mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2025-11-14 14:17:11 +00:00
Front-end calibration utility is now fully operative for the following front-ends:
- RTLS-SDR + Elonics E4000 Some bug correction in PCPS acquisition git-svn-id: https://svn.code.sf.net/p/gnss-sdr/code/trunk@398 64b25241-fba3-4117-9849-534c7e92360d
This commit is contained in:
@@ -80,7 +80,7 @@ pcps_acquisition_cc::pcps_acquisition_cc(
|
||||
|
||||
//todo: do something if posix_memalign fails
|
||||
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
|
||||
|
||||
// Direct FFT
|
||||
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*!
|
||||
* \file pcps_assisted_acquisition_cc.cc
|
||||
* \file pcps_acquisition_fine_doppler_acquisition_cc.cc
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition with multi-dwells and fine Doppler estimation
|
||||
* \authors <ul>
|
||||
* <li> Javier Arribas, 2013. jarribas(at)cttc.es
|
||||
@@ -34,7 +34,6 @@
|
||||
#include "gnss_signal_processing.h"
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
#include "control_message_factory.h"
|
||||
#include "gps_acq_assist.h"
|
||||
#include <gnuradio/io_signature.h>
|
||||
#include <sstream>
|
||||
#include <glog/log_severity.h>
|
||||
@@ -44,7 +43,6 @@
|
||||
#include "concurrent_map.h"
|
||||
#include <algorithm> // std::rotate
|
||||
|
||||
extern concurrent_map<Gps_Acq_Assist> global_gps_acq_assist_map;
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
@@ -84,10 +82,10 @@ pcps_acquisition_fine_doppler_cc::pcps_acquisition_fine_doppler_cc(
|
||||
d_gnuradio_forecast_samples=d_fft_size;
|
||||
d_input_power = 0.0;
|
||||
d_state=0;
|
||||
d_disable_assist=false;
|
||||
//todo: do something if posix_memalign fails
|
||||
if (posix_memalign((void**)&d_carrier, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
|
||||
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
|
||||
|
||||
// Direct FFT
|
||||
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
|
||||
@@ -103,6 +101,19 @@ pcps_acquisition_fine_doppler_cc::pcps_acquisition_fine_doppler_cc(
|
||||
void pcps_acquisition_fine_doppler_cc::set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
d_doppler_step = doppler_step;
|
||||
// Create the search grid array
|
||||
|
||||
d_num_doppler_points=floor(std::abs(d_config_doppler_max-d_config_doppler_min)/d_doppler_step);
|
||||
|
||||
d_grid_data=new float*[d_num_doppler_points];
|
||||
for (int i=0;i<d_num_doppler_points;i++)
|
||||
{
|
||||
if (posix_memalign((void**)&d_grid_data[i], 16, d_fft_size * sizeof(float)) == 0){};
|
||||
|
||||
}
|
||||
|
||||
update_carrier_wipeoff();
|
||||
|
||||
}
|
||||
|
||||
void pcps_acquisition_fine_doppler_cc::free_grid_memory()
|
||||
@@ -113,6 +124,7 @@ void pcps_acquisition_fine_doppler_cc::free_grid_memory()
|
||||
delete[] d_grid_doppler_wipeoffs[i];
|
||||
}
|
||||
delete d_grid_data;
|
||||
delete d_grid_doppler_wipeoffs;
|
||||
}
|
||||
pcps_acquisition_fine_doppler_cc::~pcps_acquisition_fine_doppler_cc()
|
||||
{
|
||||
@@ -124,34 +136,31 @@ pcps_acquisition_fine_doppler_cc::~pcps_acquisition_fine_doppler_cc()
|
||||
{
|
||||
d_dump_file.close();
|
||||
}
|
||||
free_grid_memory();
|
||||
}
|
||||
|
||||
|
||||
|
||||
void pcps_acquisition_fine_doppler_cc::set_local_code(std::complex<float> * code)
|
||||
{
|
||||
|
||||
memcpy(d_fft_if->get_inbuf(),code,sizeof(gr_complex)*d_fft_size);
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
