1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 12:40:35 +00:00

Initialize all members in the constructor

Replace C-style casts by C++ casts
Fixes spelling errors
Other minor cleaning for consistency
This commit is contained in:
Carles Fernandez 2018-05-19 20:23:48 +02:00
parent 9a020457da
commit a05952c966
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D

View File

@ -33,10 +33,8 @@
#include "gr_complex_ip_packet_source.h"
#include <gnuradio/io_signature.h>
//#include <cstdlib>
#define FIFO_SIZE 1472000
const int FIFO_SIZE = 1472000;
/* 4 bytes IP address */
@ -48,6 +46,7 @@ typedef struct gr_ip_address
u_char byte4;
} gr_ip_address;
/* IPv4 header */
typedef struct gr_ip_header
{
@ -64,6 +63,7 @@ typedef struct gr_ip_header
u_int op_pad; // Option + Padding
} gr_ip_header;
/* UDP header*/
typedef struct gr_udp_header
{
@ -73,6 +73,7 @@ typedef struct gr_udp_header
u_short crc; // Checksum
} gr_udp_header;
gr_complex_ip_packet_source::sptr
gr_complex_ip_packet_source::make(std::string src_device,
std::string origin_address,
@ -93,6 +94,7 @@ gr_complex_ip_packet_source::make(std::string src_device,
IQ_swap_));
}
/*
* The private constructor
*/
@ -106,9 +108,8 @@ gr_complex_ip_packet_source::gr_complex_ip_packet_source(std::string src_device,
bool IQ_swap_)
: gr::sync_block("gr_complex_ip_packet_source",
gr::io_signature::make(0, 0, 0),
gr::io_signature::make(1, 4, item_size)) //1 to 4 baseband complex channels
gr::io_signature::make(1, 4, item_size)) // 1 to 4 baseband complex channels
{
// constructor code here
std::cout << "Start Ethernet packet capture\n";
d_n_baseband_channels = n_baseband_channels;
@ -133,7 +134,7 @@ gr_complex_ip_packet_source::gr_complex_ip_packet_source(std::string src_device,
d_udp_payload_size = udp_packet_size;
d_fifo_full = false;
//allocate signal samples buffer
// allocate signal samples buffer
fifo_buff = new char[FIFO_SIZE];
fifo_read_ptr = 0;
fifo_write_ptr = 0;
@ -143,14 +144,16 @@ gr_complex_ip_packet_source::gr_complex_ip_packet_source(std::string src_device,
d_sock_raw = 0;
d_pcap_thread = NULL;
descr = NULL;
memset(reinterpret_cast<char *>(&si_me), 0, sizeof(si_me));
}
//Called by gnuradio to enable drivers, etc for i/o devices.
// Called by gnuradio to enable drivers, etc for i/o devices.
bool gr_complex_ip_packet_source::start()
{
std::cout << "gr_complex_ip_packet_source START\n";
//open the ethernet device
// open the ethernet device
if (open() == true)
{
// start pcap capture thread
@ -163,7 +166,8 @@ bool gr_complex_ip_packet_source::start()
}
}
//Called by gnuradio to disable drivers, etc for i/o devices.
// Called by gnuradio to disable drivers, etc for i/o devices.
bool gr_complex_ip_packet_source::stop()
{
std::cout << "gr_complex_ip_packet_source STOP\n";
@ -176,42 +180,44 @@ bool gr_complex_ip_packet_source::stop()
return true;
}
bool gr_complex_ip_packet_source::open()
{
char errbuf[PCAP_ERRBUF_SIZE];
boost::mutex::scoped_lock lock(d_mutex); // hold mutex for duration of this function
/* open device for reading */
// open device for reading
descr = pcap_open_live(d_src_device.c_str(), 1500, 1, 1000, errbuf);
if (descr == NULL)
{
std::cout << "Error openning Ethernet device " << d_src_device << std::endl;
printf("Fatal Error in pcap_open_live(): %s\n", errbuf);
std::cout << "Error opening Ethernet device " << d_src_device << std::endl;
std::cout << "Fatal Error in pcap_open_live(): " << std::string(errbuf) << std::endl;
return false;
}
//bind UDP port to avoid automatic reply with ICMP port ureacheable packets from kernel
// bind UDP port to avoid automatic reply with ICMP port unreachable packets from kernel
d_sock_raw = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (d_sock_raw == -1)
{
std::cout << "Error openning UDP socket" << std::endl;
std::cout << "Error opening UDP socket" << std::endl;
return false;
}
// zero out the structure
memset((char *)&si_me, 0, sizeof(si_me));
memset(reinterpret_cast<char *>(&si_me), 0, sizeof(si_me));
