1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-12 19:20:32 +00:00

Merge branch 'next_fpga' of https://github.com/gnss-sdr/gnss-sdr into next

This commit is contained in:
Carles Fernandez 2017-05-08 22:48:04 +02:00
commit 9fef3fbfe9
24 changed files with 2541 additions and 362 deletions

4
build/.gitignore vendored
View File

@ -1,4 +0,0 @@
# Ignore everything in this directory
*
# Except this file
!.gitignore

View File

@ -0,0 +1,85 @@
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_hz=4000000
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=Pass_Through
SignalSource.filename=/datalogger/signals/Agilent/New York/4msps.dat ; <- PUT YOUR FILE HERE
SignalSource.item_type=ishort
SignalSource.sampling_frequency=4000000
SignalSource.freq=1575420000
SignalSource.repeat=false
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
SignalSource.enable_throttle_control=false
SignalSource.enable_FPGA=true
;######### SIGNAL_CONDITIONER CONFIG ############
SignalConditioner.implementation=Pass_Through
SignalConditioner.item_type=cshort
SignalConditioner.enable_FPGA=true
;######### CHANNELS GLOBAL CONFIG ############
Channels_1C.count=8
Channels.in_acquisition=1
Channel.signal=1C
Channel.enable_FPGA=true
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.dump=false
Acquisition_1C.dump_filename=./acq_dump.dat
Acquisition_1C.item_type=cshort
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition_Fpga
Acquisition_1C.select_queue_Fpga=0;
Acquisition_1C.threshold=0.005
;Acquisition_1C.pfa=0.01
Acquisition_1C.doppler_max=10000
Acquisition_1C.doppler_step=500
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_C_Aid_Tracking_Fpga
Tracking_1C.item_type=cshort
Tracking_1C.if=0
Tracking_1C.dump=false
Tracking_1C.dump_filename=../data/epl_tracking_ch_
Tracking_1C.pll_bw_hz=45.0;
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.order=3;
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
TelemetryDecoder_1C.decimation_factor=1;
;######### OBSERVABLES CONFIG ############
Observables.implementation=GPS_L1_CA_Observables
Observables.dump=false
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
PVT.implementation=GPS_L1_CA_PVT
PVT.averaging_depth=100
PVT.flag_averaging=false
PVT.output_rate_ms=10
PVT.display_rate_ms=500
PVT.dump_filename=./PVT
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
PVT.flag_nmea_tty_port=false;
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
PVT.dump=false

View File

@ -18,4 +18,5 @@
add_subdirectory(adapters) add_subdirectory(adapters)
add_subdirectory(gnuradio_blocks) add_subdirectory(gnuradio_blocks)
add_subdirectory(libs)

View File

@ -33,7 +33,10 @@ set(ACQ_ADAPTER_SOURCES
galileo_e5a_noncoherent_iq_acquisition_caf.cc galileo_e5a_noncoherent_iq_acquisition_caf.cc
) )
if(ENABLE_FPGA)
set(ACQ_ADAPTER_SOURCES ${ACQ_ADAPTER_SOURCES} gps_l1_ca_pcps_acquisition_fpga.cc)
endif(ENABLE_FPGA)
if(OPENCL_FOUND) if(OPENCL_FOUND)
set(ACQ_ADAPTER_SOURCES ${ACQ_ADAPTER_SOURCES} gps_l1_ca_pcps_opencl_acquisition.cc) set(ACQ_ADAPTER_SOURCES ${ACQ_ADAPTER_SOURCES} gps_l1_ca_pcps_opencl_acquisition.cc)
endif(OPENCL_FOUND) endif(OPENCL_FOUND)
@ -44,6 +47,7 @@ include_directories(
${CMAKE_SOURCE_DIR}/src/core/interfaces ${CMAKE_SOURCE_DIR}/src/core/interfaces
${CMAKE_SOURCE_DIR}/src/core/receiver ${CMAKE_SOURCE_DIR}/src/core/receiver
${CMAKE_SOURCE_DIR}/src/algorithms/acquisition/gnuradio_blocks ${CMAKE_SOURCE_DIR}/src/algorithms/acquisition/gnuradio_blocks
${CMAKE_SOURCE_DIR}/src/algorithms/acquisition/libs
${CMAKE_SOURCE_DIR}/src/algorithms/libs ${CMAKE_SOURCE_DIR}/src/algorithms/libs
${Boost_INCLUDE_DIRS} ${Boost_INCLUDE_DIRS}
${GLOG_INCLUDE_DIRS} ${GLOG_INCLUDE_DIRS}

View File

@ -0,0 +1,284 @@
/*!
* \file gps_l1_ca_pcps_acquisition_fpga.cc
* \brief Adapts a PCPS acquisition block to an FPGA Acquisition Interface for
* GPS L1 C/A signals. This file is based on the file gps_l1_ca_pcps_acquisition.cc
* \authors <ul>
* <li> Marc Majoral, 2017. mmajoral(at)cttc.cat
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_l1_ca_pcps_acquisition_fpga.h"
#include <boost/math/distributions/exponential.hpp>
#include <glog/logging.h>
#include "gps_sdr_signal_processing.h"
#include "GPS_L1_CA.h"
#include "configuration_interface.h"
using google::LogMessage;
GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams) :
role_(role), in_streams_(in_streams), out_streams_(out_streams)
{
configuration_ = configuration;
std::string default_item_type = "cshort";
std::string default_dump_filename = "./data/acquisition.dat";
DLOG(INFO) << "role " << role;
item_type_ = configuration_->property(role + ".item_type", default_item_type);
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
if_ = configuration_->property(role + ".if", 0);
dump_ = configuration_->property(role + ".dump", false);
doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
// note : the FPGA is implemented according to bit transition flag = 0. Setting bit transition flag to 1 has no effect.
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
// note : the FPGA is implemented according to use_CFAR_algorithm = 0. Setting use_CFAR_algorithm to 1 has no effect.
use_CFAR_algorithm_flag_=configuration_->property(role + ".use_CFAR_algorithm", false);
// note : the FPGA does not use the max_dwells variable.
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
//--- Find number of samples per spreading code -------------------------
code_length_ = round(fs_in_ / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
// code length has the same value as d_fft_size
float nbits;
nbits = ceilf(log2f(code_length_));
nsamples_total_ = pow(2,nbits);
//vector_length_ = code_length_ * sampled_ms_;
vector_length_ = nsamples_total_ * sampled_ms_;
if( bit_transition_flag_ )
{
vector_length_ *= 2;
}
code_ = new gr_complex[vector_length_];
select_queue_Fpga_ = configuration_->property(role + ".select_queue_Fpga", 0);
if (item_type_.compare("cshort") == 0 )
{
item_size_ = sizeof(lv_16sc_t);
gps_acquisition_fpga_sc_ = gps_pcps_make_acquisition_fpga_sc(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_, vector_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, select_queue_Fpga_, dump_, dump_filename_);
DLOG(INFO) << "acquisition(" << gps_acquisition_fpga_sc_->unique_id() << ")";
}
else{
LOG(FATAL) << item_type_ << " FPGA only accepts chsort";
}
channel_ = 0;
threshold_ = 0.0;
doppler_step_ = 0;
gnss_synchro_ = 0;
}
GpsL1CaPcpsAcquisitionFpga::~GpsL1CaPcpsAcquisitionFpga()
{
delete[] code_;
}
void GpsL1CaPcpsAcquisitionFpga::set_channel(unsigned int channel)
{
channel_ = channel;
gps_acquisition_fpga_sc_->set_channel(channel_);
}
void GpsL1CaPcpsAcquisitionFpga::set_threshold(float threshold)
{
float pfa = configuration_->property(role_ + ".pfa", 0.0);
if(pfa == 0.0)
{
threshold_ = threshold;
}
else
{
threshold_ = calculate_threshold(pfa);
}
DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
gps_acquisition_fpga_sc_->set_threshold(threshold_);
}
void GpsL1CaPcpsAcquisitionFpga::set_doppler_max(unsigned int doppler_max)
{
doppler_max_ = doppler_max;
gps_acquisition_fpga_sc_->set_doppler_max(doppler_max_);
}
void GpsL1CaPcpsAcquisitionFpga::set_doppler_step(unsigned int doppler_step)
{
doppler_step_ = doppler_step;
gps_acquisition_fpga_sc_->set_doppler_step(doppler_step_);
}
void GpsL1CaPcpsAcquisitionFpga::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
{
gnss_synchro_ = gnss_synchro;
gps_acquisition_fpga_sc_->set_gnss_synchro(gnss_synchro_);
}
signed int GpsL1CaPcpsAcquisitionFpga::mag()
{
return gps_acquisition_fpga_sc_->mag();
}
void GpsL1CaPcpsAcquisitionFpga::init()
{
gps_acquisition_fpga_sc_->init();
set_local_code();
}
void GpsL1CaPcpsAcquisitionFpga::set_local_code()
{
std::complex<float>* code = new std::complex<float>[vector_length_];
//init to zeros for the zero padding of the fft
for (uint s=0;s<vector_length_;s++)
{
code[s] = std::complex<float>(0, 0);
}
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_ , 0);
for (unsigned int i = 0; i < sampled_ms_; i++)
{
memcpy(&(code_[i*vector_length_]), code, sizeof(gr_complex)*vector_length_);
}
gps_acquisition_fpga_sc_->set_local_code(code_);
delete[] code;
}
void GpsL1CaPcpsAcquisitionFpga::reset()
{
gps_acquisition_fpga_sc_->set_active(true);
}
void GpsL1CaPcpsAcquisitionFpga::set_state(int state)
{
gps_acquisition_fpga_sc_->set_state(state);
}
float GpsL1CaPcpsAcquisitionFpga::calculate_threshold(float pfa)
{
//Calculate the threshold
unsigned int frequency_bins = 0;
for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_)
{
frequency_bins++;
}
DLOG(INFO) << "Channel " << channel_ << " Pfa = " << pfa;
unsigned int ncells = vector_length_ * frequency_bins;
double exponent = 1 / static_cast<double>(ncells);
double val = pow(1.0 - pfa, exponent);
double lambda = double(vector_length_);
boost::math::exponential_distribution<double> mydist (lambda);
float threshold = (float)quantile(mydist,val);
return threshold;
}
void GpsL1CaPcpsAcquisitionFpga::connect(gr::top_block_sptr top_block)
{
//nothing to connect
}
void GpsL1CaPcpsAcquisitionFpga::disconnect(gr::top_block_sptr top_block)
{
//nothing to disconnect
}
gr::basic_block_sptr GpsL1CaPcpsAcquisitionFpga::get_left_block()
{
return gps_acquisition_fpga_sc_;
}
gr::basic_block_sptr GpsL1CaPcpsAcquisitionFpga::get_right_block()
{
return gps_acquisition_fpga_sc_;
}

View File

@ -0,0 +1,172 @@
/*!
* \file gps_l1_ca_pcps_acquisition_fpga.h
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface for
* GPS L1 C/A signals. This file is based on the file gps_l1_ca_pcps_acquisition.h
* \authors <ul>
* <li> Marc Majoral, 2017. mmajoral(at)cttc.cat
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GPS_L1_CA_PCPS_ACQUISITION_FPGA_H_
#define GNSS_SDR_GPS_L1_CA_PCPS_ACQUISITION_FPGA_H_
#include <string>
#include <gnuradio/blocks/stream_to_vector.h>
#include <gnuradio/blocks/float_to_complex.h>
#include "gnss_synchro.h"
#include "acquisition_interface.h"
#include "gps_pcps_acquisition_fpga_sc.h"
#include "complex_byte_to_float_x2.h"
#include <volk_gnsssdr/volk_gnsssdr.h>
class ConfigurationInterface;
/*!
* \brief This class adapts a PCPS acquisition block to an AcquisitionInterface
* for GPS L1 C/A signals
*/
class GpsL1CaPcpsAcquisitionFpga: public AcquisitionInterface
{
public:
GpsL1CaPcpsAcquisitionFpga(ConfigurationInterface* configuration,
std::string role, unsigned int in_streams,
unsigned int out_streams);
virtual ~GpsL1CaPcpsAcquisitionFpga();
std::string role()
{
return role_;
}
/*!
* \brief Returns "GPS_L1_CA_PCPS_Acquisition"
*/
std::string implementation()
{
return "GPS_L1_CA_PCPS_Acquisition_Fpga";
}
size_t item_size()
{
return item_size_;
}
void connect(gr::top_block_sptr top_block);
void disconnect(gr::top_block_sptr top_block);
gr::basic_block_sptr get_left_block();
gr::basic_block_sptr get_right_block();
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to efficiently exchange synchronization data between acquisition and
* tracking blocks
*/
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
/*!
* \brief Set acquisition channel unique ID
*/
void set_channel(unsigned int channel);
/*!
* \brief Set statistics threshold of PCPS algorithm
*/
void set_threshold(float threshold);
/*!
* \brief Set maximum Doppler off grid search
*/
void set_doppler_max(unsigned int doppler_max);
/*!
* \brief Set Doppler steps for the grid search
*/
void set_doppler_step(unsigned int doppler_step);
/*!
* \brief Initializes acquisition algorithm.
*/
void init();
/*!
* \brief Sets local code for GPS L1/CA PCPS acquisition algorithm.
*/
void set_local_code();
/*!
* \brief Returns the maximum peak of grid search
*/
signed int mag();
/*!
* \brief Restart acquisition algorithm
*/
void reset();
/*!
* \brief If state = 1, it forces the block to start acquiring from the first sample
*/
void set_state(int state);
private:
ConfigurationInterface* configuration_;
gps_pcps_acquisition_fpga_sc_sptr gps_acquisition_fpga_sc_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
gr::blocks::float_to_complex::sptr float_to_complex_;
complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
size_t item_size_;
std::string item_type_;
unsigned int vector_length_;
unsigned int code_length_;
bool bit_transition_flag_;
bool use_CFAR_algorithm_flag_;
unsigned int channel_;
float threshold_;
unsigned int doppler_max_;
unsigned int doppler_step_;
unsigned int sampled_ms_;
unsigned int max_dwells_;
long fs_in_;
long if_;
bool dump_;
std::string dump_filename_;
std::complex<float> * code_;
Gnss_Synchro * gnss_synchro_;
std::string role_;
unsigned int in_streams_;
unsigned int out_streams_;
unsigned int nsamples_total_;
unsigned int select_queue_Fpga_;
float calculate_threshold(float pfa);
};
#endif /* GNSS_SDR_GPS_L1_CA_PCPS_ACQUISITION_H_ */