//Conjugate the local code
|
||||
volk_32fc_conjugate_32fc_a(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
void pcps_acquisition_fine_doppler_cc::init()
|
||||
{
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
d_state=0;
|
||||
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
|
||||
//Conjugate the local code
|
||||
volk_32fc_conjugate_32fc_a(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void pcps_acquisition_fine_doppler_cc::forecast (int noutput_items,
|
||||
gr_vector_int &ninput_items_required)
|
||||
{
|
||||
@@ -159,28 +168,6 @@ void pcps_acquisition_fine_doppler_cc::forecast (int noutput_items,
|
||||
}
|
||||
|
||||
|
||||
void pcps_acquisition_fine_doppler_cc::get_assistance()
|
||||
{
|
||||
Gps_Acq_Assist gps_acq_assisistance;
|
||||
if (global_gps_acq_assist_map.read(this->d_gnss_synchro->PRN,gps_acq_assisistance)==true)
|
||||
{
|
||||
//TODO: use the LO tolerance here
|
||||
if (gps_acq_assisistance.dopplerUncertainty>=1000)
|
||||
{
|
||||
d_doppler_max=gps_acq_assisistance.d_Doppler0+gps_acq_assisistance.dopplerUncertainty*2;
|
||||
d_doppler_min=gps_acq_assisistance.d_Doppler0-gps_acq_assisistance.dopplerUncertainty*2;
|
||||
}else{
|
||||
d_doppler_max=gps_acq_assisistance.d_Doppler0+1000;
|
||||
d_doppler_min=gps_acq_assisistance.d_Doppler0-1000;
|
||||
}
|
||||
this->d_disable_assist=false;
|
||||
std::cout<<"Acq assist ENABLED for GPS SV "<<this->d_gnss_synchro->PRN<<" (Doppler max,Doppler min)=("
|
||||
<<d_doppler_max<<","<<d_doppler_min<<")"<<std::endl;
|
||||
}else{
|
||||
this->d_disable_assist=true;
|
||||
//std::cout<<"Acq assist DISABLED for GPS SV "<<this->d_gnss_synchro->PRN<<std::endl;
|
||||
}
|
||||
}
|
||||
void pcps_acquisition_fine_doppler_cc::reset_grid()
|
||||
{
|
||||
d_well_count=0;
|
||||
@@ -192,23 +179,8 @@ void pcps_acquisition_fine_doppler_cc::reset_grid()
|
||||
}
|
||||
}
|
||||
}
|
||||
void pcps_acquisition_fine_doppler_cc::redefine_grid()
|
||||
void pcps_acquisition_fine_doppler_cc::update_carrier_wipeoff()
|
||||
{
|
||||
if (this->d_disable_assist==true)
|
||||
{
|
||||
d_doppler_max=d_config_doppler_max;
|
||||
d_doppler_min=d_config_doppler_min;
|
||||
}
|
||||
// Create the search grid array
|
||||
d_num_doppler_points=floor(std::abs(d_doppler_max-d_doppler_min)/d_doppler_step);
|
||||
|
||||
d_grid_data=new float*[d_num_doppler_points];
|
||||
for (int i=0;i<d_num_doppler_points;i++)
|
||||
{
|
||||
if (posix_memalign((void**)&d_grid_data[i], 16, d_fft_size * sizeof(float)) == 0){};
|
||||
|
||||
}
|
||||
|
||||
// create the carrier Doppler wipeoff signals
|
||||
int doppler_hz;
|
||||
float phase_step_rad;
|
||||
@@ -216,7 +188,7 @@ void pcps_acquisition_fine_doppler_cc::redefine_grid()
|
||||
for (int doppler_index=0;doppler_index<d_num_doppler_points;doppler_index++)
|
||||
{
|
||||
|
||||
doppler_hz=d_doppler_min+d_doppler_step*doppler_index;
|
||||
doppler_hz=d_config_doppler_min+d_doppler_step*doppler_index;
|
||||
// doppler search steps
|
||||
// compute the carrier doppler wipe-off signal and store it
|
||||
phase_step_rad = (float)GPS_TWO_PI*doppler_hz / (float)d_fs_in;
|
||||
@@ -239,22 +211,23 @@ double pcps_acquisition_fine_doppler_cc::search_maximum()
|
||||
volk_32f_index_max_16u_a(&tmp_intex_t,d_grid_data[i],d_fft_size);
|
||||
if (d_grid_data[i][tmp_intex_t] > magt)
|
||||
{
|
||||
magt = d_grid_data[i][index_time];
|
||||
magt = d_grid_data[i][tmp_intex_t];
