1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-15 20:50:33 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into next

This commit is contained in:
Carles Fernandez 2018-08-08 15:03:44 +02:00
commit 9f99641bff
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
20 changed files with 363 additions and 338 deletions

View File

@ -115,9 +115,6 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
acquisition_ = pcps_make_acquisition(acq_parameters); acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
if (item_type_.compare("cbyte") == 0) if (item_type_.compare("cbyte") == 0)
{ {
cbyte_to_float_x2_ = make_complex_byte_to_float_x2(); cbyte_to_float_x2_ = make_complex_byte_to_float_x2();
@ -278,18 +275,19 @@ void GalileoE1PcpsAmbiguousAcquisition::connect(gr::top_block_sptr top_block)
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
top_block->connect(stream_to_vector_, 0, acquisition_, 0); // nothing to connect
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
top_block->connect(stream_to_vector_, 0, acquisition_, 0); // nothing to connect
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {
// Since a byte-based acq implementation is not available,
// we just convert cshorts to gr_complex
top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
top_block->connect(float_to_complex_, 0, stream_to_vector_, 0); top_block->connect(float_to_complex_, 0, acquisition_, 0);
top_block->connect(stream_to_vector_, 0, acquisition_, 0);
} }
else else
{ {
@ -302,20 +300,17 @@ void GalileoE1PcpsAmbiguousAcquisition::disconnect(gr::top_block_sptr top_block)
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0); // nothing to disconnect
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0); // nothing to disconnect
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {
// Since a byte-based acq implementation is not available,
// we just convert cshorts to gr_complex
top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0); top_block->disconnect(float_to_complex_, 0, acquisition_, 0);
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
} }
else else
{ {
@ -328,11 +323,11 @@ gr::basic_block_sptr GalileoE1PcpsAmbiguousAcquisition::get_left_block()
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
return stream_to_vector_; return acquisition_;
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
return stream_to_vector_; return acquisition_;
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {

View File

@ -36,7 +36,6 @@
#include "gnss_synchro.h" #include "gnss_synchro.h"
#include "pcps_acquisition.h" #include "pcps_acquisition.h"
#include "complex_byte_to_float_x2.h" #include "complex_byte_to_float_x2.h"
#include <gnuradio/blocks/stream_to_vector.h>
#include <gnuradio/blocks/float_to_complex.h> #include <gnuradio/blocks/float_to_complex.h>
#include <volk_gnsssdr/volk_gnsssdr.h> #include <volk_gnsssdr/volk_gnsssdr.h>
#include <string> #include <string>
@ -135,7 +134,6 @@ public:
private: private:
ConfigurationInterface* configuration_; ConfigurationInterface* configuration_;
pcps_acquisition_sptr acquisition_; pcps_acquisition_sptr acquisition_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
gr::blocks::float_to_complex::sptr float_to_complex_; gr::blocks::float_to_complex::sptr float_to_complex_;
complex_byte_to_float_x2_sptr cbyte_to_float_x2_; complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
size_t item_size_; size_t item_size_;

View File

@ -111,7 +111,6 @@ GalileoE5aPcpsAcquisition::GalileoE5aPcpsAcquisition(ConfigurationInterface* con
acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false); acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
acquisition_ = pcps_make_acquisition(acq_parameters); acquisition_ = pcps_make_acquisition(acq_parameters);
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
channel_ = 0; channel_ = 0;
threshold_ = 0.0; threshold_ = 0.0;
doppler_step_ = 0; doppler_step_ = 0;
@ -263,11 +262,11 @@ void GalileoE5aPcpsAcquisition::connect(gr::top_block_sptr top_block)
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
top_block->connect(stream_to_vector_, 0, acquisition_, 0); // nothing to connect
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
top_block->connect(stream_to_vector_, 0, acquisition_, 0); // nothing to connect
} }
else else
{ {
@ -280,11 +279,11 @@ void GalileoE5aPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0); // nothing to disconnect
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0); // nothing to disconnect
} }
else else
{ {
@ -295,7 +294,7 @@ void GalileoE5aPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
gr::basic_block_sptr GalileoE5aPcpsAcquisition::get_left_block() gr::basic_block_sptr GalileoE5aPcpsAcquisition::get_left_block()
{ {
return stream_to_vector_; return acquisition_;
} }

View File

@ -35,7 +35,6 @@
#include "acquisition_interface.h" #include "acquisition_interface.h"
#include "gnss_synchro.h" #include "gnss_synchro.h"
#include "pcps_acquisition.h" #include "pcps_acquisition.h"
#include <gnuradio/blocks/stream_to_vector.h>
#include <string> #include <string>
class ConfigurationInterface; class ConfigurationInterface;
@ -129,7 +128,6 @@ private:
ConfigurationInterface* configuration_; ConfigurationInterface* configuration_;
pcps_acquisition_sptr acquisition_; pcps_acquisition_sptr acquisition_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
size_t item_size_; size_t item_size_;

View File

@ -110,9 +110,6 @@ GlonassL1CaPcpsAcquisition::GlonassL1CaPcpsAcquisition(
acquisition_ = pcps_make_acquisition(acq_parameters); acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
if (item_type_.compare("cbyte") == 0) if (item_type_.compare("cbyte") == 0)
{ {
cbyte_to_float_x2_ = make_complex_byte_to_float_x2(); cbyte_to_float_x2_ = make_complex_byte_to_float_x2();
@ -262,18 +259,17 @@ void GlonassL1CaPcpsAcquisition::connect(gr::top_block_sptr top_block)
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
top_block->connect(stream_to_vector_, 0, acquisition_, 0); // nothing to connect
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
top_block->connect(stream_to_vector_, 0, acquisition_, 0); // nothing to connect
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {
top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
top_block->connect(float_to_complex_, 0, stream_to_vector_, 0); top_block->connect(float_to_complex_, 0, acquisition_, 0);
top_block->connect(stream_to_vector_, 0, acquisition_, 0);
} }
else else
{ {
@ -286,11 +282,11 @@ void GlonassL1CaPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0); // nothing to disconnect
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0); // nothing to disconnect
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {
@ -298,8 +294,7 @@ void GlonassL1CaPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
// we just convert cshorts to gr_complex // we just convert cshorts to gr_complex
top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0); top_block->disconnect(float_to_complex_, 0, acquisition_, 0);
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
} }
else else
{ {
@ -312,11 +307,11 @@ gr::basic_block_sptr GlonassL1CaPcpsAcquisition::get_left_block()
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
return stream_to_vector_; return acquisition_;
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
return stream_to_vector_; return acquisition_;
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {

