1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-05-18 15:24:09 +00:00

Front-end calibration utility is now fully operative for the following front-ends:

- RTLS-SDR + Elonics E4000

Some bug correction in PCPS acquisition

git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@398 64b25241-fba3-4117-9849-534c7e92360d
This commit is contained in:
Javier Arribas 2013-07-30 10:53:45 +00:00
parent 8b10549fee
commit 9bfd2bb32a
8 changed files with 207 additions and 204 deletions

View File

@ -6,27 +6,29 @@
[GNSS-SDR] [GNSS-SDR]
;######### INITIAL RECEIVER POSITIION ###### ;######### INITIAL RECEIVER POSITIION ######
; san francisco scenario
GNSS-SDR.init_latitude_deg=40.74846557442795 GNSS-SDR.init_latitude_deg=40.74846557442795
GNSS-SDR.init_longitude_deg=-73.98593961814200 GNSS-SDR.init_longitude_deg=-73.98593961814200
GNSS-SDR.init_altitude_m=329.11968943169342 GNSS-SDR.init_altitude_m=329.11968943169342
; Barcelona
;GNSS-SDR.init_latitude_deg=41.27481478485936 ;GNSS-SDR.init_latitude_deg=41.27481478485936
;GNSS-SDR.init_longitude_deg=1.98753271588628 ;GNSS-SDR.init_longitude_deg=1.98753271588628
;GNSS-SDR.init_altitude_m=25 ;GNSS-SDR.init_altitude_m=25
;######### GLOBAL OPTIONS ################## ;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz]. ;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_hz=2000020 GNSS-SDR.internal_fs_hz=2000000
;######### CONTROL_THREAD CONFIG ############ ;######### CONTROL_THREAD CONFIG ############
ControlThread.wait_for_flowgraph=false ControlThread.wait_for_flowgraph=false
;######### SUPL RRLP GPS assistance configuration ##### ;######### SUPL RRLP GPS assistance configuration #####
GNSS-SDR.SUPL_gps_enabled=true GNSS-SDR.SUPL_gps_enabled=true
GNSS-SDR.SUPL_read_gps_assistance_xml=true GNSS-SDR.SUPL_read_gps_assistance_xml=false
GNSS-SDR.SUPL_gps_ephemeris_server=supl.nokia.com GNSS-SDR.SUPL_gps_ephemeris_server=supl.nokia.com
GNSS-SDR.SUPL_gps_ephemeris_port=7275 GNSS-SDR.SUPL_gps_ephemeris_port=7275
GNSS-SDR.SUPL_gps_acquisition_server=supl.google.com GNSS-SDR.SUPL_gps_acquisition_server=supl.nokia.com
GNSS-SDR.SUPL_gps_acquisition_port=7275 GNSS-SDR.SUPL_gps_acquisition_port=7275
GNSS-SDR.SUPL_MCC=217 GNSS-SDR.SUPL_MCC=217
GNSS-SDR.SUPL_MNS=7 GNSS-SDR.SUPL_MNS=7
@ -40,13 +42,15 @@ SignalSource.implementation=File_Signal_Source
SignalSource.AGC_enabled=false SignalSource.AGC_enabled=false
;#filename: path to file with the captured GNSS signal samples to be processed ;#filename: path to file with the captured GNSS signal samples to be processed
SignalSource.filename=/media/DATALOGGER_/signals/RTL-SDR/cap_-90dBm_IF15_RF40_usb_peq.dat ;SignalSource.filename=/media/DATALOGGER_/signals/RTL-SDR/cap_-90dBm_IF15_RF40_EzCap.dat
;SignalSource.filename=/media/DATALOGGER_/signals/Agilent GPS Generator/New York/2msps.dat
SignalSource.filename=/media/DATALOGGER_/signals/RTL-SDR/cap_ventana_CTTC_amplif_IF15_RF40usb_peq.dat
;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version.
SignalSource.item_type=gr_complex SignalSource.item_type=gr_complex
;#sampling_frequency: Original Signal sampling frequency in [Hz] ;#sampling_frequency: Original Signal sampling frequency in [Hz]
SignalSource.sampling_frequency=2000020 SignalSource.sampling_frequency=2000000
;#freq: RF front-end center frequency in [Hz] ;#freq: RF front-end center frequency in [Hz]
SignalSource.freq=1575420000 SignalSource.freq=1575420000
@ -54,7 +58,7 @@ SignalSource.freq=1575420000
;#gain: Front-end Gain in [dB] ;#gain: Front-end Gain in [dB]
SignalSource.gain=40 SignalSource.gain=40
SignalSource.rf_gain=40 SignalSource.rf_gain=40
SignalSource.if_gain=5 SignalSource.if_gain=30
;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0) ;#subdevice: UHD subdevice specification (for USRP1 use A:0 or B:0)
SignalSource.subdevice=B:0 SignalSource.subdevice=B:0
@ -76,7 +80,7 @@ SignalSource.dump_filename=../data/signal_source.dat
;#implementation: Use [Pass_Through] or [Signal_Conditioner] ;#implementation: Use [Pass_Through] or [Signal_Conditioner]
;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks ;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks
;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks ;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks
SignalConditioner.implementation=Signal_Conditioner SignalConditioner.implementation=Pass_Through
;######### DATA_TYPE_ADAPTER CONFIG ############ ;######### DATA_TYPE_ADAPTER CONFIG ############
;## Changes the type of input data. Please disable it in this version. ;## Changes the type of input data. Please disable it in this version.
@ -155,8 +159,8 @@ InputFilter.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation. ;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz ;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz
InputFilter.sampling_frequency=2000020 InputFilter.sampling_frequency=2000000
InputFilter.IF=-16242 InputFilter.IF=0
InputFilter.decimation_factor=1 InputFilter.decimation_factor=1
@ -178,16 +182,14 @@ Acquisition.item_type=gr_complex
Acquisition.if=0 Acquisition.if=0
;#sampled_ms: Signal block duration for the acquisition signal detection [ms] ;#sampled_ms: Signal block duration for the acquisition signal detection [ms]
Acquisition.sampled_ms=1 Acquisition.sampled_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition.implementation=GPS_L1_CA_PCPS_Acquisition
;#threshold: Acquisition threshold ;#threshold: Acquisition threshold
Acquisition.threshold=60 Acquisition.threshold=0.009
;#doppler_max: Maximum expected Doppler shift [Hz] ;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition.doppler_max=100000 Acquisition.doppler_max=100000
;#doppler_max: Maximum expected Doppler shift [Hz] ;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition.doppler_min=-100000 Acquisition.doppler_min=-100000
;#doppler_step Doppler step in the grid search [Hz] ;#doppler_step Doppler step in the grid search [Hz]
Acquisition.doppler_step=250 Acquisition.doppler_step=500
;#maximum dwells ;#maximum dwells
Acquisition.max_dwells=2 Acquisition.max_dwells=20