|
||||
//std::cout<<magt<<std::endl;
|
||||
index_doppler = i;
|
||||
index_time = tmp_intex_t;
|
||||
}
|
||||
}
|
||||
|
||||
// Normalize the maximum value to correct the scale factor introduced by FFTW
|
||||
fft_normalization_factor = (float)d_fft_size * (float)d_fft_size;
|
||||
fft_normalization_factor = (float)d_fft_size * (float)d_fft_size;;
|
||||
magt = magt / (fft_normalization_factor * fft_normalization_factor);
|
||||
|
||||
// 5- Compute the test statistics and compare to the threshold
|
||||
d_test_statistics = 2 * d_fft_size * magt /(d_input_power*d_well_count);
|
||||
d_test_statistics = magt/(d_input_power*std::sqrt(d_well_count));
|
||||
|
||||
// 4- record the maximum peak and the associated synchronization parameters
|
||||
d_gnss_synchro->Acq_delay_samples = (double)index_time;
|
||||
d_gnss_synchro->Acq_doppler_hz = (double)(index_doppler*d_doppler_step+d_doppler_min);
|
||||
d_gnss_synchro->Acq_doppler_hz = (double)(index_doppler*d_doppler_step+d_config_doppler_min);
|
||||
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
|
||||
|
||||
// Record results to file if required
|
||||
@@ -278,16 +251,22 @@ double pcps_acquisition_fine_doppler_cc::search_maximum()
|
||||
float pcps_acquisition_fine_doppler_cc::estimate_input_power(gr_vector_const_void_star &input_items)
|
||||
{
|
||||
const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer
|
||||
// 1- Compute the input signal power estimation
|
||||
float* p_tmp_vector;
|
||||
if (posix_memalign((void**)&p_tmp_vector, 16, d_fft_size * sizeof(float)) == 0){};
|
||||
volk_32fc_magnitude_squared_32f_u(p_tmp_vector, in, d_fft_size);
|
||||
|
||||
const float* p_const_tmp_vector=p_tmp_vector;
|
||||
// 1- Compute the input signal power estimation
|
||||
float power;
|
||||
volk_32f_accumulator_s32f_a(&power, p_const_tmp_vector, d_fft_size);
|
||||
free(p_tmp_vector);
|
||||
return ( power / (float)d_fft_size);
|
||||
power=0;
|
||||
if (is_unaligned())
|
||||
{
|
||||
volk_32fc_magnitude_squared_32f_u(d_magnitude, in, d_fft_size);
|
||||
volk_32f_accumulator_s32f_a(&power, d_magnitude, d_fft_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
|
||||
volk_32f_accumulator_s32f_a(&power, d_magnitude, d_fft_size);
|
||||
}
|
||||
power /= (float)d_fft_size;
|
||||
return power;
|
||||
|
||||
}
|
||||
|
||||
int pcps_acquisition_fine_doppler_cc::compute_and_accumulate_grid(gr_vector_const_void_star &input_items)
|
||||
@@ -298,9 +277,11 @@ int pcps_acquisition_fine_doppler_cc::compute_and_accumulate_grid(gr_vector_cons
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
|
||||
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< d_threshold << ", doppler_max: " << d_config_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step;
|
||||
|
||||
|
||||
|
||||
// 2- Doppler frequency search loop
|
||||
float* p_tmp_vector;
|
||||
if (posix_memalign((void**)&p_tmp_vector, 16, d_fft_size * sizeof(float)) == 0){};
|
||||
@@ -309,7 +290,7 @@ int pcps_acquisition_fine_doppler_cc::compute_and_accumulate_grid(gr_vector_cons
|
||||
{
|
||||
// doppler search steps
|
||||
// Perform the carrier wipe-off
|
||||
volk_32fc_x2_multiply_32fc_u(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
volk_32fc_x2_multiply_32fc_u(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
|
||||
// 3- Perform the FFT-based convolution (parallel time search)
|
||||
// Compute the FFT of the carrier wiped--off incoming signal