View File

@ -38,7 +38,6 @@
#include "gnss_synchro.h" #include "gnss_synchro.h"
#include "pcps_acquisition.h" #include "pcps_acquisition.h"
#include "complex_byte_to_float_x2.h" #include "complex_byte_to_float_x2.h"
#include <gnuradio/blocks/stream_to_vector.h>
#include <gnuradio/blocks/float_to_complex.h> #include <gnuradio/blocks/float_to_complex.h>
#include <string> #include <string>
@ -135,7 +134,6 @@ public:
private: private:
ConfigurationInterface* configuration_; ConfigurationInterface* configuration_;
pcps_acquisition_sptr acquisition_; pcps_acquisition_sptr acquisition_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
gr::blocks::float_to_complex::sptr float_to_complex_; gr::blocks::float_to_complex::sptr float_to_complex_;
complex_byte_to_float_x2_sptr cbyte_to_float_x2_; complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
size_t item_size_; size_t item_size_;

View File

@ -109,9 +109,6 @@ GlonassL2CaPcpsAcquisition::GlonassL2CaPcpsAcquisition(
acquisition_ = pcps_make_acquisition(acq_parameters); acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
if (item_type_.compare("cbyte") == 0) if (item_type_.compare("cbyte") == 0)
{ {
cbyte_to_float_x2_ = make_complex_byte_to_float_x2(); cbyte_to_float_x2_ = make_complex_byte_to_float_x2();
@ -261,18 +258,19 @@ void GlonassL2CaPcpsAcquisition::connect(gr::top_block_sptr top_block)
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
top_block->connect(stream_to_vector_, 0, acquisition_, 0); // nothing to connect
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
top_block->connect(stream_to_vector_, 0, acquisition_, 0); // nothing to connect
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {
// Since a byte-based acq implementation is not available,
// we just convert cshorts to gr_complex
top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
top_block->connect(float_to_complex_, 0, stream_to_vector_, 0); top_block->connect(float_to_complex_, 0, acquisition_, 0);
top_block->connect(stream_to_vector_, 0, acquisition_, 0);
} }
else else
{ {
@ -285,20 +283,17 @@ void GlonassL2CaPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0); // nothing to disconnect
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0); // nothing to disconnect
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {
// Since a byte-based acq implementation is not available,
// we just convert cshorts to gr_complex
top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0); top_block->disconnect(float_to_complex_, 0, acquisition_, 0);
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
} }
else else
{ {
@ -311,11 +306,11 @@ gr::basic_block_sptr GlonassL2CaPcpsAcquisition::get_left_block()
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
return stream_to_vector_; return acquisition_;
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
return stream_to_vector_; return acquisition_;
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {

View File

@ -37,7 +37,6 @@
#include "gnss_synchro.h" #include "gnss_synchro.h"
#include "pcps_acquisition.h" #include "pcps_acquisition.h"
#include "complex_byte_to_float_x2.h" #include "complex_byte_to_float_x2.h"
#include <gnuradio/blocks/stream_to_vector.h>
#include <gnuradio/blocks/float_to_complex.h> #include <gnuradio/blocks/float_to_complex.h>
#include <string> #include <string>
@ -134,7 +133,6 @@ public:
private: private:
ConfigurationInterface* configuration_; ConfigurationInterface* configuration_;
pcps_acquisition_sptr acquisition_; pcps_acquisition_sptr acquisition_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
gr::blocks::float_to_complex::sptr float_to_complex_; gr::blocks::float_to_complex::sptr float_to_complex_;
complex_byte_to_float_x2_sptr cbyte_to_float_x2_; complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
size_t item_size_; size_t item_size_;

View File

@ -105,9 +105,6 @@ GpsL1CaPcpsAcquisition::GpsL1CaPcpsAcquisition(
acquisition_ = pcps_make_acquisition(acq_parameters); acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
if (item_type_.compare("cbyte") == 0) if (item_type_.compare("cbyte") == 0)
{ {
cbyte_to_float_x2_ = make_complex_byte_to_float_x2(); cbyte_to_float_x2_ = make_complex_byte_to_float_x2();
@ -194,7 +191,6 @@ signed int GpsL1CaPcpsAcquisition::mag()
void GpsL1CaPcpsAcquisition::init() void GpsL1CaPcpsAcquisition::init()
{ {
acquisition_->init(); acquisition_->init();
//set_local_code();
} }
@ -251,18 +247,19 @@ void GpsL1CaPcpsAcquisition::connect(gr::top_block_sptr top_block)
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
top_block->connect(stream_to_vector_, 0, acquisition_, 0); // nothing to connect
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
top_block->connect(stream_to_vector_, 0, acquisition_, 0); // nothing to connect
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {
// Since a byte-based acq implementation is not available,
// we just convert cshorts to gr_complex
top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
top_block->connect(float_to_complex_, 0, stream_to_vector_, 0); top_block->connect(float_to_complex_, 0, acquisition_, 0);
top_block->connect(stream_to_vector_, 0, acquisition_, 0);
} }
else else
{ {
@ -275,20 +272,17 @@ void GpsL1CaPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0); // nothing to disconnect
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0); // nothing to disconnect
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {
// Since a byte-based acq implementation is not available,
// we just convert cshorts to gr_complex
top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0); top_block->disconnect(float_to_complex_, 0, acquisition_, 0);
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
} }
else else
{ {
@ -301,11 +295,11 @@ gr::basic_block_sptr GpsL1CaPcpsAcquisition::get_left_block()
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
return stream_to_vector_; return acquisition_;
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
return stream_to_vector_; return acquisition_;
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {

