1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-18 21:23:02 +00:00

Add Doppler prediction in almanacs

This commit is contained in:
Carles Fernandez 2022-03-20 10:44:26 +01:00
parent 08782a2085
commit 9a91fb3192
No known key found for this signature in database
GPG Key ID: 4C583C52B0C3877D
9 changed files with 349 additions and 15 deletions

View File

@ -19,6 +19,7 @@
#include "gnss_sdr_supl_client.h"
#include "GPS_L1_CA.h"
#include "MATH_CONSTANTS.h"
#include <boost/archive/xml_iarchive.hpp>
#include <boost/archive/xml_oarchive.hpp>
#include <boost/serialization/map.hpp>
@ -858,6 +859,7 @@ bool Gnss_Sdr_Supl_Client::read_gal_almanac_from_gsa(const std::string& file_nam
Galileo_Almanac gal_alm;
try
{
const double sqrtAnominal = 5440.588203494; // square root of Galileo nominal orbit semi-major axis
uint32_t prn = static_cast<uint32_t>(std::stoi(almanac.child_value("SVID")));
gal_alm.PRN = prn;
gal_alm.toa = std::stoi(almanac.child("almanac").child_value("t0a"));
@ -866,7 +868,7 @@ bool Gnss_Sdr_Supl_Client::read_gal_almanac_from_gsa(const std::string& file_nam
gal_alm.delta_i = std::stod(almanac.child("almanac").child_value("deltai"));
gal_alm.M_0 = std::stod(almanac.child("almanac").child_value("m0"));
gal_alm.ecc = std::stod(almanac.child("almanac").child_value("ecc"));
gal_alm.sqrtA = std::stod(almanac.child("almanac").child_value("aSqRoot"));
gal_alm.sqrtA = std::stod(almanac.child("almanac").child_value("aSqRoot")) + sqrtAnominal;
gal_alm.OMEGA_0 = std::stod(almanac.child("almanac").child_value("omega0"));
gal_alm.omega = std::stod(almanac.child("almanac").child_value("w"));
gal_alm.OMEGAdot = std::stod(almanac.child("almanac").child_value("omegaDot"));

View File

@ -6,6 +6,7 @@
set(SYSTEM_PARAMETERS_SOURCES
gnss_almanac.cc
gnss_ephemeris.cc
gnss_satellite.cc
gnss_signal.cc

View File

@ -36,7 +36,10 @@ public:
/*!
* Default constructor
*/
Beidou_Dnav_Almanac() = default;
Beidou_Dnav_Almanac()
{
this->System = 'B';
};
int SV_health{}; //!< SV Health

View File

@ -36,7 +36,10 @@ public:
/*!
* Default constructor
*/
Galileo_Almanac() = default;
Galileo_Almanac()
{
this->System = 'E';
};
int32_t IODa{};
int32_t E5b_HS{};