View File

@ -80,7 +80,7 @@ pcps_acquisition_cc::pcps_acquisition_cc(
//todo: do something if posix_memalign fails //todo: do something if posix_memalign fails
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){}; if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(gr_complex)) == 0){}; if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
// Direct FFT // Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true); d_fft_if = new gr::fft::fft_complex(d_fft_size, true);

View File

@ -1,5 +1,5 @@
/*! /*!
* \file pcps_assisted_acquisition_cc.cc * \file pcps_acquisition_fine_doppler_acquisition_cc.cc
* \brief This class implements a Parallel Code Phase Search Acquisition with multi-dwells and fine Doppler estimation * \brief This class implements a Parallel Code Phase Search Acquisition with multi-dwells and fine Doppler estimation
* \authors <ul> * \authors <ul>
* <li> Javier Arribas, 2013. jarribas(at)cttc.es * <li> Javier Arribas, 2013. jarribas(at)cttc.es
@ -34,7 +34,6 @@
#include "gnss_signal_processing.h" #include "gnss_signal_processing.h"
#include "gps_sdr_signal_processing.h" #include "gps_sdr_signal_processing.h"
#include "control_message_factory.h" #include "control_message_factory.h"
#include "gps_acq_assist.h"
#include <gnuradio/io_signature.h> #include <gnuradio/io_signature.h>
#include <sstream> #include <sstream>
#include <glog/log_severity.h> #include <glog/log_severity.h>
@ -44,7 +43,6 @@
#include "concurrent_map.h" #include "concurrent_map.h"
#include <algorithm> // std::rotate #include <algorithm> // std::rotate
extern concurrent_map<Gps_Acq_Assist> global_gps_acq_assist_map;
using google::LogMessage; using google::LogMessage;
@ -84,10 +82,10 @@ pcps_acquisition_fine_doppler_cc::pcps_acquisition_fine_doppler_cc(
d_gnuradio_forecast_samples=d_fft_size; d_gnuradio_forecast_samples=d_fft_size;
d_input_power = 0.0; d_input_power = 0.0;
d_state=0; d_state=0;
d_disable_assist=false;
//todo: do something if posix_memalign fails //todo: do something if posix_memalign fails
if (posix_memalign((void**)&d_carrier, 16, d_fft_size * sizeof(gr_complex)) == 0){}; if (posix_memalign((void**)&d_carrier, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){}; if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
// Direct FFT // Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true); d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
@ -103,6 +101,19 @@ pcps_acquisition_fine_doppler_cc::pcps_acquisition_fine_doppler_cc(
void pcps_acquisition_fine_doppler_cc::set_doppler_step(unsigned int doppler_step) void pcps_acquisition_fine_doppler_cc::set_doppler_step(unsigned int doppler_step)
{ {
d_doppler_step = doppler_step; d_doppler_step = doppler_step;
// Create the search grid array
d_num_doppler_points=floor(std::abs(d_config_doppler_max-d_config_doppler_min)/d_doppler_step);
d_grid_data=new float*[d_num_doppler_points];
for (int i=0;i<d_num_doppler_points;i++)
{
if (posix_memalign((void**)&d_grid_data[i], 16, d_fft_size * sizeof(float)) == 0){};
}
update_carrier_wipeoff();
} }
void pcps_acquisition_fine_doppler_cc::free_grid_memory() void pcps_acquisition_fine_doppler_cc::free_grid_memory()
@ -113,6 +124,7 @@ void pcps_acquisition_fine_doppler_cc::free_grid_memory()
delete[] d_grid_doppler_wipeoffs[i]; delete[] d_grid_doppler_wipeoffs[i];
} }
delete d_grid_data; delete d_grid_data;
delete d_grid_doppler_wipeoffs;
} }
pcps_acquisition_fine_doppler_cc::~pcps_acquisition_fine_doppler_cc() pcps_acquisition_fine_doppler_cc::~pcps_acquisition_fine_doppler_cc()
{ {
@ -124,34 +136,31 @@ pcps_acquisition_fine_doppler_cc::~pcps_acquisition_fine_doppler_cc()
{ {
d_dump_file.close(); d_dump_file.close();
} }
free_grid_memory();
} }
void pcps_acquisition_fine_doppler_cc::set_local_code(std::complex<float> * code) void pcps_acquisition_fine_doppler_cc::set_local_code(std::complex<float> * code)
{ {
memcpy(d_fft_if->get_inbuf(),code,sizeof(gr_complex)*d_fft_size); memcpy(d_fft_if->get_inbuf(),code,sizeof(gr_complex)*d_fft_size);
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
volk_32fc_conjugate_32fc_a(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
} }
void pcps_acquisition_fine_doppler_cc::init() void pcps_acquisition_fine_doppler_cc::init()
{ {
d_gnss_synchro->Acq_delay_samples = 0.0; d_gnss_synchro->Acq_delay_samples = 0.0;
d_gnss_synchro->Acq_doppler_hz = 0.0; d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0; d_gnss_synchro->Acq_samplestamp_samples = 0;
d_input_power = 0.0; d_input_power = 0.0;
d_state=0; d_state=0;
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
volk_32fc_conjugate_32fc_a(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
} }
void pcps_acquisition_fine_doppler_cc::forecast (int noutput_items, void pcps_acquisition_fine_doppler_cc::forecast (int noutput_items,
gr_vector_int &ninput_items_required) gr_vector_int &ninput_items_required)
{ {
@ -159,28 +168,6 @@ void pcps_acquisition_fine_doppler_cc::forecast (int noutput_items,
} }
void pcps_acquisition_fine_doppler_cc::get_assistance()
{
Gps_Acq_Assist gps_acq_assisistance;
if (global_gps_acq_assist_map.read(this->d_gnss_synchro->PRN,gps_acq_assisistance)==true)
{
//TODO: use the LO tolerance here
if (gps_acq_assisistance.dopplerUncertainty>=1000)
{
d_doppler_max=gps_acq_assisistance.d_Doppler0+gps_acq_assisistance.dopplerUncertainty*2;
d_doppler_min=gps_acq_assisistance.d_Doppler0-gps_acq_assisistance.dopplerUncertainty*2;
}else{