View File

@ -29,6 +29,10 @@ set(ACQ_GR_BLOCKS_SOURCES
galileo_pcps_8ms_acquisition_cc.cc galileo_pcps_8ms_acquisition_cc.cc
galileo_e5a_noncoherent_iq_acquisition_caf_cc.cc galileo_e5a_noncoherent_iq_acquisition_caf_cc.cc
) )
if(ENABLE_FPGA)
set(ACQ_GR_BLOCKS_SOURCES ${ACQ_GR_BLOCKS_SOURCES} gps_pcps_acquisition_fpga_sc.cc)
endif(ENABLE_FPGA)
if(OPENCL_FOUND) if(OPENCL_FOUND)
set(ACQ_GR_BLOCKS_SOURCES ${ACQ_GR_BLOCKS_SOURCES} pcps_opencl_acquisition_cc.cc) set(ACQ_GR_BLOCKS_SOURCES ${ACQ_GR_BLOCKS_SOURCES} pcps_opencl_acquisition_cc.cc)
@ -39,6 +43,7 @@ include_directories(
${CMAKE_SOURCE_DIR}/src/core/system_parameters ${CMAKE_SOURCE_DIR}/src/core/system_parameters
${CMAKE_SOURCE_DIR}/src/core/interfaces ${CMAKE_SOURCE_DIR}/src/core/interfaces
${CMAKE_SOURCE_DIR}/src/core/receiver ${CMAKE_SOURCE_DIR}/src/core/receiver
${CMAKE_SOURCE_DIR}/src/algorithms/acquisition/libs
${CMAKE_SOURCE_DIR}/src/algorithms/libs ${CMAKE_SOURCE_DIR}/src/algorithms/libs
${GLOG_INCLUDE_DIRS} ${GLOG_INCLUDE_DIRS}
${GFlags_INCLUDE_DIRS} ${GFlags_INCLUDE_DIRS}
@ -60,7 +65,8 @@ file(GLOB ACQ_GR_BLOCKS_HEADERS "*.h")
list(SORT ACQ_GR_BLOCKS_HEADERS) list(SORT ACQ_GR_BLOCKS_HEADERS)
add_library(acq_gr_blocks ${ACQ_GR_BLOCKS_SOURCES} ${ACQ_GR_BLOCKS_HEADERS}) add_library(acq_gr_blocks ${ACQ_GR_BLOCKS_SOURCES} ${ACQ_GR_BLOCKS_HEADERS})
source_group(Headers FILES ${ACQ_GR_BLOCKS_HEADERS}) source_group(Headers FILES ${ACQ_GR_BLOCKS_HEADERS})
target_link_libraries(acq_gr_blocks gnss_sp_libs gnss_system_parameters ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${VOLK_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${OPT_LIBRARIES}) #target_link_libraries(acq_gr_blocks gnss_sp_libs gnss_system_parameters ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_FFT_LIBRARIES}
target_link_libraries(acq_gr_blocks acquisition_lib gnss_sp_libs gnss_system_parameters ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${VOLK_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${OPT_LIBRARIES} ${OPT_ACQUISITION_LIBRARIES})
if(NOT VOLK_GNSSSDR_FOUND) if(NOT VOLK_GNSSSDR_FOUND)
add_dependencies(acq_gr_blocks volk_gnsssdr_module) add_dependencies(acq_gr_blocks volk_gnsssdr_module)

View File

@ -0,0 +1,431 @@
/*!
* \file gps_pcps_acquisition_fpga_sc.cc
* \brief This class implements a Parallel Code Phase Search Acquisition in the FPGA.
* This file is based on the file gps_pcps_acquisition_sc.cc
* \authors <ul>
* <li> Marc Majoral, 2017. mmajoral(at)cttc.cat
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_pcps_acquisition_fpga_sc.h"
#include <sstream>
#include <boost/filesystem.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include <volk/volk.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include "control_message_factory.h"
#include "GPS_L1_CA.h" //GPS_TWO_PI
using google::LogMessage;
void wait3(int seconds)
{
boost::this_thread::sleep_for(boost::chrono::seconds{seconds});
}
gps_pcps_acquisition_fpga_sc_sptr gps_pcps_make_acquisition_fpga_sc(
unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code, int vector_length,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
unsigned int select_queue_Fpga,
bool dump,
std::string dump_filename)
{
return gps_pcps_acquisition_fpga_sc_sptr(
new gps_pcps_acquisition_fpga_sc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
samples_per_code, vector_length, bit_transition_flag, use_CFAR_algorithm_flag, select_queue_Fpga, dump, dump_filename));
}
gps_pcps_acquisition_fpga_sc::gps_pcps_acquisition_fpga_sc(
unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code, int vector_length,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
unsigned int select_queue_Fpga,
bool dump,
std::string dump_filename) :
gr::block("pcps_acquisition_fpga_sc",gr::io_signature::make(0, 0, sizeof(lv_16sc_t)),gr::io_signature::make(0, 0, 0))
{
this->message_port_register_out(pmt::mp("events"));
d_sample_counter = 0; // SAMPLE COUNTER
d_active = false;
d_state = 0;
d_freq = freq;
d_fs_in = fs_in;
d_samples_per_ms = samples_per_ms;
d_samples_per_code = samples_per_code;
d_sampled_ms = sampled_ms;
d_max_dwells = max_dwells; // Note : d_max_dwells is not used in the FPGA implementation
d_well_count = 0;
d_doppler_max = doppler_max;
d_fft_size = d_sampled_ms * d_samples_per_ms;
d_mag = 0;
d_input_power = 0.0;
d_num_doppler_bins = 0;
d_bit_transition_flag = bit_transition_flag; // Note : bit transition flag is ignored and assumed 0 in the FPGA implementation
d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag; // Note : user CFAR algorithm flag is ignored and assumed 0 in the FPGA implementation
d_threshold = 0.0;
d_doppler_step = 250;
d_code_phase = 0;
d_test_statistics = 0.0;
d_channel = 0;
d_doppler_freq = 0.0;
d_nsamples_total = vector_length;
//if( d_bit_transition_flag )
// {
// d_fft_size *= 2;
// d_max_dwells = 1;
// }
d_fft_codes = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
d_magnitude = static_cast<float*>(volk_gnsssdr_malloc(d_nsamples_total * sizeof(float), volk_gnsssdr_get_alignment()));
//temporary storage for the input conversion from 16sc to float 32fc
d_in_32fc = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
d_fft_codes_padded = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_nsamples_total, true);
// Inverse FFT
d_ifft = new gr::fft::fft_complex(d_nsamples_total, false);
// FPGA queue selection
d_select_queue_Fpga = select_queue_Fpga;
// For dumping samples into a file
d_dump = dump;
d_dump_filename = dump_filename;
d_gnss_synchro = 0;
d_grid_doppler_wipeoffs = 0;
}
gps_pcps_acquisition_fpga_sc::~gps_pcps_acquisition_fpga_sc()
{
if (d_num_doppler_bins > 0)
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
volk_gnsssdr_free(d_grid_doppler_wipeoffs[i]);
}
delete[] d_grid_doppler_wipeoffs;
}
volk_gnsssdr_free(d_fft_codes);
volk_gnsssdr_free(d_magnitude);
volk_gnsssdr_free(d_in_32fc);
delete d_ifft;
delete d_fft_if;
if (d_dump)
{
d_dump_file.close();
}
acquisition_fpga_8sc.free();
}
void gps_pcps_acquisition_fpga_sc::set_local_code(std::complex<float> * code)
{
// COD
// Here we want to create a buffer that looks like this:
// [ 0 0 0 ... 0 c_0 c_1 ... c_L]
// where c_i is the local code and there are L zeros and L chips
int offset = 0;
// if( d_bit_transition_flag )
// {
// std::fill_n( d_fft_if->get_inbuf(), d_nsamples_total, gr_complex( 0.0, 0.0 ) );
// offset = d_nsamples_total;
// }
memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * d_nsamples_total);
d_fft_if->execute(); // We need the FFT of local code
volk_32fc_conjugate_32fc(d_fft_codes_padded, d_fft_if->get_outbuf(), d_nsamples_total);
acquisition_fpga_8sc.set_local_code(d_fft_codes_padded);
}
void gps_pcps_acquisition_fpga_sc::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq)
{
float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(d_fs_in);
float _phase[1];
_phase[0] = 0;
volk_gnsssdr_s32f_sincos_32fc(carrier_vector, - phase_step_rad, _phase, correlator_length_samples);
}
void gps_pcps_acquisition_fpga_sc::init()
{
d_gnss_synchro->Flag_valid_acquisition = false;
d_gnss_synchro->Flag_valid_symbol_output = false;
d_gnss_synchro->Flag_valid_pseudorange = false;
d_gnss_synchro->Flag_valid_word = false;
d_gnss_synchro->Flag_preamble = false;
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_mag = 0.0;
d_input_power = 0.0;
d_num_doppler_bins = ceil( static_cast<double>(static_cast<int>(d_doppler_max) - static_cast<int>(-d_doppler_max)) / static_cast<double>(d_doppler_step));
// Create the carrier Doppler wipeoff signals
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
}
acquisition_fpga_8sc.init(d_fft_size, d_nsamples_total, d_freq, d_doppler_max, d_doppler_step, d_num_doppler_bins, d_fs_in, d_select_queue_Fpga);
}
void gps_pcps_acquisition_fpga_sc::set_state(int state)
{
d_state = state;
if (d_state == 1)
{
d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_well_count = 0;
d_mag = 0.0;
d_input_power = 0.0;
d_test_statistics = 0.0;
}
else if (d_state == 0)
{}
else
{
LOG(ERROR) << "State can only be set to 0 or 1";
}
}
void gps_pcps_acquisition_fpga_sc::set_active(bool active)
{
float temp_peak_to_noise_level = 0.0;
float peak_to_noise_level = 0.0;
acquisition_fpga_8sc.block_samples(); // block the samples to run the acquisition this is only necessary for the tests
d_active = active;
// while (d_well_count < d_max_dwells)
// {
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
d_state = 1;
// initialize acquisition algorithm
int doppler;
uint32_t indext = 0;
float magt = 0.0;
//int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size );
int effective_fft_size = d_fft_size;
//float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
d_mag = 0.0;
unsigned int initial_sample;
d_well_count++;
DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
<< ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max
<< ", doppler_step: " << d_doppler_step;
// Doppler frequency search loop
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
acquisition_fpga_8sc.set_phase_step(doppler_index);
acquisition_fpga_8sc.run_acquisition(); // runs acquisition and waits until it is finished
acquisition_fpga_8sc.read_acquisition_results(&indext, &magt, &initial_sample, &d_input_power);
d_sample_counter = initial_sample;
temp_peak_to_noise_level = (float) (magt / d_input_power);
if (peak_to_noise_level < temp_peak_to_noise_level)
{
peak_to_noise_level = temp_peak_to_noise_level;
d_mag = magt;
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
//if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
// {
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
d_test_statistics = d_mag / d_input_power;
// }
}
// Record results to file if required
if (d_dump)
{
std::stringstream filename;
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
filename.str("");
boost::filesystem::path p = d_dump_filename;
filename << p.parent_path().string()
<< boost::filesystem::path::preferred_separator
<< p.stem().string()
<< "_" << d_gnss_synchro->System
<<"_" << d_gnss_synchro->Signal << "_sat_"
<< d_gnss_synchro->PRN << "_doppler_"
<< doppler
<< p.extension().string();
DLOG(INFO) << "Writing ACQ out to " << filename.str();
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin?
d_dump_file.close();
}
}
if (d_test_statistics > d_threshold)
{
d_state = 2; // Positive acquisition
// 6.1- Declare positive acquisition using a message port
DLOG(INFO) << "positive acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter;
DLOG(INFO) << "test statistics value " << d_test_statistics;
DLOG(INFO) << "test statistics threshold " << d_threshold;
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
DLOG(INFO) << "magnitude " << d_mag;
DLOG(INFO) << "input signal power " << d_input_power;
d_active = false;
d_state = 0;
acquisition_message = 1;
this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message));
// break;
}
else //if (d_well_count == d_max_dwells)
{
d_state = 3; // Negative acquisition
// 6.2- Declare negative acquisition using a message port
DLOG(INFO) << "negative acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter;
DLOG(INFO) << "test statistics value " << d_test_statistics;
DLOG(INFO) << "test statistics threshold " << d_threshold;
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
DLOG(INFO) << "magnitude " << d_mag;
DLOG(INFO) << "input signal power " << d_input_power;
d_active = false;
d_state = 0;
acquisition_message = 2;
this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message));
// break;
}
// }
acquisition_fpga_8sc.unblock_samples();
DLOG(INFO) << "Done. Consumed 1 item.";
}
int gps_pcps_acquisition_fpga_sc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items __attribute__((unused)))
{
// general work not used with the acquisition
return noutput_items;
}