View File

@ -40,7 +40,6 @@
#include "gnss_synchro.h" #include "gnss_synchro.h"
#include "pcps_acquisition.h" #include "pcps_acquisition.h"
#include "complex_byte_to_float_x2.h" #include "complex_byte_to_float_x2.h"
#include <gnuradio/blocks/stream_to_vector.h>
#include <gnuradio/blocks/float_to_complex.h> #include <gnuradio/blocks/float_to_complex.h>
#include <volk_gnsssdr/volk_gnsssdr.h> #include <volk_gnsssdr/volk_gnsssdr.h>
#include <string> #include <string>
@ -139,7 +138,6 @@ public:
private: private:
ConfigurationInterface* configuration_; ConfigurationInterface* configuration_;
pcps_acquisition_sptr acquisition_; pcps_acquisition_sptr acquisition_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
gr::blocks::float_to_complex::sptr float_to_complex_; gr::blocks::float_to_complex::sptr float_to_complex_;
complex_byte_to_float_x2_sptr cbyte_to_float_x2_; complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
size_t item_size_; size_t item_size_;

View File

@ -112,9 +112,6 @@ GpsL2MPcpsAcquisition::GpsL2MPcpsAcquisition(
acquisition_ = pcps_make_acquisition(acq_parameters); acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
if (item_type_.compare("cbyte") == 0) if (item_type_.compare("cbyte") == 0)
{ {
cbyte_to_float_x2_ = make_complex_byte_to_float_x2(); cbyte_to_float_x2_ = make_complex_byte_to_float_x2();
@ -264,18 +261,19 @@ void GpsL2MPcpsAcquisition::connect(gr::top_block_sptr top_block)
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
top_block->connect(stream_to_vector_, 0, acquisition_, 0); // nothing to connect
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
top_block->connect(stream_to_vector_, 0, acquisition_, 0); // nothing to connect
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {
// Since a byte-based acq implementation is not available,
// we just convert cshorts to gr_complex
top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
top_block->connect(float_to_complex_, 0, stream_to_vector_, 0); top_block->connect(float_to_complex_, 0, acquisition_, 0);
top_block->connect(stream_to_vector_, 0, acquisition_, 0);
} }
else else
{ {
@ -288,20 +286,17 @@ void GpsL2MPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0); // nothing to disconnect
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0); // nothing to disconnect
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {
// Since a byte-based acq implementation is not available,
// we just convert cshorts to gr_complex
top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0); top_block->disconnect(float_to_complex_, 0, acquisition_, 0);
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
} }
else else
{ {
@ -314,11 +309,11 @@ gr::basic_block_sptr GpsL2MPcpsAcquisition::get_left_block()
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
return stream_to_vector_; return acquisition_;
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
return stream_to_vector_; return acquisition_;
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {

View File

@ -38,7 +38,6 @@
#include "gnss_synchro.h" #include "gnss_synchro.h"
#include "pcps_acquisition.h" #include "pcps_acquisition.h"
#include "complex_byte_to_float_x2.h" #include "complex_byte_to_float_x2.h"
#include <gnuradio/blocks/stream_to_vector.h>
#include <gnuradio/blocks/float_to_complex.h> #include <gnuradio/blocks/float_to_complex.h>
#include <volk_gnsssdr/volk_gnsssdr.h> #include <volk_gnsssdr/volk_gnsssdr.h>
#include <string> #include <string>
@ -137,7 +136,6 @@ public:
private: private:
ConfigurationInterface* configuration_; ConfigurationInterface* configuration_;
pcps_acquisition_sptr acquisition_; pcps_acquisition_sptr acquisition_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
gr::blocks::float_to_complex::sptr float_to_complex_; gr::blocks::float_to_complex::sptr float_to_complex_;
complex_byte_to_float_x2_sptr cbyte_to_float_x2_; complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
size_t item_size_; size_t item_size_;

View File

@ -103,8 +103,6 @@ GpsL5iPcpsAcquisition::GpsL5iPcpsAcquisition(
acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false); acq_parameters.blocking_on_standby = configuration_->property(role + ".blocking_on_standby", false);
acquisition_ = pcps_make_acquisition(acq_parameters); acquisition_ = pcps_make_acquisition(acq_parameters);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")"; DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
if (item_type_.compare("cbyte") == 0) if (item_type_.compare("cbyte") == 0)
{ {
@ -251,18 +249,19 @@ void GpsL5iPcpsAcquisition::connect(gr::top_block_sptr top_block)
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
top_block->connect(stream_to_vector_, 0, acquisition_, 0); // nothing to connect
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
top_block->connect(stream_to_vector_, 0, acquisition_, 0); // nothing to connect
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {
// Since a byte-based acq implementation is not available,
// we just convert cshorts to gr_complex
top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
top_block->connect(float_to_complex_, 0, stream_to_vector_, 0); top_block->connect(float_to_complex_, 0, acquisition_, 0);
top_block->connect(stream_to_vector_, 0, acquisition_, 0);
} }
else else
{ {
@ -275,20 +274,17 @@ void GpsL5iPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0); // nothing to disconnect
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0); // nothing to disconnect
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {
// Since a byte-based acq implementation is not available,
// we just convert cshorts to gr_complex
top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0); top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1); top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0); top_block->disconnect(float_to_complex_, 0, acquisition_, 0);
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
} }
else else
{ {
@ -301,11 +297,11 @@ gr::basic_block_sptr GpsL5iPcpsAcquisition::get_left_block()
{ {
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {
return stream_to_vector_; return acquisition_;
} }
else if (item_type_.compare("cshort") == 0) else if (item_type_.compare("cshort") == 0)
{ {
return stream_to_vector_; return acquisition_;
} }
else if (item_type_.compare("cbyte") == 0) else if (item_type_.compare("cbyte") == 0)
{ {

