1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-16 05:00:35 +00:00

Merge branch 'glonass' of https://github.com/gnss-sdr/gnss-sdr into glonass

This commit is contained in:
Gastd 2017-10-31 18:24:20 -02:00
commit 9a490279d1
100 changed files with 7029 additions and 1525 deletions

View File

@ -48,6 +48,8 @@ option(ENABLE_OSMOSDR "Enable the use of OsmoSDR and other front-ends (RTL-based
option(ENABLE_FLEXIBAND "Enable the use of the signal source adater for the Teleorbit Flexiband GNURadio driver" OFF)
option(ENABLE_ARRAY "Enable the use of CTTC's antenna array front-end as signal source (experimental)" OFF)
option(ENABLE_GN3S "Enable the use of the GN3S dongle as signal source (experimental)" OFF)
option(ENABLE_PLUTOSDR "Enable the use of ADALM-PLUTO Evaluation Boards (Analog Devices Inc.), requires gr-iio" OFF)
option(ENABLE_FMCOMMS2 "Enable the use of FMCOMMS4-EBZ + ZedBoard hardware" OFF)
# Performance analysis tools
option(ENABLE_GPERFTOOLS "Enable linking to Gperftools libraries (tcmalloc and profiler)" OFF)
@ -214,15 +216,21 @@ if(${CMAKE_SYSTEM_NAME} MATCHES "Linux")
message(STATUS "Configuring GNSS-SDR v${VERSION} to be built on ${LINUX_DISTRIBUTION} GNU/Linux Release ${LINUX_VER} ${ARCH_}")
endif(${CMAKE_SYSTEM_NAME} MATCHES "Linux")
# Detect Mac OS X Version
# Detect macOS / Mac OS X Version
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
set(OperatingSystem "Mac OS X")
set(OS_IS_MACOSX TRUE)
exec_program(uname ARGS -v OUTPUT_VARIABLE DARWIN_VERSION)
string(REGEX MATCH "[0-9]+" DARWIN_VERSION ${DARWIN_VERSION})
if(${DARWIN_VERSION} MATCHES "17")
set(MACOS_HIGH_SIERRA TRUE)
set(CMAKE_XCODE_ATTRIBUTE_CLANG_CXX_LANGUAGE_STANDARD "c++14")
set(CMAKE_XCODE_ATTRIBUTE_CLANG_CXX_LIBRARY "libc++")
message(STATUS "Configuring GNSS-SDR v${VERSION} to be built on macOS High Sierra 10.13")
endif(${DARWIN_VERSION} MATCHES "17")
if(${DARWIN_VERSION} MATCHES "16")
set(MACOS_SIERRA TRUE)
set(CMAKE_XCODE_ATTRIBUTE_CLANG_CXX_LANGUAGE_STANDARD "c++11")
set(CMAKE_XCODE_ATTRIBUTE_CLANG_CXX_LANGUAGE_STANDARD "c++14")
set(CMAKE_XCODE_ATTRIBUTE_CLANG_CXX_LIBRARY "libc++")
message(STATUS "Configuring GNSS-SDR v${VERSION} to be built on macOS Sierra 10.12")
endif(${DARWIN_VERSION} MATCHES "16")

View File

@ -291,7 +291,7 @@ GNSS-SDR comes with a library which is a module of the Vector-Optimized Library
If you are using Eclipse as your development environment, CMake can create the project for you. Type:
~~~~~~
$ cmake -G "Eclipse CDT4 - Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug -DECLIPSE_CDT4_GENERATE_SOURCE_PROJECT=TRUE -DCMAKE_ECLIPSE_VERSION=3.7 -DCMAKE_ECLIPSE_MAKE_ARGUMENTS=-j8 ../
$ cmake -G "Eclipse CDT4 - Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug -DECLIPSE_GENERATE_SOURCE_PROJECT=TRUE -DCMAKE_ECLIPSE_VERSION=4.5 .
~~~~~~
and then import the created project file into Eclipse:
@ -368,7 +368,63 @@ $ sudo make install
(in order to disable the `Osmosdr_Signal_Source` compilation, you can pass `DENABLE_OSMOSDR=OFF` to cmake and build GNSS-SDR again).
###### Build FMCOMMS2 based SDR Hardware support (OPTIONAL):
Install the [libiio](https://github.com/analogdevicesinc/libiio.git) (>=v0.11), [libad9361](https://github.com/analogdevicesinc/libad9361-iio.git) (>=v0.1-1) libraries and [gr-iio](https://github.com/analogdevicesinc/gr-iio.git) (>=v0.2) gnuradio block. For example in Ubuntu 16.04 follow these instructions (based on https://github.com/blurbdust/blurbdust.github.io):
~~~~~~
$ git clone https://github.com/analogdevicesinc/libiio.git
$ cd libiio
$ mkdir build
$ cd build
$ cmake ..
$ make
$ sudo make install
$ sudo ldconfig
$ git clone https://github.com/analogdevicesinc/libad9361-iio.git
$ cd libad9361-iio
$ mkdir build
$ cd build
$ cmake ..
$ make
$ sudo make install
$ sudo ldconfig
$ git clone https://github.com/analogdevicesinc/gr-iio.git
$ cd gr-iio
$ mv include/gnuradio/iio include/iio
$ rm -r include/gnuradio
$ sed -i 's/gnuradio\/iio/iio/g' CMakeLists.txt
$ sed -i 's/gnuradio\/iio/iio/g' swig/*
$ sed -i 's/gnuradio\/iio/iio/g' include/iio/*
$ sed -i 's/gnuradio\/iio/iio/g' lib/*
$ sed -i 's/gnuradio\/iio/iio/g' python/iio/*
$ sed -i 's/from\ gnuradio\ import\ iio/import\ iio/g' grc/iio_pluto_sink.xml
$ sed -i 's/from\ gnuradio\ import\ iio/import\ iio/g' grc/iio_pluto_source.xml
$ sed -i 's/from\ gnuradio\ import\ iio/import\ iio/g' grc/iio_fmcomms2_sink.xml
$ sed -i 's/from\ gnuradio\ import\ iio/import\ iio/g' grc/iio_fmcomms2_source.xml
$ mkdir build
$ cd build
$ cmake ..
$ make
$ sudo make install
$ sudo ldconfig
~~~~~~
Then configure the gnss-sdr to build the `Fmcomms2_Signal_Source` and `Plutosdr_Signal_Source`:
~~~~~~
$ cmake -DENABLE_FMCOMMS2=ON ../
$ make
$ sudo make install
~~~~~~
or configure only `Plutosdr_Signal_Source`:
~~~~~~
$ cmake -DENABLE_PLUTOSDR=ON ../
$ make
$ sudo make install
~~~~~~
With `Fmcomms2_Signal_Source` you can use any SDR hardware based on fmcomms2, including the ADALM-PLUTO (PlutoSdr) by configuring correctly the .conf file. The `Plutosdr_Signal_Source` offers a simplier manner to use the ADALM-PLUTO because implements only a subset of fmcomms2's parameters valid for those devices.
###### Build OpenCL support (OPTIONAL):
@ -413,7 +469,7 @@ More details can be found in our tutorial about [GNSS-SDR configuration options
---------
### macOS Sierra, Mac OS X 10.11 (El Capitan), 10.10 (Yosemite) and 10.9 (Mavericks).
### macOS 10.13 (High Sierra) and 10.12 (Sierra), Mac OS X 10.11 (El Capitan), 10.10 (Yosemite) and 10.9 (Mavericks).
If you still have not installed [Xcode](http://developer.apple.com/xcode/ "Xcode"), do it now from the App Store (it's free). You will also need the Xcode Command Line Tools. Launch the Terminal, found in /Applications/Utilities/, and type:

View File

@ -0,0 +1,141 @@
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [Sps].
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
GNSS-SDR.internal_fs_sps=2000000
;######### SUPL RRLP GPS assistance configuration #####
; Check http://www.mcc-mnc.com/
; On Android: https://play.google.com/store/apps/details?id=net.its_here.cellidinfo&hl=en
GNSS-SDR.SUPL_gps_enabled=false
GNSS-SDR.SUPL_read_gps_assistance_xml=false
GNSS-SDR.SUPL_gps_ephemeris_server=supl.google.com
GNSS-SDR.SUPL_gps_ephemeris_port=7275
GNSS-SDR.SUPL_gps_acquisition_server=supl.google.com
GNSS-SDR.SUPL_gps_acquisition_port=7275
GNSS-SDR.SUPL_MCC=244
GNSS-SDR.SUPL_MNS=5
GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=Fmcomms2_Signal_Source
;SignalSource.filename=/media/DATALOGGER_/signals/RTL-SDR/geo/pmt4.dat
SignalSource.item_type=gr_complex
SignalSource.device_address=10.42.0.196
SignalSource.sampling_frequency=2000000
SignalSource.freq=1575420000
SignalSource.bandwidth=2000000
SignalSource.decimation=0
SignalSource.rx1_enable=true
SignalSource.gain_mode_rx1=manual
SignalSource.rf_port_select=A_BALANCED
SignalSource.gain_rx1=64
SignalSource.samples=0
SignalSource.repeat=false
SignalSource.dump=false
SignalSource.dump_filename=../data/signal_source.dat
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
SignalConditioner.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER CONFIG ############
DataTypeAdapter.implementation=Pass_Through
;######### INPUT_FILTER CONFIG ############
InputFilter.implementation=Freq_Xlating_Fir_Filter
InputFilter.dump=false
InputFilter.dump_filename=../data/input_filter.dat
InputFilter.input_item_type=gr_complex
InputFilter.output_item_type=gr_complex
InputFilter.taps_item_type=float
InputFilter.number_of_taps=5
InputFilter.number_of_bands=2
InputFilter.band1_begin=0.0
InputFilter.band1_end=0.45
InputFilter.band2_begin=0.55
InputFilter.band2_end=1.0
InputFilter.ampl1_begin=1.0
InputFilter.ampl1_end=1.0
InputFilter.ampl2_begin=0.0
InputFilter.ampl2_end=0.0
InputFilter.band1_error=1.0
InputFilter.band2_error=1.0
InputFilter.filter_type=bandpass
InputFilter.grid_density=16
InputFilter.sampling_frequency=2000000
InputFilter.IF=0; IF deviation due to front-end LO inaccuracies [Hz]
;######### RESAMPLER CONFIG ############
;## Resamples the input data.
;# DISABLED IN THE RTL-SDR REALTIME
;#implementation: Use [Pass_Through] or [Direct_Resampler]
;#[Pass_Through] disables this block
Resampler.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
Channels_1C.count=5
Channels.in_acquisition=1
Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.dump=false
Acquisition_1C.dump_filename=./acq_dump.dat
Acquisition_1C.item_type=gr_complex
Acquisition_1C.if=0
Acquisition_1C.sampled_ms=1
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler
Acquisition_1C.threshold=0.015
;Acquisition_1C.pfa=0.0001
Acquisition_1C.doppler_max=10000
Acquisition_1C.doppler_min=-10000
Acquisition_1C.doppler_step=500
Acquisition_1C.max_dwells=15
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.dump=false
Tracking_1C.dump_filename=./tracking_ch_
Tracking_1C.pll_bw_hz=40.0;
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.order=3;
Tracking_1C.early_late_space_chips=0.5;
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_1C.dump=false
TelemetryDecoder_1C.decimation_factor=1;
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
Observables.dump=false
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
PVT.output_rate_ms=100
PVT.display_rate_ms=500
PVT.dump_filename=./PVT
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
PVT.flag_nmea_tty_port=false;
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
PVT.dump=false

