mirror of
				https://github.com/gnss-sdr/gnss-sdr
				synced 2025-11-04 09:13:05 +00:00 
			
		
		
		
	Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into next
This commit is contained in:
		@@ -115,9 +115,6 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters);
 | 
			
		||||
    DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
    stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
 | 
			
		||||
    DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
    if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            cbyte_to_float_x2_ = make_complex_byte_to_float_x2();
 | 
			
		||||
@@ -278,18 +275,19 @@ void GalileoE1PcpsAmbiguousAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to connect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to connect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            // Since a byte-based acq implementation is not available,
 | 
			
		||||
            // we just convert cshorts to gr_complex
 | 
			
		||||
            top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
 | 
			
		||||
            top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
 | 
			
		||||
            top_block->connect(float_to_complex_, 0, stream_to_vector_, 0);
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            top_block->connect(float_to_complex_, 0, acquisition_, 0);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
@@ -302,20 +300,17 @@ void GalileoE1PcpsAmbiguousAcquisition::disconnect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to disconnect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to disconnect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            // Since a byte-based acq implementation is not available,
 | 
			
		||||
            // we just convert cshorts to gr_complex
 | 
			
		||||
            top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
 | 
			
		||||
            top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
 | 
			
		||||
            top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0);
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            top_block->disconnect(float_to_complex_, 0, acquisition_, 0);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
@@ -328,11 +323,11 @@ gr::basic_block_sptr GalileoE1PcpsAmbiguousAcquisition::get_left_block()
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            return stream_to_vector_;
 | 
			
		||||
            return acquisition_;
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            return stream_to_vector_;
 | 
			
		||||
            return acquisition_;
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
 
 | 
			
		||||
@@ -36,7 +36,6 @@
 | 
			
		||||
#include "gnss_synchro.h"
 | 
			
		||||
#include "pcps_acquisition.h"
 | 
			
		||||
#include "complex_byte_to_float_x2.h"
 | 
			
		||||
#include <gnuradio/blocks/stream_to_vector.h>
 | 
			
		||||
#include <gnuradio/blocks/float_to_complex.h>
 | 
			
		||||
#include <volk_gnsssdr/volk_gnsssdr.h>
 | 
			
		||||
#include <string>
 | 
			
		||||
@@ -135,7 +134,6 @@ public:
 | 
			
		||||
private:
 | 
			
		||||
    ConfigurationInterface* configuration_;
 | 
			
		||||
    pcps_acquisition_sptr acquisition_;
 | 
			
		||||
    gr::blocks::stream_to_vector::sptr stream_to_vector_;
 | 
			
		||||
    gr::blocks::float_to_complex::sptr float_to_complex_;
 | 
			
		||||
    complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
 | 
			
		||||
    size_t item_size_;
 | 
			
		||||
 
 | 
			
		||||
@@ -111,7 +111,6 @@ GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* con
 | 
			
		||||
    acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters);
 | 
			
		||||
 | 
			
		||||
    stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
 | 
			
		||||
    channel_ = 0;
 | 
			
		||||
    threshold_ = 0.0;
 | 
			
		||||
    doppler_step_ = 0;
 | 
			
		||||
@@ -263,11 +262,11 @@ void GalileoE5aPcpsAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to connect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to connect
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
@@ -280,11 +279,11 @@ void GalileoE5aPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to disconnect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to disconnect
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
@@ -295,7 +294,7 @@ void GalileoE5aPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
 | 
			
		||||
 | 
			
		||||
gr::basic_block_sptr GalileoE5aPcpsAcquisition::get_left_block()
 | 
			
		||||
{
 | 
			
		||||
    return stream_to_vector_;
 | 
			
		||||
    return acquisition_;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -35,7 +35,6 @@
 | 
			
		||||
#include "acquisition_interface.h"
 | 
			
		||||
#include "gnss_synchro.h"
 | 
			
		||||
#include "pcps_acquisition.h"
 | 
			
		||||
#include <gnuradio/blocks/stream_to_vector.h>
 | 
			
		||||
#include <string>
 | 
			
		||||
 | 
			
		||||
class ConfigurationInterface;
 | 
			
		||||
@@ -129,7 +128,6 @@ private:
 | 
			
		||||
    ConfigurationInterface* configuration_;
 | 
			
		||||
 | 
			
		||||
    pcps_acquisition_sptr acquisition_;
 | 
			
		||||
    gr::blocks::stream_to_vector::sptr stream_to_vector_;
 | 
			
		||||
 | 
			
		||||
    size_t item_size_;
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -110,9 +110,6 @@ GlonassL1CaPcpsAcquisition::GlonassL1CaPcpsAcquisition(
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters);
 | 
			
		||||
    DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
    stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
 | 
			
		||||
    DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
    if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            cbyte_to_float_x2_ = make_complex_byte_to_float_x2();
 | 
			
		||||
@@ -262,18 +259,17 @@ void GlonassL1CaPcpsAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to connect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to connect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
 | 
			
		||||
            top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
 | 
			
		||||
            top_block->connect(float_to_complex_, 0, stream_to_vector_, 0);
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            top_block->connect(float_to_complex_, 0, acquisition_, 0);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
@@ -286,11 +282,11 @@ void GlonassL1CaPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to disconnect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to disconnect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
@@ -298,8 +294,7 @@ void GlonassL1CaPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
 | 
			
		||||
            // we just convert cshorts to gr_complex
 | 
			
		||||
            top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
 | 
			
		||||
            top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
 | 
			
		||||
            top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0);
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            top_block->disconnect(float_to_complex_, 0, acquisition_, 0);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
@@ -312,11 +307,11 @@ gr::basic_block_sptr GlonassL1CaPcpsAcquisition::get_left_block()
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            return stream_to_vector_;
 | 
			
		||||
            return acquisition_;
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            return stream_to_vector_;
 | 
			
		||||
            return acquisition_;
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
 
 | 
			
		||||
@@ -38,7 +38,6 @@
 | 
			
		||||
#include "gnss_synchro.h"
 | 
			
		||||
#include "pcps_acquisition.h"
 | 
			
		||||
#include "complex_byte_to_float_x2.h"
 | 
			
		||||
#include <gnuradio/blocks/stream_to_vector.h>
 | 
			
		||||
#include <gnuradio/blocks/float_to_complex.h>
 | 
			
		||||
#include <string>
 | 
			
		||||
 | 
			
		||||
@@ -135,7 +134,6 @@ public:
 | 
			
		||||
private:
 | 
			
		||||
    ConfigurationInterface* configuration_;
 | 
			
		||||
    pcps_acquisition_sptr acquisition_;
 | 
			
		||||
    gr::blocks::stream_to_vector::sptr stream_to_vector_;
 | 
			
		||||
    gr::blocks::float_to_complex::sptr float_to_complex_;
 | 
			
		||||
    complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
 | 
			
		||||
    size_t item_size_;
 | 
			
		||||
 
 | 
			
		||||
@@ -109,9 +109,6 @@ GlonassL2CaPcpsAcquisition::GlonassL2CaPcpsAcquisition(
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters);
 | 
			
		||||
    DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
    stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
 | 
			
		||||
    DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
    if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            cbyte_to_float_x2_ = make_complex_byte_to_float_x2();
 | 
			