View File

@ -38,7 +38,6 @@
#include "gnss_synchro.h" #include "gnss_synchro.h"
#include "pcps_acquisition.h" #include "pcps_acquisition.h"
#include "complex_byte_to_float_x2.h" #include "complex_byte_to_float_x2.h"
#include <gnuradio/blocks/stream_to_vector.h>
#include <gnuradio/blocks/float_to_complex.h> #include <gnuradio/blocks/float_to_complex.h>
#include <volk_gnsssdr/volk_gnsssdr.h> #include <volk_gnsssdr/volk_gnsssdr.h>
#include <string> #include <string>
@ -137,7 +136,6 @@ public:
private: private:
ConfigurationInterface* configuration_; ConfigurationInterface* configuration_;
pcps_acquisition_sptr acquisition_; pcps_acquisition_sptr acquisition_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
gr::blocks::float_to_complex::sptr float_to_complex_; gr::blocks::float_to_complex::sptr float_to_complex_;
complex_byte_to_float_x2_sptr cbyte_to_float_x2_; complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
size_t item_size_; size_t item_size_;

View File

@ -52,7 +52,7 @@ pcps_acquisition_sptr pcps_make_acquisition(const Acq_Conf& conf_)
pcps_acquisition::pcps_acquisition(const Acq_Conf& conf_) : gr::block("pcps_acquisition", pcps_acquisition::pcps_acquisition(const Acq_Conf& conf_) : gr::block("pcps_acquisition",
gr::io_signature::make(1, 1, conf_.it_size * std::floor(conf_.sampled_ms * conf_.samples_per_ms) * (conf_.bit_transition_flag ? 2 : 1)), gr::io_signature::make(1, 1, conf_.it_size),
gr::io_signature::make(0, 0, conf_.it_size)) gr::io_signature::make(0, 0, conf_.it_size))
{ {
this->message_port_register_out(pmt::mp("events")); this->message_port_register_out(pmt::mp("events"));
@ -73,7 +73,7 @@ pcps_acquisition::pcps_acquisition(const Acq_Conf& conf_) : gr::block("pcps_acqu
{ {
d_fft_size = d_consumed_samples * 2; d_fft_size = d_consumed_samples * 2;
} }
//d_fft_size = next power of two? //// // d_fft_size = next power of two? ////
d_mag = 0; d_mag = 0;
d_input_power = 0.0; d_input_power = 0.0;
d_num_doppler_bins = 0; d_num_doppler_bins = 0;
@ -137,6 +137,7 @@ pcps_acquisition::pcps_acquisition(const Acq_Conf& conf_) : gr::block("pcps_acqu
d_dump_number = 0; d_dump_number = 0;
d_dump_channel = acq_parameters.dump_channel; d_dump_channel = acq_parameters.dump_channel;
d_samplesPerChip = acq_parameters.samples_per_chip; d_samplesPerChip = acq_parameters.samples_per_chip;
d_buffer_count = 0;
// todo: CFAR statistic not available for non-coherent integration // todo: CFAR statistic not available for non-coherent integration
if (acq_parameters.max_dwells == 1) if (acq_parameters.max_dwells == 1)
{ {
@ -347,8 +348,8 @@ void pcps_acquisition::set_state(int state)
void pcps_acquisition::send_positive_acquisition() void pcps_acquisition::send_positive_acquisition()
{ {
// 6.1- Declare positive acquisition using a message port // Declare positive acquisition using a message port
//0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL // 0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
DLOG(INFO) << "positive acquisition" DLOG(INFO) << "positive acquisition"
<< ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN << ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< ", sample_stamp " << d_sample_counter << ", sample_stamp " << d_sample_counter
@ -365,8 +366,8 @@ void pcps_acquisition::send_positive_acquisition()
void pcps_acquisition::send_negative_acquisition() void pcps_acquisition::send_negative_acquisition()
{ {
// 6.2- Declare negative acquisition using a message port // Declare negative acquisition using a message port
//0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL // 0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
DLOG(INFO) << "negative acquisition" DLOG(INFO) << "negative acquisition"
<< ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN << ", satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN
<< ", sample_stamp " << d_sample_counter << ", sample_stamp " << d_sample_counter
@ -564,7 +565,7 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
{ {
gr::thread::scoped_lock lk(d_setlock); gr::thread::scoped_lock lk(d_setlock);
// initialize acquisition algorithm // Initialize acquisition algorithm
int doppler = 0; int doppler = 0;
uint32_t indext = 0; uint32_t indext = 0;
int effective_fft_size = (acq_parameters.bit_transition_flag ? d_fft_size / 2 : d_fft_size); int effective_fft_size = (acq_parameters.bit_transition_flag ? d_fft_size / 2 : d_fft_size);
@ -658,7 +659,7 @@ void pcps_acquisition::acquisition_core(unsigned long int samp_count)
{ {
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs_step_two[doppler_index], d_fft_size); volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs_step_two[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search) // Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal // Compute the FFT of the carrier wiped--off incoming signal
d_fft_if->execute(); d_fft_if->execute();
@ -803,7 +804,7 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
{ {
if (!acq_parameters.blocking_on_standby) if (!acq_parameters.blocking_on_standby)
{ {
d_sample_counter += d_consumed_samples * ninput_items[0]; d_sample_counter += ninput_items[0];
consume_each(ninput_items[0]); consume_each(ninput_items[0]);
} }
if (d_step_two) if (d_step_two)
@ -820,7 +821,7 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
{ {
case 0: case 0:
{ {
//restart acquisition variables // Restart acquisition variables
d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0; d_gnss_synchro->Acq_samplestamp_samples = 0;
@ -828,25 +829,58 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
d_input_power = 0.0; d_input_power = 0.0;
d_test_statistics = 0.0; d_test_statistics = 0.0;
d_state = 1; d_state = 1;
d_buffer_count = 0;
if (!acq_parameters.blocking_on_standby) if (!acq_parameters.blocking_on_standby)
{ {
d_sample_counter += d_consumed_samples * ninput_items[0]; // sample counter d_sample_counter += ninput_items[0]; // sample counter
consume_each(ninput_items[0]); consume_each(ninput_items[0]);
} }
break; break;
} }
case 1: case 1:
{ {
// Copy the data to the core and let it know that new data is available unsigned int buff_increment;
if (d_cshort) if (d_cshort)
{ {
memcpy(d_data_buffer_sc, input_items[0], d_consumed_samples * sizeof(lv_16sc_t)); const lv_16sc_t* in = reinterpret_cast<const lv_16sc_t*>(input_items[0]); // Get the input samples pointer
if ((ninput_items[0] + d_buffer_count) <= d_consumed_samples)
{
buff_increment = ninput_items[0];
}
else
{
buff_increment = d_consumed_samples - d_buffer_count;
}
memcpy(&d_data_buffer_sc[d_buffer_count], in, sizeof(lv_16sc_t) * buff_increment);
} }
else else
{ {
memcpy(d_data_buffer, input_items[0], d_consumed_samples * sizeof(gr_complex)); const gr_complex* in = reinterpret_cast<const gr_complex*>(input_items[0]); // Get the input samples pointer
if ((ninput_items[0] + d_buffer_count) <= d_consumed_samples)
{
buff_increment = ninput_items[0];
}
else
{
buff_increment = d_consumed_samples - d_buffer_count;
}
memcpy(&d_data_buffer[d_buffer_count], in, sizeof(gr_complex) * buff_increment);
} }
// If buffer will be full in next iteration
if (d_buffer_count >= d_consumed_samples)
{
d_state = 2;
}
d_buffer_count += buff_increment;
d_sample_counter += buff_increment;
consume_each(buff_increment);
break;
}
case 2:
{
// Copy the data to the core and let it know that new data is available
if (acq_parameters.blocking) if (acq_parameters.blocking)
{ {
lk.unlock(); lk.unlock();
@ -857,8 +891,8 @@ int pcps_acquisition::general_work(int noutput_items __attribute__((unused)),
gr::thread::thread d_worker(&pcps_acquisition::acquisition_core, this, d_sample_counter); gr::thread::thread d_worker(&pcps_acquisition::acquisition_core, this, d_sample_counter);
d_worker_active = true; d_worker_active = true;
} }
d_sample_counter += d_consumed_samples; consume_each(0);
consume_each(1); d_buffer_count = 0;
break; break;
} }
} }