si_me.sin_family = AF_INET;
si_me.sin_port = htons(d_udp_port);
si_me.sin_addr.s_addr = htonl(INADDR_ANY);
//bind socket to port
if (bind(d_sock_raw, (struct sockaddr *)&si_me, sizeof(si_me)) == -1)
// bind socket to port
if (bind(d_sock_raw, reinterpret_cast<struct sockaddr *>(&si_me), sizeof(si_me)) == -1)
{
std::cout << "Error openning UDP socket" << std::endl;
std::cout << "Error opening UDP socket" << std::endl;
return false;
}
return true;
}
gr_complex_ip_packet_source::~gr_complex_ip_packet_source()
{
if (d_pcap_thread != NULL)
@ -222,35 +228,36 @@ gr_complex_ip_packet_source::~gr_complex_ip_packet_source()
std::cout << "Stop Ethernet packet capture\n";
}
void gr_complex_ip_packet_source::static_pcap_callback(u_char *args, const struct pcap_pkthdr *pkthdr,
const u_char *packet)
{
gr_complex_ip_packet_source *bridge = (gr_complex_ip_packet_source *)args;
gr_complex_ip_packet_source *bridge = reinterpret_cast<gr_complex_ip_packet_source *>(args);
bridge->pcap_callback(args, pkthdr, packet);
}
void gr_complex_ip_packet_source::pcap_callback(__attribute__((unused)) u_char *args, __attribute__((unused)) const struct pcap_pkthdr *pkthdr,
const u_char *packet)
{
boost::mutex::scoped_lock lock(d_mutex); // hold mutex for duration of this function
gr_ip_header *ih;
gr_udp_header *uh;
const gr_ip_header *ih;
const gr_udp_header *uh;
// eth frame parameters
// **** UDP RAW PACKET DECODER ****
if ((packet[12] == 0x08) & (packet[13] == 0x00)) //IP FRAME
if ((packet[12] == 0x08) & (packet[13] == 0x00)) // IP FRAME
{
/* retireve the position of the ip header */
ih = (gr_ip_header *)(packet +
14); //length of ethernet header
// retrieve the position of the ip header
ih = reinterpret_cast<const gr_ip_header *>(packet + 14); // length of ethernet header
/* retireve the position of the udp header */
// retrieve the position of the udp header
u_int ip_len;
ip_len = (ih->ver_ihl & 0xf) * 4;
uh = (gr_udp_header *)((u_char *)ih + ip_len);
uh = reinterpret_cast<const gr_udp_header *>(reinterpret_cast<const u_char *>(ih) + ip_len);
/* convert from network byte order to host byte order */
// convert from network byte order to host byte order
//u_short sport;
u_short dport;
dport = ntohs(uh->dport);
@ -271,44 +278,45 @@ void gr_complex_ip_packet_source::pcap_callback(__attribute__((unused)) u_char *
// dport);
// std::cout<<"uh->len:"<<ntohs(uh->len)<<std::endl;
int payload_lenght_bytes = ntohs(uh->len) - 8; //total udp packet lenght minus the header lenght
//read the payload bytes and insert them into the shared circular buffer
u_char *udp_payload = ((u_char *)uh + sizeof(gr_udp_header));
if (fifo_items <= (FIFO_SIZE - payload_lenght_bytes))
int payload_length_bytes = ntohs(uh->len) - 8; // total udp packet length minus the header length
// read the payload bytes and insert them into the shared circular buffer
const u_char *udp_payload = (reinterpret_cast<const u_char *>(uh) + sizeof(gr_udp_header));
if (fifo_items <= (FIFO_SIZE - payload_length_bytes))
{
int aligned_write_items = FIFO_SIZE - fifo_write_ptr;
if (aligned_write_items >= payload_lenght_bytes)
if (aligned_write_items >= payload_length_bytes)
{
//write all in a single memcpy
memcpy(&fifo_buff[fifo_write_ptr], &udp_payload[0], payload_lenght_bytes); //size in bytes
fifo_write_ptr += payload_lenght_bytes;
// write all in a single memcpy
memcpy(&fifo_buff[fifo_write_ptr], &udp_payload[0], payload_length_bytes); // size in bytes
fifo_write_ptr += payload_length_bytes;
if (fifo_write_ptr == FIFO_SIZE) fifo_write_ptr = 0;
fifo_items += payload_lenght_bytes;
fifo_items += payload_length_bytes;
}
else
{
//two step wrap write
memcpy(&fifo_buff[fifo_write_ptr], &udp_payload[0], aligned_write_items); //size in bytes
fifo_write_ptr = payload_lenght_bytes - aligned_write_items;
memcpy(&fifo_buff[0], &udp_payload[aligned_write_items], fifo_write_ptr); //size in bytes
fifo_items += payload_lenght_bytes;
// two step wrap write
memcpy(&fifo_buff[fifo_write_ptr], &udp_payload[0], aligned_write_items); // size in bytes