		||||
@@ -261,18 +258,19 @@ void GlonassL2CaPcpsAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to connect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to connect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            // Since a byte-based acq implementation is not available,
 | 
			
		||||
            // we just convert cshorts to gr_complex
 | 
			
		||||
            top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
 | 
			
		||||
            top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
 | 
			
		||||
            top_block->connect(float_to_complex_, 0, stream_to_vector_, 0);
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            top_block->connect(float_to_complex_, 0, acquisition_, 0);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
@@ -285,20 +283,17 @@ void GlonassL2CaPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to disconnect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to disconnect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            // Since a byte-based acq implementation is not available,
 | 
			
		||||
            // we just convert cshorts to gr_complex
 | 
			
		||||
            top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
 | 
			
		||||
            top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
 | 
			
		||||
            top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0);
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            top_block->disconnect(float_to_complex_, 0, acquisition_, 0);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
@@ -311,11 +306,11 @@ gr::basic_block_sptr GlonassL2CaPcpsAcquisition::get_left_block()
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            return stream_to_vector_;
 | 
			
		||||
            return acquisition_;
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            return stream_to_vector_;
 | 
			
		||||
            return acquisition_;
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
 
 | 
			
		||||
@@ -37,7 +37,6 @@
 | 
			
		||||
#include "gnss_synchro.h"
 | 
			
		||||
#include "pcps_acquisition.h"
 | 
			
		||||
#include "complex_byte_to_float_x2.h"
 | 
			
		||||
#include <gnuradio/blocks/stream_to_vector.h>
 | 
			
		||||
#include <gnuradio/blocks/float_to_complex.h>
 | 
			
		||||
#include <string>
 | 
			
		||||
 | 
			
		||||
@@ -134,7 +133,6 @@ public:
 | 
			
		||||
private:
 | 
			
		||||
    ConfigurationInterface* configuration_;
 | 
			
		||||
    pcps_acquisition_sptr acquisition_;
 | 
			
		||||
    gr::blocks::stream_to_vector::sptr stream_to_vector_;
 | 
			
		||||
    gr::blocks::float_to_complex::sptr float_to_complex_;
 | 
			
		||||
    complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
 | 
			
		||||
    size_t item_size_;
 | 
			
		||||
 
 | 
			
		||||
@@ -105,9 +105,6 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters);
 | 
			
		||||
    DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
    stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
 | 
			
		||||
    DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
    if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            cbyte_to_float_x2_ = make_complex_byte_to_float_x2();
 | 
			
		||||
@@ -194,7 +191,6 @@ signed int GpsL1CaPcpsAcquisition::mag()
 | 
			
		||||
void GpsL1CaPcpsAcquisition::init()
 | 
			
		||||
{
 | 
			
		||||
    acquisition_->init();
 | 
			
		||||
    //set_local_code();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -251,18 +247,19 @@ void GpsL1CaPcpsAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to connect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to connect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            // Since a byte-based acq implementation is not available,
 | 
			
		||||
            // we just convert cshorts to gr_complex
 | 
			
		||||
            top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
 | 
			
		||||
            top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
 | 
			
		||||
            top_block->connect(float_to_complex_, 0, stream_to_vector_, 0);
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            top_block->connect(float_to_complex_, 0, acquisition_, 0);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
@@ -275,20 +272,17 @@ void GpsL1CaPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to disconnect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to disconnect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            // Since a byte-based acq implementation is not available,
 | 
			
		||||
            // we just convert cshorts to gr_complex
 | 
			
		||||
            top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
 | 
			
		||||
            top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
 | 
			
		||||
            top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0);
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            top_block->disconnect(float_to_complex_, 0, acquisition_, 0);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
@@ -301,11 +295,11 @@ gr::basic_block_sptr GpsL1CaPcpsAcquisition::get_left_block()
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            return stream_to_vector_;
 | 
			
		||||
            return acquisition_;
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            return stream_to_vector_;
 | 
			
		||||
            return acquisition_;
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
 
 | 
			
		||||
@@ -40,7 +40,6 @@
 | 
			
		||||
#include "gnss_synchro.h"
 | 
			
		||||
#include "pcps_acquisition.h"
 | 
			
		||||
#include "complex_byte_to_float_x2.h"
 | 
			
		||||
#include <gnuradio/blocks/stream_to_vector.h>
 | 
			
		||||
#include <gnuradio/blocks/float_to_complex.h>
 | 
			
		||||
#include <volk_gnsssdr/volk_gnsssdr.h>
 | 
			
		||||
#include <string>
 | 
			
		||||
@@ -139,7 +138,6 @@ public:
 | 
			
		||||
private:
 | 
			
		||||
    ConfigurationInterface* configuration_;
 | 
			
		||||
    pcps_acquisition_sptr acquisition_;
 | 
			
		||||
    gr::blocks::stream_to_vector::sptr stream_to_vector_;
 | 
			
		||||
    gr::blocks::float_to_complex::sptr float_to_complex_;
 | 
			
		||||
    complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
 | 
			
		||||
    size_t item_size_;
 | 
			
		||||
 
 | 
			
		||||
@@ -112,9 +112,6 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition(
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters);
 | 
			
		||||
    DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
    stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
 | 
			
		||||
    DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
    if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            cbyte_to_float_x2_ = make_complex_byte_to_float_x2();
 | 
			
		||||
@@ -264,18 +261,19 @@ void GpsL2MPcpsAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to connect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to connect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            // Since a byte-based acq implementation is not available,
 | 
			
		||||
            // we just convert cshorts to gr_complex
 | 
			
		||||
            top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
 | 
			
		||||
            top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
 | 
			
		||||
            top_block->connect(float_to_complex_, 0, stream_to_vector_, 0);
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            top_block->connect(float_to_complex_, 0, acquisition_, 0);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
@@ -288,20 +286,17 @@ void GpsL2MPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to disconnect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to disconnect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            // Since a byte-based acq implementation is not available,
 | 
			
		||||
            // we just convert cshorts to gr_complex
 | 
			
		||||
            top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
 | 
			
		||||
            top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
 | 
			
		||||
            top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0);
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            top_block->disconnect(float_to_complex_, 0, acquisition_, 0);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
@@ -314,11 +309,11 @@ gr::basic_block_sptr GpsL2MPcpsAcquisition::get_left_block()
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            return stream_to_vector_;
 | 
			
		||||
            return acquisition_;
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            return stream_to_vector_;
 | 
			
		||||
            return acquisition_;
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
 
 | 
			
		||||
@@ -38,7 +38,6 @@
 | 
			
		||||
#include "gnss_synchro.h"
 | 
			
		||||
#include "pcps_acquisition.h"
 | 
			
		||||
#include "complex_byte_to_float_x2.h"
 | 
			
		||||
#include <gnuradio/blocks/stream_to_vector.h>
 | 
			
		||||
#include <gnuradio/blocks/float_to_complex.h>
 | 
			
		||||
#include <volk_gnsssdr/volk_gnsssdr.h>
 | 
			
		||||
#include <string>
 | 
			
		||||
@@ -137,7 +136,6 @@ public:
 | 
			
		||||
private:
 | 
			
		||||
    ConfigurationInterface* configuration_;
 | 
			
		||||
    pcps_acquisition_sptr acquisition_;
 | 
			
		||||
    gr::blocks::stream_to_vector::sptr stream_to_vector_;
 | 
			
		||||
    gr::blocks::float_to_complex::sptr float_to_complex_;
 | 
			
		||||
    complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
 | 
			
		||||
    size_t item_size_;
 | 
			
		||||
 
 | 
			
		||||
@@ -103,8 +103,6 @@ GpsL5iPcpsAcquisition::GpsL5iPcpsAcquisition(
 | 
			
		||||
    acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
 | 
			
		||||
    acquisition_ = pcps_make_acquisition(acq_parameters);
 | 
			
		||||
    DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
 | 
			
		||||
    stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
 | 
			
		||||
    DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
 | 
			
		||||
 | 
			
		||||
    if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
@@ -251,18 +249,19 @@ void GpsL5iPcpsAcquisition::connect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to connect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to connect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            // Since a byte-based acq implementation is not available,
 | 
			