d_doppler_max=gps_acq_assisistance.d_Doppler0+1000;
d_doppler_min=gps_acq_assisistance.d_Doppler0-1000;
}
this->d_disable_assist=false;
std::cout<<"Acq assist ENABLED for GPS SV "<<this->d_gnss_synchro->PRN<<" (Doppler max,Doppler min)=("
<<d_doppler_max<<","<<d_doppler_min<<")"<<std::endl;
}else{
this->d_disable_assist=true;
//std::cout<<"Acq assist DISABLED for GPS SV "<<this->d_gnss_synchro->PRN<<std::endl;
}
}
void pcps_acquisition_fine_doppler_cc::reset_grid() void pcps_acquisition_fine_doppler_cc::reset_grid()
{ {
d_well_count=0; d_well_count=0;
@ -192,23 +179,8 @@ void pcps_acquisition_fine_doppler_cc::reset_grid()
} }
} }
} }
void pcps_acquisition_fine_doppler_cc::redefine_grid() void pcps_acquisition_fine_doppler_cc::update_carrier_wipeoff()
{ {
if (this->d_disable_assist==true)
{
d_doppler_max=d_config_doppler_max;
d_doppler_min=d_config_doppler_min;
}
// Create the search grid array
d_num_doppler_points=floor(std::abs(d_doppler_max-d_doppler_min)/d_doppler_step);
d_grid_data=new float*[d_num_doppler_points];
for (int i=0;i<d_num_doppler_points;i++)
{
if (posix_memalign((void**)&d_grid_data[i], 16, d_fft_size * sizeof(float)) == 0){};
}
// create the carrier Doppler wipeoff signals // create the carrier Doppler wipeoff signals
int doppler_hz; int doppler_hz;
float phase_step_rad; float phase_step_rad;
@ -216,7 +188,7 @@ void pcps_acquisition_fine_doppler_cc::redefine_grid()
for (int doppler_index=0;doppler_index<d_num_doppler_points;doppler_index++) for (int doppler_index=0;doppler_index<d_num_doppler_points;doppler_index++)
{ {
doppler_hz=d_doppler_min+d_doppler_step*doppler_index; doppler_hz=d_config_doppler_min+d_doppler_step*doppler_index;
// doppler search steps // doppler search steps
// compute the carrier doppler wipe-off signal and store it // compute the carrier doppler wipe-off signal and store it
phase_step_rad = (float)GPS_TWO_PI*doppler_hz / (float)d_fs_in; phase_step_rad = (float)GPS_TWO_PI*doppler_hz / (float)d_fs_in;
@ -239,22 +211,23 @@ double pcps_acquisition_fine_doppler_cc::search_maximum()
volk_32f_index_max_16u_a(&tmp_intex_t,d_grid_data[i],d_fft_size); volk_32f_index_max_16u_a(&tmp_intex_t,d_grid_data[i],d_fft_size);
if (d_grid_data[i][tmp_intex_t] > magt) if (d_grid_data[i][tmp_intex_t] > magt)
{ {
magt = d_grid_data[i][index_time]; magt = d_grid_data[i][tmp_intex_t];
//std::cout<<magt<<std::endl;
index_doppler = i; index_doppler = i;
index_time = tmp_intex_t; index_time = tmp_intex_t;
} }
} }
// Normalize the maximum value to correct the scale factor introduced by FFTW // Normalize the maximum value to correct the scale factor introduced by FFTW
fft_normalization_factor = (float)d_fft_size * (float)d_fft_size; fft_normalization_factor = (float)d_fft_size * (float)d_fft_size;;
magt = magt / (fft_normalization_factor * fft_normalization_factor); magt = magt / (fft_normalization_factor * fft_normalization_factor);
// 5- Compute the test statistics and compare to the threshold // 5- Compute the test statistics and compare to the threshold
d_test_statistics = 2 * d_fft_size * magt /(d_input_power*d_well_count); d_test_statistics = magt/(d_input_power*std::sqrt(d_well_count));
// 4- record the maximum peak and the associated synchronization parameters // 4- record the maximum peak and the associated synchronization parameters
d_gnss_synchro->Acq_delay_samples = (double)index_time; d_gnss_synchro->Acq_delay_samples = (double)index_time;
d_gnss_synchro->Acq_doppler_hz = (double)(index_doppler*d_doppler_step+d_doppler_min); d_gnss_synchro->Acq_doppler_hz = (double)(index_doppler*d_doppler_step+d_config_doppler_min);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter; d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
// Record results to file if required // Record results to file if required
@ -278,16 +251,22 @@ double pcps_acquisition_fine_doppler_cc::search_maximum()
float pcps_acquisition_fine_doppler_cc::estimate_input_power(gr_vector_const_void_star &input_items) float pcps_acquisition_fine_doppler_cc::estimate_input_power(gr_vector_const_void_star &input_items)
{ {
const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer
// 1- Compute the input signal power estimation // 1- Compute the input signal power estimation
float* p_tmp_vector;
if (posix_memalign((void**)&p_tmp_vector, 16, d_fft_size * sizeof(float)) == 0){};
volk_32fc_magnitude_squared_32f_u(p_tmp_vector, in, d_fft_size);
const float* p_const_tmp_vector=p_tmp_vector;
float power; float power;
volk_32f_accumulator_s32f_a(&power, p_const_tmp_vector, d_fft_size); power=0;
free(p_tmp_vector); if (is_unaligned())
return ( power / (float)d_fft_size); {
volk_32fc_magnitude_squared_32f_u(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f_a(&power, d_magnitude, d_fft_size);
}
else
{
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f_a(&power, d_magnitude, d_fft_size);
}
power /= (float)d_fft_size;
return power;
} }
int pcps_acquisition_fine_doppler_cc::compute_and_accumulate_grid(gr_vector_const_void_star &input_items) int pcps_acquisition_fine_doppler_cc::compute_and_accumulate_grid(gr_vector_const_void_star &input_items)
@ -298,9 +277,11 @@ int pcps_acquisition_fine_doppler_cc::compute_and_accumulate_grid(gr_vector_cons
DLOG(INFO) << "Channel: " << d_channel DLOG(INFO) << "Channel: " << d_channel
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN << " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