View File

@ -13,7 +13,7 @@ ControlThread.wait_for_flowgraph=false
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=File_Signal_Source
SignalSource.filename=/Users/carlesfernandez/Documents/workspace/code2/trunk/data/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ;/datalogger/signals/CTTC/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ; <- PUT YOUR FILE HERE
SignalSource.filename=/archive/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ;/datalogger/signals/CTTC/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN/2013_04_04_GNSS_SIGNAL_at_CTTC_SPAIN.dat ; <- PUT YOUR FILE HERE
SignalSource.item_type=ishort
SignalSource.sampling_frequency=4000000
SignalSource.freq=1575420000

View File

@ -0,0 +1,101 @@
; You can define your own receiver and invoke it by doing
; gnss-sdr --config_file=my_GNSS_SDR_configuration.conf
;
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [sps].
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
GNSS-SDR.internal_fs_sps=2000000
;######### SUPL RRLP GPS assistance configuration #####
; Check http://www.mcc-mnc.com/
; On Android: https://play.google.com/store/apps/details?id=net.its_here.cellidinfo&hl=en
GNSS-SDR.SUPL_gps_enabled=false
GNSS-SDR.SUPL_read_gps_assistance_xml=false
GNSS-SDR.SUPL_gps_ephemeris_server=supl.google.com
GNSS-SDR.SUPL_gps_ephemeris_port=7275
GNSS-SDR.SUPL_gps_acquisition_server=supl.google.com
GNSS-SDR.SUPL_gps_acquisition_port=7275
GNSS-SDR.SUPL_MCC=244
GNSS-SDR.SUPL_MNS=5
GNSS-SDR.SUPL_LAC=0x59e2
GNSS-SDR.SUPL_CI=0x31b0
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=Plutosdr_Signal_Source
;SignalSource.filename=/media/DATALOGGER_/signals/RTL-SDR/geo/pmt4.dat
SignalSource.item_type=gr_complex
SignalSource.device_address=192.168.2.1
SignalSource.sampling_frequency=3000000
SignalSource.freq=1575420000
SignalSource.bandwidth=2600000
SignalSource.decimation=0
SignalSource.gain_mode=manual
SignalSource.gain=30
SignalSource.samples=0
SignalSource.buffer_size=65000
SignalSource.repeat=false
SignalSource.dump=false
SignalSource.dump_filename=./capture.dat
SignalSource.enable_throttle_control=false
;######### SIGNAL_CONDITIONER CONFIG ############
SignalConditioner.implementation=Signal_Conditioner
InputFilter.implementation=Pass_Through
InputFilter.item_type=gr_complex
Resampler.implementation=Direct_Resampler
Resampler.sample_freq_in=4000000
Resampler.sample_freq_out=2000000
Resampler.item_type=gr_complex
;######### DATA_TYPE_ADAPTER CONFIG ############
DataTypeAdapter.implementation=Pass_Through
DataTypeAdapter.item_type=gr_complex
;######### CHANNELS GLOBAL CONFIG ############
Channels_1C.count=6
Channels.in_acquisition=1
Channel.signal=1C
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.threshold=0.008
Acquisition_1C.doppler_max=10000
Acquisition_1C.doppler_step=250
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.pll_bw_hz=40.0;
Tracking_1C.dll_bw_hz=4.0;
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
Observables.dump=false
Observables.dump_filename=./observables.dat
;######### PVT CONFIG ############
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=PPP_Static ; options: Single, Static, Kinematic, PPP_Static, PPP_Kinematic
PVT.iono_model=Broadcast ; options: OFF, Broadcast, SBAS, Iono-Free-LC, Estimate_STEC, IONEX
PVT.trop_model=Saastamoinen ; options: OFF, Saastamoinen, SBAS, Estimate_ZTD, Estimate_ZTD_Grad
PVT.output_rate_ms=100
PVT.display_rate_ms=500
PVT.dump_filename=./PVT
PVT.nmea_dump_filename=./gnss_sdr_pvt.nmea;
PVT.flag_nmea_tty_port=false;
PVT.nmea_dump_devname=/dev/pts/4
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
PVT.dump=false

View File

@ -190,8 +190,8 @@ void rtklib_pvt_cc::msg_handler_telemetry(pmt::pmt_t msg)
// TODO Add GLONASS with gps week number and tow,
// insert new ephemeris record
DLOG(INFO) << "GLONASS GNAV New Ephemeris record inserted in global map with TOW =" << glonass_gnav_eph->d_TOW
<< ", GLONASS GNAV Week Number =" << glonass_gnav_eph->d_WN
<< " and Ephemeris IOD = " << glonass_gnav_eph->compute_GLONASS_time(glonass_gnav_eph->d_t_b)
<< ", Week Number =" << glonass_gnav_eph->d_WN
<< " and Ephemeris IOD in UTC = " << glonass_gnav_eph->compute_GLONASS_time(glonass_gnav_eph->d_t_b)
<< " from SV = " << glonass_gnav_eph->i_satellite_slot_number;
// update/insert new ephemeris record to the global ephemeris map
d_ls_pvt->glonass_gnav_ephemeris_map[glonass_gnav_eph->i_satellite_PRN] = *glonass_gnav_eph;
@ -542,7 +542,7 @@ int rtklib_pvt_cc::work (int noutput_items, gr_vector_const_void_star &input_ite
std::map<int,Gps_Ephemeris>::const_iterator tmp_eph_iter_gps = d_ls_pvt->gps_ephemeris_map.find(in[i][epoch].PRN);
std::map<int,Galileo_Ephemeris>::const_iterator tmp_eph_iter_gal = d_ls_pvt->galileo_ephemeris_map.find(in[i][epoch].PRN);
std::map<int,Gps_CNAV_Ephemeris>::const_iterator tmp_eph_iter_cnav = d_ls_pvt->gps_cnav_ephemeris_map.find(in[i][epoch].PRN);
std::map<int,Glonass_Gnav_Ephemeris>::const_iterator tmp_eph_iter_glo_gnav = d_ls_pvt->glonass_gnav_ephemeris_map.find(in[i][epoch].PRN);
std::map<int,Glonass_Gnav_Ephemeris>::const_iterator tmp_eph_iter_glo_gnav = d_ls_pvt->glonass_gnav_ephemeris_map.find(in[i][epoch].PRN);
if(((tmp_eph_iter_gps->second.i_satellite_PRN == in[i][epoch].PRN) && (std::string(in[i][epoch].Signal).compare("1C") == 0))
|| ((tmp_eph_iter_cnav->second.i_satellite_PRN == in[i][epoch].PRN) && (std::string(in[i][epoch].Signal).compare("2S") == 0))
|| ((tmp_eph_iter_gal->second.i_satellite_PRN == in[i][epoch].PRN) && (std::string(in[i][epoch].Signal).compare("1B") == 0))

View File

@ -116,6 +116,7 @@ bool rtklib_solver::get_PVT(const std::map<int,Gnss_Synchro> & gnss_observables_
std::map<int,Gps_Ephemeris>::const_iterator gps_ephemeris_iter;
std::map<int,Gps_CNAV_Ephemeris>::const_iterator gps_cnav_ephemeris_iter;
std::map<int,Glonass_Gnav_Ephemeris>::const_iterator glonass_gnav_ephemeris_iter;
const Glonass_Gnav_Utc_Model gnav_utc = this->glonass_gnav_utc_model;
this->set_averaging_flag(flag_averaging);
@ -279,75 +280,75 @@ bool rtklib_solver::get_PVT(const std::map<int,Gnss_Synchro> & gnss_observables_
}
break;
}
case 'R': //TODO This should be using rtk lib nomenclature
{
std::string sig_(gnss_observables_iter->second.Signal);
// GLONASS GNAV L1
if(sig_.compare("1G") == 0)
{
// 1 Glo - find the ephemeris for the current GLONASS SV observation. The SV Slot Number (PRN ID) is the map key
glonass_gnav_ephemeris_iter = glonass_gnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (glonass_gnav_ephemeris_iter != glonass_gnav_ephemeris_map.cend())
{
//convert ephemeris from GNSS-SDR class to RTKLIB structure
geph_data[glo_valid_obs] = eph_to_rtklib(glonass_gnav_ephemeris_iter->second);
//convert observation from GNSS-SDR class to RTKLIB structure
obsd_t newobs = {{0,0}, '0', '0', {}, {}, {}, {}, {}, {}};
obs_data[glo_valid_obs] = insert_obs_to_rtklib(newobs,
gnss_observables_iter->second,
glonass_gnav_ephemeris_iter->second.d_WN,
0);//Band 0 (L1)
glo_valid_obs++;
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
case 'R': //TODO This should be using rtk lib nomenclature
{
std::string sig_(gnss_observables_iter->second.Signal);
// GLONASS GNAV L1
if(sig_.compare("1G") == 0)
{
// 1 Glo - find the ephemeris for the current GLONASS SV observation. The SV Slot Number (PRN ID) is the map key
glonass_gnav_ephemeris_iter = glonass_gnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (glonass_gnav_ephemeris_iter != glonass_gnav_ephemeris_map.cend())
{
//convert ephemeris from GNSS-SDR class to RTKLIB structure
geph_data[glo_valid_obs] = eph_to_rtklib(glonass_gnav_ephemeris_iter->second, gnav_utc);
//convert observation from GNSS-SDR class to RTKLIB structure
obsd_t newobs = {{0,0}, '0', '0', {}, {}, {}, {}, {}, {}};
obs_data[glo_valid_obs] = insert_obs_to_rtklib(newobs,
gnss_observables_iter->second,
glonass_gnav_ephemeris_iter->second.d_WN,
0);//Band 0 (L1)
glo_valid_obs++;
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
// GLONASS GNAV L2
if(sig_.compare("2G") == 0)
{
// 1 GLONASS - find the ephemeris for the current GLONASS SV observation. The SV PRN ID is the map key
glonass_gnav_ephemeris_iter = glonass_gnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (glonass_gnav_ephemeris_iter != glonass_gnav_ephemeris_map.cend())
{
bool found_L1_obs=false;
for (int i = 0; i < glo_valid_obs; i++)
{
if (geph_data[i].sat == (static_cast<int>(gnss_observables_iter->second.PRN+NSATGPS)))
{
obs_data[i] = insert_obs_to_rtklib(obs_data[i],
gnss_observables_iter->second,
glonass_gnav_ephemeris_iter->second.d_WN,
1);//Band 1 (L2)
found_L1_obs=true;
break;
}
}
if (!found_L1_obs)
}
// GLONASS GNAV L2
if(sig_.compare("2G") == 0)
{
// 1 GLONASS - find the ephemeris for the current GLONASS SV observation. The SV PRN ID is the map key
glonass_gnav_ephemeris_iter = glonass_gnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (glonass_gnav_ephemeris_iter != glonass_gnav_ephemeris_map.cend())
{
bool found_L1_obs=false;
for (int i = 0; i < glo_valid_obs; i++)
{
if (geph_data[i].sat == (static_cast<int>(gnss_observables_iter->second.PRN+NSATGPS)))
{
//insert GLONASS GNAV L2 obs as new obs and also insert its ephemeris
//convert ephemeris from GNSS-SDR class to RTKLIB structure
geph_data[glo_valid_obs] = eph_to_rtklib(glonass_gnav_ephemeris_iter->second);
//convert observation from GNSS-SDR class to RTKLIB structure
obsd_t newobs = {{0,0}, '0', '0', {}, {}, {}, {}, {}, {}};
obs_data[glo_valid_obs] = insert_obs_to_rtklib(newobs,
obs_data[i] = insert_obs_to_rtklib(obs_data[i],
gnss_observables_iter->second,
glonass_gnav_ephemeris_iter->second.d_WN,
1); //Band 1 (L2)
glo_valid_obs++;
1);//Band 1 (L2)
found_L1_obs=true;
break;
}
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
if (!found_L1_obs)
{
//insert GLONASS GNAV L2 obs as new obs and also insert its ephemeris
//convert ephemeris from GNSS-SDR class to RTKLIB structure
geph_data[glo_valid_obs] = eph_to_rtklib(glonass_gnav_ephemeris_iter->second, gnav_utc);
//convert observation from GNSS-SDR class to RTKLIB structure
obsd_t newobs = {{0,0}, '0', '0', {}, {}, {}, {}, {}, {}};
obs_data[glo_valid_obs] = insert_obs_to_rtklib(newobs,
gnss_observables_iter->second,
glonass_gnav_ephemeris_iter->second.d_WN,
1); //Band 1 (L2)
glo_valid_obs++;
}
break;
}
}
else // the ephemeris are not available for this SV
{
DLOG(INFO) << "No ephemeris data for SV " << gnss_observables_iter->second.PRN;
}
}
break;
}
default :
DLOG(INFO) << "Hybrid observables: Unknown GNSS";
break;