View File

@ -135,6 +135,7 @@ private:
arma::fmat grid_; arma::fmat grid_;
long int d_dump_number; long int d_dump_number;
unsigned int d_dump_channel; unsigned int d_dump_channel;
unsigned int d_buffer_count;
public: public:
~pcps_acquisition(); ~pcps_acquisition();

View File

@ -49,7 +49,8 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_generic(float* re
int code_length_chips = 2046; int code_length_chips = 2046;
float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points); float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
int num_out_vectors = 3; int num_out_vectors = 3;
float rem_code_phase_chips = -0.234; float rem_code_phase_chips = -0.8234;
float code_phase_rate_step_chips = 1.0 / powf(2.0, 33.0);
unsigned int n; unsigned int n;
float shifts_chips[3] = {-0.1, 0.0, 0.1}; float shifts_chips[3] = {-0.1, 0.0, 0.1};
@ -59,7 +60,7 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_generic(float* re
result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment()); result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
} }
volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points); volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points); memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
@ -73,63 +74,65 @@ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_generic(float* re
#endif /* LV_HAVE_GENERIC */ #endif /* LV_HAVE_GENERIC */
//#ifdef LV_HAVE_SSE3 #ifdef LV_HAVE_SSE3
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_a_sse3(float* result, const float* local_code, unsigned int num_points) static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_a_sse3(float* result, const float* local_code, unsigned int num_points)
//{ {
// int code_length_chips = 2046; int code_length_chips = 2046;
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points); float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// int num_out_vectors = 3; int num_out_vectors = 3;
// float rem_code_phase_chips = -0.234; float rem_code_phase_chips = -0.8234;
// unsigned int n; float code_phase_rate_step_chips = 1.0 / powf(2.0, 33.0);
// float shifts_chips[3] = {-0.1, 0.0, 0.1}; unsigned int n;
// float shifts_chips[3] = {-0.1, 0.0, 0.1};
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// for (n = 0; n < num_out_vectors; n++) float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// { for (n = 0; n < num_out_vectors; n++)
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment()); {
// } result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
// }
// volk_gnsssdr_32f_xn_resampler_32f_xn_a_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
// volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
// for (n = 0; n < num_out_vectors; n++)
// { for (n = 0; n < num_out_vectors; n++)
// volk_gnsssdr_free(result_aux[n]); {
// } volk_gnsssdr_free(result_aux[n]);
// volk_gnsssdr_free(result_aux); }
//} volk_gnsssdr_free(result_aux);
// }
//#endif
// #endif
//#ifdef LV_HAVE_SSE3
//static inline void volk_gnsssdr_32f_resamplerxnpuppet_32f_u_sse3(float* result, const float* local_code, unsigned int num_points) #ifdef LV_HAVE_SSE3
//{ static inline void volk_gnsssdr_32f_fast_resamplerxnpuppet_32f_u_sse3(float* result, const float* local_code, unsigned int num_points)
// int code_length_chips = 2046; {
// float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points); int code_length_chips = 2046;
// int num_out_vectors = 3; float code_phase_step_chips = ((float)(code_length_chips) + 0.1) / ((float)num_points);
// float rem_code_phase_chips = -0.234; int num_out_vectors = 3;
// unsigned int n; float rem_code_phase_chips = -0.8234;
// float shifts_chips[3] = {-0.1, 0.0, 0.1}; float code_phase_rate_step_chips = 1.0 / powf(2.0, 33.0);
// unsigned int n;
// float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment()); float shifts_chips[3] = {-0.1, 0.0, 0.1};
// for (n = 0; n < num_out_vectors; n++)
// { float** result_aux = (float**)volk_gnsssdr_malloc(sizeof(float*) * num_out_vectors, volk_gnsssdr_get_alignment());
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment()); for (n = 0; n < num_out_vectors; n++)
// } {
// result_aux[n] = (float*)volk_gnsssdr_malloc(sizeof(float) * num_points, volk_gnsssdr_get_alignment());
// volk_gnsssdr_32f_xn_resampler_32f_xn_u_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points); }
//
// memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points); volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse3(result_aux, local_code, rem_code_phase_chips, code_phase_step_chips, code_phase_rate_step_chips, shifts_chips, code_length_chips, num_out_vectors, num_points);
//
// for (n = 0; n < num_out_vectors; n++) memcpy((float*)result, (float*)result_aux[0], sizeof(float) * num_points);
// {
// volk_gnsssdr_free(result_aux[n]); for (n = 0; n < num_out_vectors; n++)
// } {
// volk_gnsssdr_free(result_aux); volk_gnsssdr_free(result_aux[n]);
//} }
// volk_gnsssdr_free(result_aux);
//#endif }
#endif
// //
// //
//#ifdef LV_HAVE_SSE4_1 //#ifdef LV_HAVE_SSE4_1