<< " ,sample stamp: " << d_sample_counter << ", threshold: " << " ,sample stamp: " << d_sample_counter << ", threshold: "
<< d_threshold << ", doppler_max: " << d_doppler_max << d_threshold << ", doppler_max: " << d_config_doppler_max
<< ", doppler_step: " << d_doppler_step; << ", doppler_step: " << d_doppler_step;
// 2- Doppler frequency search loop // 2- Doppler frequency search loop
float* p_tmp_vector; float* p_tmp_vector;
if (posix_memalign((void**)&p_tmp_vector, 16, d_fft_size * sizeof(float)) == 0){}; if (posix_memalign((void**)&p_tmp_vector, 16, d_fft_size * sizeof(float)) == 0){};
@ -309,7 +290,7 @@ int pcps_acquisition_fine_doppler_cc::compute_and_accumulate_grid(gr_vector_cons
{ {
// doppler search steps // doppler search steps
// Perform the carrier wipe-off // Perform the carrier wipe-off
volk_32fc_x2_multiply_32fc_u(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size); volk_32fc_x2_multiply_32fc_u(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search) // 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal // Compute the FFT of the carrier wiped--off incoming signal
d_fft_if->execute(); d_fft_if->execute();
@ -322,35 +303,23 @@ int pcps_acquisition_fine_doppler_cc::compute_and_accumulate_grid(gr_vector_cons
d_ifft->execute(); d_ifft->execute();
// save the grid matrix delay file // save the grid matrix delay file
volk_32fc_magnitude_squared_32f_a(p_tmp_vector, d_ifft->get_outbuf(), d_fft_size); volk_32fc_magnitude_squared_32f_a(p_tmp_vector, d_ifft->get_outbuf(), d_fft_size);
const float* old_vector=d_grid_data[doppler_index]; const float* old_vector=d_grid_data[doppler_index];
volk_32f_x2_add_32f_u(d_grid_data[doppler_index],old_vector,p_tmp_vector,d_fft_size); volk_32f_x2_add_32f_u(d_grid_data[doppler_index],old_vector,p_tmp_vector,d_fft_size);
} }
free(p_tmp_vector); free(p_tmp_vector);
return d_fft_size; return d_fft_size;
} }
inline int pow2roundup (int x)
{
if (x < 0)
return 0;
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return x+1;
}
int pcps_acquisition_fine_doppler_cc::estimate_Doppler(gr_vector_const_void_star &input_items, int available_samples) int pcps_acquisition_fine_doppler_cc::estimate_Doppler(gr_vector_const_void_star &input_items, int available_samples)
{ {
// Direct FFT // Direct FFT
int zero_padding_factor=8; int zero_padding_factor=8;
int fft_size_extended=d_fft_size*zero_padding_factor; int fft_size_extended=d_fft_size*zero_padding_factor;
gr::fft::fft_complex *fft_operator=new gr::fft::fft_complex(fft_size_extended,true); gr::fft::fft_complex *fft_operator=new gr::fft::fft_complex(fft_size_extended,true);
//zero padding the entire vector //zero padding the entire vector
memset(fft_operator->get_inbuf(),0,fft_size_extended*sizeof(gr_complex)); memset(fft_operator->get_inbuf(),0,fft_size_extended*sizeof(gr_complex));
@ -361,9 +330,13 @@ int pcps_acquisition_fine_doppler_cc::estimate_Doppler(gr_vector_const_void_star
gps_l1_ca_code_gen_complex_sampled(code_replica, d_gnss_synchro->PRN, d_fs_in, 0); gps_l1_ca_code_gen_complex_sampled(code_replica, d_gnss_synchro->PRN, d_fs_in, 0);
int shift_index=(int)d_gnss_synchro->Acq_delay_samples; int shift_index=(int)d_gnss_synchro->Acq_delay_samples;
//std::cout<<"shift_index="<<shift_index<<std::endl; //std::cout<<"shift_index="<<shift_index<<std::endl;
// Rotate to align the local code replica using acquisition time delay estimation // Rotate to align the local code replica using acquisition time delay estimation
std::rotate(code_replica,code_replica+(d_fft_size-shift_index),code_replica+d_fft_size-1); if (shift_index!=0)
{
std::rotate(code_replica,code_replica+(d_fft_size-shift_index),code_replica+d_fft_size-1);
}
//2. Perform code wipe-off //2. Perform code wipe-off
const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer
@ -376,9 +349,10 @@ int pcps_acquisition_fine_doppler_cc::estimate_Doppler(gr_vector_const_void_star
// 4. Compute the magnitude and find the maximum // 4. Compute the magnitude and find the maximum
float* p_tmp_vector; float* p_tmp_vector;
if (posix_memalign((void**)&p_tmp_vector, 16, fft_size_extended * sizeof(float)) == 0){}; if (posix_memalign((void**)&p_tmp_vector, 16, fft_size_extended * sizeof(float)) == 0){};
volk_32fc_magnitude_squared_32f_a(p_tmp_vector, fft_operator->get_outbuf(), fft_size_extended); volk_32fc_magnitude_squared_32f_a(p_tmp_vector, fft_operator->get_outbuf(), fft_size_extended);
unsigned int tmp_index_freq; unsigned int tmp_index_freq=0;
volk_32f_index_max_16u_a(&tmp_index_freq,p_tmp_vector,fft_size_extended); volk_32f_index_max_16u_a(&tmp_index_freq,p_tmp_vector,fft_size_extended);
//std::cout<<"FFT maximum index present at "<<tmp_index_freq<<std::endl; //std::cout<<"FFT maximum index present at "<<tmp_index_freq<<std::endl;
@ -438,6 +412,10 @@ int pcps_acquisition_fine_doppler_cc::estimate_Doppler(gr_vector_const_void_star
} }
// free memory!!
delete fft_operator;
free(code_replica);
free(p_tmp_vector);
return d_fft_size; return d_fft_size;
} }
int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items, int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
@ -449,15 +427,12 @@ int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
* TODO: High sensitivity acquisition algorithm: * TODO: High sensitivity acquisition algorithm:
* State Mechine: * State Mechine:
* S0. StandBy. If d_active==1 -> S1 * S0. StandBy. If d_active==1 -> S1