		||||
            // we just convert cshorts to gr_complex
 | 
			
		||||
            top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
 | 
			
		||||
            top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
 | 
			
		||||
            top_block->connect(float_to_complex_, 0, stream_to_vector_, 0);
 | 
			
		||||
            top_block->connect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            top_block->connect(float_to_complex_, 0, acquisition_, 0);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
@@ -275,20 +274,17 @@ void GpsL5iPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to disconnect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            // nothing to disconnect
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            // Since a byte-based acq implementation is not available,
 | 
			
		||||
            // we just convert cshorts to gr_complex
 | 
			
		||||
            top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
 | 
			
		||||
            top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
 | 
			
		||||
            top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0);
 | 
			
		||||
            top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
 | 
			
		||||
            top_block->disconnect(float_to_complex_, 0, acquisition_, 0);
 | 
			
		||||
        }
 | 
			
		||||
    else
 | 
			
		||||
        {
 | 
			
		||||
@@ -301,11 +297,11 @@ gr::basic_block_sptr GpsL5iPcpsAcquisition::get_left_block()
 | 
			
		||||
{
 | 
			
		||||
    if (item_type_.compare("gr_complex") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            return stream_to_vector_;
 | 
			
		||||
            return acquisition_;
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cshort") == 0)
 | 
			
		||||
        {
 | 
			
		||||
            return stream_to_vector_;
 | 
			
		||||
            return acquisition_;
 | 
			
		||||
        }
 | 
			
		||||
    else if (item_type_.compare("cbyte") == 0)
 | 
			
		||||
        {
 | 
			
		||||
 
 | 
			
		||||
@@ -38,7 +38,6 @@
 | 
			
		||||
#include "gnss_synchro.h"
 | 
			
		||||
#include "pcps_acquisition.h"
 | 
			
		||||
#include "complex_byte_to_float_x2.h"
 | 
			
		||||
#include <gnuradio/blocks/stream_to_vector.h>
 | 
			
		||||
#include <gnuradio/blocks/float_to_complex.h>
 | 
			
		||||
#include <volk_gnsssdr/volk_gnsssdr.h>
 | 
			
		||||
#include <string>
 | 
			
		||||
@@ -137,7 +136,6 @@ public:
 | 
			
		||||
private:
 | 
			
		||||
    ConfigurationInterface* configuration_;
 | 
			
		||||
    pcps_acquisition_sptr acquisition_;
 | 
			
		||||
    gr::blocks::stream_to_vector::sptr stream_to_vector_;
 | 
			
		||||
    gr::blocks::float_to_complex::sptr float_to_complex_;
 | 
			
		||||
    complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
 | 
			
		||||
    size_t item_size_;
 | 
			
		||||
 
 | 
			
		||||
@@ -52,7 +52,7 @@ pcps_acquisition_sptr pcps_make_acquisition(const Acq_Conf& conf_)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
pcps_acquisition::pcps_acquisition(const Acq_Conf& conf_) : gr::block("pcps_acquisition",
 | 
			
		||||
                                                                gr::io_signature::make(1, 1, conf_.it_size * std::floor(conf_.sampled_ms * conf_.samples_per_ms) * (conf_.bit_transition_flag ? 2 : 1)),
 | 
			
		||||
                                                                gr::io_signature::make(1, 1, conf_.it_size),
 | 
			
		||||
                                                                gr::io_signature::make(0, 0, conf_.it_size))
 | 
			
		||||
{
 | 
			
		||||
    this->message_port_register_out(pmt::mp("events"));
 | 
			
		||||
@@ -73,7 +73,7 @@ pcps_acquisition::pcps_acquisition(const Acq_Conf& conf_) : gr::block("pcps_acqu
 | 
			
		||||
        {
 | 
			
		||||
            d_fft_size = d_consumed_samples * 2;
 | 
			
		||||
        }
 | 
			
		||||
    //d_fft_size = next power of two?  ////
 | 
			
		||||
    // d_fft_size = next power of two?  ////
 | 
			
		||||
    d_mag = 0;
 | 
			
		||||
    d_input_power = 0.0;
 | 
			
		||||
    d_num_doppler_bins = 0;
 | 
			
		||||
@@ -137,6 +137,7 @@ pcps_acquisition::pcps_acquisition(const Acq_Conf& conf_) : gr::block("pcps_acqu
 | 
			
		||||
    d_dump_number = 0;
 | 
			
		||||
    d_dump_channel = acq_parameters.dump_channel;
 | 
			
		||||
    d_samplesPerChip = acq_parameters.samples_per_chip;
 | 
			
		||||
    d_buffer_count = 0;
 | 
			
		||||
    // todo: CFAR statistic not available for non-coherent integration
 | 
			
		||||
    if (acq_parameters.max_dwells == 1)
 | 
			
		||||
        {
 | 
			
		||||
@@ -347,8 +348,8 @@ void pcps_acquisition::set_state(int state)
 | 
			
		||||
 | 
			
		||||
void pcps_acquisition::send_positive_acquisition()
 | 
			
		||||
{
 | 
			
		||||
    // 6.1- Declare positive acquisition using a message port
 | 
			
		||||
    //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
 | 
			
		||||
    // Declare positive acquisition using a message port
 | 
			
		||||
    // 0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
 | 
			
		||||
    DLOG(INFO) << "positive acquisition"
 | 
			
		||||
               << ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
 | 
			
		||||
               << ", sample_stamp " << d_sample_counter
 | 
			
		||||
@@ -365,8 +366,8 @@ void pcps_acquisition::send_positive_acquisition()
 | 
			
		||||
 | 
			
		||||
void pcps_acquisition::send_negative_acquisition()
 | 
			
		||||
{
 | 
			
		||||
    // 6.2- Declare negative acquisition using a message port
 | 
			
		||||
    //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
 | 
			
		||||
    // Declare negative acquisition using a message port
 | 
			
		||||
    // 0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
 | 
			
		||||
    DLOG(INFO) << "negative acquisition"
 | 
			
		||||
               << ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
 | 
			
		||||
               << ", sample_stamp " << d_sample_counter
 | 
			
		||||
@@ -564,7 +565,7 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
 | 
			
		||||
{
 | 
			
		||||
    gr::thread::scoped_lock lk(d_setlock);
 | 
			
		||||
 | 
			
		||||
    // initialize acquisition algorithm
 | 
			
		||||
    // Initialize acquisition algorithm
 | 
			
		||||
    int doppler = 0;
 | 
			
		||||
    uint32_t indext = 0;
 | 
			
		||||
    int effective_fft_size = (acq_parameters.bit_transition_flag ? d_fft_size / 2 : d_fft_size);
 | 
			