View File

@ -46,20 +46,21 @@
* *
* <b>Dispatcher Prototype</b> * <b>Dispatcher Prototype</b>
* \code * \code
* void volk_gnsssdr_32f_xn_fast_resampler_32f_xn(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) * void volk_gnsssdr_32f_xn_fast_resampler_32f_xn(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
* \endcode * \endcode
* *
* \b Inputs * \b Inputs
* \li local_code: Vector to be resampled. * \li local_code: Vector to be resampled.
* \li rem_code_phase_chips: Remnant code phase [chips]. * \li rem_code_phase_chips: Remnant code phase [chips].
* \li code_phase_step_chips: Phase increment per sample [chips/sample]. * \li code_phase_step_chips: Phase increment per sample [chips/sample].
* \li shifts_chips: Vector of floats that defines the spacing (in chips) between the replicas of \p local_code * \li code_phase_rate_step_chips: Phase rate increment per sample [chips/sample^2].
* \li code_length_chips: Code length in chips. * \li shifts_chips: Vector of floats that defines the spacing (in chips) between the replicas of \p local_code
* \li num_out_vectors Number of output vectors. * \li code_length_chips: Code length in chips.
* \li num_points: The number of data values to be in the resampled vector. * \li num_out_vectors Number of output vectors.
* \li num_points: The number of data values to be in the resampled vector.
* *
* \b Outputs * \b Outputs
* \li result: Pointer to a vector of pointers where the results will be stored. * \li result: Pointer to a vector of pointers where the results will be stored.
* *
*/ */
@ -77,7 +78,7 @@
#ifdef LV_HAVE_GENERIC #ifdef LV_HAVE_GENERIC
static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
{ {
int local_code_chip_index; int local_code_chip_index;
int current_correlator_tap; int current_correlator_tap;
@ -85,9 +86,9 @@ static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(float** res
//first correlator //first correlator
for (n = 0; n < num_points; n++) for (n = 0; n < num_points; n++)
{ {
// resample code for current tap // resample code for first tap
local_code_chip_index = (int)floor(code_phase_step_chips * (float)n + shifts_chips[0] - rem_code_phase_chips); local_code_chip_index = (int)floor(code_phase_step_chips * (float)n + code_phase_rate_step_chips * (float)(n * n) + shifts_chips[0] - rem_code_phase_chips);
//Take into account that in multitap correlators, the shifts can be negative! // Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index < 0) local_code_chip_index += (int)code_length_chips * (abs(local_code_chip_index) / code_length_chips + 1); if (local_code_chip_index < 0) local_code_chip_index += (int)code_length_chips * (abs(local_code_chip_index) / code_length_chips + 1);
local_code_chip_index = local_code_chip_index % code_length_chips; local_code_chip_index = local_code_chip_index % code_length_chips;
result[0][n] = local_code[local_code_chip_index]; result[0][n] = local_code[local_code_chip_index];
@ -106,145 +107,175 @@ static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_generic(float** res
#endif /*LV_HAVE_GENERIC*/ #endif /*LV_HAVE_GENERIC*/
//#ifdef LV_HAVE_SSE3 #ifdef LV_HAVE_SSE3
//#include <pmmintrin.h> #include <pmmintrin.h>
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_a_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
//{ {
// float** _result = result; float** _result = result;
// const unsigned int quarterPoints = num_points / 4; const unsigned int quarterPoints = num_points / 4;
// int current_correlator_tap; // int current_correlator_tap;
// unsigned int n; unsigned int n;
// unsigned int k; unsigned int k;
// const __m128 ones = _mm_set1_ps(1.0f); unsigned int current_correlator_tap;
// const __m128 fours = _mm_set1_ps(4.0f); const __m128 ones = _mm_set1_ps(1.0f);
// const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips); const __m128 fours = _mm_set1_ps(4.0f);
// const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips); const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
// const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
// __VOLK_ATTR_ALIGNED(16) const __m128 code_phase_rate_step_chips_reg = _mm_set_ps1(code_phase_rate_step_chips);
// int local_code_chip_index[4];
// int local_code_chip_index_; __VOLK_ATTR_ALIGNED(16)
// int local_code_chip_index[4];
// const __m128i zeros = _mm_setzero_si128(); int local_code_chip_index_;
// const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips); const __m128i zeros = _mm_setzero_si128();
// const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips); const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
// __m128i local_code_chip_index_reg, aux_i, negatives, i; const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
// __m128 aux, aux2, shifts_chips_reg, fi, igx, j, c, cTrunc, base; __m128i local_code_chip_index_reg, aux_i, negatives;
// __m128 aux, aux2, aux3, indexnn, shifts_chips_reg, i, fi, igx, j, c, cTrunc, base;
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
// {
// shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]); shifts_chips_reg = _mm_set_ps1((float)shifts_chips[0]);
// aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg); aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
// __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
// for (n = 0; n < quarterPoints; n++) for (n = 0; n < quarterPoints; n++)
// { {
// aux = _mm_mul_ps(code_phase_step_chips_reg, indexn); aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
// aux = _mm_add_ps(aux, aux2); indexnn = _mm_mul_ps(indexn, indexn);
// // floor aux3 = _mm_mul_ps(code_phase_rate_step_chips_reg, indexnn);
// i = _mm_cvttps_epi32(aux); aux = _mm_add_ps(aux, aux3);
// fi = _mm_cvtepi32_ps(i); aux = _mm_add_ps(aux, aux2);
// igx = _mm_cmpgt_ps(fi, aux); // floor
// j = _mm_and_ps(igx, ones); i = _mm_cvttps_epi32(aux);
// aux = _mm_sub_ps(fi, j); fi = _mm_cvtepi32_ps(i);
// // fmod igx = _mm_cmpgt_ps(fi, aux);
// c = _mm_div_ps(aux, code_length_chips_reg_f); j = _mm_and_ps(igx, ones);
// i = _mm_cvttps_epi32(c); aux = _mm_sub_ps(fi, j);
// cTrunc = _mm_cvtepi32_ps(i);
// base = _mm_mul_ps(cTrunc, code_length_chips_reg_f); // Correct negative shift
// local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base)); c = _mm_div_ps(aux, code_length_chips_reg_f);
// aux3 = _mm_add_ps(c, ones);
// negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros); i = _mm_cvttps_epi32(aux3);
// aux_i = _mm_and_si128(code_length_chips_reg_i, negatives); cTrunc = _mm_cvtepi32_ps(i);
// local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i); base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
// _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg); local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
// for (k = 0; k < 4; ++k) negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
// { aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
// _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]]; local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
// }
// indexn = _mm_add_ps(indexn, fours); _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
// }
// for (n = quarterPoints * 4; n < num_points; n++) for (k = 0; k < 4; ++k)
// { {
// // resample code for current tap _result[0][n * 4 + k] = local_code[local_code_chip_index[k]];
// local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); }
// //Take into account that in multitap correlators, the shifts can be negative! indexn = _mm_add_ps(indexn, fours);