* S1. GetAssist. Define search grid with assistance information. Reset grid matrix -> S2 * S1. ComputeGrid. Perform the FFT acqusition doppler and delay grid.
* S2. ComputeGrid. Perform the FFT acqusition doppler and delay grid.
* Accumulate the search grid matrix (#doppler_bins x #fft_size) * Accumulate the search grid matrix (#doppler_bins x #fft_size)
* Compare maximum to threshold and decide positive or negative * Compare maximum to threshold and decide positive or negative
* If T>=gamma -> S4 else * If T>=gamma -> S4 else
* If d_well_count<max_dwells -> S2 * If d_well_count<max_dwells -> S2
* else if !disable_assist -> S3
* else -> S5. * else -> S5.
* S3. RedefineGrid. Open the grid search to unasisted acquisition. Reset counters and grid. -> S2
* S4. Positive_Acq: Send message and stop acq -> S0 * S4. Positive_Acq: Send message and stop acq -> S0
* S5. Negative_Acq: Send message and stop acq -> S0 * S5. Negative_Acq: Send message and stop acq -> S0
*/ */
@ -465,66 +440,44 @@ int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
switch (d_state) switch (d_state)
{ {
case 0: // S0. StandBy case 0: // S0. StandBy
if (d_active==true) d_state=1; //DLOG(INFO) <<"S0"<<std::endl;
d_sample_counter += ninput_items[0]; // sample counter if (d_active==true)
consume_each(ninput_items[0]); {
reset_grid();
d_state=1;
}
break; break;
case 1: // S1. GetAssist case 1: // S1. ComputeGrid
get_assistance(); //DLOG(INFO) <<"S1"<<std::endl;
redefine_grid(); compute_and_accumulate_grid(input_items);
reset_grid();
d_sample_counter += ninput_items[0]; // sample counter
consume_each(ninput_items[0]);
d_state=2;
break;
case 2: // S2. ComputeGrid
int consumed_samples;
consumed_samples=compute_and_accumulate_grid(input_items);
d_well_count++; d_well_count++;
if (d_well_count>=d_max_dwells) if (d_well_count>=d_max_dwells)
{ {
d_state=3; d_state=2;
} }
d_sample_counter+=consumed_samples;
//consume_each(consumed_samples);
consume_each(0);
break; break;
case 3: // Compute test statistics and decide case 2: // Compute test statistics and decide
//DLOG(INFO) <<"S2"<<std::endl;
d_input_power=estimate_input_power(input_items); d_input_power=estimate_input_power(input_items);
d_test_statistics=search_maximum(); d_test_statistics=search_maximum();
if (d_test_statistics > d_threshold) if (d_test_statistics > d_threshold)
{ {
d_state=5; //perform fine doppler estimation d_state=3; //perform fine doppler estimation
}else{ }else{
if (d_disable_assist==false) d_state=5; //negative acquisition
{
d_disable_assist=true;
//std::cout<<"Acq assist DISABLED for GPS SV "<<this->d_gnss_synchro->PRN<<std::endl;
d_state=4;
}else{
d_state=7; //negative acquisition
}
} }
//d_sample_counter += ninput_items[0]; // sample counter
//consume_each(ninput_items[0]);
consume_each(0);
break; break;
case 4: // RedefineGrid
free_grid_memory();
redefine_grid();
reset_grid(); case 3: // Fine doppler estimation
d_sample_counter += ninput_items[0]; // sample counter //DLOG(INFO) <<"S3"<<std::endl;
consume_each(ninput_items[0]);
d_state=2;
break;
case 5: // Fine doppler estimation
DLOG(INFO) << "Performing fine Doppler estimation"; DLOG(INFO) << "Performing fine Doppler estimation";
estimate_Doppler(input_items, ninput_items[0]); //disabled in repo estimate_Doppler(input_items, ninput_items[0]); //disabled in repo
d_sample_counter += ninput_items[0]; // sample counter d_state=4;
consume_each(ninput_items[0]);
d_state=6;
break; break;
case 6: // Positive_Acq case 4: // Positive_Acq
//DLOG(INFO) <<"S4"<<std::endl;
DLOG(INFO) << "positive acquisition"; DLOG(INFO) << "positive acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "sample_stamp " << d_sample_counter;
@ -537,13 +490,10 @@ int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
d_active = false; d_active = false;
// Send message to channel queue //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL // Send message to channel queue //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
d_channel_internal_queue->push(1); // 1-> positive acquisition d_channel_internal_queue->push(1); // 1-> positive acquisition
free_grid_memory();
// consume samples to not block the GNU Radio flowgraph
d_sample_counter += ninput_items[0]; // sample counter
consume_each(ninput_items[0]);
d_state=0; d_state=0;
break; break;
case 7: // Negative_Acq case 5: // Negative_Acq
//DLOG(INFO) <<"S5"<<std::endl;
DLOG(INFO) << "negative acquisition"; DLOG(INFO) << "negative acquisition";
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN; DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
DLOG(INFO) << "sample_stamp " << d_sample_counter; DLOG(INFO) << "sample_stamp " << d_sample_counter;
@ -556,15 +506,15 @@ int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
d_active = false; d_active = false;
// Send message to channel queue //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL // Send message to channel queue //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
d_channel_internal_queue->push(2); // 2-> negative acquisition d_channel_internal_queue->push(2); // 2-> negative acquisition
free_grid_memory();
// consume samples to not block the GNU Radio flowgraph
d_sample_counter += ninput_items[0]; // sample counter
consume_each(ninput_items[0]);
d_state=0; d_state=0;
break; break;
default: default:
d_state=0; d_state=0;
break; break;
} }
//DLOG(INFO)<<"d_sample_counter="<<d_sample_counter<<std::endl;
d_sample_counter += d_fft_size; // sample counter
consume_each(d_fft_size);
return 0; return 0;
} }