View File

@ -0,0 +1,275 @@
/*!
* \file gnss_almanac.cc
* \brief Base class for GNSS almanac storage
* \author Carles Fernandez, 2022. cfernandez(at)cttc.es
*
* -----------------------------------------------------------------------------
*
* GNSS-SDR is a Global Navigation Satellite System software-defined receiver.
* This file is part of GNSS-SDR.
*
* Copyright (C) 2010-2022 (see AUTHORS file for a list of contributors)
* SPDX-License-Identifier: GPL-3.0-or-later
*
* -----------------------------------------------------------------------------
*/
#include "gnss_almanac.h"
#include "MATH_CONSTANTS.h"
#include "gnss_frequencies.h"
#include <algorithm>
#include <cmath>
#include <functional>
#include <numeric>
#include <vector>
double Gnss_Almanac::check_t(double time) const
{
const double half_week = 302400.0; // seconds
double corrTime = time;
if (time > half_week)
{
corrTime = time - 2.0 * half_week;
}
else if (time < -half_week)
{
corrTime = time + 2.0 * half_week;
}
return corrTime;
}
double Gnss_Almanac::predicted_doppler(double rx_time_s,
double lat,
double lon,
double h,
double ve,
double vn,
double vu,
int band) const
{
const double RE_WGS84 = 6378137.0; //!< earth semimajor axis (WGS84) (m)
const double FE_WGS84 = (1.0 / 298.257223563); //!< earth flattening (WGS84)
const double lat_rad = lat * D2R;
const double lon_rad = lon * D2R;
const double sinp = sin(lat_rad);
const double cosp = cos(lat_rad);
const double sinl = sin(lon_rad);
const double cosl = cos(lon_rad);
const double e2 = FE_WGS84 * (2.0 - FE_WGS84);
const double v = RE_WGS84 / std::sqrt(1.0 - e2 * sinp * sinp);
// Position in EFEF
const std::vector<double> pos_rx = {(v + h) * cosp * cosl, (v + h) * cosp * sinl, (v * (1.0 - e2) + h) * sinp};
// Velovity in EFEF
const double t = cosp * vu - sinp * vn;
const std::vector<double> vel_rx = {cosl * t - sinl * ve, sinl * t + cosl * ve, sinp * vu + cosp * vn};
std::array<double, 7> sat_pos_vel = {0};
satellitePosVelComputation(rx_time_s, sat_pos_vel);
const std::vector<double> pos_sat = {sat_pos_vel[0], sat_pos_vel[1], sat_pos_vel[2]};
const std::vector<double> vel_sat = {sat_pos_vel[3], sat_pos_vel[4], sat_pos_vel[5]};
std::vector<double> x_sr = pos_sat;
std::transform(x_sr.begin(), x_sr.end(), pos_rx.begin(), x_sr.begin(), std::minus<double>()); // pos_sat - pos_rx
const double norm_x_sr = std::sqrt(std::inner_product(x_sr.begin(), x_sr.end(), x_sr.begin(), 0.0)); // Euclidean norm
std::vector<double> v_sr = vel_sat;
std::transform(v_sr.begin(), v_sr.end(), vel_rx.begin(), v_sr.begin(), std::minus<double>()); // vel_sat - vel_rx
const double radial_vel = std::inner_product(v_sr.begin(), v_sr.end(), x_sr.begin(), 0.0) / norm_x_sr;
const double predicted_doppler_normalized = -(radial_vel / SPEED_OF_LIGHT_M_S);
double predicted_doppler = 0.0;
if (this->System == 'E') // Galileo
{
if (band == 1)
{
predicted_doppler = predicted_doppler_normalized * FREQ1;
}
else if (band == 5)
{
predicted_doppler = predicted_doppler_normalized * FREQ5;
}
else if (band == 6)
{
predicted_doppler = predicted_doppler_normalized * FREQ6;
}
else if (band == 7)
{
predicted_doppler = predicted_doppler_normalized * FREQ7;
}
else if (band == 8)
{
predicted_doppler = predicted_doppler_normalized * FREQ8;
}
else
{
predicted_doppler = 0.0;
}
}
else if (this->System == 'G') // GPS
{
if (band == 1)
{
predicted_doppler = predicted_doppler_normalized * FREQ1;
}
else if (band == 2)
{
predicted_doppler = predicted_doppler_normalized * FREQ2;
}
else if (band == 5)
{
predicted_doppler = predicted_doppler_normalized * FREQ5;
}
else
{
predicted_doppler = 0.0;
}
}
else if (this->System == 'B') // Beidou
{
if (band == 1)
{
predicted_doppler = predicted_doppler_normalized * FREQ1_BDS;
}
else if (band == 2)
{
predicted_doppler = predicted_doppler_normalized * FREQ2_BDS;
}
else if (band == 3)
{
predicted_doppler = predicted_doppler_normalized * FREQ3_BDS;
}
else
{
predicted_doppler = 0.0;
}
}
else
{
predicted_doppler = 0.0;
}
return predicted_doppler;
}
void Gnss_Almanac::satellitePosVelComputation(double transmitTime, std::array<double, 7>& pos_vel_dtr) const
{
// Restore semi-major axis
const double a = this->sqrtA * this->sqrtA;
// Computed mean motion
double n;
if (this->System == 'E')
{
n = sqrt(GALILEO_GM / (a * a * a));
}
else if (this->System == 'B')
{
n = sqrt(BEIDOU_GM / (a * a * a));
}
else
{
n = sqrt(GPS_GM / (a * a * a));
}
// Time from ephemeris reference epoch
const double tk = check_t(transmitTime - static_cast<double>(this->toa));
// Mean anomaly
const double M = this->M_0 * GNSS_PI + n * tk;
// Initial guess of eccentric anomaly
double E = M;
double E_old;
double dE;
// --- Iteratively compute eccentric anomaly -------------------------------
for (int32_t ii = 1; ii < 20; ii++)
{
E_old = E;
E = M + this->ecc * sin(E);
dE = fmod(E - E_old, 2.0 * GNSS_PI);
if (fabs(dE) < 1e-12)
{
// Necessary precision is reached, exit from the loop
break;
}
}
const double sek = sin(E);
const double cek = cos(E);
const double OneMinusecosE = 1.0 - this->ecc * cek;
const double sq1e2 = sqrt(1.0 - this->ecc * this->ecc);
const double ekdot = n / OneMinusecosE;
// Compute the true anomaly
const double tmp_Y = sq1e2 * sek;
const double tmp_X = cek - this->ecc;
const double nu = atan2(tmp_Y, tmp_X);
// Compute angle phi (argument of Latitude)
const double phi = nu + this->omega * GNSS_PI;
const double pkdot = sq1e2 * ekdot / OneMinusecosE;
// Correct argument of latitude
const double suk = sin(phi);
const double cuk = cos(phi);
// Correct radius
const double r = a * OneMinusecosE;
const double rkdot = a * this->ecc * sek * ekdot;
// Correct inclination
double i;
if (this->System == 'E')
{
i = ((56.0 / 180.0) + this->delta_i) * GNSS_PI;
}
else
{
i = (0.3 + this->delta_i) * GNSS_PI;
}
const double sik = sin(i);
const double cik = cos(i);
// Compute the angle between the ascending node and the Greenwich meridian
double Omega;
double Omega_dot;
if (this->System == 'B')
{
Omega_dot = this->OMEGAdot * GNSS_PI - BEIDOU_OMEGA_EARTH_DOT;
Omega = this->OMEGA_0 * GNSS_PI + Omega_dot * tk - BEIDOU_OMEGA_EARTH_DOT * static_cast<double>(this->toa);
}
else
{
Omega_dot = this->OMEGAdot * GNSS_PI - GNSS_OMEGA_EARTH_DOT;
Omega = this->OMEGA_0 * GNSS_PI + Omega_dot * tk - GNSS_OMEGA_EARTH_DOT * static_cast<double>(this->toa);
}
const double sok = sin(Omega);
const double cok = cos(Omega);
// --- Compute satellite coordinates in Earth-fixed coordinates
const double xprime = r * cuk;
const double yprime = r * suk;
pos_vel_dtr[0] = xprime * cok - yprime * cik * sok;
pos_vel_dtr[1] = xprime * sok + yprime * cik * cok;
pos_vel_dtr[2] = yprime * sik;
// Satellite's velocity
const double xpkdot = rkdot * cuk - yprime * pkdot;
const double ypkdot = rkdot * suk + xprime * pkdot;
const double tmp = ypkdot * cik;
pos_vel_dtr[3] = -Omega_dot * pos_vel_dtr[1] + xpkdot * cok - tmp * sok;
pos_vel_dtr[4] = Omega_dot * pos_vel_dtr[0] + xpkdot * sok + tmp * cok;
pos_vel_dtr[5] = ypkdot * sik;
pos_vel_dtr[6] = 0;
}