View File

@ -0,0 +1,239 @@
/*!
* \file gps_pcps_acquisition_fpga_sc.h
* \brief This class implements a Parallel Code Phase Search Acquisition in the FPGA.
* This file is based on the file gps_pcps_acquisition_sc.h
*
* Acquisition strategy (Kay Borre book + CFAR threshold).
* <ol>
* <li> Compute the input signal power estimation
* <li> Doppler serial search loop
* <li> Perform the FFT-based circular convolution (parallel time search)
* <li> Record the maximum peak and the associated synchronization parameters
* <li> Compute the test statistics and compare to the threshold
* <li> Declare positive or negative acquisition using a message port
* </ol>
*
* Kay Borre book: K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* "A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach", Birkha user, 2007. pp 81-84
*
* \authors <ul>
* <li> Marc Majoral, 2017. mmajoral(at)cttc.cat
* </ul>
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_PCPS_ACQUISITION_FPGA_SC_H_
#define GNSS_SDR_PCPS_ACQUISITION_FPGA_SC_H_
#include <fstream>
#include <string>
#include <gnuradio/block.h>
#include <gnuradio/gr_complex.h>
#include <gnuradio/fft/fft.h>
#include "gnss_synchro.h"
#include "gps_fpga_acquisition_8sc.h"
class gps_pcps_acquisition_fpga_sc;
typedef boost::shared_ptr<gps_pcps_acquisition_fpga_sc> gps_pcps_acquisition_fpga_sc_sptr;
gps_pcps_acquisition_fpga_sc_sptr
gps_pcps_make_acquisition_fpga_sc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code, int vector_length_,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
unsigned int select_queue_Fpga,
bool dump,
std::string dump_filename);
/*!
* \brief This class implements a Parallel Code Phase Search Acquisition.
*
* Check \ref Navitec2012 "An Open Source Galileo E1 Software Receiver",
* Algorithm 1, for a pseudocode description of this implementation.
*/
class gps_pcps_acquisition_fpga_sc: public gr::block
{
private:
friend gps_pcps_acquisition_fpga_sc_sptr
gps_pcps_make_acquisition_fpga_sc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code, int vector_length,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
unsigned int select_queue_Fpga,
bool dump,
std::string dump_filename);
gps_pcps_acquisition_fpga_sc(unsigned int sampled_ms, unsigned int max_dwells,
unsigned int doppler_max, long freq, long fs_in,
int samples_per_ms, int samples_per_code, int vector_length,
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
unsigned int select_queue_Fpga,
bool dump,
std::string dump_filename);
void update_local_carrier(gr_complex* carrier_vector,
int correlator_length_samples,
float freq);
long d_fs_in;
long d_freq;
int d_samples_per_ms;
int d_samples_per_code;
float d_threshold;
std::string d_satellite_str;
unsigned int d_doppler_max;
unsigned int d_doppler_step;
unsigned int d_sampled_ms;
unsigned int d_max_dwells;
unsigned int d_well_count;
unsigned int d_fft_size;
unsigned int d_nsamples_total; // the closest power of two approximation to d_fft_size
unsigned long int d_sample_counter;
gr_complex** d_grid_doppler_wipeoffs;
unsigned int d_num_doppler_bins;
gr_complex* d_fft_codes;
gr_complex* d_fft_codes_padded;
gr_complex* d_in_32fc;
gr::fft::fft_complex* d_fft_if;
gr::fft::fft_complex* d_ifft;
Gnss_Synchro *d_gnss_synchro;
unsigned int d_code_phase;
float d_doppler_freq;
float d_mag;
float* d_magnitude;
float d_input_power;
float d_test_statistics;
bool d_bit_transition_flag;
bool d_use_CFAR_algorithm_flag;
std::ofstream d_dump_file;
bool d_active;
int d_state;
bool d_dump;
unsigned int d_channel;
unsigned int d_select_queue_Fpga;
std::string d_dump_filename;
gps_fpga_acquisition_8sc acquisition_fpga_8sc;
public:
/*!
* \brief Default destructor.
*/
~gps_pcps_acquisition_fpga_sc();
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to exchange synchronization data between acquisition and tracking blocks.
* \param p_gnss_synchro Satellite information shared by the processing blocks.
*/
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
d_gnss_synchro = p_gnss_synchro;
}
/*!
* \brief Returns the maximum peak of grid search.
*/
unsigned int mag()
{
return d_mag;
}
/*!
* \brief Initializes acquisition algorithm.
*/
void init();
/*!
* \brief Sets local code for PCPS acquisition algorithm.
* \param code - Pointer to the PRN code.
*/
void set_local_code(std::complex<float> * code);
/*!
* \brief Starts acquisition algorithm, turning from standby mode to
* active mode
* \param active - bool that activates/deactivates the block.
*/
void set_active(bool active);
/*!
* \brief If set to 1, ensures that acquisition starts at the
* first available sample.
* \param state - int=1 forces start of acquisition
*/
void set_state(int state);
/*!
* \brief Set acquisition channel unique ID
* \param channel - receiver channel.
*/
void set_channel(unsigned int channel)
{
d_channel = channel;
}
/*!
* \brief Set statistics threshold of PCPS algorithm.
* \param threshold - Threshold for signal detection (check \ref Navitec2012,
* Algorithm 1, for a definition of this threshold).
*/
void set_threshold(float threshold)
{
d_threshold = threshold;
}
/*!
* \brief Set maximum Doppler grid search
* \param doppler_max - Maximum Doppler shift considered in the grid search [Hz].
*/
void set_doppler_max(unsigned int doppler_max)
{
d_doppler_max = doppler_max;
}
/*!
* \brief Set Doppler steps for the grid search
* \param doppler_step - Frequency bin of the search grid [Hz].
*/
void set_doppler_step(unsigned int doppler_step)
{
d_doppler_step = doppler_step;
}
/*!
* \brief Parallel Code Phase Search Acquisition signal processing.
*/
int general_work(int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items);
};
#endif /* GNSS_SDR_PCPS_ACQUISITION_SC_H_*/

View File

@ -0,0 +1,91 @@
# Copyright (C) 2012-2015 (see AUTHORS file for a list of contributors)
#
# This file is part of GNSS-SDR.
#
# GNSS-SDR is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# GNSS-SDR is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
#
#if(ENABLE_CUDA)
# # Append current NVCC flags by something, eg comput capability
# # set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} --gpu-architecture sm_30)
# list(APPEND CUDA_NVCC_FLAGS "-gencode arch=compute_30,code=sm_30; -std=c++11;-O3; -use_fast_math -default-stream per-thread")
# set(CUDA_PROPAGATE_HOST_FLAGS OFF)
# CUDA_INCLUDE_DIRECTORIES( ${CMAKE_CURRENT_SOURCE_DIR})
# set(LIB_TYPE STATIC) #set the lib type
# CUDA_ADD_LIBRARY(CUDA_CORRELATOR_LIB ${LIB_TYPE} cuda_multicorrelator.h cuda_multicorrelator.cu)
# set(OPT_TRACKING_LIBRARIES ${OPT_TRACKING_LIBRARIES} CUDA_CORRELATOR_LIB)
# set(OPT_TRACKING_INCLUDES ${OPT_TRACKING_INCLUDES} ${CUDA_INCLUDE_DIRS} )
#endif(ENABLE_CUDA)
#set(TRACKING_LIB_SOURCES
set(ACQUISITION_LIB_SOURCES
gps_fpga_acquisition_8sc.cc
# cpu_multicorrelator.cc
# cpu_multicorrelator_16sc.cc
# lock_detectors.cc
# tcp_communication.cc
# tcp_packet_data.cc
# tracking_2nd_DLL_filter.cc
# tracking_2nd_PLL_filter.cc
# tracking_discriminators.cc
# tracking_FLL_PLL_filter.cc
# tracking_loop_filter.cc
)
#if(ENABLE_FPGA)
# SET(ACQUISITION_LIB_SOURCES ${ACQUISITION_LIB_SOURCES} fpga_acquisition_8sc.cc)
#endif(ENABLE_FPGA)
include_directories(
$(CMAKE_CURRENT_SOURCE_DIR)
${CMAKE_SOURCE_DIR}/src/core/system_parameters
${CMAKE_SOURCE_DIR}/src/core/interfaces
${CMAKE_SOURCE_DIR}/src/core/receiver
${VOLK_INCLUDE_DIRS}
${GLOG_INCLUDE_DIRS}
${GFlags_INCLUDE_DIRS}
${OPT_TRACKING_INCLUDES}
${VOLK_GNSSSDR_INCLUDE_DIRS}
)
if(ENABLE_GENERIC_ARCH)
add_definitions( -DGENERIC_ARCH=1 )
endif(ENABLE_GENERIC_ARCH)
if (SSE3_AVAILABLE)
add_definitions( -DHAVE_SSE3=1 )
endif(SSE3_AVAILABLE)
#file(GLOB TRACKING_LIB_HEADERS "*.h")
file(GLOB ACQUISITION_LIB_HEADERS "*.h")
#list(SORT TRACKING_LIB_HEADERS)
list(SORT ACQUISITION_LIB_HEADERS)
#add_library(tracking_lib ${TRACKING_LIB_SOURCES} ${TRACKING_LIB_HEADERS})
add_library(acquisition_lib ${ACQUISITION_LIB_SOURCES} ${ACQUISITION_LIB_HEADERS})
#source_group(Headers FILES ${TRACKING_LIB_HEADERS})
source_group(Headers FILES ${ACQUISITION_LIB_HEADERS})
#target_link_libraries(tracking_lib ${OPT_TRACKING_LIBRARIES} ${VOLK_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${GNURADIO_RUNTIME_LIBRARIES})
target_link_libraries(acquisition_lib ${OPT_ACQUISITION_LIBRARIES} ${VOLK_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${GNURADIO_RUNTIME_LIBRARIES})
if(VOLK_GNSSSDR_FOUND)
# add_dependencies(tracking_lib glog-${glog_RELEASE})
add_dependencies(acquisition_lib glog-${glog_RELEASE})
else(VOLK_GNSSSDR_FOUND)
# add_dependencies(tracking_lib glog-${glog_RELEASE} volk_gnsssdr_module)
add_dependencies(acquisition_lib glog-${glog_RELEASE} volk_gnsssdr_module)
endif()

View File

@ -0,0 +1,310 @@
/*!
* \file gps_fpga_acquisition_8sc.cc
* \brief High optimized FPGA vector correlator class
* \authors <ul>
* <li> Marc Majoral, 2017. mmajoral(at)cttc.cat
* </ul>
*
* Class that controls and executes a high optimized vector correlator
* class in the FPGA
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "gps_fpga_acquisition_8sc.h"
#include <cmath>
// allocate memory dynamically
#include <new>
// libraries used by DMA test code and GIPO test code
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
// libraries used by DMA test code
#include <sys/stat.h>
#include <stdint.h>
#include <unistd.h>
#include <assert.h>
// libraries used by GPIO test code
#include <stdlib.h>
#include <signal.h>
#include <sys/mman.h>
// logging
#include <glog/logging.h>
#include "GPS_L1_CA.h"
#define PAGE_SIZE 0x10000
#define CODE_RESAMPLER_NUM_BITS_PRECISION 20
#define CODE_PHASE_STEP_CHIPS_NUM_NBITS CODE_RESAMPLER_NUM_BITS_PRECISION
#define pwrtwo(x) (1 << (x))
#define MAX_CODE_RESAMPLER_COUNTER pwrtwo(CODE_PHASE_STEP_CHIPS_NUM_NBITS) // 2^CODE_PHASE_STEP_CHIPS_NUM_NBITS
#define PHASE_CARR_NBITS 32
#define PHASE_CARR_NBITS_INT 1
#define PHASE_CARR_NBITS_FRAC PHASE_CARR_NBITS - PHASE_CARR_NBITS_INT
#define MAX_PHASE_STEP_RAD 0.999999999534339 // 1 - pow(2,-31);
bool gps_fpga_acquisition_8sc::init(unsigned int fft_size, unsigned int nsamples_total, long freq, unsigned int doppler_max, unsigned int doppler_step, int num_doppler_bins, long fs_in, unsigned select_queue)
{
float phase_step_rad_fpga;
d_phase_step_rad_vector = new float[num_doppler_bins];
for (int doppler_index = 0; doppler_index < num_doppler_bins; doppler_index++)
{
int doppler = -static_cast<int>(doppler_max) + doppler_step * doppler_index;
float phase_step_rad = GPS_TWO_PI * (freq + doppler) / static_cast<float>(fs_in);
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
// The FPGA also expects the phase to be negative since it produces cos(x) -j*sin(x)
// while the gnss-sdr software (volk_gnsssdr_s32f_sincos_32fc) generates cos(x) + j*sin(x)
phase_step_rad_fpga = phase_step_rad/(GPS_TWO_PI/2);
// avoid saturation of the fixed point representation in the fpga
// (only the positive value can saturate due to the 2's complement representation)
if (phase_step_rad_fpga == 1.0)
{
phase_step_rad_fpga = MAX_PHASE_STEP_RAD;
}
d_phase_step_rad_vector[doppler_index] = phase_step_rad_fpga;
}
// sanity check : check test register
unsigned writeval = 0x55AA;
unsigned readval;
readval = gps_fpga_acquisition_8sc::fpga_acquisition_test_register(writeval);
if (writeval != readval)
{
printf("test register fail\n");
LOG(WARNING) << "Acquisition test register sanity check failed";
}
else
{
printf("test register success\n");
LOG(INFO) << "Acquisition test register sanity check success !";
}
d_nsamples = fft_size;
d_nsamples_total = nsamples_total;
d_select_queue = select_queue;
gps_fpga_acquisition_8sc::configure_acquisition();
return true;
}
bool gps_fpga_acquisition_8sc::set_local_code(gr_complex* fft_codes)
{
unsigned int i;
float max = 0;
d_fft_codes = new lv_16sc_t[d_nsamples_total];
for (i=0;i<d_nsamples_total;i++)
{
if(abs(fft_codes[i].real()) > max)
{
max = abs(fft_codes[i].real());
}
if(abs(fft_codes[i].imag()) > max)
{
max = abs(fft_codes[i].imag());
}
}
for (i=0;i<d_nsamples_total;i++)
{
d_fft_codes[i] = lv_16sc_t((int) (fft_codes[i].real()*(pow(2,7) - 1)/max), (int) (fft_codes[i].imag()*(pow(2,7) - 1)/max));
}
gps_fpga_acquisition_8sc::fpga_configure_acquisition_local_code(d_fft_codes);
return true;
}
gps_fpga_acquisition_8sc::gps_fpga_acquisition_8sc()
{
if ((d_fd = open(d_device_io_name, O_RDWR | O_SYNC )) == -1)
{
LOG(WARNING) << "Cannot open deviceio" << d_device_io_name;
}
d_map_base = (volatile unsigned *)mmap(NULL, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, d_fd,0);
if (d_map_base == (void *) -1)
{
LOG(WARNING) << "Cannot map the FPGA acquisition module into user memory";
}
}
gps_fpga_acquisition_8sc::~gps_fpga_acquisition_8sc()
{
if (munmap((void*)d_map_base, PAGE_SIZE) == -1)
{
printf("Failed to unmap memory uio\n");
}
close(d_fd);
}
bool gps_fpga_acquisition_8sc::free()
{
if (d_fft_codes != nullptr)
{
delete [] d_fft_codes;
d_fft_codes = nullptr;
}
if (d_phase_step_rad_vector != nullptr)
{
delete [] d_phase_step_rad_vector;
d_phase_step_rad_vector = nullptr;
}
return true;
}
unsigned gps_fpga_acquisition_8sc::fpga_acquisition_test_register(unsigned writeval)
{
unsigned readval;
// write value to test register
d_map_base[15] = writeval;
// read value from test register
readval = d_map_base[15];
// return read value
return readval;
}
void gps_fpga_acquisition_8sc::fpga_configure_acquisition_local_code(lv_16sc_t fft_local_code[])
{
short int local_code;
unsigned int k, tmp, tmp2;
// clear memory address counter
d_map_base[4] = 0x10000000;
for (k = 0; k < d_nsamples_total; k++)
{
tmp = fft_local_code[k].real();
tmp2 = fft_local_code[k].imag();
local_code = (tmp & 0xFF) | ((tmp2*256) & 0xFF00); // put together the real part and the imaginary part
d_map_base[4] = 0x0C000000 | (local_code & 0xFFFF);
}
}
void gps_fpga_acquisition_8sc::run_acquisition(void)
{
// enable interrupts
int reenable = 1;
write(d_fd, (void *)&reenable, sizeof(int));
d_map_base[5] = 0; // writing anything to reg 4 launches the acquisition process
int irq_count;
ssize_t nb;
// wait for interrupt
nb=read(d_fd, &irq_count, sizeof(irq_count));
if (nb != sizeof(irq_count))
{
printf("Tracking_module Read failed to retrive 4 bytes!\n");
printf("Tracking_module Interrupt number %d\n", irq_count);
}
}
void gps_fpga_acquisition_8sc::configure_acquisition()
{
d_map_base[0] = d_select_queue;
d_map_base[1] = d_nsamples_total;
d_map_base[2] = d_nsamples;
}
void gps_fpga_acquisition_8sc::set_phase_step(unsigned int doppler_index)
{
float phase_step_rad_real;
float phase_step_rad_int_temp;
int32_t phase_step_rad_int;
phase_step_rad_real = d_phase_step_rad_vector[doppler_index];
phase_step_rad_int_temp = phase_step_rad_real*4; // * 2^2
phase_step_rad_int = (int32_t) (phase_step_rad_int_temp*(536870912)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
d_map_base[3] = phase_step_rad_int;
}
void gps_fpga_acquisition_8sc::read_acquisition_results(uint32_t* max_index, float* max_magnitude, unsigned *initial_sample, float *power_sum)
{
unsigned readval = 0;
readval = d_map_base[0];
readval = d_map_base[1];
*initial_sample = readval;
readval = d_map_base[2];
*max_magnitude = (float) readval;
readval = d_map_base[4];
*power_sum = (float) readval;
readval = d_map_base[3];
*max_index = readval;
}
void gps_fpga_acquisition_8sc::block_samples()
{
d_map_base[14] = 1; // block the samples
}
void gps_fpga_acquisition_8sc::unblock_samples()
{
d_map_base[14] = 0; // unblock the samples
}