|
||||
d_fft_if->execute();
|
||||
@@ -322,35 +303,23 @@ int pcps_acquisition_fine_doppler_cc::compute_and_accumulate_grid(gr_vector_cons
|
||||
d_ifft->execute();
|
||||
|
||||
// save the grid matrix delay file
|
||||
|
||||
volk_32fc_magnitude_squared_32f_a(p_tmp_vector, d_ifft->get_outbuf(), d_fft_size);
|
||||
const float* old_vector=d_grid_data[doppler_index];
|
||||
volk_32f_x2_add_32f_u(d_grid_data[doppler_index],old_vector,p_tmp_vector,d_fft_size);
|
||||
|
||||
}
|
||||
|
||||
free(p_tmp_vector);
|
||||
return d_fft_size;
|
||||
}
|
||||
|
||||
inline int pow2roundup (int x)
|
||||
{
|
||||
if (x < 0)
|
||||
return 0;
|
||||
--x;
|
||||
x |= x >> 1;
|
||||
x |= x >> 2;
|
||||
x |= x >> 4;
|
||||
x |= x >> 8;
|
||||
x |= x >> 16;
|
||||
return x+1;
|
||||
}
|
||||
|
||||
int pcps_acquisition_fine_doppler_cc::estimate_Doppler(gr_vector_const_void_star &input_items, int available_samples)
|
||||
{
|
||||
|
||||
// Direct FFT
|
||||
int zero_padding_factor=8;
|
||||
int fft_size_extended=d_fft_size*zero_padding_factor;
|
||||
|
||||
gr::fft::fft_complex *fft_operator=new gr::fft::fft_complex(fft_size_extended,true);
|
||||
//zero padding the entire vector
|
||||
memset(fft_operator->get_inbuf(),0,fft_size_extended*sizeof(gr_complex));
|
||||
@@ -361,9 +330,13 @@ int pcps_acquisition_fine_doppler_cc::estimate_Doppler(gr_vector_const_void_star
|
||||
gps_l1_ca_code_gen_complex_sampled(code_replica, d_gnss_synchro->PRN, d_fs_in, 0);
|
||||
|
||||
int shift_index=(int)d_gnss_synchro->Acq_delay_samples;
|
||||
|
||||
//std::cout<<"shift_index="<<shift_index<<std::endl;
|
||||
// Rotate to align the local code replica using acquisition time delay estimation
|
||||
std::rotate(code_replica,code_replica+(d_fft_size-shift_index),code_replica+d_fft_size-1);
|
||||
if (shift_index!=0)
|
||||
{
|
||||
std::rotate(code_replica,code_replica+(d_fft_size-shift_index),code_replica+d_fft_size-1);
|
||||
}
|
||||
|
||||
//2. Perform code wipe-off
|
||||
const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer
|
||||
@@ -376,9 +349,10 @@ int pcps_acquisition_fine_doppler_cc::estimate_Doppler(gr_vector_const_void_star
|
||||
// 4. Compute the magnitude and find the maximum
|
||||
float* p_tmp_vector;
|
||||
if (posix_memalign((void**)&p_tmp_vector, 16, fft_size_extended * sizeof(float)) == 0){};
|
||||
|
||||
volk_32fc_magnitude_squared_32f_a(p_tmp_vector, fft_operator->get_outbuf(), fft_size_extended);
|
||||
|
||||
unsigned int tmp_index_freq;
|
||||
unsigned int tmp_index_freq=0;
|
||||
volk_32f_index_max_16u_a(&tmp_index_freq,p_tmp_vector,fft_size_extended);
|
||||
|
||||
//std::cout<<"FFT maximum index present at "<<tmp_index_freq<<std::endl;
|
||||
@@ -438,6 +412,10 @@ int pcps_acquisition_fine_doppler_cc::estimate_Doppler(gr_vector_const_void_star
|
||||
}
|
||||
|
||||
|
||||
// free memory!!
|
||||
delete fft_operator;
|
||||
free(code_replica);
|
||||
free(p_tmp_vector);
|
||||
return d_fft_size;
|
||||
}
|
||||
int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
|
||||
@@ -449,15 +427,12 @@ int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
|
||||
* TODO: High sensitivity acquisition algorithm:
|
||||
* State Mechine:
|
||||
* S0. StandBy. If d_active==1 -> S1
|
||||
* S1. GetAssist. Define search grid with assistance information. Reset grid matrix -> S2
|
||||
* S2. ComputeGrid. Perform the FFT acqusition doppler and delay grid.