View File

@ -87,7 +87,7 @@ public:
std::map<int,Galileo_Ephemeris> galileo_ephemeris_map; //!< Map storing new Galileo_Ephemeris
std::map<int,Gps_Ephemeris> gps_ephemeris_map; //!< Map storing new GPS_Ephemeris
std::map<int,Gps_CNAV_Ephemeris> gps_cnav_ephemeris_map; //!< Map storing new GPS_CNAV_Ephemeris
std::map<int,Glonass_Gnav_Ephemeris> glonass_gnav_ephemeris_map; //!< Map storing new GLONASS GNAV Ephmeris
std::map<int,Glonass_Gnav_Ephemeris> glonass_gnav_ephemeris_map; //!< Map storing new GLONASS GNAV Ephmeris
Galileo_Utc_Model galileo_utc_model;
Galileo_Iono galileo_iono;

View File

@ -46,7 +46,7 @@ GalileoE1PcpsAmbiguousAcquisition::GalileoE1PcpsAmbiguousAcquisition(
{
configuration_ = configuration;
std::string default_item_type = "gr_complex";
std::string default_dump_filename = "../data/acquisition.dat";
std::string default_dump_filename = "./data/acquisition.dat";
DLOG(INFO) << "role " << role;

View File

@ -21,6 +21,8 @@ set(INPUT_FILTER_ADAPTER_SOURCES
freq_xlating_fir_filter.cc
beamformer_filter.cc
pulse_blanking_filter.cc
notch_filter.cc
notch_filter_lite.cc
)
include_directories(

View File

@ -0,0 +1,125 @@
/*!
* \file notch_filter.cc
* \brief Adapts a gnuradio gr_notch_filter
* \author Antonio Ramos, 2017. antonio.ramosdet(at)gmail.com
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "notch_filter.h"
#include <boost/lexical_cast.hpp>
#include <glog/logging.h>
#include "configuration_interface.h"
#include "notch_cc.h"
using google::LogMessage;
NotchFilter::NotchFilter(ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams) :
role_(role), in_streams_(in_streams),
out_streams_(out_streams)
{
size_t item_size_;
float pfa;
float default_pfa = 0.001;
float p_c_factor;
float default_p_c_factor = 0.9;
int length_;
int default_length_ = 32;
int n_segments_est;
int default_n_segments_est = 12500;
int n_segments_reset;
int default_n_segments_reset = 5000000;
std::string default_item_type = "gr_complex";
std::string default_dump_file = "./data/input_filter.dat";
item_type_ = configuration->property(role + ".item_type", default_item_type);
dump_ = configuration->property(role + ".dump", false);
DLOG(INFO) << "dump_ is " << dump_;
dump_filename_ = configuration->property(role + ".dump_filename", default_dump_file);
pfa = configuration->property(role + ".pfa", default_pfa);
p_c_factor = configuration->property(role + ".p_c_factor", default_p_c_factor);
length_ = configuration->property(role + ".length", default_length_);
n_segments_est = configuration->property(role + ".segments_est", default_n_segments_est);
n_segments_reset = configuration->property(role + ".segments_reset", default_n_segments_reset);
if (item_type_.compare("gr_complex") == 0)
{
item_size_ = sizeof(gr_complex);
notch_filter_ = make_notch_filter(pfa, p_c_factor, length_, n_segments_est, n_segments_reset);
DLOG(INFO) << "Item size " << item_size_;
DLOG(INFO) << "input filter(" << notch_filter_->unique_id() << ")";
}
else
{
LOG(WARNING) << item_type_ << " unrecognized item type for notch filter";
item_size_ = sizeof(gr_complex);
}
if (dump_)
{
DLOG(INFO) << "Dumping output into file " << dump_filename_;
file_sink_ = gr::blocks::file_sink::make(item_size_, dump_filename_.c_str());
DLOG(INFO) << "file_sink(" << file_sink_->unique_id() << ")";
}
}
NotchFilter::~NotchFilter()
{}
void NotchFilter::connect(gr::top_block_sptr top_block)
{
if (dump_)
{
top_block->connect(notch_filter_, 0, file_sink_, 0);
DLOG(INFO) << "connected notch filter output to file sink";
}
else
{
DLOG(INFO) << "nothing to connect internally";
}
}
void NotchFilter::disconnect(gr::top_block_sptr top_block)
{
if (dump_)
{
top_block->disconnect(notch_filter_, 0, file_sink_, 0);
}
}
gr::basic_block_sptr NotchFilter::get_left_block()
{
return notch_filter_;
}
gr::basic_block_sptr NotchFilter::get_right_block()
{
return notch_filter_;
}

View File

@ -0,0 +1,84 @@
/*!
* \file notch_filter.h
* \brief Adapter of a multistate Notch filter
* \author Antonio Ramos, 2017. antonio.ramosdet(at)gmail.com
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_NOTCH_FILTER_H_
#define GNSS_SDR_NOTCH_FILTER_H_
#include <string>
#include <vector>
#include <gnuradio/blocks/file_sink.h>
#include "gnss_block_interface.h"
#include "notch_cc.h"
class ConfigurationInterface;
class NotchFilter: public GNSSBlockInterface
{
public:
NotchFilter(ConfigurationInterface* configuration,
std::string role, unsigned int in_streams,
unsigned int out_streams);
virtual ~NotchFilter();
std::string role()
{
return role_;
}
//! Returns "Notch_Filter"
std::string implementation()
{
return "Notch_Filter";
}
size_t item_size()
{
return 0;
}
void connect(gr::top_block_sptr top_block);
void disconnect(gr::top_block_sptr top_block);
gr::basic_block_sptr get_left_block();
gr::basic_block_sptr get_right_block();
private:
bool dump_;
std::string dump_filename_;
std::string role_;
std::string item_type_;
unsigned int in_streams_;
unsigned int out_streams_;
gr::blocks::file_sink::sptr file_sink_;
notch_sptr notch_filter_;
};
#endif //GNSS_SDR_NOTCH_FILTER_H_

View File

@ -0,0 +1,132 @@
/*!
* \file notch_filter_lite.cc
* \brief Adapts a gnuradio gr_notch_filter_lite
* \author Antonio Ramos, 2017. antonio.ramosdet(at)gmail.com
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "notch_filter_lite.h"
#include <cmath>
#include <boost/lexical_cast.hpp>
#include <glog/logging.h>
#include "configuration_interface.h"
#include "notch_lite_cc.h"
using google::LogMessage;
NotchFilterLite::NotchFilterLite(ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams) :
role_(role), in_streams_(in_streams),
out_streams_(out_streams)
{
size_t item_size_;
float p_c_factor;
float default_p_c_factor = 0.9;
float pfa;
float default_pfa = 0.001;
int length_;
int default_length_ = 32;
int n_segments_est;
int default_n_segments_est = 12500;
int n_segments_reset;
int default_n_segments_reset = 5000000;
float default_samp_freq = 4000000;
float samp_freq = configuration->property("SignalSource.sampling_frequency", default_samp_freq);
float default_coeff_rate = samp_freq * 0.1;
float coeff_rate;
std::string default_item_type = "gr_complex";
std::string default_dump_file = "./data/input_filter.dat";
item_type_ = configuration->property(role + ".item_type", default_item_type);
dump_ = configuration->property(role + ".dump", false);
DLOG(INFO) << "dump_ is " << dump_;
dump_filename_ = configuration->property(role + ".dump_filename", default_dump_file);
p_c_factor = configuration->property(role + ".p_c_factor", default_p_c_factor);
pfa = configuration->property(role + ".pfa", default_pfa);
coeff_rate = configuration->property(role + ".coeff_rate", default_coeff_rate);
length_ = configuration->property(role + ".length", default_length_);
n_segments_est = configuration->property(role + ".segments_est", default_n_segments_est);
n_segments_reset = configuration->property(role + ".segments_reset", default_n_segments_reset);
int n_segments_coeff = static_cast<int>((samp_freq / coeff_rate) / static_cast<float>(length_));
n_segments_coeff = std::max(1, n_segments_coeff);
if (item_type_.compare("gr_complex") == 0)
{
item_size_ = sizeof(gr_complex);
notch_filter_lite_ = make_notch_filter_lite(p_c_factor, pfa, length_, n_segments_est, n_segments_reset, n_segments_coeff);
DLOG(INFO) << "Item size " << item_size_;
DLOG(INFO) << "input filter(" << notch_filter_lite_->unique_id() << ")";
}
else
{
LOG(WARNING) << item_type_ << " unrecognized item type for notch filter";
item_size_ = sizeof(gr_complex);
}
if (dump_)
{
DLOG(INFO) << "Dumping output into file " << dump_filename_;
file_sink_ = gr::blocks::file_sink::make(item_size_, dump_filename_.c_str());
DLOG(INFO) << "file_sink(" << file_sink_->unique_id() << ")";
}
}
NotchFilterLite::~NotchFilterLite()
{}
void NotchFilterLite::connect(gr::top_block_sptr top_block)
{
if (dump_)
{
top_block->connect(notch_filter_lite_, 0, file_sink_, 0);
DLOG(INFO) << "connected notch filter output to file sink";
}
else
{
DLOG(INFO) << "nothing to connect internally";
}
}
void NotchFilterLite::disconnect(gr::top_block_sptr top_block)
{
if (dump_)
{
top_block->disconnect(notch_filter_lite_, 0, file_sink_, 0);
}
}
gr::basic_block_sptr NotchFilterLite::get_left_block()
{
return notch_filter_lite_;
}
gr::basic_block_sptr NotchFilterLite::get_right_block()
{
return notch_filter_lite_;
}