View File

@ -0,0 +1,88 @@
/*!
* \file fpga_acquisition_8sc.h
* \brief High optimized FPGA vector correlator class for lv_16sc_t (short int complex).
* \authors <ul>
* <li> Marc Majoral, 2017. mmajoral(at)cttc.cat
* </ul>
*
* Class that controls and executes a high optimized vector correlator
* class in the FPGA
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_FPGA_ACQUISITION_8SC_H_
#define GNSS_SDR_FPGA_ACQUISITION_8SC_H_
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <gnuradio/block.h>
/*!
* \brief Class that implements carrier wipe-off and correlators.
*/
class gps_fpga_acquisition_8sc
{
public:
gps_fpga_acquisition_8sc();
~gps_fpga_acquisition_8sc();
bool init(unsigned int fft_size, unsigned int nsamples_total, long d_freq, unsigned int doppler_max, unsigned int doppler_step, int num_doppler_bins, long fs_in, unsigned select_queue);
bool set_local_code(gr_complex* fft_codes); //int code_length_chips, const lv_16sc_t* local_code_in, float *shifts_chips);
bool free();
void run_acquisition(void);
void set_phase_step(unsigned int doppler_index);
void read_acquisition_results(uint32_t* max_index, float* max_magnitude, unsigned *initial_sample, float *power_sum);
void block_samples();
void unblock_samples();
private:
const lv_16sc_t *d_local_code_in;
lv_16sc_t *d_corr_out;
float *d_shifts_chips;
int d_code_length_chips;
int d_n_correlators;
// data related to the hardware module and the driver
char d_device_io_name[11] = "/dev/uio13"; // driver io name
int d_fd; // driver descriptor
volatile unsigned *d_map_base; // driver memory map
// configuration data received from the interface
lv_16sc_t *d_fft_codes = nullptr;
float *d_phase_step_rad_vector = nullptr;
unsigned int d_nsamples_total; // total number of samples in the fft including padding
unsigned int d_nsamples; // number of samples not including padding
unsigned int d_select_queue; // queue selection
// FPGA private functions
unsigned fpga_acquisition_test_register(unsigned writeval);
void fpga_configure_acquisition_local_code(lv_16sc_t fft_local_code[]);
void configure_acquisition();
};
#endif /* GNSS_SDR_FPGA_MULTICORRELATOR_H_ */

View File

@ -56,6 +56,7 @@ Channel::Channel(ConfigurationInterface *configuration, unsigned int channel,
channel_ = channel; channel_ = channel;
queue_ = queue; queue_ = queue;
flag_enable_fpga=configuration->property("Channel.enable_FPGA", false);
acq_->set_channel(channel_); acq_->set_channel(channel_);
trk_->set_channel(channel_); trk_->set_channel(channel_);
nav_->set_channel(channel_); nav_->set_channel(channel_);
@ -108,16 +109,22 @@ void Channel::connect(gr::top_block_sptr top_block)
LOG(WARNING) << "channel already connected internally"; LOG(WARNING) << "channel already connected internally";
return; return;
} }
pass_through_->connect(top_block); if (flag_enable_fpga==false)
{
pass_through_->connect(top_block);
}
acq_->connect(top_block); acq_->connect(top_block);
trk_->connect(top_block); trk_->connect(top_block);
nav_->connect(top_block); nav_->connect(top_block);
//Synchronous ports //Synchronous ports
top_block->connect(pass_through_->get_right_block(), 0, acq_->get_left_block(), 0); if (flag_enable_fpga==false)
DLOG(INFO) << "pass_through_ -> acquisition"; {
top_block->connect(pass_through_->get_right_block(), 0, trk_->get_left_block(), 0); top_block->connect(pass_through_->get_right_block(), 0, acq_->get_left_block(), 0);
DLOG(INFO) << "pass_through_ -> tracking"; DLOG(INFO) << "pass_through_ -> acquisition";
top_block->connect(pass_through_->get_right_block(), 0, trk_->get_left_block(), 0);
DLOG(INFO) << "pass_through_ -> tracking";
}
top_block->connect(trk_->get_right_block(), 0, nav_->get_left_block(), 0); top_block->connect(trk_->get_right_block(), 0, nav_->get_left_block(), 0);
DLOG(INFO) << "tracking -> telemetry_decoder"; DLOG(INFO) << "tracking -> telemetry_decoder";
@ -140,10 +147,18 @@ void Channel::disconnect(gr::top_block_sptr top_block)
LOG(WARNING) << "Channel already disconnected internally"; LOG(WARNING) << "Channel already disconnected internally";
return; return;
} }
top_block->disconnect(pass_through_->get_right_block(), 0, acq_->get_left_block(), 0);
top_block->disconnect(pass_through_->get_right_block(), 0, trk_->get_left_block(), 0); if (flag_enable_fpga==false)
{
top_block->disconnect(pass_through_->get_right_block(), 0, acq_->get_left_block(), 0);
top_block->disconnect(pass_through_->get_right_block(), 0, trk_->get_left_block(), 0);
}
top_block->disconnect(trk_->get_right_block(), 0, nav_->get_left_block(), 0); top_block->disconnect(trk_->get_right_block(), 0, nav_->get_left_block(), 0);
pass_through_->disconnect(top_block);
if (flag_enable_fpga==false)
{
pass_through_->disconnect(top_block);
}
acq_->disconnect(top_block); acq_->disconnect(top_block);
trk_->disconnect(top_block); trk_->disconnect(top_block);
nav_->disconnect(top_block); nav_->disconnect(top_block);

View File

@ -94,6 +94,7 @@ private:
std::shared_ptr<TelemetryDecoderInterface> nav_; std::shared_ptr<TelemetryDecoderInterface> nav_;
std::string role_; std::string role_;
std::string implementation_; std::string implementation_;
bool flag_enable_fpga;
unsigned int channel_; unsigned int channel_;
Gnss_Synchro gnss_synchro_; Gnss_Synchro gnss_synchro_;
Gnss_Signal gnss_signal_; Gnss_Signal gnss_signal_;

View File

@ -151,7 +151,7 @@ gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::gps_l1_ca_dll_pll_c_aid_tracking_fpga_
d_local_code_shift_chips[1] = 0.0; d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = d_early_late_spc_chips; d_local_code_shift_chips[2] = d_early_late_spc_chips;
multicorrelator_fpga_8sc.init(2 * d_correlation_length_samples, d_n_correlator_taps); multicorrelator_fpga_8sc.init(d_n_correlator_taps);
//--- Perform initializations ------------------------------ //--- Perform initializations ------------------------------
// define initial code frequency basis of NCO // define initial code frequency basis of NCO

View File

@ -72,11 +72,8 @@
bool fpga_multicorrelator_8sc::init( bool fpga_multicorrelator_8sc::init(int n_correlators)
int max_signal_length_samples,
int n_correlators)
{ {
size_t size = max_signal_length_samples * sizeof(lv_16sc_t);
d_n_correlators = n_correlators; d_n_correlators = n_correlators;
// instantiate variable length vectors // instantiate variable length vectors
@ -117,7 +114,7 @@ bool fpga_multicorrelator_8sc::set_output_vectors(lv_16sc_t* corr_out)
} }
void fpga_multicorrelator_8sc::update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips) void fpga_multicorrelator_8sc::update_local_code(float rem_code_phase_chips)
{ {
d_rem_code_phase_chips = rem_code_phase_chips; d_rem_code_phase_chips = rem_code_phase_chips;
@ -133,7 +130,7 @@ bool fpga_multicorrelator_8sc::Carrier_wipeoff_multicorrelator_resampler(
float code_phase_step_chips, float code_phase_step_chips,
int signal_length_samples) int signal_length_samples)
{ {
update_local_code(signal_length_samples, rem_code_phase_chips, code_phase_step_chips); update_local_code(rem_code_phase_chips);
d_rem_carrier_phase_in_rad = rem_carrier_phase_in_rad; d_rem_carrier_phase_in_rad = rem_carrier_phase_in_rad;
d_code_phase_step_chips = code_phase_step_chips; d_code_phase_step_chips = code_phase_step_chips;
@ -327,7 +324,6 @@ void fpga_multicorrelator_8sc::fpga_configure_code_parameters_in_fpga(void)
void fpga_multicorrelator_8sc::fpga_compute_signal_parameters_in_fpga(void) void fpga_multicorrelator_8sc::fpga_compute_signal_parameters_in_fpga(void)
{ {
float d_rem_carrier_phase_in_rad_temp; float d_rem_carrier_phase_in_rad_temp;
float d_phase_step_rad_int_temp;
d_code_phase_step_chips_num = (unsigned) roundf(MAX_CODE_RESAMPLER_COUNTER * d_code_phase_step_chips); d_code_phase_step_chips_num = (unsigned) roundf(MAX_CODE_RESAMPLER_COUNTER * d_code_phase_step_chips);

View File

@ -50,10 +50,10 @@ class fpga_multicorrelator_8sc
public: public:
fpga_multicorrelator_8sc(); fpga_multicorrelator_8sc();
~fpga_multicorrelator_8sc(); ~fpga_multicorrelator_8sc();
bool init(int max_signal_length_samples, int n_correlators); bool init(int n_correlators);
bool set_local_code_and_taps(int code_length_chips, const lv_16sc_t* local_code_in, float *shifts_chips); bool set_local_code_and_taps(int code_length_chips, const lv_16sc_t* local_code_in, float *shifts_chips);
bool set_output_vectors(lv_16sc_t* corr_out); bool set_output_vectors(lv_16sc_t* corr_out);
void update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips); void update_local_code(float rem_code_phase_chips);
bool Carrier_wipeoff_multicorrelator_resampler(float rem_carrier_phase_in_rad, float phase_step_rad, float rem_code_phase_chips, float code_phase_step_chips, int signal_length_samples); bool Carrier_wipeoff_multicorrelator_resampler(float rem_carrier_phase_in_rad, float phase_step_rad, float rem_code_phase_chips, float code_phase_step_chips, int signal_length_samples);
bool free(); bool free();