|
||||
* S1. ComputeGrid. Perform the FFT acqusition doppler and delay grid.
|
||||
* Accumulate the search grid matrix (#doppler_bins x #fft_size)
|
||||
* Compare maximum to threshold and decide positive or negative
|
||||
* If T>=gamma -> S4 else
|
||||
* If d_well_count<max_dwells -> S2
|
||||
* else if !disable_assist -> S3
|
||||
* else -> S5.
|
||||
* S3. RedefineGrid. Open the grid search to unasisted acquisition. Reset counters and grid. -> S2
|
||||
* S4. Positive_Acq: Send message and stop acq -> S0
|
||||
* S5. Negative_Acq: Send message and stop acq -> S0
|
||||
*/
|
||||
@@ -465,66 +440,44 @@ int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
|
||||
switch (d_state)
|
||||
{
|
||||
case 0: // S0. StandBy
|
||||
if (d_active==true) d_state=1;
|
||||
d_sample_counter += ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
//DLOG(INFO) <<"S0"<<std::endl;
|
||||
if (d_active==true)
|
||||
{
|
||||
reset_grid();
|
||||
d_state=1;
|
||||
}
|
||||
break;
|
||||
case 1: // S1. GetAssist
|
||||
get_assistance();
|
||||
redefine_grid();
|
||||
reset_grid();
|
||||
d_sample_counter += ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
d_state=2;
|
||||
break;
|
||||
case 2: // S2. ComputeGrid
|
||||
int consumed_samples;
|
||||
consumed_samples=compute_and_accumulate_grid(input_items);
|
||||
case 1: // S1. ComputeGrid
|
||||
//DLOG(INFO) <<"S1"<<std::endl;
|
||||
compute_and_accumulate_grid(input_items);
|
||||
d_well_count++;
|
||||
if (d_well_count>=d_max_dwells)
|
||||
{
|
||||
d_state=3;
|
||||
d_state=2;
|
||||
}
|
||||
d_sample_counter+=consumed_samples;
|
||||
//consume_each(consumed_samples);
|
||||
consume_each(0);
|
||||
break;
|
||||
case 3: // Compute test statistics and decide
|
||||
case 2: // Compute test statistics and decide
|
||||
//DLOG(INFO) <<"S2"<<std::endl;
|
||||
d_input_power=estimate_input_power(input_items);
|
||||
d_test_statistics=search_maximum();
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state=5; //perform fine doppler estimation
|
||||
d_state=3; //perform fine doppler estimation
|
||||
}else{
|
||||
if (d_disable_assist==false)
|
||||
{
|
||||
d_disable_assist=true;
|
||||
//std::cout<<"Acq assist DISABLED for GPS SV "<<this->d_gnss_synchro->PRN<<std::endl;
|
||||
d_state=4;
|
||||
}else{
|
||||
d_state=7; //negative acquisition
|
||||
}
|
||||
d_state=5; //negative acquisition
|
||||
}
|
||||
//d_sample_counter += ninput_items[0]; // sample counter
|
||||
//consume_each(ninput_items[0]);
|
||||
consume_each(0);
|
||||
break;
|
||||
case 4: // RedefineGrid
|
||||
free_grid_memory();
|
||||
redefine_grid();
|
||||
reset_grid();
|
||||
d_sample_counter += ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
d_state=2;
|
||||
break;
|
||||
case 5: // Fine doppler estimation
|
||||
|
||||
|
||||
|
||||
case 3: // Fine doppler estimation
|
||||
//DLOG(INFO) <<"S3"<<std::endl;
|
||||
DLOG(INFO) << "Performing fine Doppler estimation";
|
||||
estimate_Doppler(input_items, ninput_items[0]); //disabled in repo
|
||||
d_sample_counter += ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
d_state=6;
|
||||
d_state=4;
|
||||
break;
|
||||
case 6: // Positive_Acq
|
||||
case 4: // Positive_Acq
|
||||
//DLOG(INFO) <<"S4"<<std::endl;
|
||||
DLOG(INFO) << "positive acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
@@ -537,13 +490,10 @@ int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
|
||||
d_active = false;
|
||||
// Send message to channel queue //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