View File

@ -18,6 +18,7 @@
#ifndef GNSS_SDR_GNSS_ALMANAC_H
#define GNSS_SDR_GNSS_ALMANAC_H
#include <array>
#include <cstdint>
/** \addtogroup Core
@ -37,6 +38,42 @@ public:
*/
Gnss_Almanac() = default;
/* \brief Computes prediction of the Doppler shift for a given time and receiver's position and velocity.
* \f[
* f_{d} = - \mathbf{v} \frac{\mathbf{x}^{T}}{\left| \mathbf{x} \right| } \frac{f_{L}}{c}
* \f]
* where:
* \f[
* \mathbf{v} = \mathbf{v}_{sat} - \mathbf{v}_{rx}
* \f]
* \f[
* \mathbf{x} = \mathbf{x}_{sat} - \mathbf{x}_{rx}
* \f]
* \f[
* \left| \mathbf{x} \right| = \sqrt{\mathbf{x}\mathbf{x}^{T}}
* \f]
*
* @param[in] rx_time_s Time of Week in seconds
* @param[in] lat Receiver's latitude in degrees
* @param[in] lon Receiver's longitude in degrees
* @param[in] h Receiver's height in meters
* @param[in] ve Receiver's velocity in the East direction [m/s]
* @param[in] vn Receiver's velocity in the North direction [m/s]
* @param[in] vu Receiver's velocity in the Up direction [m/s]
* @param[in] band Signal band for which the Doppler will be computed
* (1: L1 C/A, E1B, BI1; 2: L2C, BI2; 3: BI3; 5: L5/E5a; 6: E6B; 7: E5b; 8: E5a+E5b)
*/
double predicted_doppler(double rx_time_s,
double lat,
double lon,
double h,
double ve,
double vn,
double vu,
int band) const;
void satellitePosVelComputation(double transmitTime, std::array<double, 7>& pos_vel_dtr) const;
uint32_t PRN{}; //!< SV PRN NUMBER
double delta_i{}; //!< Inclination Angle at Reference Time (relative to i_0 = 0.30 semi-circles)
int32_t toa{}; //!< Almanac data reference time of week [s]
@ -49,6 +86,11 @@ public:
double OMEGAdot{}; //!< Rate of Right Ascension [semi-circles/s]
double af0{}; //!< Coefficient 0 of code phase offset model [s]
double af1{}; //!< Coefficient 1 of code phase offset model [s/s]
protected:
char System{}; //!< Character ID of the GNSS system. 'G': GPS. 'E': Galileo. 'B': BeiDou
private:
double check_t(double time) const;
};