View File

@ -36,6 +36,10 @@ if(ENABLE_CUDA)
set(OPT_RECEIVER_INCLUDE_DIRS ${OPT_RECEIVER_INCLUDE_DIRS} ${CUDA_INCLUDE_DIRS}) set(OPT_RECEIVER_INCLUDE_DIRS ${OPT_RECEIVER_INCLUDE_DIRS} ${CUDA_INCLUDE_DIRS})
endif(ENABLE_CUDA) endif(ENABLE_CUDA)
if(ENABLE_FPGA)
add_definitions(-DENABLE_FPGA=1)
endif(ENABLE_FPGA)
include_directories( include_directories(
$(CMAKE_CURRENT_SOURCE_DIR) $(CMAKE_CURRENT_SOURCE_DIR)
@ -59,6 +63,7 @@ include_directories(
${CMAKE_SOURCE_DIR}/src/algorithms/input_filter/gnuradio_blocks ${CMAKE_SOURCE_DIR}/src/algorithms/input_filter/gnuradio_blocks
${CMAKE_SOURCE_DIR}/src/algorithms/acquisition/adapters ${CMAKE_SOURCE_DIR}/src/algorithms/acquisition/adapters
${CMAKE_SOURCE_DIR}/src/algorithms/acquisition/gnuradio_blocks ${CMAKE_SOURCE_DIR}/src/algorithms/acquisition/gnuradio_blocks
${CMAKE_SOURCE_DIR}/src/algorithms/acquisition/libs
${CMAKE_SOURCE_DIR}/src/algorithms/tracking/adapters ${CMAKE_SOURCE_DIR}/src/algorithms/tracking/adapters
${CMAKE_SOURCE_DIR}/src/algorithms/tracking/gnuradio_blocks ${CMAKE_SOURCE_DIR}/src/algorithms/tracking/gnuradio_blocks
${CMAKE_SOURCE_DIR}/src/algorithms/tracking/libs ${CMAKE_SOURCE_DIR}/src/algorithms/tracking/libs
@ -142,6 +147,7 @@ target_link_libraries(gnss_rx ${Boost_LIBRARIES}
resampler_adapters resampler_adapters
acq_adapters acq_adapters
tracking_lib tracking_lib
acquisition_lib
tracking_adapters tracking_adapters
channel_adapters channel_adapters
telemetry_decoder_libswiftcnav telemetry_decoder_libswiftcnav

View File

@ -99,6 +99,11 @@
#include "galileo_e1_pvt.h" #include "galileo_e1_pvt.h"
#include "hybrid_pvt.h" #include "hybrid_pvt.h"
#if ENABLE_FPGA
#include "gps_l1_ca_dll_pll_c_aid_tracking_fpga.h"
#include "gps_l1_ca_pcps_acquisition_fpga.h"
#endif
#if OPENCL_BLOCKS #if OPENCL_BLOCKS
#include "gps_l1_ca_pcps_opencl_acquisition.h" #include "gps_l1_ca_pcps_opencl_acquisition.h"
#endif #endif
@ -900,6 +905,15 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetBlock(
out_streams)); out_streams));
block = std::move(block_); block = std::move(block_);
} }
#if ENABLE_FPGA
else if (implementation.compare("GPS_L1_CA_PCPS_Acquisition_Fpga") == 0)
{
std::unique_ptr<GNSSBlockInterface> block_(new GpsL1CaPcpsAcquisitionFpga(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
#endif
else if (implementation.compare("GPS_L1_CA_PCPS_Assisted_Acquisition") == 0) else if (implementation.compare("GPS_L1_CA_PCPS_Assisted_Acquisition") == 0)
{ {
std::unique_ptr<GNSSBlockInterface> block_(new GpsL1CaPcpsAssistedAcquisition(configuration.get(), role, in_streams, std::unique_ptr<GNSSBlockInterface> block_(new GpsL1CaPcpsAssistedAcquisition(configuration.get(), role, in_streams,
@ -993,6 +1007,14 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetBlock(
out_streams)); out_streams));
block = std::move(block_); block = std::move(block_);
} }
#if ENABLE_FPGA
else if (implementation.compare("GPS_L1_CA_DLL_PLL_C_Aid_Tracking_Fpga") == 0)
{
std::unique_ptr<TrackingInterface> block_(new GpsL1CaDllPllCAidTrackingFpga(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
#endif
else if (implementation.compare("GPS_L1_CA_TCP_CONNECTOR_Tracking") == 0) else if (implementation.compare("GPS_L1_CA_TCP_CONNECTOR_Tracking") == 0)
{ {
std::unique_ptr<GNSSBlockInterface> block_(new GpsL1CaTcpConnectorTracking(configuration.get(), role, in_streams, std::unique_ptr<GNSSBlockInterface> block_(new GpsL1CaTcpConnectorTracking(configuration.get(), role, in_streams,
@ -1145,6 +1167,14 @@ std::unique_ptr<AcquisitionInterface> GNSSBlockFactory::GetAcqBlock(
out_streams)); out_streams));
block = std::move(block_); block = std::move(block_);
} }
#if ENABLE_FPGA
else if (implementation.compare("GPS_L1_CA_PCPS_Acquisition_Fpga") == 0)
{
std::unique_ptr<AcquisitionInterface> block_(new GpsL1CaPcpsAcquisitionFpga(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
#endif
else if (implementation.compare("GPS_L1_CA_PCPS_Assisted_Acquisition") == 0) else if (implementation.compare("GPS_L1_CA_PCPS_Assisted_Acquisition") == 0)
{ {
std::unique_ptr<AcquisitionInterface> block_(new GpsL1CaPcpsAssistedAcquisition(configuration.get(), role, in_streams, std::unique_ptr<AcquisitionInterface> block_(new GpsL1CaPcpsAssistedAcquisition(configuration.get(), role, in_streams,
@ -1258,6 +1288,14 @@ std::unique_ptr<TrackingInterface> GNSSBlockFactory::GetTrkBlock(
out_streams)); out_streams));
block = std::move(block_); block = std::move(block_);
} }
#if ENABLE_FPGA
else if (implementation.compare("GPS_L1_CA_DLL_PLL_C_Aid_Tracking_Fpga") == 0)
{
std::unique_ptr<TrackingInterface> block_(new GpsL1CaDllPllCAidTrackingFpga(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
#endif
else if (implementation.compare("GPS_L1_CA_TCP_CONNECTOR_Tracking") == 0) else if (implementation.compare("GPS_L1_CA_TCP_CONNECTOR_Tracking") == 0)
{ {
std::unique_ptr<TrackingInterface> block_(new GpsL1CaTcpConnectorTracking(configuration.get(), role, in_streams, std::unique_ptr<TrackingInterface> block_(new GpsL1CaTcpConnectorTracking(configuration.get(), role, in_streams,