|
||||
d_channel_internal_queue->push(1); // 1-> positive acquisition
|
||||
free_grid_memory();
|
||||
// consume samples to not block the GNU Radio flowgraph
|
||||
d_sample_counter += ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
d_state=0;
|
||||
break;
|
||||
case 7: // Negative_Acq
|
||||
case 5: // Negative_Acq
|
||||
//DLOG(INFO) <<"S5"<<std::endl;
|
||||
DLOG(INFO) << "negative acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
@@ -556,15 +506,15 @@ int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
|
||||
d_active = false;
|
||||
// Send message to channel queue //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
|
||||
d_channel_internal_queue->push(2); // 2-> negative acquisition
|
||||
free_grid_memory();
|
||||
// consume samples to not block the GNU Radio flowgraph
|
||||
d_sample_counter += ninput_items[0]; // sample counter
|
||||
consume_each(ninput_items[0]);
|
||||
d_state=0;
|
||||
break;
|
||||
default:
|
||||
d_state=0;
|
||||
break;
|
||||
}
|
||||
|
||||
//DLOG(INFO)<<"d_sample_counter="<<d_sample_counter<<std::endl;
|
||||
d_sample_counter += d_fft_size; // sample counter
|
||||
consume_each(d_fft_size);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*!
|
||||
* \file pcps_assisted_acquisition_cc.h
|
||||
* \file pcps_acquisition_fine_doppler_acquisition_cc.h
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition with multi-dwells and fine Doppler estimation
|
||||
*
|
||||
* Acquisition strategy (Kay Borre book + CFAR threshold).
|
||||
@@ -95,9 +95,8 @@ private:
|
||||
int estimate_Doppler(gr_vector_const_void_star &input_items, int available_samples);
|
||||
float estimate_input_power(gr_vector_const_void_star &input_items);
|
||||
double search_maximum();
|
||||
void get_assistance();
|
||||
void reset_grid();
|
||||
void redefine_grid();
|
||||
void update_carrier_wipeoff();
|
||||
void free_grid_memory();
|
||||
|
||||
long d_fs_in;
|
||||
@@ -108,8 +107,6 @@ private:
|
||||
int d_gnuradio_forecast_samples;
|
||||
float d_threshold;
|
||||
std::string d_satellite_str;
|
||||
int d_doppler_max;
|
||||
int d_doppler_min;
|
||||
int d_config_doppler_max;
|
||||
int d_config_doppler_min;
|
||||
|
||||
@@ -120,6 +117,7 @@ private:
|
||||
unsigned long int d_sample_counter;
|
||||
gr_complex* d_carrier;
|
||||
gr_complex* d_fft_codes;
|
||||
float* d_magnitude;
|
||||
|
||||
float** d_grid_data;
|
||||
gr_complex** d_grid_doppler_wipeoffs;
|
||||
@@ -136,7 +134,6 @@ private:
|
||||
std::ofstream d_dump_file;
|
||||
int d_state;
|
||||
bool d_active;
|
||||
bool d_disable_assist;
|
||||
int d_well_count;
|
||||
bool d_dump;
|
||||
unsigned int d_channel;
|
||||
@@ -213,7 +210,7 @@ public:
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
d_doppler_max = doppler_max;
|
||||
d_config_doppler_max = doppler_max;
|
||||
}
|
||||
|
||||
/*!
|
||||
|
||||
@@ -145,8 +145,7 @@ FileSignalSource::FileSignalSource(ConfigurationInterface* configuration,
|
||||
samples_ = floor((double)size / (double)item_size() - ceil(0.002 * (double)sampling_frequency_)); //process all the samples available in the file excluding the last 2 ms
|
||||
}
|
||||
}
|
||||
std::cout << samples_ << std::endl;
|
||||
//if(samples_ > 0) samples_ = 0;
|
||||
|
||||
CHECK(samples_ > 0) << "File does not contain enough samples to process.";
|
||||
double signal_duration_s;
|
||||
signal_duration_s = (double)samples_ * ( 1 /(double)sampling_frequency_);
|
||||
|
||||
Reference in New Issue
Block a user