		||||
@@ -658,7 +659,7 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
 | 
			
		||||
                {
 | 
			
		||||
                    volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs_step_two[doppler_index], d_fft_size);
 | 
			
		||||
 | 
			
		||||
                    // 3- Perform the FFT-based convolution  (parallel time search)
 | 
			
		||||
                    // Perform the FFT-based convolution  (parallel time search)
 | 
			
		||||
                    // Compute the FFT of the carrier wiped--off incoming signal
 | 
			
		||||
                    d_fft_if->execute();
 | 
			
		||||
 | 
			
		||||
@@ -803,7 +804,7 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
 | 
			
		||||
        {
 | 
			
		||||
            if (!acq_parameters.blocking_on_standby)
 | 
			
		||||
                {
 | 
			
		||||
                    d_sample_counter += d_consumed_samples * ninput_items[0];
 | 
			
		||||
                    d_sample_counter += ninput_items[0];
 | 
			
		||||
                    consume_each(ninput_items[0]);
 | 
			
		||||
                }
 | 
			
		||||
            if (d_step_two)
 | 
			
		||||
@@ -820,7 +821,7 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
 | 
			
		||||
        {
 | 
			
		||||
        case 0:
 | 
			
		||||
            {
 | 
			
		||||
                //restart acquisition variables
 | 
			
		||||
                // Restart acquisition variables
 | 
			
		||||
                d_gnss_synchro->Acq_delay_samples = 0.0;
 | 
			
		||||
                d_gnss_synchro->Acq_doppler_hz = 0.0;
 | 
			
		||||
                d_gnss_synchro->Acq_samplestamp_samples = 0;
 | 
			
		||||
@@ -828,25 +829,58 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
 | 
			
		||||
                d_input_power = 0.0;
 | 
			
		||||
                d_test_statistics = 0.0;
 | 
			
		||||
                d_state = 1;
 | 
			
		||||
                d_buffer_count = 0;
 | 
			
		||||
                if (!acq_parameters.blocking_on_standby)
 | 
			
		||||
                    {
 | 
			
		||||
                        d_sample_counter += d_consumed_samples * ninput_items[0];  // sample counter
 | 
			
		||||
                        d_sample_counter += ninput_items[0];  // sample counter
 | 
			
		||||
                        consume_each(ninput_items[0]);
 | 
			
		||||
                    }
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
        case 1:
 | 
			
		||||
            {
 | 
			
		||||
                // Copy the data to the core and let it know that new data is available
 | 
			
		||||
                unsigned int buff_increment;
 | 
			
		||||
                if (d_cshort)
 | 
			
		||||
                    {
 | 
			
		||||
                        memcpy(d_data_buffer_sc, input_items[0], d_consumed_samples * sizeof(lv_16sc_t));
 | 
			
		||||
                        const lv_16sc_t* in = reinterpret_cast<const lv_16sc_t*>(input_items[0]);  // Get the input samples pointer
 | 
			
		||||
                        if ((ninput_items[0] + d_buffer_count) <= d_consumed_samples)
 | 
			
		||||
                            {
 | 
			
		||||
                                buff_increment = ninput_items[0];
 | 
			
		||||
                            }
 | 
			
		||||
                        else
 | 
			
		||||
                            {
 | 
			
		||||
                                buff_increment = d_consumed_samples - d_buffer_count;
 | 
			
		||||
                            }
 | 
			
		||||
                        memcpy(&d_data_buffer_sc[d_buffer_count], in, sizeof(lv_16sc_t) * buff_increment);
 | 
			
		||||
                    }
 | 
			
		||||
                else
 | 
			
		||||
                    {
 | 
			
		||||
                        memcpy(d_data_buffer, input_items[0], d_consumed_samples * sizeof(gr_complex));
 | 
			
		||||
                        const gr_complex* in = reinterpret_cast<const gr_complex*>(input_items[0]);  // Get the input samples pointer
 | 
			
		||||
                        if ((ninput_items[0] + d_buffer_count) <= d_consumed_samples)
 | 
			
		||||
                            {
 | 
			
		||||
                                buff_increment = ninput_items[0];
 | 
			
		||||
                            }
 | 
			
		||||
                        else
 | 
			
		||||
                            {
 | 
			
		||||
                                buff_increment = d_consumed_samples - d_buffer_count;
 | 
			
		||||
                            }
 | 
			
		||||
                        memcpy(&d_data_buffer[d_buffer_count], in, sizeof(gr_complex) * buff_increment);
 | 
			
		||||
                    }
 | 
			
		||||
 | 
			
		||||
                // If buffer will be full in next iteration
 | 
			
		||||
                if (d_buffer_count >= d_consumed_samples)
 | 
			
		||||
                    {
 | 
			
		||||
                        d_state = 2;
 | 
			
		||||
                    }
 | 
			
		||||
                d_buffer_count += buff_increment;
 | 
			
		||||
                d_sample_counter += buff_increment;
 | 
			
		||||
                consume_each(buff_increment);
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
        case 2:
 | 
			
		||||
            {
 | 
			
		||||
                // Copy the data to the core and let it know that new data is available
 | 
			
		||||
                if (acq_parameters.blocking)
 | 
			
		||||
                    {
 | 
			
		||||
                        lk.unlock();
 | 
			
		||||
@@ -857,8 +891,8 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
 | 
			
		||||
                        gr::thread::thread d_worker(&pcps_acquisition::acquisition_core, this, d_sample_counter);
 | 
			
		||||
                        d_worker_active = true;
 | 
			
		||||
                    }
 | 
			
		||||
                d_sample_counter += d_consumed_samples;
 | 
			
		||||
                consume_each(1);
 | 
			
		||||
                consume_each(0);
 | 
			
		||||
                d_buffer_count = 0;
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 
 | 
			
		||||
@@ -135,6 +135,7 @@ private:
 | 
			
		||||
    arma::fmat grid_;
 | 
			
		||||
    long int d_dump_number;
 | 
			
		||||
    unsigned int d_dump_channel;
 | 
			
		||||
    unsigned int d_buffer_count;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
    ~pcps_acquisition();
 | 
			
		||||
 
 | 
			
		||||
@@ -49,7 +49,8 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_generic(float* re
 | 
			
		||||
    int code_length_chips = 2046;
 | 
			
		||||
    float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
 | 
			
		||||
    int num_out_vectors = 3;
 | 
			
		||||
    float rem_code_phase_chips = -0.234;
 | 
			
		||||
    float rem_code_phase_chips = -0.8234;
 | 
			
		||||
    float code_phase_rate_step_chips = 1.0 / powf(2.0, 33.0);
 | 
			
		||||
    unsigned int n;
 | 
			
		||||
    float shifts_chips[3] = {-0.1, 0.0, 0.1};
 | 
			
		||||
 | 
			
		||||
@@ -59,7 +60,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_generic(float* re
 | 
			
		||||
            result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
 | 
			
		||||
    volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
 | 
			
		||||
 | 
			
		||||
    memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
 | 
			
		||||
 | 
			
		||||
@@ -73,63 +74,65 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_generic(float* re
 | 
			