View File

@ -0,0 +1,84 @@
/*!
* \file notch_filter_lite.h
* \brief Adapts a ligth version of a multistate notch filter
* \author Antonio Ramos, 2017. antonio.ramosdet(at)gmail.com
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_NOTCH_FILTER_LITE_H_
#define GNSS_SDR_NOTCH_FILTER_LITE_H_
#include <string>
#include <vector>
#include <gnuradio/blocks/file_sink.h>
#include "gnss_block_interface.h"
#include "notch_lite_cc.h"
class ConfigurationInterface;
class NotchFilterLite: public GNSSBlockInterface
{
public:
NotchFilterLite(ConfigurationInterface* configuration,
std::string role, unsigned int in_streams,
unsigned int out_streams);
virtual ~NotchFilterLite();
std::string role()
{
return role_;
}
//! Returns "Notch_Filter_Lite"
std::string implementation()
{
return "Notch_Filter_Lite";
}
size_t item_size()
{
return 0;
}
void connect(gr::top_block_sptr top_block);
void disconnect(gr::top_block_sptr top_block);
gr::basic_block_sptr get_left_block();
gr::basic_block_sptr get_right_block();
private:
bool dump_;
std::string dump_filename_;
std::string role_;
std::string item_type_;
unsigned int in_streams_;
unsigned int out_streams_;
gr::blocks::file_sink::sptr file_sink_;
notch_lite_sptr notch_filter_lite_;
};
#endif //GNSS_SDR_NOTCH_FILTER_LITE_H_

View File

@ -2,7 +2,7 @@
* \file pulse_blanking_filter.cc
* \brief Instantiates the GNSS-SDR pulse blanking filter
* \author Javier Arribas 2017
*
* Antonio Ramos 2017
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
@ -30,7 +30,6 @@
#include "pulse_blanking_filter.h"
#include <boost/lexical_cast.hpp>
#include <gnuradio/blocks/file_sink.h>
#include <glog/logging.h>
#include "configuration_interface.h"
@ -42,7 +41,6 @@ PulseBlankingFilter::PulseBlankingFilter(ConfigurationInterface* configuration,
out_streams_(out_streams)
{
size_t item_size;
std::string default_input_item_type = "gr_complex";
std::string default_output_item_type = "gr_complex";
std::string default_dump_filename = "../data/input_filter.dat";
@ -53,14 +51,19 @@ PulseBlankingFilter::PulseBlankingFilter(ConfigurationInterface* configuration,
output_item_type_ = config_->property(role_ + ".output_item_type", default_output_item_type);
dump_ = config_->property(role_ + ".dump", false);
dump_filename_ = config_->property(role_ + ".dump_filename", default_dump_filename);
double Pfa = config_->property(role_ + ".Pfa", 0.001);
float default_pfa_ = 0.04;
float pfa = config_->property(role_ + ".pfa", default_pfa_);
int default_length_ = 32;
int length_ = config_->property(role_ + ".length", default_length_);
int default_n_segments_est = 12500;
int n_segments_est = config_->property(role_ + ".segments_est", default_n_segments_est);
int default_n_segments_reset = 5000000;
int n_segments_reset = config_->property(role_ + ".segments_reset", default_n_segments_reset);
if (input_item_type_.compare("gr_complex") == 0)
{
item_size = sizeof(gr_complex); //output
input_size_ = sizeof(gr_complex); //input
pulse_blanking_cc_ = make_pulse_blanking_cc(Pfa);
pulse_blanking_cc_ = make_pulse_blanking_cc(pfa, length_, n_segments_est, n_segments_reset);
}
else
{

View File

@ -2,6 +2,7 @@
* \file pulse_blanking_filter.h
* \brief Instantiates the GNSS-SDR pulse blanking filter
* \author Javier Arribas 2017
* Antonio Ramos 2017
*
* -------------------------------------------------------------------------
*
@ -39,9 +40,6 @@
class ConfigurationInterface;
/*!
* \brief TODO
*/
class PulseBlankingFilter: public GNSSBlockInterface
{
public:

View File

@ -20,6 +20,8 @@
set(INPUT_FILTER_GR_BLOCKS_SOURCES
beamformer.cc
pulse_blanking_cc.cc
notch_cc.cc
notch_lite_cc.cc
)
include_directories(
@ -27,6 +29,8 @@ include_directories(
${GNURADIO_RUNTIME_INCLUDE_DIRS}
${GNURADIO_BLOCKS_INCLUDE_DIRS}
${VOLK_GNSSSDR_INCLUDE_DIRS}
${GLOG_INCLUDE_DIRS}
${GFlags_INCLUDE_DIRS}
)
file(GLOB INPUT_FILTER_GR_BLOCKS_HEADERS "*.h")
@ -37,5 +41,7 @@ source_group(Headers FILES ${INPUT_FILTER_GR_BLOCKS_HEADERS})
target_link_libraries(input_filter_gr_blocks ${GNURADIO_FILTER_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${LOG4CPP_LIBRARIES})
if(NOT VOLK_GNSSSDR_FOUND)
add_dependencies(input_filter_gr_blocks volk_gnsssdr_module)
add_dependencies(input_filter_gr_blocks volk_gnsssdr_module glog-${glog_RELEASE})
else(NOT VOLK_GNSSSDR_FOUND)
add_dependencies(input_filter_gr_blocks glog-${glog_RELEASE})
endif(NOT VOLK_GNSSSDR_FOUND)

View File

@ -0,0 +1,149 @@
/*!
* \file notch_cc.cc
* \brief Implements a multi state notch filter algorithm
* \author Antonio Ramos (antonio.ramosdet(at)gmail.com)
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "notch_cc.h"
#include <cstring>
#include <cmath>
#include <boost/math/distributions/chi_squared.hpp>
#include <glog/logging.h>
#include <gnuradio/io_signature.h>
#include <volk/volk.h>
using google::LogMessage;
notch_sptr make_notch_filter(float pfa, float p_c_factor,
int length_, int n_segments_est, int n_segments_reset)
{
return notch_sptr(new Notch(pfa, p_c_factor, length_, n_segments_est, n_segments_reset));
}
Notch::Notch(float pfa, float p_c_factor, int length_, int n_segments_est, int n_segments_reset) : gr::block("Notch",
gr::io_signature::make (1, 1, sizeof(gr_complex)),
gr::io_signature::make (1, 1, sizeof(gr_complex)))
{
const int alignment_multiple = volk_get_alignment() / sizeof(gr_complex);
set_alignment(std::max(1, alignment_multiple));
set_history(2);
this->pfa = pfa;
noise_pow_est = 0.0;
this->p_c_factor = gr_complex(p_c_factor , 0);
this->length_ = length_; //Set the number of samples per segment
filter_state_ = false; //Initial state of the filter
n_deg_fred = 2 * length_; //Number of dregrees of freedom
n_segments = 0;
this->n_segments_est = n_segments_est; // Set the number of segments for noise power estimation
this->n_segments_reset = n_segments_reset; // Set the period (in segments) when the noise power is estimated
z_0 = gr_complex(0 , 0);
boost::math::chi_squared_distribution<float> my_dist_(n_deg_fred);
thres_ = boost::math::quantile(boost::math::complement(my_dist_, pfa));
c_samples = static_cast<gr_complex *>(volk_malloc(length_ * sizeof(gr_complex), volk_get_alignment()));
angle_ = static_cast<float *>(volk_malloc(length_ * sizeof(float), volk_get_alignment()));
power_spect = static_cast<float *>(volk_malloc(length_ * sizeof(float), volk_get_alignment()));
last_out = gr_complex(0,0);
d_fft = std::unique_ptr<gr::fft::fft_complex>(new gr::fft::fft_complex(length_, true));
}
Notch::~Notch()
{
volk_free(c_samples);
volk_free(angle_);
volk_free(power_spect);
}
void Notch::forecast(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items_required)
{
for(unsigned int aux = 0; aux < ninput_items_required.size(); aux++)
{
ninput_items_required[aux] = length_;
}
}
int Notch::general_work(int noutput_items, gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
int index_out = 0;
float sig2dB = 0.0;
float sig2lin = 0.0;
lv_32fc_t dot_prod_;
const gr_complex* in = reinterpret_cast<const gr_complex *>(input_items[0]);
gr_complex* out = reinterpret_cast<gr_complex *>(output_items[0]);
in++;
while((index_out + length_) < noutput_items)
{
if((n_segments < n_segments_est) && (filter_state_ == false))
{
memcpy(d_fft->get_inbuf(), in, sizeof(gr_complex) * length_);
d_fft->execute();
volk_32fc_s32f_power_spectrum_32f(power_spect, d_fft->get_outbuf(), 1.0, length_);
volk_32f_s32f_calc_spectral_noise_floor_32f(&sig2dB, power_spect, 15.0, length_);
sig2lin = std::pow(10.0, (sig2dB / 10.0)) / (static_cast<float>(n_deg_fred) );
noise_pow_est = (static_cast<float>(n_segments) * noise_pow_est + sig2lin) / (static_cast<float>(n_segments + 1));
memcpy(out, in, sizeof(gr_complex) * length_);
}
else
{
volk_32fc_x2_conjugate_dot_prod_32fc(&dot_prod_, in, in, length_);
if( (lv_creal(dot_prod_) / noise_pow_est) > thres_)
{
if(filter_state_ == false)
{
filter_state_ = true;
last_out = gr_complex(0,0);
}
volk_32fc_x2_multiply_conjugate_32fc(c_samples, in, (in - 1), length_);
volk_32fc_s32f_atan2_32f(angle_, c_samples, static_cast<float>(1.0), length_);
for(int aux = 0; aux < length_; aux++)
{
z_0 = std::exp(gr_complex(0,1) * (*(angle_ + aux)));
*(out + aux) = *(in + aux) - z_0 * (*(in + aux - 1)) + p_c_factor * z_0 * last_out;
last_out = *(out + aux);
}
}
else
{
if (n_segments > n_segments_reset)
{
n_segments = 0;
}
filter_state_ = false;
memcpy(out, in, sizeof(gr_complex) * length_);
}
}
index_out += length_;
n_segments++;
in += length_;
out += length_;
}
consume_each(index_out);
return index_out;
}

View File

@ -0,0 +1,84 @@
/*!
* \file notch_cc.h
* \brief Implements a notch filter algorithm
* \author Antonio Ramos (antonio.ramosdet(at)gmail.com)
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_NOTCH_H_
#define GNSS_SDR_NOTCH_H_
#include <boost/shared_ptr.hpp>
#include <gnuradio/block.h>
#include <gnuradio/fft/fft.h>
#include <memory>
class Notch;
typedef boost::shared_ptr<Notch> notch_sptr;
notch_sptr make_notch_filter(float pfa, float p_c_factor,
int length_, int n_segments_est, int n_segments_reset);
/*!
* \brief This class implements a real-time software-defined multi state notch filter
*/
class Notch : public gr::block
{
private:
float pfa;
float noise_pow_est;
float thres_;
int length_;
int n_deg_fred;
unsigned int n_segments;
unsigned int n_segments_est;
unsigned int n_segments_reset;
bool filter_state_;
gr_complex last_out;
gr_complex z_0;
gr_complex p_c_factor;
gr_complex* c_samples;
float* angle_;
float* power_spect;
std::unique_ptr<gr::fft::fft_complex> d_fft;
public:
Notch(float pfa, float p_c_factor, int length_, int n_segments_est, int n_segments_reset);
~Notch();
void forecast(int noutput_items, gr_vector_int &ninput_items_required);
int general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items);
};
#endif //GNSS_SDR_NOTCH_H_

