
// for (n = 0; n < avx_iters; n++)
// {
// __VOLK_GNSSSDR_PREFETCH_LOCALITY(&_result[current_correlator_tap][8 * n + 7], 1, 0);
// __VOLK_GNSSSDR_PREFETCH_LOCALITY(&local_code_chip_index[8], 1, 3);
// aux = _mm256_mul_ps(code_phase_step_chips_reg, indexn);
// aux = _mm256_add_ps(aux, aux2);
// // floor
// aux = _mm256_floor_ps(aux);
//
// // fmod
// c = _mm256_div_ps(aux, code_length_chips_reg_f);
// i = _mm256_cvttps_epi32(c);
// cTrunc = _mm256_cvtepi32_ps(i);
// base = _mm256_mul_ps(cTrunc, code_length_chips_reg_f);
// local_code_chip_index_reg = _mm256_cvttps_epi32(_mm256_sub_ps(aux, base));
//
// // no negatives
// c = _mm256_cvtepi32_ps(local_code_chip_index_reg);
// negatives = _mm256_cmp_ps(c, zeros, 0x01);
// aux3 = _mm256_and_ps(code_length_chips_reg_f, negatives);
// aux = _mm256_add_ps(c, aux3);
// local_code_chip_index_reg = _mm256_cvttps_epi32(aux);
//
// _mm256_store_si256((__m256i*)local_code_chip_index, local_code_chip_index_reg);
// for (k = 0; k < 8; ++k)
// {
// _result[current_correlator_tap][n * 8 + k] = local_code[local_code_chip_index[k]];
// }
// indexn = _mm256_add_ps(indexn, eights);
// }
// }
// _mm256_zeroupper();
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
// {
// for (n = avx_iters * 8; n < num_points; n++)
// {
// // resample code for current tap
// local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
// //Take into account that in multitap correlators, the shifts can be negative!
// if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[current_correlator_tap][n] = local_code[local_code_chip_index_];
// }
// }
//}
//
//#endif
//
//
//#ifdef LV_HAVE_NEONV7
//#include <arm_neon.h>
//
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_neon(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
//{
// float** _result = result;
// const unsigned int neon_iters = num_points / 4;
// int current_correlator_tap;
// unsigned int n;
// unsigned int k;
// const int32x4_t ones = vdupq_n_s32(1);
// const float32x4_t fours = vdupq_n_f32(4.0f);
// const float32x4_t rem_code_phase_chips_reg = vdupq_n_f32(rem_code_phase_chips);
// const float32x4_t code_phase_step_chips_reg = vdupq_n_f32(code_phase_step_chips);
//
// __VOLK_ATTR_ALIGNED(16)
// int32_t local_code_chip_index[4];
// int32_t local_code_chip_index_;
//
// const int32x4_t zeros = vdupq_n_s32(0);
// const float32x4_t code_length_chips_reg_f = vdupq_n_f32((float)code_length_chips);
// const int32x4_t code_length_chips_reg_i = vdupq_n_s32((int32_t)code_length_chips);
// int32x4_t local_code_chip_index_reg, aux_i, negatives, i;
// float32x4_t aux, aux2, shifts_chips_reg, fi, c, j, cTrunc, base, indexn, reciprocal;
// __VOLK_ATTR_ALIGNED(16)
// const float vec[4] = {0.0f, 1.0f, 2.0f, 3.0f};
// uint32x4_t igx;
// reciprocal = vrecpeq_f32(code_length_chips_reg_f);
// reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal);
// reciprocal = vmulq_f32(vrecpsq_f32(code_length_chips_reg_f, reciprocal), reciprocal); // this refinement is required!
// float32x4_t n0 = vld1q_f32((float*)vec);
//
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
// {
// shifts_chips_reg = vdupq_n_f32((float)shifts_chips[current_correlator_tap]);
// aux2 = vsubq_f32(shifts_chips_reg, rem_code_phase_chips_reg);
// indexn = n0;
// for (n = 0; n < neon_iters; n++)
// {
// __VOLK_GNSSSDR_PREFETCH_LOCALITY(&_result[current_correlator_tap][4 * n + 3], 1, 0);
// __VOLK_GNSSSDR_PREFETCH(&local_code_chip_index[4]);
// aux = vmulq_f32(code_phase_step_chips_reg, indexn);
// aux = vaddq_f32(aux, aux2);
//
// //floor
// i = vcvtq_s32_f32(aux);
// fi = vcvtq_f32_s32(i);
// igx = vcgtq_f32(fi, aux);
// j = vcvtq_f32_s32(vandq_s32(vreinterpretq_s32_u32(igx), ones));
// aux = vsubq_f32(fi, j);
//
// // fmod
// c = vmulq_f32(aux, reciprocal);
// i = vcvtq_s32_f32(c);
// cTrunc = vcvtq_f32_s32(i);
// base = vmulq_f32(cTrunc, code_length_chips_reg_f);
// aux = vsubq_f32(aux, base);
// local_code_chip_index_reg = vcvtq_s32_f32(aux);
//
// negatives = vreinterpretq_s32_u32(vcltq_s32(local_code_chip_index_reg, zeros));
// aux_i = vandq_s32(code_length_chips_reg_i, negatives);
// local_code_chip_index_reg = vaddq_s32(local_code_chip_index_reg, aux_i);
//
// vst1q_s32((int32_t*)local_code_chip_index, local_code_chip_index_reg);
//
// for (k = 0; k < 4; ++k)
// {
// _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
// }
// indexn = vaddq_f32(indexn, fours);
// }
// for (n = neon_iters * 4; n < num_points; n++)
// {
// __VOLK_GNSSSDR_PREFETCH_LOCALITY(&_result[current_correlator_tap][n], 1, 0);
// // resample code for current tap
// local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
// //Take into account that in multitap correlators, the shifts can be negative!
// if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[current_correlator_tap][n] = local_code[local_code_chip_index_];
// }
// }
//}
//
//#endif
#endif /*INCLUDED_volk_gnsssdr_32f_xn_fast_resampler_32f_xn_H*/

View File

@ -93,6 +93,7 @@ std::vector<volk_gnsssdr_test_case_t> init_test_list(volk_gnsssdr_test_params_t
QA(VOLK_INIT_PUPP(volk_gnsssdr_16i_resamplerxnpuppet_16i, volk_gnsssdr_16i_xn_resampler_16i_xn, test_params))
QA(VOLK_INIT_PUPP(volk_gnsssdr_32fc_resamplerxnpuppet_32fc, volk_gnsssdr_32fc_xn_resampler_32fc_xn, test_params))
QA(VOLK_INIT_PUPP(volk_gnsssdr_32f_resamplerxnpuppet_32f, volk_gnsssdr_32f_xn_resampler_32f_xn, test_params))
QA(VOLK_INIT_PUPP(volk_gnsssdr_32f_fast_resamplerxnpuppet_32f, volk_gnsssdr_32f_xn_fast_resampler_32f_xn, test_params))
QA(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_dot_prod_16ic_xn, test_params))
QA(VOLK_INIT_PUPP(volk_gnsssdr_16ic_x2_rotator_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_x2_rotator_dot_prod_16ic_xn, test_params_int16))
QA(VOLK_INIT_PUPP(volk_gnsssdr_16ic_16i_rotator_dotprodxnpuppet_16ic, volk_gnsssdr_16ic_16i_rotator_dot_prod_16ic_xn, test_params_int16))