		||||
 | 
			
		||||
#endif /* LV_HAVE_GENERIC */
 | 
			
		||||
 | 
			
		||||
//#ifdef LV_HAVE_SSE3
 | 
			
		||||
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_a_sse3(float* result, const float* local_code, unsigned int num_points)
 | 
			
		||||
//{
 | 
			
		||||
//    int code_length_chips = 2046;
 | 
			
		||||
//    float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
 | 
			
		||||
//    int num_out_vectors = 3;
 | 
			
		||||
//    float rem_code_phase_chips = -0.234;
 | 
			
		||||
//    unsigned int n;
 | 
			
		||||
//    float shifts_chips[3] = {-0.1, 0.0, 0.1};
 | 
			
		||||
//
 | 
			
		||||
//    float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
 | 
			
		||||
//    for (n = 0; n < num_out_vectors; n++)
 | 
			
		||||
//        {
 | 
			
		||||
//            result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
 | 
			
		||||
//        }
 | 
			
		||||
//
 | 
			
		||||
//    volk_gnsssdr_32f_xn_resampler_32f_xn_a_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
 | 
			
		||||
//
 | 
			
		||||
//    memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
 | 
			
		||||
//
 | 
			
		||||
//    for (n = 0; n < num_out_vectors; n++)
 | 
			
		||||
//        {
 | 
			
		||||
//            volk_gnsssdr_free(result_aux[n]);
 | 
			
		||||
//        }
 | 
			
		||||
//    volk_gnsssdr_free(result_aux);
 | 
			
		||||
//}
 | 
			
		||||
//
 | 
			
		||||
//#endif
 | 
			
		||||
//
 | 
			
		||||
//#ifdef LV_HAVE_SSE3
 | 
			
		||||
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_u_sse3(float* result, const float* local_code, unsigned int num_points)
 | 
			
		||||
//{
 | 
			
		||||
//    int code_length_chips = 2046;
 | 
			
		||||
//    float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
 | 
			
		||||
//    int num_out_vectors = 3;
 | 
			
		||||
//    float rem_code_phase_chips = -0.234;
 | 
			
		||||
//    unsigned int n;
 | 
			
		||||
//    float shifts_chips[3] = {-0.1, 0.0, 0.1};
 | 
			
		||||
//
 | 
			
		||||
//    float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
 | 
			
		||||
//    for (n = 0; n < num_out_vectors; n++)
 | 
			
		||||
//        {
 | 
			
		||||
//            result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
 | 
			
		||||
//        }
 | 
			
		||||
//
 | 
			
		||||
//    volk_gnsssdr_32f_xn_resampler_32f_xn_u_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
 | 
			
		||||
//
 | 
			
		||||
//    memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
 | 
			
		||||
//
 | 
			
		||||
//    for (n = 0; n < num_out_vectors; n++)
 | 
			
		||||
//        {
 | 
			
		||||
//            volk_gnsssdr_free(result_aux[n]);
 | 
			
		||||
//        }
 | 
			
		||||
//    volk_gnsssdr_free(result_aux);
 | 
			
		||||
//}
 | 
			
		||||
//
 | 
			
		||||
//#endif
 | 
			
		||||
#ifdef LV_HAVE_SSE3
 | 
			
		||||
static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_sse3(float* result, const float* local_code, unsigned int num_points)
 | 
			
		||||
{
 | 
			
		||||
    int code_length_chips = 2046;
 | 
			
		||||
    float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
 | 
			
		||||
    int num_out_vectors = 3;
 | 
			
		||||
    float rem_code_phase_chips = -0.8234;
 | 
			
		||||
    float code_phase_rate_step_chips = 1.0 / powf(2.0, 33.0);
 | 
			
		||||
    unsigned int n;
 | 
			
		||||
    float shifts_chips[3] = {-0.1, 0.0, 0.1};
 | 
			
		||||
 | 
			
		||||
    float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
 | 
			
		||||
    for (n = 0; n < num_out_vectors; n++)
 | 
			
		||||
        {
 | 
			
		||||
            result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
 | 
			
		||||
 | 
			
		||||
    memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
 | 
			
		||||
 | 
			
		||||
    for (n = 0; n < num_out_vectors; n++)
 | 
			
		||||
        {
 | 
			
		||||
            volk_gnsssdr_free(result_aux[n]);
 | 
			
		||||
        }
 | 
			
		||||
    volk_gnsssdr_free(result_aux);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#ifdef LV_HAVE_SSE3
 | 
			
		||||
static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_sse3(float* result, const float* local_code, unsigned int num_points)
 | 
			
		||||
{
 | 
			
		||||
    int code_length_chips = 2046;
 | 
			
		||||
    float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
 | 
			
		||||
    int num_out_vectors = 3;
 | 
			
		||||
    float rem_code_phase_chips = -0.8234;
 | 
			
		||||
    float code_phase_rate_step_chips = 1.0 / powf(2.0, 33.0);
 | 
			
		||||
    unsigned int n;
 | 
			
		||||
    float shifts_chips[3] = {-0.1, 0.0, 0.1};
 | 
			
		||||
 | 
			
		||||
    float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
 | 
			
		||||
    for (n = 0; n < num_out_vectors; n++)
 | 
			
		||||
        {
 | 
			
		||||
            result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
 | 
			
		||||
 | 
			
		||||
    memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
 | 
			
		||||
 | 
			
		||||
    for (n = 0; n < num_out_vectors; n++)
 | 
			
		||||
        {
 | 
			
		||||
            volk_gnsssdr_free(result_aux[n]);
 | 
			
		||||
        }
 | 
			
		||||
    volk_gnsssdr_free(result_aux);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//#ifdef LV_HAVE_SSE4_1
 | 
			
		||||
 
 | 
			
		||||
@@ -46,20 +46,21 @@
 | 
			
		||||
 *
 | 
			
		||||
 * <b>Dispatcher Prototype</b>
 | 
			
		||||
 * \code
 | 
			
		||||
 * void volk_gnsssdr_32f_xn_fast_resampler_32f_xn(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
 | 
			
		||||
 * void volk_gnsssdr_32f_xn_fast_resampler_32f_xn(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
 | 
			
		||||
 * \endcode
 | 
			
		||||
 *
 | 
			
		||||
 * \b Inputs
 | 
			
		||||
 * \li local_code:            Vector to be resampled.
 | 
			
		||||
 * \li rem_code_phase_chips:  Remnant code phase [chips].
 | 
			
		||||
 * \li code_phase_step_chips: Phase increment per sample [chips/sample].
 | 
			
		||||
 * \li shifts_chips:          Vector of floats that defines the spacing (in chips) between the replicas of \p local_code
 | 
			
		||||
 * \li code_length_chips:     Code length in chips.
 | 
			
		||||
 * \li num_out_vectors        Number of output vectors.
 | 
			
		||||
 * \li num_points:            The number of data values to be in the resampled vector.
 | 
			
		||||
 * \li local_code:                 Vector to be resampled.
 | 
			
		||||
 * \li rem_code_phase_chips:       Remnant code phase [chips].
 | 
			
		||||
 * \li code_phase_step_chips:      Phase increment per sample [chips/sample].
 | 
			
		||||
 * \li code_phase_rate_step_chips: Phase rate increment per sample [chips/sample^2].
 | 
			