View File

@ -0,0 +1,159 @@
/*!
* \file notch_lite_cc.cc
* \brief Implements a multi state notch filter algorithm
* \author Antonio Ramos (antonio.ramosdet(at)gmail.com)
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "notch_lite_cc.h"
#include <cstring>
#include <cmath>
#include <boost/math/distributions/chi_squared.hpp>
#include <glog/logging.h>
#include <gnuradio/io_signature.h>
#include <volk/volk.h>
using google::LogMessage;
notch_lite_sptr make_notch_filter_lite(float p_c_factor, float pfa, int length_, int n_segments_est, int n_segments_reset, int n_segments_coeff)
{
return notch_lite_sptr(new NotchLite(p_c_factor, pfa, length_, n_segments_est, n_segments_reset, n_segments_coeff));
}
NotchLite::NotchLite(float p_c_factor, float pfa, int length_, int n_segments_est, int n_segments_reset, int n_segments_coeff) : gr::block("NotchLite",
gr::io_signature::make (1, 1, sizeof(gr_complex)),
gr::io_signature::make (1, 1, sizeof(gr_complex)))
{
const int alignment_multiple = volk_get_alignment() / sizeof(gr_complex);
set_alignment(std::max(1, alignment_multiple));
set_history(2);
this->p_c_factor = gr_complex(p_c_factor , 0);
this->n_segments_est = n_segments_est;
this->n_segments_reset = n_segments_reset;
this->n_segments_coeff_reset = n_segments_coeff;
this->n_segments_coeff = 0;
this->length_ = length_;
set_output_multiple(length_);
this->pfa = pfa;
n_segments = 0;
n_deg_fred = 2 * length_;
noise_pow_est = 0.0;
filter_state_ = false;
z_0 = gr_complex(0 , 0);
last_out = gr_complex(0, 0);
boost::math::chi_squared_distribution<float> my_dist_(n_deg_fred);
thres_ = boost::math::quantile(boost::math::complement(my_dist_, pfa));
c_samples1 = gr_complex(0, 0);
c_samples2 = gr_complex(0, 0);
angle1 = 0.0;
angle2 = 0.0;
power_spect = static_cast<float *>(volk_malloc(length_ * sizeof(float), volk_get_alignment()));
d_fft = std::unique_ptr<gr::fft::fft_complex>(new gr::fft::fft_complex(length_, true));
}
NotchLite::~NotchLite()
{
volk_free(power_spect);
}
void NotchLite::forecast(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items_required)
{
for(unsigned int aux = 0; aux < ninput_items_required.size(); aux++)
{
ninput_items_required[aux] = length_;
}
}
int NotchLite::general_work(int noutput_items, gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
int index_out = 0;
float sig2dB = 0.0;
float sig2lin = 0.0;
lv_32fc_t dot_prod_;
const gr_complex* in = reinterpret_cast<const gr_complex *>(input_items[0]);
gr_complex* out = reinterpret_cast<gr_complex *>(output_items[0]);
in++;
while((index_out + length_) < noutput_items)
{
if((n_segments < n_segments_est) && (filter_state_ == false))
{
memcpy(d_fft->get_inbuf(), in, sizeof(gr_complex) * length_);
d_fft->execute();
volk_32fc_s32f_power_spectrum_32f(power_spect, d_fft->get_outbuf(), 1.0, length_);
volk_32f_s32f_calc_spectral_noise_floor_32f(&sig2dB, power_spect, 15.0, length_);
sig2lin = std::pow(10.0, (sig2dB / 10.0)) / static_cast<float>(n_deg_fred);
noise_pow_est = (static_cast<float>(n_segments) * noise_pow_est + sig2lin) / static_cast<float>(n_segments + 1);
memcpy(out, in, sizeof(gr_complex) * length_);
}
else
{
volk_32fc_x2_conjugate_dot_prod_32fc(&dot_prod_, in, in, length_);
if( (lv_creal(dot_prod_) / noise_pow_est) > thres_)
{
if(filter_state_ == false)
{
filter_state_ = true;
last_out = gr_complex(0,0);
n_segments_coeff = 0;
}
if(n_segments_coeff == 0)
{
volk_32fc_x2_multiply_conjugate_32fc(&c_samples1, (in + 1), in, 1);
volk_32fc_s32f_atan2_32f(&angle1, &c_samples1, static_cast<float>(1.0), 1);
volk_32fc_x2_multiply_conjugate_32fc(&c_samples2, (in + length_ - 1), (in + length_ - 2), 1);
volk_32fc_s32f_atan2_32f(&angle2, &c_samples2, static_cast<float>(1.0), 1);
float angle_ = (angle1 + angle2) / 2.0;
z_0 = std::exp(gr_complex(0,1) * angle_);
}
for(int aux = 0; aux < length_; aux++)
{
*(out + aux) = *(in + aux) - z_0 * (*(in + aux - 1)) + p_c_factor * z_0 * last_out;
last_out = *(out + aux);
}
n_segments_coeff++;
n_segments_coeff = n_segments_coeff % n_segments_coeff_reset;
}
else
{
if (n_segments > n_segments_reset)
{
n_segments = 0;
}
filter_state_ = false;
memcpy(out, in, sizeof(gr_complex) * length_);
}
}
index_out += length_;
n_segments++;
in += length_;
out += length_;
}
consume_each(index_out);
return index_out;
}

View File

@ -0,0 +1,87 @@
/*!
* \file notch_lite_cc.h
* \brief Implements a notch filter ligth algorithm
* \author Antonio Ramos (antonio.ramosdet(at)gmail.com)
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_NOTCH_LITE_H_
#define GNSS_SDR_NOTCH_LITE_H_
#include <boost/shared_ptr.hpp>
#include <gnuradio/block.h>
#include <gnuradio/fft/fft.h>
#include <memory>
class NotchLite;
typedef boost::shared_ptr<NotchLite> notch_lite_sptr;
notch_lite_sptr make_notch_filter_lite(float p_c_factor, float pfa, int length_, int n_segments_est, int n_segments_reset, int n_segments_coeff);
/*!
* \brief This class implements a real-time software-defined multi state notch filter ligth version
*/
class NotchLite : public gr::block
{
private:
int length_;
int n_segments;
int n_segments_est;
int n_segments_reset;
int n_segments_coeff_reset;
int n_segments_coeff;
int n_deg_fred;
float pfa;
float thres_;
float noise_pow_est;
bool filter_state_;
gr_complex last_out;
gr_complex z_0;
gr_complex p_c_factor;
gr_complex c_samples1;
gr_complex c_samples2;
float angle1;
float angle2;
float* power_spect;
std::unique_ptr<gr::fft::fft_complex> d_fft;
public:
NotchLite(float p_c_factor, float pfa, int length_, int n_segments_est, int n_segments_reset, int n_segments_coeff);
~NotchLite();
void forecast(int noutput_items, gr_vector_int &ninput_items_required);
int general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items);
};
#endif //GNSS_SDR_NOTCH_LITE_H_

View File

@ -1,8 +1,8 @@
/*!
* \file pulse_blanking_cc.cc
* \brief Implements a simple pulse blanking algorithm
* \brief Implements a pulse blanking algorithm
* \author Javier Arribas (jarribas(at)cttc.es)
*
* Antonio Ramos (antonio.ramosdet(at)gmail.com)
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
@ -30,61 +30,98 @@
#include "pulse_blanking_cc.h"
#include <cmath>
#include <complex>
#include <boost/math/distributions/chi_squared.hpp>
#include <glog/logging.h>
#include <gnuradio/io_signature.h>
#include <volk/volk.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
pulse_blanking_cc_sptr make_pulse_blanking_cc(double Pfa)
using google::LogMessage;
pulse_blanking_cc_sptr make_pulse_blanking_cc(float pfa, int length_,
int n_segments_est, int n_segments_reset)
{
return pulse_blanking_cc_sptr(new pulse_blanking_cc(Pfa));
return pulse_blanking_cc_sptr(new pulse_blanking_cc(pfa, length_, n_segments_est, n_segments_reset));
}
pulse_blanking_cc::pulse_blanking_cc(double Pfa) : gr::block("pulse_blanking_cc",
gr::io_signature::make (1, 1, sizeof(gr_complex)),
gr::io_signature::make (1, 1, sizeof(gr_complex)))
pulse_blanking_cc::pulse_blanking_cc(float pfa, int length_, int n_segments_est, int n_segments_reset) : gr::block("pulse_blanking_cc",
gr::io_signature::make (1, 1, sizeof(gr_complex)),
gr::io_signature::make (1, 1, sizeof(gr_complex)))
{
const int alignment_multiple = volk_get_alignment() / sizeof(gr_complex);
set_alignment(std::max(1, alignment_multiple));
d_Pfa = Pfa;
this->pfa = pfa;
this->length_ = length_;
last_filtered = false;
n_segments = 0;
this->n_segments_est = n_segments_est;
this->n_segments_reset = n_segments_reset;
noise_power_estimation = 0.0;
n_deg_fred = 2 * length_;
boost::math::chi_squared_distribution<float> my_dist_(n_deg_fred);
thres_ = boost::math::quantile(boost::math::complement(my_dist_, pfa));
zeros_ = static_cast<gr_complex *>(volk_malloc(length_ * sizeof(gr_complex), volk_get_alignment()));
for (int aux = 0; aux < length_; aux++)
{
zeros_[aux] = gr_complex(0, 0);
}
}
int pulse_blanking_cc::general_work (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
pulse_blanking_cc::~pulse_blanking_cc()
{
volk_free(zeros_);
}
void pulse_blanking_cc::forecast(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items_required)
{
for(unsigned int aux=0; aux < ninput_items_required.size(); aux++)
{
ninput_items_required[aux] = length_;
}
}
int pulse_blanking_cc::general_work (int noutput_items, gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]);
gr_complex *out = reinterpret_cast<gr_complex *>(output_items[0]);
// 1- (optional) Compute the input signal power estimation
//float mean;
//float stddev;
//volk_32f_stddev_and_mean_32f_x2(&stddev, &mean, in, noutput_items);
float* magnitude;
magnitude = static_cast<float*>(volk_gnsssdr_malloc(noutput_items * sizeof(float), volk_gnsssdr_get_alignment()));
float var;
const gr_complex* in = reinterpret_cast<const gr_complex *>(input_items[0]);
gr_complex* out = reinterpret_cast<gr_complex *>(output_items[0]);
float* magnitude = static_cast<float *>(volk_malloc(noutput_items * sizeof(float), volk_get_alignment()));
volk_32fc_magnitude_squared_32f(magnitude, in, noutput_items);
volk_32f_accumulator_s32f(&var, magnitude, noutput_items);
var /= static_cast<float>(noutput_items);
// compute pulse blanking threshold (Paper Borio 2016)
float Th = sqrt(-2.0 * var * log10(d_Pfa));
//apply the pulse blanking
//todo: write volk kernel to optimize the blanking
memcpy(out,in, sizeof(gr_complex)*noutput_items);
for (int n = 0; n < noutput_items; n++)
int sample_index = 0;
float segment_energy;
while((sample_index + length_) < noutput_items)
{
if (std::abs(out[n]) > Th)
volk_32f_accumulator_s32f(&segment_energy, (magnitude + sample_index), length_);
if((n_segments < n_segments_est) && (last_filtered == false))
{
out[n] = gr_complex(0,0);
noise_power_estimation = ( static_cast<float>(n_segments) * noise_power_estimation + segment_energy / static_cast<float>(n_deg_fred) ) / static_cast<float>(n_segments + 1);
memcpy(out, in, sizeof(gr_complex) * length_);
}
else
{
if((segment_energy / noise_power_estimation) > thres_)
{
memcpy(out, zeros_, sizeof(gr_complex) * length_);
last_filtered = true;
}
else
{
memcpy(out, in, sizeof(gr_complex) * length_);
last_filtered = false;
if (n_segments > n_segments_reset)
{
n_segments = 0;
}
}
}
in += length_;
out += length_;
sample_index += length_;
n_segments++;
}
consume_each(noutput_items);
return noutput_items;
volk_free(magnitude);
consume_each(sample_index);
return sample_index;
}