// if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); }
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; for (n = quarterPoints * 4; n < num_points; n++)
// } {
// } // resample code for first tap
//} local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + code_phase_rate_step_chips * (float)(n * n) + shifts_chips[0] - rem_code_phase_chips);
// // Take into account that in multitap correlators, the shifts can be negative!
//#endif if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
// _result[0][n] = local_code[local_code_chip_index_];
//#ifdef LV_HAVE_SSE3 }
//#include <pmmintrin.h>
//static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points) // adjacent correlators
//{ unsigned int shift_samples = 0;
// float** _result = result; for (current_correlator_tap = 1; current_correlator_tap < num_out_vectors; current_correlator_tap++)
// const unsigned int quarterPoints = num_points / 4; {
// int current_correlator_tap; shift_samples += (int)round((shifts_chips[current_correlator_tap] - shifts_chips[current_correlator_tap - 1]) / code_phase_step_chips);
// unsigned int n; memcpy(&_result[current_correlator_tap][0], &_result[0][shift_samples], (num_points - shift_samples) * sizeof(float));
// unsigned int k; memcpy(&_result[current_correlator_tap][num_points - shift_samples], &_result[0][0], shift_samples * sizeof(float));
// const __m128 ones = _mm_set1_ps(1.0f); }
// const __m128 fours = _mm_set1_ps(4.0f); }
// const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips); #endif
// const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
//
// __VOLK_ATTR_ALIGNED(16) #ifdef LV_HAVE_SSE3
// int local_code_chip_index[4]; #include <pmmintrin.h>
// int local_code_chip_index_; static inline void volk_gnsssdr_32f_xn_fast_resampler_32f_xn_u_sse3(float** result, const float* local_code, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips, float* shifts_chips, unsigned int code_length_chips, int num_out_vectors, unsigned int num_points)
// {
// const __m128i zeros = _mm_setzero_si128(); float** _result = result;
// const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips); const unsigned int quarterPoints = num_points / 4;
// const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips); // int current_correlator_tap;
// __m128i local_code_chip_index_reg, aux_i, negatives, i; unsigned int n;
// __m128 aux, aux2, shifts_chips_reg, fi, igx, j, c, cTrunc, base; unsigned int k;
// unsigned int current_correlator_tap;
// for (current_correlator_tap = 0; current_correlator_tap < num_out_vectors; current_correlator_tap++) const __m128 ones = _mm_set1_ps(1.0f);
// { const __m128 fours = _mm_set1_ps(4.0f);
// shifts_chips_reg = _mm_set_ps1((float)shifts_chips[current_correlator_tap]); const __m128 rem_code_phase_chips_reg = _mm_set_ps1(rem_code_phase_chips);
// aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg); const __m128 code_phase_step_chips_reg = _mm_set_ps1(code_phase_step_chips);
// __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f); const __m128 code_phase_rate_step_chips_reg = _mm_set_ps1(code_phase_rate_step_chips);
// for (n = 0; n < quarterPoints; n++)
// { __VOLK_ATTR_ALIGNED(16)
// aux = _mm_mul_ps(code_phase_step_chips_reg, indexn); int local_code_chip_index[4];
// aux = _mm_add_ps(aux, aux2); int local_code_chip_index_;
// // floor const __m128i zeros = _mm_setzero_si128();
// i = _mm_cvttps_epi32(aux); const __m128 code_length_chips_reg_f = _mm_set_ps1((float)code_length_chips);
// fi = _mm_cvtepi32_ps(i); const __m128i code_length_chips_reg_i = _mm_set1_epi32((int)code_length_chips);
// igx = _mm_cmpgt_ps(fi, aux); __m128i local_code_chip_index_reg, aux_i, negatives;
// j = _mm_and_ps(igx, ones); __m128 aux, aux2, aux3, indexnn, shifts_chips_reg, i, fi, igx, j, c, cTrunc, base;
// aux = _mm_sub_ps(fi, j); __m128 indexn = _mm_set_ps(3.0f, 2.0f, 1.0f, 0.0f);
// // fmod
// c = _mm_div_ps(aux, code_length_chips_reg_f); shifts_chips_reg = _mm_set_ps1((float)shifts_chips[0]);
// i = _mm_cvttps_epi32(c); aux2 = _mm_sub_ps(shifts_chips_reg, rem_code_phase_chips_reg);
// cTrunc = _mm_cvtepi32_ps(i);
// base = _mm_mul_ps(cTrunc, code_length_chips_reg_f); for (n = 0; n < quarterPoints; n++)
// local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base)); {
// aux = _mm_mul_ps(code_phase_step_chips_reg, indexn);
// negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros); indexnn = _mm_mul_ps(indexn, indexn);
// aux_i = _mm_and_si128(code_length_chips_reg_i, negatives); aux3 = _mm_mul_ps(code_phase_rate_step_chips_reg, indexnn);
// local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i); aux = _mm_add_ps(aux, aux3);
// _mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg); aux = _mm_add_ps(aux, aux2);
// for (k = 0; k < 4; ++k) // floor
// { i = _mm_cvttps_epi32(aux);
// _result[current_correlator_tap][n * 4 + k] = local_code[local_code_chip_index[k]]; fi = _mm_cvtepi32_ps(i);
// } igx = _mm_cmpgt_ps(fi, aux);
// indexn = _mm_add_ps(indexn, fours); j = _mm_and_ps(igx, ones);
// } aux = _mm_sub_ps(fi, j);
// for (n = quarterPoints * 4; n < num_points; n++)
// { // Correct negative shift
// // resample code for current tap c = _mm_div_ps(aux, code_length_chips_reg_f);
// local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + shifts_chips[current_correlator_tap] - rem_code_phase_chips); aux3 = _mm_add_ps(c, ones);
// //Take into account that in multitap correlators, the shifts can be negative! i = _mm_cvttps_epi32(aux3);
// if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1); cTrunc = _mm_cvtepi32_ps(i);
// local_code_chip_index_ = local_code_chip_index_ % code_length_chips; base = _mm_mul_ps(cTrunc, code_length_chips_reg_f);
// _result[current_correlator_tap][n] = local_code[local_code_chip_index_]; local_code_chip_index_reg = _mm_cvtps_epi32(_mm_sub_ps(aux, base));
// } negatives = _mm_cmplt_epi32(local_code_chip_index_reg, zeros);
// } aux_i = _mm_and_si128(code_length_chips_reg_i, negatives);
//} local_code_chip_index_reg = _mm_add_epi32(local_code_chip_index_reg, aux_i);
//#endif
_mm_store_si128((__m128i*)local_code_chip_index, local_code_chip_index_reg);
for (k = 0; k < 4; ++k)
{
_result[0][n * 4 + k] = local_code[local_code_chip_index[k]];
}
indexn = _mm_add_ps(indexn, fours);
}
for (n = quarterPoints * 4; n < num_points; n++)
{
// resample code for first tap
local_code_chip_index_ = (int)floor(code_phase_step_chips * (float)n + code_phase_rate_step_chips * (float)(n * n) + shifts_chips[0] - rem_code_phase_chips);
// Take into account that in multitap correlators, the shifts can be negative!
if (local_code_chip_index_ < 0) local_code_chip_index_ += (int)code_length_chips * (abs(local_code_chip_index_) / code_length_chips + 1);
local_code_chip_index_ = local_code_chip_index_ % code_length_chips;
_result[0][n] = local_code[local_code_chip_index_];
}
// adjacent correlators
unsigned int shift_samples = 0;
for (current_correlator_tap = 1; current_correlator_tap < num_out_vectors; current_correlator_tap++)
{
shift_samples += (int)round((shifts_chips[current_correlator_tap] - shifts_chips[current_correlator_tap - 1]) / code_phase_step_chips);
memcpy(&_result[current_correlator_tap][0], &_result[0][shift_samples], (num_points - shift_samples) * sizeof(float));
memcpy(&_result[current_correlator_tap][num_points - shift_samples], &_result[0][0], shift_samples * sizeof(float));
}
}
#endif
// //
// //
//#ifdef LV_HAVE_SSE4_1 //#ifdef LV_HAVE_SSE4_1