fifo_write_ptr = payload_length_bytes - aligned_write_items;
memcpy(&fifo_buff[0], &udp_payload[aligned_write_items], fifo_write_ptr); // size in bytes
fifo_items += payload_length_bytes;
}
}
else
{
//notify overflow
// notify overflow
std::cout << "O" << std::flush;
}
}
}
}
void gr_complex_ip_packet_source::my_pcap_loop_thread(pcap_t *pcap_handle)
void gr_complex_ip_packet_source::my_pcap_loop_thread(pcap_t *pcap_handle)
{
pcap_loop(pcap_handle, -1, gr_complex_ip_packet_source::static_pcap_callback, (u_char *)this);
pcap_loop(pcap_handle, -1, gr_complex_ip_packet_source::static_pcap_callback, reinterpret_cast<u_char *>(this));
}
void gr_complex_ip_packet_source::demux_samples(gr_vector_void_star output_items, int num_samples_readed)
{
int8_t real;
@ -318,22 +326,22 @@ void gr_complex_ip_packet_source::demux_samples(gr_vector_void_star output_items
{
switch (d_wire_sample_type)
{
case 1: //interleaved byte samples
case 1: // interleaved byte samples
for (long unsigned int i = 0; i < output_items.size(); i++)
{
real = fifo_buff[fifo_read_ptr++];
imag = fifo_buff[fifo_read_ptr++];
if (d_IQ_swap)
{
(static_cast<gr_complex *>(output_items[i]))[n] = gr_complex(real, imag);
static_cast<gr_complex *>(output_items[i])[n] = gr_complex(real, imag);
}
else
{
(static_cast<gr_complex *>(output_items[i]))[n] = gr_complex(imag, real);
static_cast<gr_complex *>(output_items[i])[n] = gr_complex(imag, real);
}
}
break;
case 2: // 4bits samples
case 2: // 4-bit samples
for (long unsigned int i = 0; i < output_items.size(); i++)
{
tmp_char2 = fifo_buff[fifo_read_ptr] & 0x0F;
@ -357,11 +365,11 @@ void gr_complex_ip_packet_source::demux_samples(gr_vector_void_star output_items
}
if (d_IQ_swap)
{
(static_cast<gr_complex *>(output_items[i]))[n] = gr_complex(imag, real);
static_cast<gr_complex *>(output_items[i])[n] = gr_complex(imag, real);
}
else
{
(static_cast<gr_complex *>(output_items[i]))[n] = gr_complex(real, imag);
static_cast<gr_complex *>(output_items[i])[n] = gr_complex(real, imag);
}
}
break;
@ -373,6 +381,7 @@ void gr_complex_ip_packet_source::demux_samples(gr_vector_void_star output_items
}
}
int gr_complex_ip_packet_source::work(int noutput_items,
__attribute__((unused)) gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
@ -390,44 +399,44 @@ int gr_complex_ip_packet_source::work(int noutput_items,
int bytes_requested;
switch (d_wire_sample_type)
{
case 1: //complex byte samples
case 1: // complex byte samples
bytes_requested = noutput_items * d_bytes_per_sample;
if (bytes_requested < fifo_items)
{
num_samples_readed = noutput_items; //read all
num_samples_readed = noutput_items; // read all
}
else
{
num_samples_readed = fifo_items / d_bytes_per_sample; //read what we have
num_samples_readed = fifo_items / d_bytes_per_sample; // read what we have
}
break;
case 2: //complex 4 bits samples
case 2: // complex 4 bits samples
bytes_requested = noutput_items * d_bytes_per_sample;
if (bytes_requested < fifo_items)
{
num_samples_readed = noutput_items; //read all
num_samples_readed = noutput_items; // read all
}
else
{
num_samples_readed = fifo_items / d_bytes_per_sample; //read what we have
num_samples_readed = fifo_items / d_bytes_per_sample; // read what we have
}
break;
default: //complex byte samples
default: // complex byte samples
bytes_requested = noutput_items * d_bytes_per_sample;
if (bytes_requested < fifo_items)
{
num_samples_readed = noutput_items; //read all
num_samples_readed = noutput_items; // read all
}
else
{
num_samples_readed = fifo_items / d_bytes_per_sample; //read what we have
num_samples_readed = fifo_items / d_bytes_per_sample; // read what we have
}
}
bytes_requested = num_samples_readed * d_bytes_per_sample;
//read all in a single loop
// read all in a single loop
demux_samples(output_items, num_samples_readed); // it also increases the fifo read pointer
//update fifo items
// update fifo items
fifo_items = fifo_items - bytes_requested;
for (long unsigned int n = 0; n < output_items.size(); n++)