View File

@ -1,8 +1,8 @@
/*!
* \file pulse_blanking_cc.h
* \brief Implements a simple pulse blanking algorithm
* \brief Implements a pulse blanking algorithm
* \author Javier Arribas (jarribas(at)cttc.es)
*
* Antonio Ramos (antonio.ramosdet(at)gmail.com)
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
@ -38,22 +38,35 @@ class pulse_blanking_cc;
typedef boost::shared_ptr<pulse_blanking_cc> pulse_blanking_cc_sptr;
pulse_blanking_cc_sptr make_pulse_blanking_cc(double Pfa);
pulse_blanking_cc_sptr make_pulse_blanking_cc(float pfa, int length_, int n_segments_est, int n_segments_reset);
/*!
* \brief This class adapts a short (16-bits) interleaved sample stream
* into a std::complex<short> stream
*/
class pulse_blanking_cc : public gr::block
{
private:
friend pulse_blanking_cc_sptr make_pulse_blanking_cc(double Pfa);
double d_Pfa;
int length_;
int n_segments;
int n_segments_est;
int n_segments_reset;
int n_deg_fred;
bool last_filtered;
float noise_power_estimation;
float thres_;
float pfa;
gr_complex* zeros_;
public:
pulse_blanking_cc(double Pfa);
pulse_blanking_cc(float pfa, int length_, int n_segments_est, int n_segments_reset);
~pulse_blanking_cc();
int general_work (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
void forecast(int noutput_items, gr_vector_int &ninput_items_required);
};
#endif

View File

@ -45,18 +45,18 @@ obsd_t insert_obs_to_rtklib(obsd_t & rtklib_obs, const Gnss_Synchro & gnss_synch
//Galileo is the third satellite system for RTKLIB, so, add the required offset to discriminate Galileo ephemeris
switch(gnss_synchro.System)
{
case 'G':
rtklib_obs.sat = gnss_synchro.PRN;
break;
case 'E':
rtklib_obs.sat = gnss_synchro.PRN+NSATGPS+NSATGLO;
break;
case 'R':
rtklib_obs.sat = gnss_synchro.PRN+NSATGPS;
break;
case 'G':
rtklib_obs.sat = gnss_synchro.PRN;
break;
case 'E':
rtklib_obs.sat = gnss_synchro.PRN+NSATGPS+NSATGLO;
break;
case 'R':
rtklib_obs.sat = gnss_synchro.PRN+NSATGPS;
break;
default:
rtklib_obs.sat = gnss_synchro.PRN;
default:
rtklib_obs.sat = gnss_synchro.PRN;
}
rtklib_obs.time = gpst2time(adjgpsweek(week), gnss_synchro.RX_time);
rtklib_obs.rcv = 1;
@ -64,14 +64,12 @@ obsd_t insert_obs_to_rtklib(obsd_t & rtklib_obs, const Gnss_Synchro & gnss_synch
return rtklib_obs;
}
geph_t eph_to_rtklib(const Glonass_Gnav_Ephemeris & glonass_gnav_eph)
geph_t eph_to_rtklib(const Glonass_Gnav_Ephemeris & glonass_gnav_eph, const Glonass_Gnav_Utc_Model & gnav_clock_model)
{
int week;
double week, sec;
int adj_week;
geph_t rtklib_sat = {0, 0, 0, 0, 0, 0, {0, 0}, {0, 0}, {0.0, 0.0, 0.0}, {0.0, 0.0,
0.0}, {0.0, 0.0, 0.0}, 0.0, 0.0, 0.0};
gtime_t t_utc;
struct tm utcinfo;
0.0}, {0.0, 0.0, 0.0}, 0.0, 0.0, 0.0};
rtklib_sat.sat = glonass_gnav_eph.i_satellite_slot_number + NSATGPS; /* satellite number */
rtklib_sat.iode = static_cast<int>(glonass_gnav_eph.d_t_b); /* IODE (0-6 bit of tb field) */
@ -92,25 +90,15 @@ geph_t eph_to_rtklib(const Glonass_Gnav_Ephemeris & glonass_gnav_eph)
rtklib_sat.gamn = glonass_gnav_eph.d_gamma_n; /* SV relative freq bias */
rtklib_sat.age = static_cast<int>(glonass_gnav_eph.d_Delta_tau_n); /* delay between L1 and L2 (s) */
utcinfo.tm_mon = 0;
utcinfo.tm_mday = glonass_gnav_eph.d_N_T;
utcinfo.tm_year = glonass_gnav_eph.d_yr - 1900;
utcinfo.tm_hour = -6;
utcinfo.tm_min = 0;
utcinfo.tm_sec = glonass_gnav_eph.d_tod;
t_utc.time = mktime(&utcinfo);
t_utc.sec = glonass_gnav_eph.d_tau_c;
rtklib_sat.toe = utc2gpst(t_utc); /* message frame time (gpst) */
// Time expressed in GPS Time but using RTKLib format
glonass_gnav_eph.glot_to_gpst(glonass_gnav_eph.d_tod, gnav_clock_model.d_tau_c, gnav_clock_model.d_tau_gps, &week, &sec);
adj_week = adjgpsweek(static_cast<int>(week));
rtklib_sat.toe = gpst2time(adj_week, sec);
utcinfo.tm_mon = 0;
utcinfo.tm_mday = glonass_gnav_eph.d_N_T;
utcinfo.tm_year = glonass_gnav_eph.d_yr - 1900;
utcinfo.tm_hour = -6;
utcinfo.tm_min = 0;
utcinfo.tm_sec = glonass_gnav_eph.d_t_k;
t_utc.time = mktime(&utcinfo);
t_utc.sec = glonass_gnav_eph.d_tau_c;
rtklib_sat.tof = utc2gpst(t_utc); /* message frame time (gpst) */
// Time expressed in GPS Time but using RTKLib format
glonass_gnav_eph.glot_to_gpst(glonass_gnav_eph.d_t_k, gnav_clock_model.d_tau_c, gnav_clock_model.d_tau_gps, &week, &sec);
adj_week = adjgpsweek(static_cast<int>(week));
rtklib_sat.tof = gpst2time(adj_week, sec);
return rtklib_sat;
}
@ -119,7 +107,7 @@ geph_t eph_to_rtklib(const Glonass_Gnav_Ephemeris & glonass_gnav_eph)
eph_t eph_to_rtklib(const Galileo_Ephemeris & gal_eph)
{
eph_t rtklib_sat = {0, 0, 0, 0, 0, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, {}, 0.0, 0.0 };
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, {}, 0.0, 0.0 };
//Galileo is the third satellite system for RTKLIB, so, add the required offset to discriminate Galileo ephemeris
rtklib_sat.sat = gal_eph.i_satellite_PRN+NSATGPS+NSATGLO;
rtklib_sat.A = gal_eph.A_1 * gal_eph.A_1;
@ -169,7 +157,7 @@ eph_t eph_to_rtklib(const Galileo_Ephemeris & gal_eph)
eph_t eph_to_rtklib(const Gps_Ephemeris & gps_eph)
{
eph_t rtklib_sat = {0, 0, 0, 0, 0, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, {}, 0.0, 0.0 };
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, {}, 0.0, 0.0 };
rtklib_sat.sat = gps_eph.i_satellite_PRN;
rtklib_sat.A = gps_eph.d_sqrt_A * gps_eph.d_sqrt_A;
rtklib_sat.M0 = gps_eph.d_M_0;
@ -220,7 +208,7 @@ eph_t eph_to_rtklib(const Gps_Ephemeris & gps_eph)
eph_t eph_to_rtklib(const Gps_CNAV_Ephemeris & gps_cnav_eph)
{
eph_t rtklib_sat = {0, 0, 0, 0, 0, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, {}, 0.0, 0.0 };
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, {}, 0.0, 0.0 };
rtklib_sat.sat = gps_cnav_eph.i_satellite_PRN;
const double A_REF = 26559710.0; // See IS-GPS-200H, pp. 170
rtklib_sat.A = A_REF + gps_cnav_eph.d_DELTA_A;

View File

@ -37,6 +37,7 @@
#include "gps_ephemeris.h"
#include "gps_cnav_ephemeris.h"
#include "glonass_gnav_ephemeris.h"
#include "glonass_gnav_utc_model.h"
eph_t eph_to_rtklib(const Galileo_Ephemeris & gal_eph);
eph_t eph_to_rtklib(const Gps_Ephemeris & gps_eph);
@ -46,7 +47,7 @@ eph_t eph_to_rtklib(const Gps_CNAV_Ephemeris & gps_cnav_eph);
* \param glonass_gnav_eph GLONASS GNAV Ephemeris structure
* \return Ephemeris structure for RTKLIB parsing
*/
geph_t eph_to_rtklib(const Glonass_Gnav_Ephemeris & glonass_gnav_eph);
geph_t eph_to_rtklib(const Glonass_Gnav_Ephemeris & glonass_gnav_eph, const Glonass_Gnav_Utc_Model & gnav_clock_model);
obsd_t insert_obs_to_rtklib(obsd_t & rtklib_obs, const Gnss_Synchro & gnss_synchro, int week, int band);

View File

@ -192,7 +192,9 @@ install(FILES
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_prefs.h
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_complex.h
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_common.h
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/saturation_arithmetic.h
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_avx_intrinsics.h
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_sse_intrinsics.h
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_sse3_intrinsics.h
${PROJECT_SOURCE_DIR}/include/volk_gnsssdr/volk_gnsssdr_neon_intrinsics.h
${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr.h