		||||
 * \li shifts_chips:               Vector of floats that defines the spacing (in chips) between the replicas of \p local_code
 | 
			
		||||
 * \li code_length_chips:          Code length in chips.
 | 
			
		||||
 * \li num_out_vectors             Number of output vectors.
 | 
			
		||||
 * \li num_points:                 The number of data values to be in the resampled vector.
 | 
			
		||||
 *
 | 
			
		||||
 * \b Outputs
 | 
			
		||||
 * \li result:                Pointer to a vector of pointers where the results will be stored.
 | 
			
		||||
 * \li result:                     Pointer to a vector of pointers where the results will be stored.
 | 
			
		||||
 *
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
@@ -77,7 +78,7 @@
 | 
			
		||||
 | 
			
		||||
#ifdef LV_HAVE_GENERIC
 | 
			
		||||
 | 
			
		||||
static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
 | 
			
		||||
static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
 | 
			
		||||
{
 | 
			
		||||
    int local_code_chip_index;
 | 
			
		||||
    int current_correlator_tap;
 | 
			
		||||
@@ -85,9 +86,9 @@ static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(float** res
 | 
			
		||||
    //first correlator
 | 
			
		||||
    for (n = 0; n < num_points; n++)
 | 
			
		||||
        {
 | 
			
		||||
            // resample code for current tap
 | 
			
		||||
            local_code_chip_index = (int)floor(code_phase_step_chips * (float)n + shifts_chips[0] - rem_code_phase_chips);
 | 
			
		||||
            //Take into account that in multitap correlators, the shifts can be negative!
 | 
			
		||||
            // resample code for first tap
 | 
			
		||||
            local_code_chip_index = (int)floor(code_phase_step_chips * (float)n + code_phase_rate_step_chips * (float)(n * n) + shifts_chips[0] - rem_code_phase_chips);
 | 
			
		||||
            // Take into account that in multitap correlators, the shifts can be negative!
 | 
			
		||||
            if (local_code_chip_index < 0) local_code_chip_index += (int)code_length_chips * (abs(local_code_chip_index) / code_length_chips + 1);
 | 
			
		||||
            local_code_chip_index = local_code_chip_index % code_length_chips;
 | 
			
		||||
            result[0][n] = local_code[local_code_chip_index];
 | 
			
		||||
@@ -106,145 +107,175 @@ static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(float** res
 | 
			
		||||
#endif /*LV_HAVE_GENERIC*/
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//#ifdef LV_HAVE_SSE3
 | 
			
		||||
//#include <pmmintrin.h>
 | 
			
		||||
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
 | 
			
		||||
//{
 | 
			
		||||
//    float** _result = result;
 | 
			
		||||
//    const unsigned int quarterPoints = num_points / 4;
 | 
			
		||||
//    int current_correlator_tap;
 | 
			
		||||
//    unsigned int n;
 | 
			
		||||
//    unsigned int k;
 | 
			
		||||
//    const __m128 ones = _mm_set1_ps(1.0f);
 | 
			
		||||
//    const __m128 fours = _mm_set1_ps(4.0f);
 | 
			
		||||
//    const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
 | 
			
		||||
//    const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
 | 
			
		||||
//
 | 
			
		||||
//    __VOLK_ATTR_ALIGNED(16)
 | 
			
		||||
//    int local_code_chip_index[4];
 | 
			
		||||
//    int local_code_chip_index_;
 | 
			
		||||
//
 | 
			
		||||
//    const __m128i zeros = _mm_setzero_si128();
 | 
			
		||||
//    const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
 | 
			
		||||
//    const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
 | 
			
		||||
//    __m128i local_code_chip_index_reg, aux_i, negatives, i;
 | 
			
		||||
//    __m128 aux, aux2, shifts_chips_reg, fi, igx, j, c, cTrunc, base;
 | 
			
		||||
//
 | 
			
		||||
//    for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
 | 
			
		||||
//        {
 | 
			
		||||
//            shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
 | 
			
		||||
//            aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
 | 
			
		||||
//            __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
 | 
			
		||||
//            for (n = 0; n < quarterPoints; n++)
 | 
			
		||||
//                {
 | 
			
		||||
//                    aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
 | 
			
		||||
//                    aux = _mm_add_ps(aux, aux2);
 | 
			
		||||
//                    // floor
 | 
			
		||||
//                    i = _mm_cvttps_epi32(aux);
 | 
			
		||||
//                    fi = _mm_cvtepi32_ps(i);
 | 
			
		||||
//                    igx = _mm_cmpgt_ps(fi, aux);
 | 
			
		||||
//                    j = _mm_and_ps(igx, ones);
 | 
			
		||||
//                    aux = _mm_sub_ps(fi, j);
 | 
			
		||||
//                    // fmod
 | 
			
		||||
//                    c = _mm_div_ps(aux, code_length_chips_reg_f);
 | 
			
		||||
//                    i = _mm_cvttps_epi32(c);
 | 
			
		||||
//                    cTrunc = _mm_cvtepi32_ps(i);
 | 
			
		||||
//                    base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
 | 
			
		||||
//                    local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
 | 
			
		||||
//
 | 
			
		||||
//                    negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
 | 
			
		||||
//                    aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
 | 
			
		||||
//                    local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
 | 
			
		||||
//                    _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
 | 
			
		||||
//                    for (k = 0; k < 4; ++k)
 | 
			
		||||
//                        {
 | 
			
		||||
//                            _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
 | 
			
		||||
//                        }
 | 
			
		||||
//                    indexn = _mm_add_ps(indexn, fours);
 | 
			
		||||
//                }
 | 
			
		||||
//            for (n = quarterPoints * 4; n < num_points; n++)
 | 
			
		||||
//                {
 | 
			
		||||
//                    // resample code for current tap
 | 
			
		||||
//                    local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
 | 
			
		||||
//                    //Take into account that in multitap correlators, the shifts can be negative!
 | 
			
		||||
//                    if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
 | 
			
		||||
//                    local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
 | 
			
		||||
//                    _result[current_correlator_tap][n] = local_code[local_code_chip_index_];
 | 
			
		||||
//                }
 | 
			
		||||
//        }
 | 
			
		||||
//}
 | 
			
		||||
//
 | 
			
		||||
//#endif
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//#ifdef LV_HAVE_SSE3
 | 
			
		||||
//#include <pmmintrin.h>
 | 
			
		||||
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
 | 
			
		||||
//{
 | 
			
		||||
//    float** _result = result;
 | 
			
		||||
//    const unsigned int quarterPoints = num_points / 4;
 | 
			
		||||
//    int current_correlator_tap;
 | 
			
		||||
//    unsigned int n;
 | 
			
		||||
//    unsigned int k;
 | 
			
		||||
//    const __m128 ones = _mm_set1_ps(1.0f);
 | 
			
		||||
//    const __m128 fours = _mm_set1_ps(4.0f);
 | 
			
		||||
//    const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
 | 
			
		||||
//    const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
 | 
			
		||||
//
 | 
			
		||||
//    __VOLK_ATTR_ALIGNED(16)
 | 
			
		||||
//    int local_code_chip_index[4];
 | 
			
		||||
//    int local_code_chip_index_;
 | 
			
		||||
//
 | 
			
		||||
//    const __m128i zeros = _mm_setzero_si128();
 | 
			
		||||
//    const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
 | 
			
		||||
//    const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
 | 
			
		||||
//    __m128i local_code_chip_index_reg, aux_i, negatives, i;
 | 
			
		||||
//    __m128 aux, aux2, shifts_chips_reg, fi, igx, j, c, cTrunc, base;
 | 
			
		||||
//
 | 
			
		||||
//    for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++)
 | 
			
		||||
//        {
 | 
			
		||||
//            shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]);
 | 
			
		||||
//            aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
 | 
			
		||||
//            __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
 | 
			
		||||
//            for (n = 0; n < quarterPoints; n++)
 | 
			
		||||
//                {
 | 
			
		||||
//                    aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
 | 
			