View File

@ -193,10 +193,7 @@ void Gnss_Ephemeris::satellitePosVelComputation(double transmitTime, std::array<
const double n = n0 + this->delta_n;
// Mean anomaly
double M = this->M_0 + n * tk;
// Reduce mean anomaly to between 0 and 2pi
M = fmod((M + 2.0 * GNSS_PI), (2.0 * GNSS_PI));
const double M = this->M_0 + n * tk;
// Initial guess of eccentric anomaly
double E = M;
@ -228,10 +225,9 @@ void Gnss_Ephemeris::satellitePosVelComputation(double transmitTime, std::array<
const double nu = atan2(tmp_Y, tmp_X);
// Compute angle phi (argument of Latitude)
double phi = nu + this->omega;
const double phi = nu + this->omega;
// Reduce phi to between 0 and 2*pi rad
phi = fmod((phi), (2.0 * GNSS_PI));
const double s2pk = sin(2.0 * phi);
const double c2pk = cos(2.0 * phi);
const double pkdot = sq1e2 * ekdot / OneMinusecosE;
@ -266,8 +262,6 @@ void Gnss_Ephemeris::satellitePosVelComputation(double transmitTime, std::array<
Omega = this->OMEGA_0 + Omega_dot * tk - GNSS_OMEGA_EARTH_DOT * static_cast<double>(this->toe);
}
// Reduce to between 0 and 2*pi rad
Omega = fmod((Omega + 2.0 * GNSS_PI), (2.0 * GNSS_PI));
const double sok = sin(Omega);
const double cok = cos(Omega);
@ -352,9 +346,6 @@ double Gnss_Ephemeris::sv_clock_relativistic_term(double transmitTime) const
// Mean anomaly
const double M = this->M_0 + n * tk;
// Reduce mean anomaly to between 0 and 2pi
// M = fmod((M + 2.0 * GNSS_PI), (2.0 * GNSS_PI));
// Initial guess of eccentric anomaly
double E = M;
double E_old;

View File

@ -39,6 +39,20 @@ public:
/*!
* \brief Computes prediction of the Doppler shift for a given time and receiver's position and velocity.
* \f[
* f_{d} = - \mathbf{v} \frac{\mathbf{x}^{T}}{\left| \mathbf{x} \right| } \frac{f_{L}}{c}
* \f]
* where:
* \f[
* \mathbf{v} = \mathbf{v}_{sat} - \mathbf{v}_{rx}
* \f]
* \f[
* \mathbf{x} = \mathbf{x}_{sat} - \mathbf{x}_{rx}
* \f]
* \f[
* \left| \mathbf{x} \right| = \sqrt{\mathbf{x}\mathbf{x}^{T}}
* \f]
*
* @param[in] rx_time_s Time of Week in seconds
* @param[in] lat Receiver's latitude in degrees
* @param[in] lon Receiver's longitude in degrees

View File

@ -38,7 +38,10 @@ public:
/*!
* Default constructor
*/
Gps_Almanac() = default;
Gps_Almanac()
{
this->System = 'G';
};
int32_t SV_health{}; //!< SV Health
int32_t AS_status{}; //!< Anti-Spoofing Flags and SV Configuration