View File

@ -1,5 +1,5 @@
/*! /*!
* \file pcps_assisted_acquisition_cc.h * \file pcps_acquisition_fine_doppler_acquisition_cc.h
* \brief This class implements a Parallel Code Phase Search Acquisition with multi-dwells and fine Doppler estimation * \brief This class implements a Parallel Code Phase Search Acquisition with multi-dwells and fine Doppler estimation
* *
* Acquisition strategy (Kay Borre book + CFAR threshold). * Acquisition strategy (Kay Borre book + CFAR threshold).
@ -95,9 +95,8 @@ private:
int estimate_Doppler(gr_vector_const_void_star &input_items, int available_samples); int estimate_Doppler(gr_vector_const_void_star &input_items, int available_samples);
float estimate_input_power(gr_vector_const_void_star &input_items); float estimate_input_power(gr_vector_const_void_star &input_items);
double search_maximum(); double search_maximum();
void get_assistance();
void reset_grid(); void reset_grid();
void redefine_grid(); void update_carrier_wipeoff();
void free_grid_memory(); void free_grid_memory();
long d_fs_in; long d_fs_in;
@ -108,8 +107,6 @@ private:
int d_gnuradio_forecast_samples; int d_gnuradio_forecast_samples;
float d_threshold; float d_threshold;
std::string d_satellite_str; std::string d_satellite_str;
int d_doppler_max;
int d_doppler_min;
int d_config_doppler_max; int d_config_doppler_max;
int d_config_doppler_min; int d_config_doppler_min;
@ -120,6 +117,7 @@ private:
unsigned long int d_sample_counter; unsigned long int d_sample_counter;
gr_complex* d_carrier; gr_complex* d_carrier;
gr_complex* d_fft_codes; gr_complex* d_fft_codes;
float* d_magnitude;
float** d_grid_data; float** d_grid_data;
gr_complex** d_grid_doppler_wipeoffs; gr_complex** d_grid_doppler_wipeoffs;
@ -136,7 +134,6 @@ private:
std::ofstream d_dump_file; std::ofstream d_dump_file;
int d_state; int d_state;
bool d_active; bool d_active;
bool d_disable_assist;
int d_well_count; int d_well_count;
bool d_dump; bool d_dump;
unsigned int d_channel; unsigned int d_channel;
@ -213,7 +210,7 @@ public:
*/ */
void set_doppler_max(unsigned int doppler_max) void set_doppler_max(unsigned int doppler_max)
{ {
d_doppler_max = doppler_max; d_config_doppler_max = doppler_max;
} }
/*! /*!

View File

@ -145,8 +145,7 @@ FileSignalSource::FileSignalSource(ConfigurationInterface* configuration,
samples_ = floor((double)size / (double)item_size() - ceil(0.002 * (double)sampling_frequency_)); //process all the samples available in the file excluding the last 2 ms samples_ = floor((double)size / (double)item_size() - ceil(0.002 * (double)sampling_frequency_)); //process all the samples available in the file excluding the last 2 ms
} }
} }
std::cout << samples_ << std::endl;
//if(samples_ > 0) samples_ = 0;
CHECK(samples_ > 0) << "File does not contain enough samples to process."; CHECK(samples_ > 0) << "File does not contain enough samples to process.";
double signal_duration_s; double signal_duration_s;
signal_duration_s = (double)samples_ * ( 1 /(double)sampling_frequency_); signal_duration_s = (double)samples_ * ( 1 /(double)sampling_frequency_);

View File

@ -194,21 +194,33 @@ void FrontEndCal::set_configuration(ConfigurationInterface *configuration)
configuration_= configuration; configuration_= configuration;
} }
void FrontEndCal::get_ephemeris() bool FrontEndCal::get_ephemeris()
{ {
bool read_ephemeris_from_xml=configuration_->property("GNSS-SDR.read_eph_from_xml",false); bool read_ephemeris_from_xml=configuration_->property("GNSS-SDR.read_eph_from_xml",false);
if (read_ephemeris_from_xml==true) if (read_ephemeris_from_xml==true)
{ {
std::cout<< "Trying to read ephemeris from XML file"<<std::endl; std::cout<< "Trying to read ephemeris from XML file..."<<std::endl;
if (read_assistance_from_XML()==false) if (read_assistance_from_XML()==false)
{ {
std::cout<< "ERROR: Could not read Ephemeris file: Trying to get ephemeris from SUPL client.."<<std::endl; std::cout<< "ERROR: Could not read Ephemeris file: Trying to get ephemeris from SUPL server.."<<std::endl;
Get_SUPL_Assist(); if (Get_SUPL_Assist()==1)
{
return true;
}else{
return false;
}
}else{
return true;
} }
}else{ }else{
std::cout<< "Trying to read ephemeris from SUPL server"<<std::endl; std::cout<< "Trying to read ephemeris from SUPL server..."<<std::endl;
Get_SUPL_Assist(); if (Get_SUPL_Assist()==0)
{
return true;
}else{
return false;
}
} }
} }