View File

@ -70,20 +70,20 @@ GNSSFlowgraph::~GNSSFlowgraph()
void GNSSFlowgraph::start() void GNSSFlowgraph::start()
{ {
if (running_) if (running_)
{ {
LOG(WARNING) << "Already running"; LOG(WARNING) << "Already running";
return; return;
} }
try try
{ {
top_block_->start(); top_block_->start();
} }
catch (std::exception& e) catch (std::exception& e)
{ {
LOG(WARNING) << "Unable to start flowgraph"; LOG(WARNING) << "Unable to start flowgraph";
LOG(ERROR) << e.what(); LOG(ERROR) << e.what();
return; return;
} }
running_ = true; running_ = true;
@ -111,226 +111,253 @@ void GNSSFlowgraph::connect()
*/ */
LOG(INFO) << "Connecting flowgraph"; LOG(INFO) << "Connecting flowgraph";
if (connected_) if (connected_)
{ {
LOG(WARNING) << "flowgraph already connected"; LOG(WARNING) << "flowgraph already connected";
return; return;
} }
for (int i = 0; i < sources_count_; i++) for (int i = 0; i < sources_count_; i++)
{
if (configuration_->property(sig_source_.at(i)->role() + ".enable_FPGA", false)==false)
{ {
try try
{ {
sig_source_.at(i)->connect(top_block_); sig_source_.at(i)->connect(top_block_);
} }
catch (std::exception& e) catch (std::exception& e)
{ {
LOG(INFO) << "Can't connect signal source block " << i << " internally"; LOG(INFO) << "Can't connect signal source block " << i << " internally";
LOG(ERROR) << e.what(); LOG(ERROR) << e.what();
top_block_->disconnect_all(); top_block_->disconnect_all();
return; return;
} }
}else{
DLOG(INFO)<<"Disabled signal source "<<i<<" due to FPGA accelerator";
} }
}
// Signal Source > Signal conditioner > // Signal Source > Signal conditioner >
for (unsigned int i = 0; i < sig_conditioner_.size(); i++) for (unsigned int i = 0; i < sig_conditioner_.size(); i++)
{
if (configuration_->property(sig_conditioner_.at(i)->role() + ".enable_FPGA", false)==false)
{ {
try try
{ {
sig_conditioner_.at(i)->connect(top_block_); sig_conditioner_.at(i)->connect(top_block_);
} }
catch (std::exception& e) catch (std::exception& e)
{ {
LOG(INFO) << "Can't connect signal conditioner block " << i << " internally"; LOG(INFO) << "Can't connect signal conditioner block " << i << " internally";
LOG(ERROR) << e.what(); LOG(ERROR) << e.what();
top_block_->disconnect_all(); top_block_->disconnect_all();
return; return;
} }
}else{
DLOG(INFO)<<"Disabled signal conditioner "<<i<<" due to FPGA accelerator";
} }
}
for (unsigned int i = 0; i < channels_count_; i++) for (unsigned int i = 0; i < channels_count_; i++)
{
try
{ {
try channels_.at(i)->connect(top_block_);
{
channels_.at(i)->connect(top_block_);
}
catch (std::exception& e)
{
LOG(WARNING) << "Can't connect channel " << i << " internally";
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
} }
catch (std::exception& e)
try {
{ LOG(WARNING) << "Can't connect channel " << i << " internally";
observables_->connect(top_block_);
}
catch (std::exception& e)
{
LOG(WARNING) << "Can't connect observables block internally";
LOG(ERROR) << e.what(); LOG(ERROR) << e.what();
top_block_->disconnect_all(); top_block_->disconnect_all();
return; return;
}
}
try
{
observables_->connect(top_block_);
}
catch (std::exception& e)
{
LOG(WARNING) << "Can't connect observables block internally";
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
} }
// Signal Source > Signal conditioner >> Channels >> Observables > PVT // Signal Source > Signal conditioner >> Channels >> Observables > PVT
try try
{ {
pvt_->connect(top_block_); pvt_->connect(top_block_);
} }
catch (std::exception& e) catch (std::exception& e)
{ {
LOG(WARNING) << "Can't connect PVT block internally"; LOG(WARNING) << "Can't connect PVT block internally";
LOG(ERROR) << e.what(); LOG(ERROR) << e.what();
top_block_->disconnect_all(); top_block_->disconnect_all();
return; return;
} }
DLOG(INFO) << "blocks connected internally"; DLOG(INFO) << "blocks connected internally";
// Signal Source (i) > Signal conditioner (i) > // Signal Source (i) > Signal conditioner (i) >
int RF_Channels = 0; int RF_Channels = 0;
int signal_conditioner_ID = 0; int signal_conditioner_ID = 0;
for (int i = 0; i < sources_count_; i++) for (int i = 0; i < sources_count_; i++)
{
//FPGA Accelerators do not need signal sources or conditioners
//as the samples are feed directly to the FPGA fabric, so, if enabled, do not connect any source
if (configuration_->property(sig_source_.at(i)->role() + ".enable_FPGA", false)==false)
{ {
try try
{ {
//TODO: Remove this array implementation and create generic multistream connector //TODO: Remove this array implementation and create generic multistream connector
//(if a signal source has more than 1 stream, then connect it to the multistream signal conditioner) //(if a signal source has more than 1 stream, then connect it to the multistream signal conditioner)
if(sig_source_.at(i)->implementation().compare("Raw_Array_Signal_Source") == 0) if(sig_source_.at(i)->implementation().compare("Raw_Array_Signal_Source") == 0)
{
//Multichannel Array
std::cout << "ARRAY MODE" << std::endl;
for (int j = 0; j < GNSS_SDR_ARRAY_SIGNAL_CONDITIONER_CHANNELS; j++)
{
std::cout << "connecting ch " << j << std::endl;
top_block_->connect(sig_source_.at(i)->get_right_block(), j, sig_conditioner_.at(i)->get_left_block(), j);
}
}
else
{
//TODO: Create a class interface for SignalSources, derived from GNSSBlockInterface.
//Include GetRFChannels in the interface to avoid read config parameters here
//read the number of RF channels for each front-end
RF_Channels = configuration_->property(sig_source_.at(i)->role() + ".RF_channels", 1);
for (int j = 0; j < RF_Channels; j++)
{
//Connect the multichannel signal source to multiple signal conditioners
// GNURADIO max_streams=-1 means infinite ports!
LOG(INFO) << "sig_source_.at(i)->get_right_block()->output_signature()->max_streams()=" << sig_source_.at(i)->get_right_block()->output_signature()->max_streams();
LOG(INFO) << "sig_conditioner_.at(signal_conditioner_ID)->get_left_block()->input_signature()=" << sig_conditioner_.at(signal_conditioner_ID)->get_left_block()->input_signature()->max_streams();
if (sig_source_.at(i)->get_right_block()->output_signature()->max_streams() > 1)
{ {
//Multichannel Array
std::cout << "ARRAY MODE" << std::endl; LOG(INFO) << "connecting sig_source_ " << i << " stream " << j << " to conditioner " << j;
for (int j = 0; j < GNSS_SDR_ARRAY_SIGNAL_CONDITIONER_CHANNELS; j++) top_block_->connect(sig_source_.at(i)->get_right_block(), j, sig_conditioner_.at(signal_conditioner_ID)->get_left_block(), 0);
{
std::cout << "connecting ch " << j << std::endl;
top_block_->connect(sig_source_.at(i)->get_right_block(), j, sig_conditioner_.at(i)->get_left_block(), j);
}
} }
else else
{ {
//TODO: Create a class interface for SignalSources, derived from GNSSBlockInterface. if (j == 0)
//Include GetRFChannels in the interface to avoid read config parameters here {
//read the number of RF channels for each front-end // RF_channel 0 backward compatibility with single channel sources
RF_Channels = configuration_->property(sig_source_.at(i)->role() + ".RF_channels", 1); LOG(INFO) << "connecting sig_source_ " << i << " stream " << 0 << " to conditioner " << j;
top_block_->connect(sig_source_.at(i)->get_right_block(), 0, sig_conditioner_.at(signal_conditioner_ID)->get_left_block(), 0);
for (int j = 0; j < RF_Channels; j++) }
{ else
//Connect the multichannel signal source to multiple signal conditioners {
// GNURADIO max_streams=-1 means infinite ports! // Multiple channel sources using multiple output blocks of single channel (requires RF_channel selector in call)
LOG(INFO) << "sig_source_.at(i)->get_right_block()->output_signature()->max_streams()=" << sig_source_.at(i)->get_right_block()->output_signature()->max_streams(); LOG(INFO) << "connecting sig_source_ " << i << " stream " << j << " to conditioner " << j;
LOG(INFO) << "sig_conditioner_.at(signal_conditioner_ID)->get_left_block()->input_signature()=" << sig_conditioner_.at(signal_conditioner_ID)->get_left_block()->input_signature()->max_streams(); top_block_->connect(sig_source_.at(i)->get_right_block(j), 0, sig_conditioner_.at(signal_conditioner_ID)->get_left_block(), 0);
}
if (sig_source_.at(i)->get_right_block()->output_signature()->max_streams() > 1)
{
LOG(INFO) << "connecting sig_source_ " << i << " stream " << j << " to conditioner " << j;
top_block_->connect(sig_source_.at(i)->get_right_block(), j, sig_conditioner_.at(signal_conditioner_ID)->get_left_block(), 0);
}
else
{
if (j == 0)
{
// RF_channel 0 backward compatibility with single channel sources
LOG(INFO) << "connecting sig_source_ " << i << " stream " << 0 << " to conditioner " << j;
top_block_->connect(sig_source_.at(i)->get_right_block(), 0, sig_conditioner_.at(signal_conditioner_ID)->get_left_block(), 0);
}
else
{
// Multiple channel sources using multiple output blocks of single channel (requires RF_channel selector in call)
LOG(INFO) << "connecting sig_source_ " << i << " stream " << j << " to conditioner " << j;
top_block_->connect(sig_source_.at(i)->get_right_block(j), 0, sig_conditioner_.at(signal_conditioner_ID)->get_left_block(), 0);
}
}
signal_conditioner_ID++;
}
} }
signal_conditioner_ID++;
}
}
} }
catch (std::exception& e) catch (std::exception& e)
{ {
LOG(WARNING) << "Can't connect signal source " << i << " to signal conditioner " << i; LOG(WARNING) << "Can't connect signal source " << i << " to signal conditioner " << i;
LOG(ERROR) << e.what(); LOG(ERROR) << e.what();
top_block_->disconnect_all(); top_block_->disconnect_all();
return; return;
} }
}else{
DLOG(INFO) << "Signal source "<<i<<"disabled by FPGA";
} }
}
DLOG(INFO) << "Signal source connected to signal conditioner"; DLOG(INFO) << "Signal source connected to signal conditioner";
// Signal conditioner (selected_signal_source) >> channels (i) (dependent of their associated SignalSource_ID) // Signal conditioner (selected_signal_source) >> channels (i) (dependent of their associated SignalSource_ID)
int selected_signal_conditioner_ID; int selected_signal_conditioner_ID;
for (unsigned int i = 0; i < channels_count_; i++) for (unsigned int i = 0; i < channels_count_; i++)
{
selected_signal_conditioner_ID = configuration_->property("Channel" + boost::lexical_cast<std::string>(i) + ".RF_channel_ID", 0);
//FPGA Accelerators do not need signal sources or conditioners
//as the samples are feed directly to the FPGA fabric, so, if enabled, do not connect any source
if (configuration_->property(sig_conditioner_.at(selected_signal_conditioner_ID)->role() + ".enable_FPGA", false)==false)
{ {
selected_signal_conditioner_ID = configuration_->property("Channel" + boost::lexical_cast<std::string>(i) + ".RF_channel_ID", 0);
try try
{ {
top_block_->connect(sig_conditioner_.at(selected_signal_conditioner_ID)->get_right_block(), 0, top_block_->connect(sig_conditioner_.at(selected_signal_conditioner_ID)->get_right_block(), 0,
channels_.at(i)->get_left_block(), 0); channels_.at(i)->get_left_block(), 0);
} }
catch (std::exception& e) catch (std::exception& e)
{ {
LOG(WARNING) << "Can't connect signal conditioner " << selected_signal_conditioner_ID << " to channel " << i; LOG(WARNING) << "Can't connect signal conditioner " << selected_signal_conditioner_ID << " to channel " << i;
LOG(ERROR) << e.what(); LOG(ERROR) << e.what();
top_block_->disconnect_all(); top_block_->disconnect_all();
return; return;
} }
DLOG(INFO) << "signal conditioner " << selected_signal_conditioner_ID << " connected to channel " << i; DLOG(INFO) << "signal conditioner " << selected_signal_conditioner_ID << " connected to channel " << i;
}else{
// Signal Source > Signal conditioner >> Channels >> Observables DLOG(INFO) << "signal conditioner disabled by FPGA in channel " << i;
try
{
top_block_->connect(channels_.at(i)->get_right_block(), 0,
observables_->get_left_block(), i);
}
catch (std::exception& e)
{
LOG(WARNING) << "Can't connect channel " << i << " to observables";
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
std::string gnss_signal = channels_.at(i)->get_signal().get_signal_str(); // use channel's implicit signal!
while (gnss_signal.compare(available_GNSS_signals_.front().get_signal_str()) != 0 )
{
available_GNSS_signals_.push_back(available_GNSS_signals_.front());
available_GNSS_signals_.pop_front();
}
channels_.at(i)->set_signal(available_GNSS_signals_.front());
if (channels_state_[i] == 1)
{
channels_.at(i)->start_acquisition();
available_GNSS_signals_.pop_front();
LOG(INFO) << "Channel " << i << " assigned to " << available_GNSS_signals_.front();
LOG(INFO) << "Channel " << i << " connected to observables and ready for acquisition";
}
else
{
LOG(INFO) << "Channel " << i << " connected to observables in standby mode";
}
} }
// Signal Source > Signal conditioner >> Channels >> Observables
try
{
top_block_->connect(channels_.at(i)->get_right_block(), 0,
observables_->get_left_block(), i);
}
catch (std::exception& e)
{
LOG(WARNING) << "Can't connect channel " << i << " to observables";
LOG(ERROR) << e.what();
top_block_->disconnect_all();
return;
}
std::string gnss_signal = channels_.at(i)->get_signal().get_signal_str(); // use channel's implicit signal!
while (gnss_signal.compare(available_GNSS_signals_.front().get_signal_str()) != 0 )
{
available_GNSS_signals_.push_back(available_GNSS_signals_.front());
available_GNSS_signals_.pop_front();
}
channels_.at(i)->set_signal(available_GNSS_signals_.front());
if (channels_state_[i] == 1)
{
channels_.at(i)->start_acquisition();
available_GNSS_signals_.pop_front();
LOG(INFO) << "Channel " << i << " assigned to " << available_GNSS_signals_.front();
LOG(INFO) << "Channel " << i << " connected to observables and ready for acquisition";
}
else
{
LOG(INFO) << "Channel " << i << " connected to observables in standby mode";
}
}
/* /*
* Connect the observables output of each channel to the PVT block * Connect the observables output of each channel to the PVT block
*/ */
try try
{ {
for (unsigned int i = 0; i < channels_count_; i++) for (unsigned int i = 0; i < channels_count_; i++)
{ {
top_block_->connect(observables_->get_right_block(), i, pvt_->get_left_block(), i); top_block_->connect(observables_->get_right_block(), i, pvt_->get_left_block(), i);
top_block_->msg_connect(channels_.at(i)->get_right_block(), pmt::mp("telemetry"), pvt_->get_left_block(), pmt::mp("telemetry")); top_block_->msg_connect(channels_.at(i)->get_right_block(), pmt::mp("telemetry"), pvt_->get_left_block(), pmt::mp("telemetry"));
} }
} }
catch (std::exception& e) catch (std::exception& e)
{ {
LOG(WARNING) << "Can't connect observables to PVT"; LOG(WARNING) << "Can't connect observables to PVT";
LOG(ERROR) << e.what(); LOG(ERROR) << e.what();
top_block_->disconnect_all(); top_block_->disconnect_all();
return; return;
} }
connected_ = true; connected_ = true;
@ -342,10 +369,10 @@ void GNSSFlowgraph::connect()
void GNSSFlowgraph::wait() void GNSSFlowgraph::wait()
{ {
if (!running_) if (!running_)
{ {
LOG(WARNING) << "Can't apply wait. Flowgraph is not running"; LOG(WARNING) << "Can't apply wait. Flowgraph is not running";
return; return;
} }
top_block_->wait(); top_block_->wait();
DLOG(INFO) << "Flowgraph finished calculations"; DLOG(INFO) << "Flowgraph finished calculations";
running_ = false; running_ = false;
@ -377,10 +404,10 @@ void GNSSFlowgraph::apply_action(unsigned int who, unsigned int what)
available_GNSS_signals_.push_back(channels_.at(who)->get_signal()); available_GNSS_signals_.push_back(channels_.at(who)->get_signal());
//TODO: Optimize the channel and signal matching! //TODO: Optimize the channel and signal matching!
while ( channels_.at(who)->get_signal().get_signal_str().compare(available_GNSS_signals_.front().get_signal_str()) != 0 ) while ( channels_.at(who)->get_signal().get_signal_str().compare(available_GNSS_signals_.front().get_signal_str()) != 0 )
{ {
available_GNSS_signals_.push_back(available_GNSS_signals_.front()); available_GNSS_signals_.push_back(available_GNSS_signals_.front());
available_GNSS_signals_.pop_front(); available_GNSS_signals_.pop_front();
} }
channels_.at(who)->set_signal(available_GNSS_signals_.front()); channels_.at(who)->set_signal(available_GNSS_signals_.front());
available_GNSS_signals_.pop_front(); available_GNSS_signals_.pop_front();
usleep(100); usleep(100);
@ -391,42 +418,42 @@ void GNSSFlowgraph::apply_action(unsigned int who, unsigned int what)
channels_state_[who] = 2; channels_state_[who] = 2;
acq_channels_count_--; acq_channels_count_--;
if (!available_GNSS_signals_.empty() && acq_channels_count_ < max_acq_channels_) if (!available_GNSS_signals_.empty() && acq_channels_count_ < max_acq_channels_)
{
for (unsigned int i = 0; i < channels_count_; i++)
{ {
for (unsigned int i = 0; i < channels_count_; i++) if (channels_state_[i] == 0)
{
channels_state_[i] = 1;
while (channels_.at(i)->get_signal().get_signal_str().compare(available_GNSS_signals_.front().get_signal_str()) != 0 )
{ {
if (channels_state_[i] == 0) available_GNSS_signals_.push_back(available_GNSS_signals_.front());