		||||
//                    aux = _mm_add_ps(aux, aux2);
 | 
			
		||||
//                    // floor
 | 
			
		||||
//                    i = _mm_cvttps_epi32(aux);
 | 
			
		||||
//                    fi = _mm_cvtepi32_ps(i);
 | 
			
		||||
//                    igx = _mm_cmpgt_ps(fi, aux);
 | 
			
		||||
//                    j = _mm_and_ps(igx, ones);
 | 
			
		||||
//                    aux = _mm_sub_ps(fi, j);
 | 
			
		||||
//                    // fmod
 | 
			
		||||
//                    c = _mm_div_ps(aux, code_length_chips_reg_f);
 | 
			
		||||
//                    i = _mm_cvttps_epi32(c);
 | 
			
		||||
//                    cTrunc = _mm_cvtepi32_ps(i);
 | 
			
		||||
//                    base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
 | 
			
		||||
//                    local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
 | 
			
		||||
//
 | 
			
		||||
//                    negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
 | 
			
		||||
//                    aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
 | 
			
		||||
//                    local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
 | 
			
		||||
//                    _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
 | 
			
		||||
//                    for (k = 0; k < 4; ++k)
 | 
			
		||||
//                        {
 | 
			
		||||
//                            _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]];
 | 
			
		||||
//                        }
 | 
			
		||||
//                    indexn = _mm_add_ps(indexn, fours);
 | 
			
		||||
//                }
 | 
			
		||||
//            for (n = quarterPoints * 4; n < num_points; n++)
 | 
			
		||||
//                {
 | 
			
		||||
//                    // resample code for current tap
 | 
			
		||||
//                    local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips);
 | 
			
		||||
//                    //Take into account that in multitap correlators, the shifts can be negative!
 | 
			
		||||
//                    if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
 | 
			
		||||
//                    local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
 | 
			
		||||
//                    _result[current_correlator_tap][n] = local_code[local_code_chip_index_];
 | 
			
		||||
//                }
 | 
			
		||||
//        }
 | 
			
		||||
//}
 | 
			
		||||
//#endif
 | 
			
		||||
#ifdef LV_HAVE_SSE3
 | 
			
		||||
#include <pmmintrin.h>
 | 
			
		||||
static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
 | 
			
		||||
{
 | 
			
		||||
    float** _result = result;
 | 
			
		||||
    const unsigned int quarterPoints = num_points / 4;
 | 
			
		||||
    //    int current_correlator_tap;
 | 
			
		||||
    unsigned int n;
 | 
			
		||||
    unsigned int k;
 | 
			
		||||
    unsigned int current_correlator_tap;
 | 
			
		||||
    const __m128 ones = _mm_set1_ps(1.0f);
 | 
			
		||||
    const __m128 fours = _mm_set1_ps(4.0f);
 | 
			
		||||
    const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
 | 
			
		||||
    const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
 | 
			
		||||
    const __m128 code_phase_rate_step_chips_reg = _mm_set_ps1(code_phase_rate_step_chips);
 | 
			
		||||
 | 
			
		||||
    __VOLK_ATTR_ALIGNED(16)
 | 
			
		||||
    int local_code_chip_index[4];
 | 
			
		||||
    int local_code_chip_index_;
 | 
			
		||||
    const __m128i zeros = _mm_setzero_si128();
 | 
			
		||||
    const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
 | 
			
		||||
    const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
 | 
			
		||||
    __m128i local_code_chip_index_reg, aux_i, negatives;
 | 
			
		||||
    __m128 aux, aux2, aux3, indexnn, shifts_chips_reg, i, fi, igx, j, c, cTrunc, base;
 | 
			
		||||
    __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
 | 
			
		||||
 | 
			
		||||
    shifts_chips_reg = _mm_set_ps1((float)shifts_chips[0]);
 | 
			
		||||
    aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
 | 
			
		||||
 | 
			
		||||
    for (n = 0; n < quarterPoints; n++)
 | 
			
		||||
        {
 | 
			
		||||
            aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
 | 
			
		||||
            indexnn = _mm_mul_ps(indexn, indexn);
 | 
			
		||||
            aux3 = _mm_mul_ps(code_phase_rate_step_chips_reg, indexnn);
 | 
			
		||||
            aux = _mm_add_ps(aux, aux3);
 | 
			
		||||
            aux = _mm_add_ps(aux, aux2);
 | 
			
		||||
            // floor
 | 
			
		||||
            i = _mm_cvttps_epi32(aux);
 | 
			
		||||
            fi = _mm_cvtepi32_ps(i);
 | 
			
		||||
            igx = _mm_cmpgt_ps(fi, aux);
 | 
			
		||||
            j = _mm_and_ps(igx, ones);
 | 
			
		||||
            aux = _mm_sub_ps(fi, j);
 | 
			
		||||
 | 
			
		||||
            // Correct negative shift
 | 
			
		||||
            c = _mm_div_ps(aux, code_length_chips_reg_f);
 | 
			
		||||
            aux3 = _mm_add_ps(c, ones);
 | 
			
		||||
            i = _mm_cvttps_epi32(aux3);
 | 
			
		||||
            cTrunc = _mm_cvtepi32_ps(i);
 | 
			
		||||
            base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
 | 
			
		||||
            local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
 | 
			
		||||
            negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
 | 
			
		||||
            aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
 | 
			
		||||
            local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
 | 
			
		||||
 | 
			
		||||
            _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
 | 
			
		||||
 | 
			
		||||
            for (k = 0; k < 4; ++k)
 | 
			
		||||
                {
 | 
			
		||||
                    _result[0][n * 4 + k] = local_code[local_code_chip_index[k]];
 | 
			
		||||
                }
 | 
			
		||||
            indexn = _mm_add_ps(indexn, fours);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    for (n = quarterPoints * 4; n < num_points; n++)
 | 
			
		||||
        {
 | 
			
		||||
            // resample code for first tap
 | 
			
		||||
            local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + code_phase_rate_step_chips * (float)(n * n) + shifts_chips[0] - rem_code_phase_chips);
 | 
			
		||||
            // Take into account that in multitap correlators, the shifts can be negative!
 | 
			
		||||
            if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
 | 
			
		||||
            local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
 | 
			
		||||
            _result[0][n] = local_code[local_code_chip_index_];
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    // adjacent correlators
 | 
			
		||||
    unsigned int shift_samples = 0;
 | 
			
		||||
    for (current_correlator_tap = 1; current_correlator_tap < num_out_vectors; current_correlator_tap++)
 | 
			