View File

@ -12,7 +12,7 @@ public:
bool read_assistance_from_XML(); bool read_assistance_from_XML();
int Get_SUPL_Assist(); int Get_SUPL_Assist();
void set_configuration(ConfigurationInterface *configuration); void set_configuration(ConfigurationInterface *configuration);
void get_ephemeris(); bool get_ephemeris();
double estimate_doppler_from_eph(unsigned int PRN, double TOW, double lat, double lon, double height); double estimate_doppler_from_eph(unsigned int PRN, double TOW, double lat, double lon, double height);
void GPS_L1_front_end_model_E4000(double f_bb_true_Hz,double f_bb_meas_Hz,double fs_nominal_hz, double *estimated_fs_Hz, double *estimated_f_if_Hz, double *f_osc_err_ppm ); void GPS_L1_front_end_model_E4000(double f_bb_true_Hz,double f_bb_meas_Hz,double fs_nominal_hz, double *estimated_fs_Hz, double *estimated_f_if_Hz, double *f_osc_err_ppm );
FrontEndCal(); FrontEndCal();

View File

@ -80,7 +80,7 @@ using google::LogMessage;
DECLARE_string(log_dir); DECLARE_string(log_dir);
DEFINE_string(config_file, "../conf/gnss-sdr.conf", DEFINE_string(config_file, "../conf/front-end-cal.conf",
"Path to the file containing the configuration parameters"); "Path to the file containing the configuration parameters");
concurrent_queue<Gps_Ephemeris> global_gps_ephemeris_queue; concurrent_queue<Gps_Ephemeris> global_gps_ephemeris_queue;
@ -123,10 +123,10 @@ void wait_message()
{ {
case 1: // Positive acq case 1: // Positive acq
gnss_sync_vector.push_back(*gnss_synchro); gnss_sync_vector.push_back(*gnss_synchro);
acquisition->reset(); //acquisition->reset();
break; break;
case 2: // negative acq case 2: // negative acq
acquisition->reset(); //acquisition->reset();
break; break;
case 3: case 3:
stop=true; stop=true;
@ -162,7 +162,7 @@ bool front_end_capture(ConfigurationInterface *configuration)
/ (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)); / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
int nsamples=samples_per_code*50; int nsamples=samples_per_code*50;
int skip_samples=fs_in_; // skip 5 seconds int skip_samples=fs_in_*5; // skip 5 seconds
gr::block_sptr head = gr::blocks::head::make(sizeof(gr_complex), nsamples); gr::block_sptr head = gr::blocks::head::make(sizeof(gr_complex), nsamples);
@ -190,6 +190,19 @@ bool front_end_capture(ConfigurationInterface *configuration)
} }
static time_t utc_time(int week, long tow) {
time_t t;
/* Jan 5/6 midnight 1980 - beginning of GPS time as Unix time */
t = 315964801;
/* soon week will wrap again, uh oh... */
/* TS 44.031: GPSTOW, range 0-604799.92, resolution 0.08 sec, 23-bit presentation */
t += (1024 + week) * 604800 + tow*0.08;
return t;
}
int main(int argc, char** argv) int main(int argc, char** argv)
{ {
const std::string intro_help( const std::string intro_help(
@ -215,7 +228,7 @@ int main(int argc, char** argv)
<< "/tmp" << "/tmp"
<< std::endl << std::endl
<< "Use gnss-sdr --log_dir=/path/to/log to change that." << "Use front-end-cal --log_dir=/path/to/log to change that."
<< std::endl; << std::endl;
} }
else else
@ -243,7 +256,17 @@ int main(int argc, char** argv)
configuration= new FileConfiguration(FLAGS_config_file); configuration= new FileConfiguration(FLAGS_config_file);
front_end_cal.set_configuration(configuration); front_end_cal.set_configuration(configuration);
// Capture file
// 2. Get SUPL information from server: Ephemeris record, assistance info and TOW
if (front_end_cal.get_ephemeris()==true)
{
std::cout<<"SUPL data received OK!"<<std::endl;
}else{
std::cout<<"Failure connecting to SUPL server"<<std::endl;
}
// 3. Capture some front-end samples to hard disk
if (front_end_capture(configuration)) if (front_end_capture(configuration))
{ {
@ -252,7 +275,7 @@ int main(int argc, char** argv)
std::cout<<"Failure capturing front-end samples"<<std::endl; std::cout<<"Failure capturing front-end samples"<<std::endl;
} }
// 3. Setup GNU Radio flowgraph (RTL-SDR -> Acquisition_10m) // 4. Setup GNU Radio flowgraph (file_source -> Acquisition_10m)
gr::top_block_sptr top_block; gr::top_block_sptr top_block;
boost::shared_ptr<gr::msg_queue> queue; boost::shared_ptr<gr::msg_queue> queue;
@ -297,7 +320,9 @@ int main(int argc, char** argv)
std::cout<<"Failure connecting the GNU Radio blocks "<<std::endl; std::cout<<"Failure connecting the GNU Radio blocks "<<std::endl;
} }
// 4. Run the flowgraph // 5. Run the flowgraph
// Get visible GPS satellites (positive acquisitions with Doppler measurements)
// Compute Doppler estimations
std::map<int,double> doppler_measurements_map; std::map<int,double> doppler_measurements_map;
std::map<int,double> cn0_measurements_map; std::map<int,double> cn0_measurements_map;
@ -321,7 +346,7 @@ int main(int argc, char** argv)
top_block->run(); top_block->run();
if (start_msg==true) if (start_msg==true)
{ {
std::cout<<"Searchig for GPS Satellites..."<<std::endl; std::cout<<"Searching for GPS Satellites in L1 band..."<<std::endl;
std::cout<<"["; std::cout<<"[";
start_msg=false; start_msg=false;
} }
@ -354,46 +379,68 @@ int main(int argc, char** argv)
<< ((double)(end - begin))/1000000.0 << ((double)(end - begin))/1000000.0
<< " [seconds]" << std::endl; << " [seconds]" << std::endl;
// 5. Get visible GPS satellites (positive acquisitions with Doppler measurements) //6. find TOW from SUPL assistance