{ available_GNSS_signals_.pop_front();
channels_state_[i] = 1;
while (channels_.at(i)->get_signal().get_signal_str().compare(available_GNSS_signals_.front().get_signal_str()) != 0 )
{
available_GNSS_signals_.push_back(available_GNSS_signals_.front());
available_GNSS_signals_.pop_front();
}
channels_.at(i)->set_signal(available_GNSS_signals_.front());
available_GNSS_signals_.pop_front();
acq_channels_count_++;
channels_.at(i)->start_acquisition();
break;
}
DLOG(INFO) << "Channel " << i << " in state " << channels_state_[i];
} }
channels_.at(i)->set_signal(available_GNSS_signals_.front());
available_GNSS_signals_.pop_front();
acq_channels_count_++;
channels_.at(i)->start_acquisition();
break;
}
DLOG(INFO) << "Channel " << i << " in state " << channels_state_[i];
} }
}
break; break;
case 2: case 2:
LOG(INFO) << "Channel " << who << " TRK FAILED satellite " << channels_.at(who)->get_signal().get_satellite(); LOG(INFO) << "Channel " << who << " TRK FAILED satellite " << channels_.at(who)->get_signal().get_satellite();
if (acq_channels_count_ < max_acq_channels_) if (acq_channels_count_ < max_acq_channels_)
{ {
channels_state_[who] = 1; channels_state_[who] = 1;
acq_channels_count_++; acq_channels_count_++;
channels_.at(who)->start_acquisition(); channels_.at(who)->start_acquisition();
} }
else else
{ {
channels_state_[who] = 0; channels_state_[who] = 0;
available_GNSS_signals_.push_back( channels_.at(who)->get_signal() ); available_GNSS_signals_.push_back( channels_.at(who)->get_signal() );
} }
// for (unsigned int i = 0; i < channels_count_; i++) // for (unsigned int i = 0; i < channels_count_; i++)
// { // {
@ -445,15 +472,15 @@ void GNSSFlowgraph::apply_action(unsigned int who, unsigned int what)
void GNSSFlowgraph::set_configuration(std::shared_ptr<ConfigurationInterface> configuration) void GNSSFlowgraph::set_configuration(std::shared_ptr<ConfigurationInterface> configuration)
{ {
if (running_) if (running_)
{ {
LOG(WARNING) << "Unable to update configuration while flowgraph running"; LOG(WARNING) << "Unable to update configuration while flowgraph running";
return; return;
} }
if (connected_) if (connected_)
{ {
LOG(WARNING) << "Unable to update configuration while flowgraph connected"; LOG(WARNING) << "Unable to update configuration while flowgraph connected";
} }
configuration_ = configuration; configuration_ = configuration;
} }
@ -473,45 +500,45 @@ void GNSSFlowgraph::init()
int signal_conditioner_ID = 0; int signal_conditioner_ID = 0;
if (sources_count_ > 1) if (sources_count_ > 1)
{
for (int i = 0; i < sources_count_; i++)
{ {
for (int i = 0; i < sources_count_; i++) std::cout << "Creating source " << i << std::endl;
{ sig_source_.push_back(block_factory_->GetSignalSource(configuration_, queue_, i));
std::cout << "Creating source " << i << std::endl;
sig_source_.push_back(block_factory_->GetSignalSource(configuration_, queue_, i));
//TODO: Create a class interface for SignalSources, derived from GNSSBlockInterface.
//Include GetRFChannels in the interface to avoid read config parameters here
//read the number of RF channels for each front-end
RF_Channels = configuration_->property(sig_source_.at(i)->role() + ".RF_channels", 1);
std::cout << "RF Channels " << RF_Channels << std::endl;
for (int j = 0; j < RF_Channels; j++)
{
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, signal_conditioner_ID));
signal_conditioner_ID++;
}
}
}
else
{
//backwards compatibility for old config files
sig_source_.push_back(block_factory_->GetSignalSource(configuration_, queue_, -1));
//TODO: Create a class interface for SignalSources, derived from GNSSBlockInterface. //TODO: Create a class interface for SignalSources, derived from GNSSBlockInterface.
//Include GetRFChannels in the interface to avoid read config parameters here //Include GetRFChannels in the interface to avoid read config parameters here
//read the number of RF channels for each front-end //read the number of RF channels for each front-end
RF_Channels = configuration_->property(sig_source_.at(0)->role() + ".RF_channels", 0); RF_Channels = configuration_->property(sig_source_.at(i)->role() + ".RF_channels", 1);
if (RF_Channels != 0) std::cout << "RF Channels " << RF_Channels << std::endl;
{ for (int j = 0; j < RF_Channels; j++)
for (int j = 0; j < RF_Channels; j++) {
{ sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, signal_conditioner_ID));
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, signal_conditioner_ID)); signal_conditioner_ID++;
signal_conditioner_ID++; }
}
}
else
{
//old config file, single signal source and single channel, not specified
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, -1));
}
} }
}
else
{
//backwards compatibility for old config files
sig_source_.push_back(block_factory_->GetSignalSource(configuration_, queue_, -1));
//TODO: Create a class interface for SignalSources, derived from GNSSBlockInterface.
//Include GetRFChannels in the interface to avoid read config parameters here
//read the number of RF channels for each front-end
RF_Channels = configuration_->property(sig_source_.at(0)->role() + ".RF_channels", 0);
if (RF_Channels != 0)
{
for (int j = 0; j < RF_Channels; j++)
{
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, signal_conditioner_ID));
signal_conditioner_ID++;
}
}
else
{
//old config file, single signal source and single channel, not specified
sig_conditioner_.push_back(block_factory_->GetSignalConditioner(configuration_, -1));
}
}
observables_ = block_factory_->GetObservables(configuration_); observables_ = block_factory_->GetObservables(configuration_);
pvt_ = block_factory_->GetPVT(configuration_); pvt_ = block_factory_->GetPVT(configuration_);
@ -521,10 +548,10 @@ void GNSSFlowgraph::init()
//todo:check smart pointer coherence... //todo:check smart pointer coherence...
channels_count_ = channels->size(); channels_count_ = channels->size();
for (unsigned int i = 0; i < channels_count_; i++) for (unsigned int i = 0; i < channels_count_; i++)
{ {
std::shared_ptr<GNSSBlockInterface> chan_ = std::move(channels->at(i)); std::shared_ptr<GNSSBlockInterface> chan_ = std::move(channels->at(i));
channels_.push_back(std::dynamic_pointer_cast<ChannelInterface>(chan_)); channels_.push_back(std::dynamic_pointer_cast<ChannelInterface>(chan_));
} }
top_block_ = gr::make_top_block("GNSSFlowgraph"); top_block_ = gr::make_top_block("GNSSFlowgraph");
@ -564,133 +591,133 @@ void GNSSFlowgraph::set_signals_list()
*/ */
std::set<unsigned int> available_gps_prn = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, std::set<unsigned int> available_gps_prn = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32 }; 29, 30, 31, 32 };
std::set<unsigned int> available_sbas_prn = {120, 124, 126}; std::set<unsigned int> available_sbas_prn = {120, 124, 126};
std::set<unsigned int> available_galileo_prn = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, std::set<unsigned int> available_galileo_prn = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36}; 29, 30, 31, 32, 33, 34, 35, 36};
std::string sv_list = configuration_->property("Galileo.prns", std::string("") ); std::string sv_list = configuration_->property("Galileo.prns", std::string("") );
if( sv_list.length() > 0 ) if( sv_list.length() > 0 )
{ {
// Reset the available prns: // Reset the available prns:
std::set< unsigned int > tmp_set; std::set< unsigned int > tmp_set;
boost::tokenizer<> tok( sv_list ); boost::tokenizer<> tok( sv_list );
std::transform( tok.begin(), tok.end(), std::inserter( tmp_set, tmp_set.begin() ), std::transform( tok.begin(), tok.end(), std::inserter( tmp_set, tmp_set.begin() ),
boost::lexical_cast<unsigned int, std::string> ); boost::lexical_cast<unsigned int, std::string> );
if( tmp_set.size() > 0 ) if( tmp_set.size() > 0 )
{ {
available_galileo_prn = tmp_set; available_galileo_prn = tmp_set;
}
} }
}
sv_list = configuration_->property("GPS.prns", std::string("") ); sv_list = configuration_->property("GPS.prns", std::string("") );
if( sv_list.length() > 0 ) if( sv_list.length() > 0 )
{ {
// Reset the available prns: // Reset the available prns:
std::set< unsigned int > tmp_set; std::set< unsigned int > tmp_set;
boost::tokenizer<> tok( sv_list ); boost::tokenizer<> tok( sv_list );
std::transform( tok.begin(), tok.end(), std::inserter( tmp_set, tmp_set.begin() ), std::transform( tok.begin(), tok.end(), std::inserter( tmp_set, tmp_set.begin() ),
boost::lexical_cast<unsigned int, std::string> ); boost::lexical_cast<unsigned int, std::string> );
if( tmp_set.size() > 0 ) if( tmp_set.size() > 0 )
{ {
available_gps_prn = tmp_set; available_gps_prn = tmp_set;
}
} }
}
sv_list = configuration_->property("SBAS.prns", std::string("") ); sv_list = configuration_->property("SBAS.prns", std::string("") );
if( sv_list.length() > 0 ) if( sv_list.length() > 0 )
{ {
// Reset the available prns: // Reset the available prns:
std::set< unsigned int > tmp_set; std::set< unsigned int > tmp_set;
boost::tokenizer<> tok( sv_list ); boost::tokenizer<> tok( sv_list );
std::transform( tok.begin(), tok.end(), std::inserter( tmp_set, tmp_set.begin() ), std::transform( tok.begin(), tok.end(), std::inserter( tmp_set, tmp_set.begin() ),
boost::lexical_cast<unsigned int, std::string> ); boost::lexical_cast<unsigned int, std::string> );
if( tmp_set.size() > 0 ) if( tmp_set.size() > 0 )
{ {
available_sbas_prn = tmp_set; available_sbas_prn = tmp_set;
}
} }
}
if (configuration_->property("Channels_1C.count", 0) > 0 ) if (configuration_->property("Channels_1C.count", 0) > 0 )
{
/*
* Loop to create GPS L1 C/A signals
*/
for (available_gnss_prn_iter = available_gps_prn.begin();
available_gnss_prn_iter != available_gps_prn.end();
available_gnss_prn_iter++)
{ {
/* available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("GPS"),
* Loop to create GPS L1 C/A signals *available_gnss_prn_iter), std::string("1C")));
*/
for (available_gnss_prn_iter = available_gps_prn.begin();
available_gnss_prn_iter != available_gps_prn.end();
available_gnss_prn_iter++)
{
available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("GPS"),
*available_gnss_prn_iter), std::string("1C")));
}
} }
}
if (configuration_->property("Channels_2S.count", 0) > 0) if (configuration_->property("Channels_2S.count", 0) > 0)
{
/*
* Loop to create GPS L2C M signals
*/
for (available_gnss_prn_iter = available_gps_prn.begin();
available_gnss_prn_iter != available_gps_prn.end();
available_gnss_prn_iter++)
{ {
/* available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("GPS"),
* Loop to create GPS L2C M signals *available_gnss_prn_iter), std::string("2S")));
*/
for (available_gnss_prn_iter = available_gps_prn.begin();
available_gnss_prn_iter != available_gps_prn.end();
available_gnss_prn_iter++)
{
available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("GPS"),
*available_gnss_prn_iter), std::string("2S")));
}
} }
}
if (configuration_->property("Channels_SBAS.count", 0) > 0) if (configuration_->property("Channels_SBAS.count", 0) > 0)
{
/*
* Loop to create SBAS L1 C/A signals
*/
for (available_gnss_prn_iter = available_sbas_prn.begin();
available_gnss_prn_iter != available_sbas_prn.end();
available_gnss_prn_iter++)
{ {
/* available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("SBAS"),
* Loop to create SBAS L1 C/A signals *available_gnss_prn_iter), std::string("1C")));
*/
for (available_gnss_prn_iter = available_sbas_prn.begin();
available_gnss_prn_iter != available_sbas_prn.end();
available_gnss_prn_iter++)
{
available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("SBAS"),
*available_gnss_prn_iter), std::string("1C")));
}
} }
}
if (configuration_->property("Channels_1B.count", 0) > 0) if (configuration_->property("Channels_1B.count", 0) > 0)
{
/*
* Loop to create the list of Galileo E1 B signals
*/
for (available_gnss_prn_iter = available_galileo_prn.begin();
available_gnss_prn_iter != available_galileo_prn.end();
available_gnss_prn_iter++)
{ {
/* available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("Galileo"),
* Loop to create the list of Galileo E1 B signals *available_gnss_prn_iter), std::string("1B")));
*/
for (available_gnss_prn_iter = available_galileo_prn.begin();
available_gnss_prn_iter != available_galileo_prn.end();
available_gnss_prn_iter++)
{
available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("Galileo"),
*available_gnss_prn_iter), std::string("1B")));
}
} }
}
if (configuration_->property("Channels_5X.count", 0) > 0 ) if (configuration_->property("Channels_5X.count", 0) > 0 )
{
/*
* Loop to create the list of Galileo E1 B signals
*/
for (available_gnss_prn_iter = available_galileo_prn.begin();
available_gnss_prn_iter != available_galileo_prn.end();
available_gnss_prn_iter++)
{ {
/* available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("Galileo"),
* Loop to create the list of Galileo E1 B signals *available_gnss_prn_iter), std::string("5X")));
*/
for (available_gnss_prn_iter = available_galileo_prn.begin();
available_gnss_prn_iter != available_galileo_prn.end();
available_gnss_prn_iter++)
{
available_GNSS_signals_.push_back(Gnss_Signal(Gnss_Satellite(std::string("Galileo"),
*available_gnss_prn_iter), std::string("5X")));
}
} }
}
/* /*
* Ordering the list of signals from configuration file * Ordering the list of signals from configuration file
*/ */
@ -699,24 +726,24 @@ void GNSSFlowgraph::set_signals_list()
// Pre-assignation if not defined at ChannelX.signal=1C ...? In what order? // Pre-assignation if not defined at ChannelX.signal=1C ...? In what order?
for (unsigned int i = 0; i < total_channels; i++) for (unsigned int i = 0; i < total_channels; i++)
{
std::string gnss_signal = (configuration_->property("Channel" + boost::lexical_cast<std::string>(i) + ".signal", std::string("1C")));
std::string gnss_system;
if((gnss_signal.compare("1C") == 0) or (gnss_signal.compare("2S") == 0) ) gnss_system = "GPS";
if((gnss_signal.compare("1B") == 0) or (gnss_signal.compare("5X") == 0) ) gnss_system = "Galileo";
unsigned int sat = configuration_->property("Channel" + boost::lexical_cast<std::string>(i) + ".satellite", 0);
LOG(INFO) << "Channel " << i << " system " << gnss_system << ", signal " << gnss_signal <<", sat "<<sat;
if (sat == 0) // 0 = not PRN in configuration file
{ {
std::string gnss_signal = (configuration_->property("Channel" + boost::lexical_cast<std::string>(i) + ".signal", std::string("1C"))); gnss_it++;
std::string gnss_system;
if((gnss_signal.compare("1C") == 0) or (gnss_signal.compare("2S") == 0) ) gnss_system = "GPS";
if((gnss_signal.compare("1B") == 0) or (gnss_signal.compare("5X") == 0) ) gnss_system = "Galileo";
unsigned int sat = configuration_->property("Channel" + boost::lexical_cast<std::string>(i) + ".satellite", 0);
LOG(INFO) << "Channel " << i << " system " << gnss_system << ", signal " << gnss_signal <<", sat "<<sat;
if (sat == 0) // 0 = not PRN in configuration file
{
gnss_it++;
}
else
{
Gnss_Signal signal_value = Gnss_Signal(Gnss_Satellite(gnss_system, sat), gnss_signal);
available_GNSS_signals_.remove(signal_value);
available_GNSS_signals_.insert(gnss_it, signal_value);
}
} }
else
{
Gnss_Signal signal_value = Gnss_Signal(Gnss_Satellite(gnss_system, sat), gnss_signal);
available_GNSS_signals_.remove(signal_value);
available_GNSS_signals_.insert(gnss_it, signal_value);
}
}
// **** FOR DEBUGGING THE LIST OF GNSS SIGNALS **** // **** FOR DEBUGGING THE LIST OF GNSS SIGNALS ****
// std::list<Gnss_Signal>::iterator available_gnss_list_iter; // std::list<Gnss_Signal>::iterator available_gnss_list_iter;
@ -732,21 +759,21 @@ void GNSSFlowgraph::set_channels_state()
{ {
max_acq_channels_ = (configuration_->property("Channels.in_acquisition", channels_count_)); max_acq_channels_ = (configuration_->property("Channels.in_acquisition", channels_count_));
if (max_acq_channels_ > channels_count_) if (max_acq_channels_ > channels_count_)
{ {
max_acq_channels_ = channels_count_; max_acq_channels_ = channels_count_;
LOG(WARNING) << "Channels_in_acquisition is bigger than number of channels. Variable acq_channels_count_ is set to " << channels_count_; LOG(WARNING) << "Channels_in_acquisition is bigger than number of channels. Variable acq_channels_count_ is set to " << channels_count_;
} }
channels_state_.reserve(channels_count_); channels_state_.reserve(channels_count_);
for (unsigned int i = 0; i < channels_count_; i++) for (unsigned int i = 0; i < channels_count_; i++)
{
if (i < max_acq_channels_)
{ {
if (i < max_acq_channels_) channels_state_.push_back(1);
{
channels_state_.push_back(1);
}
else
channels_state_.push_back(0);
DLOG(INFO) << "Channel " << i << " in state " << channels_state_[i];
} }
else
channels_state_.push_back(0);
DLOG(INFO) << "Channel " << i << " in state " << channels_state_[i];
}
acq_channels_count_ = max_acq_channels_; acq_channels_count_ = max_acq_channels_;
DLOG(INFO) << acq_channels_count_ << " channels in acquisition state"; DLOG(INFO) << acq_channels_count_ << " channels in acquisition state";
} }