		||||
        {
 | 
			
		||||
            shift_samples += (int)round((shifts_chips[current_correlator_tap] - shifts_chips[current_correlator_tap - 1]) / code_phase_step_chips);
 | 
			
		||||
            memcpy(&_result[current_correlator_tap][0], &_result[0][shift_samples], (num_points - shift_samples) * sizeof(float));
 | 
			
		||||
            memcpy(&_result[current_correlator_tap][num_points - shift_samples], &_result[0][0], shift_samples * sizeof(float));
 | 
			
		||||
        }
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#ifdef LV_HAVE_SSE3
 | 
			
		||||
#include <pmmintrin.h>
 | 
			
		||||
static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
 | 
			
		||||
{
 | 
			
		||||
    float** _result = result;
 | 
			
		||||
    const unsigned int quarterPoints = num_points / 4;
 | 
			
		||||
    //    int current_correlator_tap;
 | 
			
		||||
    unsigned int n;
 | 
			
		||||
    unsigned int k;
 | 
			
		||||
    unsigned int current_correlator_tap;
 | 
			
		||||
    const __m128 ones = _mm_set1_ps(1.0f);
 | 
			
		||||
    const __m128 fours = _mm_set1_ps(4.0f);
 | 
			
		||||
    const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
 | 
			
		||||
    const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
 | 
			
		||||
    const __m128 code_phase_rate_step_chips_reg = _mm_set_ps1(code_phase_rate_step_chips);
 | 
			
		||||
 | 
			
		||||
    __VOLK_ATTR_ALIGNED(16)
 | 
			
		||||
    int local_code_chip_index[4];
 | 
			
		||||
    int local_code_chip_index_;
 | 
			
		||||
    const __m128i zeros = _mm_setzero_si128();
 | 
			
		||||
    const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
 | 
			
		||||
    const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
 | 
			
		||||
    __m128i local_code_chip_index_reg, aux_i, negatives;
 | 
			
		||||
    __m128 aux, aux2, aux3, indexnn, shifts_chips_reg, i, fi, igx, j, c, cTrunc, base;
 | 
			
		||||
    __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
 | 
			
		||||
 | 
			
		||||
    shifts_chips_reg = _mm_set_ps1((float)shifts_chips[0]);
 | 
			
		||||
    aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
 | 
			
		||||
 | 
			
		||||
    for (n = 0; n < quarterPoints; n++)
 | 
			
		||||
        {
 | 
			
		||||
            aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
 | 
			
		||||
            indexnn = _mm_mul_ps(indexn, indexn);
 | 
			
		||||
            aux3 = _mm_mul_ps(code_phase_rate_step_chips_reg, indexnn);
 | 
			
		||||
            aux = _mm_add_ps(aux, aux3);
 | 
			
		||||
            aux = _mm_add_ps(aux, aux2);
 | 
			
		||||
            // floor
 | 
			
		||||
            i = _mm_cvttps_epi32(aux);
 | 
			
		||||
            fi = _mm_cvtepi32_ps(i);
 | 
			
		||||
            igx = _mm_cmpgt_ps(fi, aux);
 | 
			
		||||
            j = _mm_and_ps(igx, ones);
 | 
			
		||||
            aux = _mm_sub_ps(fi, j);
 | 
			
		||||
 | 
			
		||||
            // Correct negative shift
 | 
			
		||||
            c = _mm_div_ps(aux, code_length_chips_reg_f);
 | 
			
		||||
            aux3 = _mm_add_ps(c, ones);
 | 
			
		||||
            i = _mm_cvttps_epi32(aux3);
 | 
			
		||||
            cTrunc = _mm_cvtepi32_ps(i);
 | 
			
		||||
            base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
 | 
			
		||||
            local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
 | 
			
		||||
            negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
 | 
			
		||||
            aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
 | 
			
		||||
            local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
 | 
			
		||||
 | 
			
		||||
            _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
 | 
			
		||||
 | 
			
		||||
            for (k = 0; k < 4; ++k)
 | 
			
		||||
                {
 | 
			
		||||
                    _result[0][n * 4 + k] = local_code[local_code_chip_index[k]];
 | 
			
		||||
                }
 | 
			
		||||
            indexn = _mm_add_ps(indexn, fours);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    for (n = quarterPoints * 4; n < num_points; n++)
 | 
			
		||||
        {
 | 
			
		||||
            // resample code for first tap
 | 
			
		||||
            local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + code_phase_rate_step_chips * (float)(n * n) + shifts_chips[0] - rem_code_phase_chips);
 | 
			
		||||
            // Take into account that in multitap correlators, the shifts can be negative!
 | 
			
		||||
            if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
 | 
			
		||||
            local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
 | 
			
		||||
            _result[0][n] = local_code[local_code_chip_index_];
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    // adjacent correlators
 | 
			
		||||
    unsigned int shift_samples = 0;
 | 
			
		||||
    for (current_correlator_tap = 1; current_correlator_tap < num_out_vectors; current_correlator_tap++)
 | 
			
		||||
        {
 | 
			
		||||
            shift_samples += (int)round((shifts_chips[current_correlator_tap] - shifts_chips[current_correlator_tap - 1]) / code_phase_step_chips);
 | 
			
		||||
            memcpy(&_result[current_correlator_tap][0], &_result[0][shift_samples], (num_points - shift_samples) * sizeof(float));
 | 
			
		||||
            memcpy(&_result[current_correlator_tap][num_points - shift_samples], &_result[0][0], shift_samples * sizeof(float));
 | 
			
		||||
        }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//#ifdef LV_HAVE_SSE4_1
 | 
			
		||||
 
 | 
			
		||||
@@ -98,7 +98,7 @@ bool cpu_multicorrelator_real_codes::set_input_output_vectors(std::complex<float
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void cpu_multicorrelator_real_codes::update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips)
 | 
			
		||||
void cpu_multicorrelator_real_codes::update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips)
 | 
			
		||||
{
 | 
			
		||||
    if (d_use_fast_resampler)
 | 
			
		||||
        {
 | 
			
		||||
@@ -106,6 +106,7 @@ void cpu_multicorrelator_real_codes::update_local_code(int correlator_length_sam
 | 
			
		||||
                d_local_code_in,
 | 
			
		||||
                rem_code_phase_chips,
 | 
			
		||||
                code_phase_step_chips,
 | 
			
		||||
                code_phase_rate_step_chips,
 | 
			
		||||
                d_shifts_chips,
 | 
			
		||||
                d_code_length_chips,
 | 
			
		||||
                d_n_correlators,
 | 
			
		||||
 
 | 
			
		||||
@@ -51,7 +51,7 @@ public:
 | 
			
		||||
    bool init(int max_signal_length_samples, int n_correlators);
 | 
			
		||||
    bool set_local_code_and_taps(int code_length_chips, const float *local_code_in, float *shifts_chips);
 | 
			
		||||
    bool set_input_output_vectors(std::complex<float> *corr_out, const std::complex<float> *sig_in);
 | 
			
		||||
    void update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips);
 | 
			
		||||
    void update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips = 0.0);
 | 
			
		||||
    bool Carrier_wipeoff_multicorrelator_resampler(float rem_carrier_phase_in_rad, float phase_step_rad, float rem_code_phase_chips, float code_phase_step_chips, int signal_length_samples);
 | 
			
		||||
    bool free();
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user