View File

@ -98,7 +98,7 @@ bool cpu_multicorrelator_real_codes::set_input_output_vectors(std::complex<float
} }
void cpu_multicorrelator_real_codes::update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips) void cpu_multicorrelator_real_codes::update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips)
{ {
if (d_use_fast_resampler) if (d_use_fast_resampler)
{ {
@ -106,6 +106,7 @@ void cpu_multicorrelator_real_codes::update_local_code(int correlator_length_sam
d_local_code_in, d_local_code_in,
rem_code_phase_chips, rem_code_phase_chips,
code_phase_step_chips, code_phase_step_chips,
code_phase_rate_step_chips,
d_shifts_chips, d_shifts_chips,
d_code_length_chips, d_code_length_chips,
d_n_correlators, d_n_correlators,

View File

@ -51,7 +51,7 @@ public:
bool init(int max_signal_length_samples, int n_correlators); bool init(int max_signal_length_samples, int n_correlators);
bool set_local_code_and_taps(int code_length_chips, const float *local_code_in, float *shifts_chips); bool set_local_code_and_taps(int code_length_chips, const float *local_code_in, float *shifts_chips);
bool set_input_output_vectors(std::complex<float> *corr_out, const std::complex<float> *sig_in); bool set_input_output_vectors(std::complex<float> *corr_out, const std::complex<float> *sig_in);
void update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips); void update_local_code(int correlator_length_samples, float rem_code_phase_chips, float code_phase_step_chips, float code_phase_rate_step_chips = 0.0);
bool Carrier_wipeoff_multicorrelator_resampler(float rem_carrier_phase_in_rad, float phase_step_rad, float rem_code_phase_chips, float code_phase_step_chips, int signal_length_samples); bool Carrier_wipeoff_multicorrelator_resampler(float rem_carrier_phase_in_rad, float phase_step_rad, float rem_code_phase_chips, float code_phase_step_chips, int signal_length_samples);
bool free(); bool free();