View File

@ -266,6 +266,7 @@ include_directories(
${CMAKE_SOURCE_DIR}/src/algorithms/signal_generator/gnuradio_blocks ${CMAKE_SOURCE_DIR}/src/algorithms/signal_generator/gnuradio_blocks
${CMAKE_SOURCE_DIR}/src/algorithms/input_filter/adapters ${CMAKE_SOURCE_DIR}/src/algorithms/input_filter/adapters
${CMAKE_SOURCE_DIR}/src/algorithms/input_filter/gnuradio_blocks ${CMAKE_SOURCE_DIR}/src/algorithms/input_filter/gnuradio_blocks
${CMAKE_SOURCE_DIR}/src/algorithms/acquisition/libs
${CMAKE_SOURCE_DIR}/src/algorithms/acquisition/adapters ${CMAKE_SOURCE_DIR}/src/algorithms/acquisition/adapters
${CMAKE_SOURCE_DIR}/src/algorithms/acquisition/gnuradio_blocks ${CMAKE_SOURCE_DIR}/src/algorithms/acquisition/gnuradio_blocks
${CMAKE_SOURCE_DIR}/src/algorithms/PVT/libs ${CMAKE_SOURCE_DIR}/src/algorithms/PVT/libs

View File

@ -121,6 +121,7 @@ DECLARE_string(log_dir);
#if FPGA_BLOCKS_TEST #if FPGA_BLOCKS_TEST
#include "unit-tests/signal-processing-blocks/tracking/gps_l1_ca_dll_pll_tracking_test_fpga.cc" #include "unit-tests/signal-processing-blocks/tracking/gps_l1_ca_dll_pll_tracking_test_fpga.cc"
#include "unit-tests/signal-processing-blocks/acquisition/gps_l1_ca_pcps_acquisition_test_fpga.cc"
#endif #endif
#include "unit-tests/signal-processing-blocks/pvt/rtcm_test.cc" #include "unit-tests/signal-processing-blocks/pvt/rtcm_test.cc"

View File

@ -0,0 +1,388 @@
/*!
* \file gps_l1_ca_pcps_acquisition_test_fpga.cc
* \brief This class implements an acquisition test for
* GpsL1CaPcpsAcquisitionFpga class based on some input parameters.
* \author Marc Majoral, 2017. mmajoral(at)cttc.cat
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <cstdlib>
#include <iostream>
#include <boost/make_shared.hpp>
#include <boost/thread.hpp>
#include <boost/chrono.hpp>
#include <gnuradio/top_block.h>
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/analog/sig_source_waveform.h>
#include <gnuradio/analog/sig_source_c.h>
#include <gnuradio/msg_queue.h>
#include <gnuradio/blocks/null_sink.h>
#include <gnuradio/blocks/throttle.h>
#include <gtest/gtest.h>
#include "gnss_block_factory.h"
#include "gnss_block_interface.h"
#include "in_memory_configuration.h"
#include "gnss_sdr_valve.h"
#include "gnss_synchro.h"
#include "gps_l1_ca_pcps_acquisition_fpga.h"
#include <unistd.h>
#define DMA_ACQ_TRANSFER_SIZE 4000
#define RX_SIGNAL_MAX_VALUE 127 // 2^7 - 1 for 8-bit signed values
#define NTIMES_CYCLE_THROUGH_RX_SAMPLES_FILE 50 // number of times we cycle through the file containing the received samples
#define ONE_SECOND 1000000 // one second in microseconds
#define FLOAT_SIZE (sizeof(float)) // size of the float variable in characters
// thread that reads the file containing the received samples, scales the samples to the dynamic range of the fixed point values, sends
// the samples to the DMA and finally it stops the top block
void thread_acquisition_send_rx_samples(gr::top_block_sptr top_block, const char * file_name)
{
FILE *ptr_myfile; // file descriptor
int fileLen; // length of the file containing the received samples
int tx_fd; // DMA descriptor
// sleep for 1 second to give some time to GNSS-SDR to activate the acquisition module.
// the acquisition module does not block the RX buffer before activation.
// If this process starts sending samples straight ahead without waiting it could occur that
// the first samples are lost. This is normal behaviour in a real receiver but this is not what
// we want for the test
usleep(ONE_SECOND);
char *buffer_temp; // temporary buffer to convert from binary char to float and from float to char
signed char *buffer_char; // temporary buffer to store the samples to be sent to the DMA
buffer_temp = (char *)malloc(FLOAT_SIZE); // allocate space for the temporary buffer
if (!buffer_temp)
{
fprintf(stderr, "Memory error!");
}
ptr_myfile = fopen(file_name,"rb"); // file containing the received signal
if (!ptr_myfile)
{
printf("Unable to open file!");
}
// determine the length of the file that contains the received signal
fseek(ptr_myfile, 0, SEEK_END);
fileLen = ftell(ptr_myfile);
fseek(ptr_myfile, 0, SEEK_SET);
// first step: check for the maximum value of the received signal
float max = 0;
float *pointer_float;
pointer_float = (float *) &buffer_temp[0];
for (int k=0;k<fileLen;k=k+FLOAT_SIZE)
{
fread(buffer_temp, FLOAT_SIZE, 1, ptr_myfile);
if (fabs(pointer_float[0]) > max)
{
max = (pointer_float[0]);
}
}
// go back to the beginning of the file containing the received samples
fseek(ptr_myfile, 0, SEEK_SET);
// allocate memory for the samples to be transferred to the DMA
buffer_char = (signed char *)malloc(DMA_ACQ_TRANSFER_SIZE);
if (!buffer_char)
{
fprintf(stderr, "Memory error!");
}
// open the DMA descriptor
tx_fd = open("/dev/loop_tx", O_WRONLY);
if ( tx_fd < 0 )
{
printf("can't open loop device\n");
exit(1);
}
// cycle through the file containing the received samples
for (int k=0;k<NTIMES_CYCLE_THROUGH_RX_SAMPLES_FILE;k++)
{
fseek(ptr_myfile, 0, SEEK_SET);
int transfer_size;
int num_transferred_samples = 0;
while (num_transferred_samples < (int) (fileLen/FLOAT_SIZE))
{
if (((fileLen/FLOAT_SIZE) - num_transferred_samples) > DMA_ACQ_TRANSFER_SIZE)
{
transfer_size = DMA_ACQ_TRANSFER_SIZE;
num_transferred_samples = num_transferred_samples + DMA_ACQ_TRANSFER_SIZE;
}
else
{
transfer_size = fileLen/FLOAT_SIZE - num_transferred_samples;
num_transferred_samples = fileLen/FLOAT_SIZE;
}
for (int t=0;t<transfer_size;t++)
{
fread(buffer_temp, FLOAT_SIZE, 1, ptr_myfile);
// specify (float) (int) for a quantization maximizing the dynamic range
buffer_char[t] = (signed char) ((pointer_float[0]*(RX_SIGNAL_MAX_VALUE - 1))/max);
}
//send_acquisition_gps_input_samples(buffer_char, transfer_size, tx_fd);
assert( transfer_size == write(tx_fd, &buffer_char[0], transfer_size) );
}
}
fclose(ptr_myfile);
free(buffer_temp);
free(buffer_char);
close(tx_fd);
// when all the samples are sent stop the top block
top_block->stop();
}
// ######## GNURADIO BLOCK MESSAGE RECEVER #########
class GpsL1CaPcpsAcquisitionTestFpga_msg_rx;
typedef boost::shared_ptr<GpsL1CaPcpsAcquisitionTestFpga_msg_rx> GpsL1CaPcpsAcquisitionTest_msg_fpga_rx_sptr;
GpsL1CaPcpsAcquisitionTest_msg_fpga_rx_sptr GpsL1CaPcpsAcquisitionTestFpga_msg_rx_make();
class GpsL1CaPcpsAcquisitionTestFpga_msg_rx : public gr::block
{
private:
friend GpsL1CaPcpsAcquisitionTest_msg_fpga_rx_sptr GpsL1CaPcpsAcquisitionTestFpga_msg_rx_make();
void msg_handler_events(pmt::pmt_t msg);
GpsL1CaPcpsAcquisitionTestFpga_msg_rx();
public:
int rx_message;
~GpsL1CaPcpsAcquisitionTestFpga_msg_rx(); //!< Default destructor
};
GpsL1CaPcpsAcquisitionTest_msg_fpga_rx_sptr GpsL1CaPcpsAcquisitionTestFpga_msg_rx_make()
{
return GpsL1CaPcpsAcquisitionTest_msg_fpga_rx_sptr(new GpsL1CaPcpsAcquisitionTestFpga_msg_rx());
}
void GpsL1CaPcpsAcquisitionTestFpga_msg_rx::msg_handler_events(pmt::pmt_t msg)
{
try
{
long int message = pmt::to_long(msg);
rx_message = message;
}
catch(boost::bad_any_cast& e)
{
LOG(WARNING) << "msg_handler_telemetry Bad any cast!";
rx_message = 0;
}
}
GpsL1CaPcpsAcquisitionTestFpga_msg_rx::GpsL1CaPcpsAcquisitionTestFpga_msg_rx() :
gr::block("GpsL1CaPcpsAcquisitionTestFpga_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
{
this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"), boost::bind(&GpsL1CaPcpsAcquisitionTestFpga_msg_rx::msg_handler_events, this, _1));
rx_message = 0;
}
GpsL1CaPcpsAcquisitionTestFpga_msg_rx::~GpsL1CaPcpsAcquisitionTestFpga_msg_rx()
{}
// ###########################################################
class GpsL1CaPcpsAcquisitionTestFpga: public ::testing::Test
{
protected:
GpsL1CaPcpsAcquisitionTestFpga()
{
factory = std::make_shared<GNSSBlockFactory>();
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
gnss_synchro = Gnss_Synchro();
}
~GpsL1CaPcpsAcquisitionTestFpga()
{}
void init();
gr::top_block_sptr top_block;
std::shared_ptr<GNSSBlockFactory> factory;
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro;
size_t item_size;
};
void GpsL1CaPcpsAcquisitionTestFpga::init()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'G';
std::string signal = "1C";
signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = 1;
config->set_property("GNSS-SDR.internal_fs_hz", "4000000");
config->set_property("Acquisition.item_type", "cshort");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms", "1");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition.threshold", "0.001");
config->set_property("Acquisition.doppler_max", "5000");
config->set_property("Acquisition.doppler_step", "500");
config->set_property("Acquisition.repeat_satellite", "false");
config->set_property("Acquisition.pfa", "0.0");
config->set_property("Acquisition.select_queue_Fpga", "0");
}
TEST_F(GpsL1CaPcpsAcquisitionTestFpga, Instantiate)
{
init();
boost::shared_ptr<GpsL1CaPcpsAcquisitionFpga> acquisition = boost::make_shared<GpsL1CaPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 1);
}
TEST_F(GpsL1CaPcpsAcquisitionTestFpga, ValidationOfResults)
{
struct timeval tv;
long long int begin = 0;
long long int end = 0;
top_block = gr::make_top_block("Acquisition test");
double expected_delay_samples = 524;
double expected_doppler_hz = 1680;
init();
std::shared_ptr<GpsL1CaPcpsAcquisitionFpga> acquisition = std::make_shared<GpsL1CaPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 1);
boost::shared_ptr<GpsL1CaPcpsAcquisitionTestFpga_msg_rx> msg_rx = GpsL1CaPcpsAcquisitionTestFpga_msg_rx_make();
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_threshold(0.1);
}) << "Failure setting threshold." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_max(10000);
}) << "Failure setting doppler_max." << std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_step(250);
}) << "Failure setting doppler_step." << std::endl;
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
// uncomment the next line to load the file from the current directory
std::string file = "./GPS_L1_CA_ID_1_Fs_4Msps_2ms.dat";
// uncomment the next two lines to load the file from the signal samples subdirectory
//std::string path = std::string(TEST_PATH);
//std::string file = path + "signal_samples/GPS_L1_CA_ID_1_Fs_4Msps_2ms.dat";
const char * file_name = file.c_str();
ASSERT_NO_THROW( {
// for the unit test use dummy blocks to make the flowgraph work and allow the acquisition message to be sent.
// in the actual system there is a flowchart running in parallel so this is not needed
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex), file_name, false);
gr::blocks::null_sink::sptr null_sink = gr::blocks::null_sink::make(sizeof(gr_complex));
gr::blocks::throttle::sptr throttle_block = gr::blocks::throttle::make(sizeof(gr_complex),1000);
top_block->connect(file_source, 0, throttle_block, 0);
top_block->connect(throttle_block, 0, null_sink, 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
acquisition->set_state(1); // Ensure that acquisition starts at the first state
acquisition->init();
top_block->start(); // Start the top block
// start thread that sends the DMA samples to the FPGA
boost::thread t3{thread_acquisition_send_rx_samples, top_block, file_name};
EXPECT_NO_THROW( {
gettimeofday(&tv, NULL);
begin = tv.tv_sec * 1000000 + tv.tv_usec;
acquisition->reset(); // launch the tracking process
top_block->wait();
gettimeofday(&tv, NULL);
end = tv.tv_sec * 1000000 + tv.tv_usec;
}) << "Failure running the top_block." << std::endl;
t3.join();
std::cout << "Ran GpsL1CaPcpsAcquisitionTestFpga in " << (end - begin) << " microseconds" << std::endl;
ASSERT_EQ(1, msg_rx->rx_message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS.";
double delay_error_samples = std::abs(expected_delay_samples - gnss_synchro.Acq_delay_samples);
float delay_error_chips = (float)(delay_error_samples * 1023 / 4000);
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
EXPECT_LE(doppler_error_hz, 666) << "Doppler error exceeds the expected value: 666 Hz = 2/(3*integration period)";
EXPECT_LT(delay_error_chips, 0.5) << "Delay error exceeds the expected value: 0.5 chips";
}

View File

@ -77,7 +77,6 @@ void wait(int seconds)
void send_tracking_gps_input_samples(FILE *ptr_myfile, int num_remaining_samples, gr::top_block_sptr top_block) void send_tracking_gps_input_samples(FILE *ptr_myfile, int num_remaining_samples, gr::top_block_sptr top_block)
{ {
int sample_pointer;
int num_samples_transferred = 0; int num_samples_transferred = 0;
static int flowgraph_stopped = 0; static int flowgraph_stopped = 0;