// 2. Get SUPL information from server: Ephemeris record, assistance info and TOW
front_end_cal.get_ephemeris();
// 6. Compute Doppler estimations
//find TOW from SUPL assistance
double current_TOW=0; double current_TOW=0;
if (global_gps_ephemeris_map.size()>0) if (global_gps_ephemeris_map.size()>0)
{ {
std::map<int,Gps_Ephemeris> Eph_map; std::map<int,Gps_Ephemeris> Eph_map;
Eph_map=global_gps_ephemeris_map.get_map_copy(); Eph_map=global_gps_ephemeris_map.get_map_copy();
current_TOW=Eph_map.begin()->second.d_TOW; current_TOW=Eph_map.begin()->second.d_TOW;
std::cout<<"Current TOW obtained from SUPL assistance = "<<current_TOW<<std::endl;
}else{ time_t t = utc_time(Eph_map.begin()->second.i_GPS_week, (long int)current_TOW);
std::cout<<"Unable to get Ephemeris SUPL assistance. TOW is unknown!"<<std::endl;
} fprintf(stdout, "Reference Time:\n");
fprintf(stdout, " GPS Week: %ld\n", Eph_map.begin()->second.i_GPS_week);
fprintf(stdout, " GPS TOW: %ld %lf\n", (long int)current_TOW, (long int)current_TOW*0.08);
fprintf(stdout, " ~ UTC: %s", ctime(&t));
std::cout<<"Current TOW obtained from SUPL assistance = "<<current_TOW<<std::endl;
}else{
std::cout<<"Unable to get Ephemeris SUPL assistance. TOW is unknown!"<<std::endl;
delete configuration;
delete acquisition;
delete gnss_synchro;
google::ShutDownCommandLineFlags();
std::cout << "GNSS-SDR Front-end calibration program ended." << std::endl;
return 0;
}
//Get user position from config file (or from SUPL using GSM Cell ID) //Get user position from config file (or from SUPL using GSM Cell ID)
double lat_deg = configuration->property("GNSS-SDR.init_latitude_deg", 41.0); double lat_deg = configuration->property("GNSS-SDR.init_latitude_deg", 41.0);
double lon_deg = configuration->property("GNSS-SDR.init_longitude_deg", 2.0); double lon_deg = configuration->property("GNSS-SDR.init_longitude_deg", 2.0);
double altitude_m = configuration->property("GNSS-SDR.init_altitude_m", 100); double altitude_m = configuration->property("GNSS-SDR.init_altitude_m", 100);
std::cout<<"Reference location (defined in config file):"<<std::endl;
std::cout<<"Latitude="<<lat_deg<<" [º]"<<std::endl;
std::cout<<"Longitude="<<lon_deg<<" [º]"<<std::endl;
std::cout<<"Altitude="<<altitude_m<<" [m]"<<std::endl;
if (doppler_measurements_map.size()==0)
{
std::cout<<"Sorry, no GPS satellites detected in the front-end capture, please check the antenna setup..."<<std::endl;
delete configuration;
delete acquisition;
delete gnss_synchro;
google::ShutDownCommandLineFlags();
std::cout << "GNSS-SDR Front-end calibration program ended." << std::endl;
return 0;
}
std::map<int,double> f_if_estimation_Hz_map; std::map<int,double> f_if_estimation_Hz_map;
std::map<int,double> f_fs_estimation_Hz_map; std::map<int,double> f_fs_estimation_Hz_map;
std::map<int,double> f_ppm_estimation_Hz_map; std::map<int,double> f_ppm_estimation_Hz_map;
std::cout <<std::setiosflags(std::ios::fixed)<<std::setprecision(2)<< std::cout <<std::setiosflags(std::ios::fixed)<<std::setprecision(2)<<
"Doppler analysis results:"<<std::endl; "Doppler analysis results:"<<std::endl;
std::cout << "SV ID Measured [Hz] Predicted [Hz]" <<std::endl; std::cout << "SV ID Measured [Hz] Predicted [Hz]" <<std::endl;
for (std::map<int,double>::iterator it = doppler_measurements_map.begin() ; it != doppler_measurements_map.end(); ++it) for (std::map<int,double>::iterator it = doppler_measurements_map.begin() ; it != doppler_measurements_map.end(); ++it)
{ {
//std::cout << "Doppler measured for (SV=" << it->first<<")="<<it->second<<" [Hz]"<<std::endl;
try{ try{
double doppler_estimated_hz; double doppler_estimated_hz;
doppler_estimated_hz=front_end_cal.estimate_doppler_from_eph(it->first,current_TOW,lat_deg,lon_deg,altitude_m); doppler_estimated_hz=front_end_cal.estimate_doppler_from_eph(it->first,current_TOW,lat_deg,lon_deg,altitude_m);
//std::cout << "Doppler estimated for (SV=" << it->first<<")="<<doppler_estimated_hz<<" [Hz]"<<std::endl;
std::cout << " "<<it->first<<" "<<it->second<<" "<<doppler_estimated_hz<<std::endl; std::cout << " "<<it->first<<" "<<it->second<<" "<<doppler_estimated_hz<<std::endl;
// 7. Compute front-end IF and sampling frequency estimation // 7. Compute front-end IF and sampling frequency estimation
// Compare with the measurements and compute clock drift using FE model // Compare with the measurements and compute clock drift using FE model
@ -406,7 +453,6 @@ int main(int argc, char** argv)
}catch(int ex) }catch(int ex)
{ {
//std::cout<<"Eph not found for SV "<<it->first<<std::endl;
std::cout << " "<<it->first<<" "<<it->second<<" (Eph not found)"<<std::endl; std::cout << " "<<it->first<<" "<<it->second<<" (Eph not found)"<<std::endl;
} }
} }
@ -428,9 +474,6 @@ int main(int argc, char** argv)
mean_fs_Hz/=n_elements; mean_fs_Hz/=n_elements;
mean_osc_err_ppm/=n_elements; mean_osc_err_ppm/=n_elements;
std::cout <<std::setiosflags(std::ios::fixed)<<std::setprecision(2)<<"FE parameters estimation for Elonics E4000 Front-End:"<<std::endl; std::cout <<std::setiosflags(std::ios::fixed)<<std::setprecision(2)<<"FE parameters estimation for Elonics E4000 Front-End:"<<std::endl;
std::cout<<"Sampling frequency ="<<mean_fs_Hz<<" [Hz]"<<std::endl; std::cout<<"Sampling frequency ="<<mean_fs_Hz<<" [Hz]"<<std::endl;