View File

@ -49,6 +49,8 @@
# define __VOLK_ATTR_UNUSED __attribute__((unused))
# define __VOLK_ATTR_INLINE __attribute__((always_inline))
# define __VOLK_ATTR_DEPRECATED __attribute__((deprecated))
# define __VOLK_ASM __asm__
# define __VOLK_VOLATILE __volatile__
# if __GNUC__ >= 4
# define __VOLK_ATTR_EXPORT __attribute__((visibility("default")))
# define __VOLK_ATTR_IMPORT __attribute__((visibility("default")))
@ -63,6 +65,8 @@
# define __VOLK_ATTR_DEPRECATED __declspec(deprecated)
# define __VOLK_ATTR_EXPORT __declspec(dllexport)
# define __VOLK_ATTR_IMPORT __declspec(dllimport)
# define __VOLK_ASM __asm
# define __VOLK_VOLATILE
#else
# define __VOLK_ATTR_ALIGNED(x)
# define __VOLK_ATTR_UNUSED
@ -70,6 +74,8 @@
# define __VOLK_ATTR_DEPRECATED
# define __VOLK_ATTR_EXPORT
# define __VOLK_ATTR_IMPORT
# define __VOLK_ASM __asm__
# define __VOLK_VOLATILE __volatile__
#endif
////////////////////////////////////////////////////////////////////////

View File

@ -717,11 +717,11 @@ bool run_volk_gnsssdr_tests(volk_gnsssdr_func_desc_t desc,
{
if(both_sigs[j].is_signed)
{
fail = icompare((int16_t *) test_data[generic_offset][j], (int16_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i);
fail = icompare((int8_t *) test_data[generic_offset][j], (int8_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i);
}
else
{
fail = icompare((uint16_t *) test_data[generic_offset][j], (uint16_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i);
fail = icompare((uint8_t *) test_data[generic_offset][j], (uint8_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i);
}
}
else

View File

@ -19,6 +19,10 @@
#ifndef GNSS_SDR_VOLK_QA_UTILS_H
#define GNSS_SDR_VOLK_QA_UTILS_H
#ifdef __APPLE__
#define _DARWIN_C_SOURCE
#endif
#include <string>
#include <iostream>
#include <fstream>

View File

@ -42,7 +42,7 @@ struct VOLK_CPU volk_gnsssdr_cpu;
#if ((__GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ >= 2) || (__clang_major__ >= 3)) && defined(HAVE_XGETBV)
static inline unsigned long long _xgetbv(unsigned int index){
unsigned int eax, edx;
__asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index));
__VOLK_ASM __VOLK_VOLATILE ("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index));
return ((unsigned long long)edx << 32) | eax;
}
#define __xgetbv() _xgetbv(0)

View File

@ -46,345 +46,341 @@ using google::LogMessage;
hybrid_observables_cc_sptr hybrid_make_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history)
{
return hybrid_observables_cc_sptr(new hybrid_observables_cc(nchannels, dump, dump_filename, deep_history));
return hybrid_observables_cc_sptr(new hybrid_observables_cc(nchannels, dump, dump_filename, deep_history));
}
hybrid_observables_cc::hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history) :
gr::block("hybrid_observables_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)))
gr::block("hybrid_observables_cc", gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)),
gr::io_signature::make(nchannels, nchannels, sizeof(Gnss_Synchro)))
{
// initialize internal vars
d_dump = dump;
d_nchannels = nchannels;
d_dump_filename = dump_filename;
history_deep = deep_history;
T_rx_s = 0.0;
T_rx_step_s = 1e-3;// todo: move to gnss-sdr config
for (unsigned int i = 0; i < d_nchannels; i++)
{
d_gnss_synchro_history_queue.push_back(std::deque<Gnss_Synchro>());
}
//todo: this is a gnuradio scheduler hack.
// Migrate the queues to gnuradio set_history to see if the scheduler can handle
// the multiple output flow
d_max_noutputs = 100;
this->set_min_noutput_items(100);
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
// initialize internal vars
d_dump = dump;
d_nchannels = nchannels;
d_dump_filename = dump_filename;
history_deep = deep_history;
T_rx_s = 0.0;
T_rx_step_s = 1e-3; // todo: move to gnss-sdr config
for (unsigned int i = 0; i < d_nchannels; i++)
{
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Observables dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure & e)
{
LOG(WARNING) << "Exception opening observables dump file " << e.what();
}
d_gnss_synchro_history_queue.push_back(std::deque<Gnss_Synchro>());
}
// todo: this is a gnuradio scheduler hack.
// Migrate the queues to gnuradio set_history to see if the scheduler can handle
// the multiple output flow
d_max_noutputs = 100;
this->set_min_noutput_items(100);
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit );
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Observables dump enabled Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure & e)
{
LOG(WARNING) << "Exception opening observables dump file " << e.what();
}
}
}
}
}
hybrid_observables_cc::~hybrid_observables_cc()
{
if (d_dump_file.is_open() == true)
{
try
{
d_dump_file.close();
}
catch(const std::exception & ex)
{
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
}
}
if (d_dump_file.is_open() == true)
{
try
{
d_dump_file.close();
}
catch(const std::exception & ex)
{
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
}
}
}
bool Hybrid_pairCompare_gnss_synchro_sample_counter(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
{
return (a.second.Tracking_sample_counter) < (b.second.Tracking_sample_counter);
return (a.second.Tracking_sample_counter) < (b.second.Tracking_sample_counter);
}
bool Hybrid_valueCompare_gnss_synchro_sample_counter(const Gnss_Synchro& a, unsigned long int b)
{
return (a.Tracking_sample_counter) < (b);
return (a.Tracking_sample_counter) < (b);
}
bool Hybrid_valueCompare_gnss_synchro_receiver_time(const Gnss_Synchro& a, double b)
{
return (((double)a.Tracking_sample_counter+a.Code_phase_samples)/(double)a.fs) < (b);
return (((double)a.Tracking_sample_counter+a.Code_phase_samples)/(double)a.fs) < (b);
}
bool Hybrid_pairCompare_gnss_synchro_d_TOW(const std::pair<int,Gnss_Synchro>& a, const std::pair<int,Gnss_Synchro>& b)
{
return (a.second.TOW_at_current_symbol_s) < (b.second.TOW_at_current_symbol_s);
return (a.second.TOW_at_current_symbol_s) < (b.second.TOW_at_current_symbol_s);
}
bool Hybrid_valueCompare_gnss_synchro_d_TOW(const Gnss_Synchro& a, double b)
{
return (a.TOW_at_current_symbol_s) < (b);
return (a.TOW_at_current_symbol_s) < (b);
}
int hybrid_observables_cc::general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
int hybrid_observables_cc::general_work (int noutput_items __attribute__((unused)),
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
Gnss_Synchro **in = (Gnss_Synchro **) &input_items[0]; // Get the input pointer
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; // Get the output pointer
int n_outputs = 0;
int n_consume[d_nchannels];
double past_history_s = 100e-3;
const Gnss_Synchro **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
int n_outputs = 0;
int n_consume[d_nchannels];
double past_history_s = 100e-3;
Gnss_Synchro current_gnss_synchro[d_nchannels];
Gnss_Synchro current_gnss_synchro[d_nchannels];
/*
* 1. Read the GNSS SYNCHRO objects from available channels.
* Multi-rate GNURADIO Block. Read how many input items are avaliable in each channel
* Record all synchronization data into queues
*/
for (unsigned int i = 0; i < d_nchannels; i++)
{
n_consume[i] = ninput_items[i];// full throttle
for (int j = 0; j < n_consume[i]; j++)
/*
* 1. Read the GNSS SYNCHRO objects from available channels.
* Multi-rate GNURADIO Block. Read how many input items are avaliable in each channel
* Record all synchronization data into queues
*/
for (unsigned int i = 0; i < d_nchannels; i++)
{
d_gnss_synchro_history_queue[i].push_back(in[i][j]);
}
//std::cout<<"push["<<i<<"] items "<<n_consume[i]
/// <<" latest T_rx: "<<(double)in[i][ninput_items[i]-1].Tracking_sample_counter/(double)in[i][ninput_items[i]-1].fs
// <<" [s] q size: "
// <<d_gnss_synchro_history_queue[i].size()
// <<std::endl;
}
bool channel_history_ok;
do
{
channel_history_ok = true;
for (unsigned int i = 0; i < d_nchannels; i++)
{
if (d_gnss_synchro_history_queue[i].size() < history_deep)
{
channel_history_ok = false;
}
}
if (channel_history_ok == true)
{
std::map<int,Gnss_Synchro>::iterator gnss_synchro_map_iter;
std::deque<Gnss_Synchro>::iterator gnss_synchro_deque_iter;
//1. If the RX time is not set, set the Rx time
if (T_rx_s == 0)
{
//0. Read a gnss_synchro snapshot from the queue and store it in a map
std::map<int,Gnss_Synchro> gnss_synchro_map;
for (unsigned int i = 0; i < d_nchannels; i++)
n_consume[i] = ninput_items[i];// full throttle
for (int j = 0; j < n_consume[i]; j++)
{
gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(
d_gnss_synchro_history_queue[i].front().Channel_ID,
d_gnss_synchro_history_queue[i].front()));
d_gnss_synchro_history_queue[i].push_back(in[i][j]);
}
gnss_synchro_map_iter = min_element(gnss_synchro_map.begin(),
gnss_synchro_map.end(),
Hybrid_pairCompare_gnss_synchro_sample_counter);
T_rx_s = (double)gnss_synchro_map_iter->second.Tracking_sample_counter / (double)gnss_synchro_map_iter->second.fs;
T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms
T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate
}
//std::cout<<"push["<<i<<"] items "<<n_consume[i]
/// <<" latest T_rx: "<<(double)in[i][ninput_items[i]-1].Tracking_sample_counter/(double)in[i][ninput_items[i]-1].fs
// <<" [s] q size: "
// <<d_gnss_synchro_history_queue[i].size()
// <<std::endl;
}
//2. Realign RX time in all valid channels
std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; //container for the aligned set of observables for the selected T_rx
std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; //container for the previous observable values to interpolate
//shift channels history to match the reference TOW
for (unsigned int i = 0; i < d_nchannels; i++)
{
gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue[i].begin(),
d_gnss_synchro_history_queue[i].end(),
T_rx_s,
Hybrid_valueCompare_gnss_synchro_receiver_time);
if (gnss_synchro_deque_iter != d_gnss_synchro_history_queue[i].end())
bool channel_history_ok;
do
{
channel_history_ok = true;
for (unsigned int i = 0; i < d_nchannels; i++)
{
if (gnss_synchro_deque_iter->Flag_valid_word == true)
{
double T_rx_channel = (double)gnss_synchro_deque_iter->Tracking_sample_counter / (double)gnss_synchro_deque_iter->fs;
double delta_T_rx_s = T_rx_channel - T_rx_s;
//check that T_rx difference is less than a threshold (the correlation interval)
if (delta_T_rx_s * 1000.0 < (double)gnss_synchro_deque_iter->correlation_length_ms)
if (d_gnss_synchro_history_queue[i].size() < history_deep)
{
//record the word structure in a map for pseudorange computation
//save the previous observable
int distance = std::distance(d_gnss_synchro_history_queue[i].begin(), gnss_synchro_deque_iter);
if (distance > 0)
{
if (d_gnss_synchro_history_queue[i].at(distance-1).Flag_valid_word)
channel_history_ok = false;
}
}
if (channel_history_ok == true)
{
std::map<int,Gnss_Synchro>::const_iterator gnss_synchro_map_iter;
std::deque<Gnss_Synchro>::const_iterator gnss_synchro_deque_iter;
// 1. If the RX time is not set, set the Rx time
if (T_rx_s == 0)
{
// 0. Read a gnss_synchro snapshot from the queue and store it in a map
std::map<int,Gnss_Synchro> gnss_synchro_map;
for (unsigned int i = 0; i < d_nchannels; i++)
{
double T_rx_channel_prev = (double)d_gnss_synchro_history_queue[i].at(distance - 1).Tracking_sample_counter / (double)gnss_synchro_deque_iter->fs;
double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s;
if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s))
gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].front().Channel_ID,
d_gnss_synchro_history_queue[i].front()));
}
gnss_synchro_map_iter = min_element(gnss_synchro_map.cbegin(),
gnss_synchro_map.cend(),
Hybrid_pairCompare_gnss_synchro_sample_counter);
T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / static_cast<double>(gnss_synchro_map_iter->second.fs);
T_rx_s = floor(T_rx_s * 1000.0) / 1000.0; // truncate to ms
T_rx_s += past_history_s; // increase T_rx to have a minimum past history to interpolate
}
// 2. Realign RX time in all valid channels
std::map<int,Gnss_Synchro> realigned_gnss_synchro_map; // container for the aligned set of observables for the selected T_rx
std::map<int,Gnss_Synchro> adjacent_gnss_synchro_map; // container for the previous observable values to interpolate
// shift channels history to match the reference TOW
for (unsigned int i = 0; i < d_nchannels; i++)
{
gnss_synchro_deque_iter = std::lower_bound(d_gnss_synchro_history_queue[i].cbegin(),
d_gnss_synchro_history_queue[i].cend(),
T_rx_s,
Hybrid_valueCompare_gnss_synchro_receiver_time);
if (gnss_synchro_deque_iter != d_gnss_synchro_history_queue[i].cend())
{
if (gnss_synchro_deque_iter->Flag_valid_word == true)
{
double T_rx_channel = static_cast<double>(gnss_synchro_deque_iter->Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
double delta_T_rx_s = T_rx_channel - T_rx_s;
// check that T_rx difference is less than a threshold (the correlation interval)
if (delta_T_rx_s * 1000.0 < static_cast<double>(gnss_synchro_deque_iter->correlation_length_ms))
{
// record the word structure in a map for pseudorange computation
// save the previous observable
int distance = std::distance(d_gnss_synchro_history_queue[i].cbegin(), gnss_synchro_deque_iter);
if (distance > 0)
{
if (d_gnss_synchro_history_queue[i].at(distance - 1).Flag_valid_word)
{
double T_rx_channel_prev = static_cast<double>(d_gnss_synchro_history_queue[i].at(distance - 1).Tracking_sample_counter) / static_cast<double>(gnss_synchro_deque_iter->fs);
double delta_T_rx_s_prev = T_rx_channel_prev - T_rx_s;
if (fabs(delta_T_rx_s_prev) < fabs(delta_T_rx_s))
{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].at(distance - 1).Channel_ID,
d_gnss_synchro_history_queue[i].at(distance - 1)));
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
}
else
{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(d_gnss_synchro_history_queue[i].at(distance - 1).Channel_ID,
d_gnss_synchro_history_queue[i].at(distance - 1)));
}
}
}
else
{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
}
}
else
{
//std::cout<<"ch["<<i<<"] delta_T_rx:"<<delta_T_rx_s*1000.0<<std::endl;
}
}
}
}
if(!realigned_gnss_synchro_map.empty())
{
/*
* 2.1 Use CURRENT set of measurements and find the nearest satellite
* common RX time algorithm
*/
// what is the most recent symbol TOW in the current set? -> this will be the reference symbol
gnss_synchro_map_iter = max_element(realigned_gnss_synchro_map.cbegin(),
realigned_gnss_synchro_map.cend(),
Hybrid_pairCompare_gnss_synchro_d_TOW);
double ref_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
// compute interpolated TOW value at T_rx_s
int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID;
Gnss_Synchro adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key);
double ref_adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz;
double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
double d_ref_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz;
double selected_T_rx_s = T_rx_s;
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s +
(selected_T_rx_s - ref_adj_T_rx_s) * (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s);
// Now compute RX time differences due to the PRN alignment in the correlators
double traveltime_ms;
double pseudorange_m;
double channel_T_rx_s;
double channel_fs_hz;
double channel_TOW_s;
for(gnss_synchro_map_iter = realigned_gnss_synchro_map.cbegin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.cend(); gnss_synchro_map_iter++)
{
channel_fs_hz = static_cast<double>(gnss_synchro_map_iter->second.fs);
channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
channel_T_rx_s = static_cast<double>(gnss_synchro_map_iter->second.Tracking_sample_counter) / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz;
// compute interpolated observation values
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
// TOW at the selected receiver time T_rx_s
int element_key = gnss_synchro_map_iter->second.Channel_ID;
adj_obs = adjacent_gnss_synchro_map.at(element_key);
double adj_T_rx_s = static_cast<double>(adj_obs.Tracking_sample_counter) / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz;
double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s);
// Doppler and Accumulated carrier phase
double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s);
double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s);
// compute the pseudorange (no rx time offset correction)
traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms;
// convert to meters
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
// update the pseudorange object
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
// Save the estimated RX time (no RX clock offset correction yet!)
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = ref_TOW_at_T_rx_s + GPS_STARTOFFSET_ms / 1000.0;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
}
if(d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(
d_gnss_synchro_history_queue[i].at(distance-1).Channel_ID,
d_gnss_synchro_history_queue[i].at(distance-1)));
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
double tmp_double;
for (unsigned int i = 0; i < d_nchannels; i++)
{
tmp_double = current_gnss_synchro[i].RX_time;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].Carrier_phase_rads/GPS_TWO_PI;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].Pseudorange_m;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].PRN;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
tmp_double = current_gnss_synchro[i].Flag_valid_pseudorange;
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
}
}
else
catch (const std::ifstream::failure& e)
{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
adjacent_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(
d_gnss_synchro_history_queue[i].at(distance-1).Channel_ID,
d_gnss_synchro_history_queue[i].at(distance-1)));
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
}
else
{
realigned_gnss_synchro_map.insert(std::pair<int, Gnss_Synchro>(gnss_synchro_deque_iter->Channel_ID, *gnss_synchro_deque_iter));
}
for (unsigned int i = 0; i < d_nchannels; i++)
{
out[i][n_outputs] = current_gnss_synchro[i];
}
n_outputs++;
}
else
// Move RX time
T_rx_s = T_rx_s + T_rx_step_s;
// pop old elements from queue
for (unsigned int i = 0; i < d_nchannels; i++)
{
//std::cout<<"ch["<<i<<"] delta_T_rx:"<<delta_T_rx_s*1000.0<<std::endl;
while (static_cast<double>(d_gnss_synchro_history_queue[i].front().Tracking_sample_counter) / static_cast<double>(d_gnss_synchro_history_queue[i].front().fs) < (T_rx_s - past_history_s))
{
d_gnss_synchro_history_queue[i].pop_front();
}
}
}
}
}
} while(channel_history_ok == true && d_max_noutputs > n_outputs);
if(!realigned_gnss_synchro_map.empty())
{
/*
* 2.1 Use CURRENT set of measurements and find the nearest satellite
* common RX time algorithm
*/
// what is the most recent symbol TOW in the current set? -> this will be the reference symbol
gnss_synchro_map_iter = max_element(realigned_gnss_synchro_map.begin(),
realigned_gnss_synchro_map.end(),
Hybrid_pairCompare_gnss_synchro_d_TOW);
double ref_fs_hz = (double)gnss_synchro_map_iter->second.fs;
// compute interpolated TOW value at T_rx_s
int ref_channel_key = gnss_synchro_map_iter->second.Channel_ID;
Gnss_Synchro adj_obs = adjacent_gnss_synchro_map.at(ref_channel_key);
double ref_adj_T_rx_s = (double)adj_obs.Tracking_sample_counter / ref_fs_hz + adj_obs.Code_phase_samples / ref_fs_hz;
double d_TOW_reference = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
double d_ref_T_rx_s = (double)gnss_synchro_map_iter->second.Tracking_sample_counter / ref_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / ref_fs_hz;
double selected_T_rx_s = T_rx_s;
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
double ref_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - ref_adj_T_rx_s)
* (d_TOW_reference - adj_obs.TOW_at_current_symbol_s) / (d_ref_T_rx_s - ref_adj_T_rx_s);
// Now compute RX time differences due to the PRN alignment in the correlators
double traveltime_ms;
double pseudorange_m;
double channel_T_rx_s;
double channel_fs_hz;
double channel_TOW_s;
for(gnss_synchro_map_iter = realigned_gnss_synchro_map.begin(); gnss_synchro_map_iter != realigned_gnss_synchro_map.end(); gnss_synchro_map_iter++)
{
channel_fs_hz = (double)gnss_synchro_map_iter->second.fs;
channel_TOW_s = gnss_synchro_map_iter->second.TOW_at_current_symbol_s;
channel_T_rx_s = (double)gnss_synchro_map_iter->second.Tracking_sample_counter / channel_fs_hz + gnss_synchro_map_iter->second.Code_phase_samples / channel_fs_hz;
// compute interpolated observation values
// two points linear interpolation using adjacent (adj) values: y=y1+(x-x1)*(y2-y1)/(x2-x1)
// TOW at the selected receiver time T_rx_s
int element_key = gnss_synchro_map_iter->second.Channel_ID;
adj_obs = adjacent_gnss_synchro_map.at(element_key);
double adj_T_rx_s = (double)adj_obs.Tracking_sample_counter / channel_fs_hz + adj_obs.Code_phase_samples / channel_fs_hz;
double channel_TOW_at_T_rx_s = adj_obs.TOW_at_current_symbol_s + (selected_T_rx_s - adj_T_rx_s) * (channel_TOW_s - adj_obs.TOW_at_current_symbol_s) / (channel_T_rx_s - adj_T_rx_s);
//Doppler and Accumulated carrier phase
double Carrier_phase_lin_rads = adj_obs.Carrier_phase_rads + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_phase_rads - adj_obs.Carrier_phase_rads) / (channel_T_rx_s - adj_T_rx_s);
double Carrier_Doppler_lin_hz = adj_obs.Carrier_Doppler_hz + (selected_T_rx_s - adj_T_rx_s) * (gnss_synchro_map_iter->second.Carrier_Doppler_hz - adj_obs.Carrier_Doppler_hz) / (channel_T_rx_s - adj_T_rx_s);
//compute the pseudorange (no rx time offset correction)
traveltime_ms = (ref_TOW_at_T_rx_s - channel_TOW_at_T_rx_s) * 1000.0 + GPS_STARTOFFSET_ms;
//convert to meters
pseudorange_m = traveltime_ms * GPS_C_m_ms; // [m]
// update the pseudorange object
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID] = gnss_synchro_map_iter->second;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Pseudorange_m = pseudorange_m;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Flag_valid_pseudorange = true;
// Save the estimated RX time (no RX clock offset correction yet!)
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].RX_time = ref_TOW_at_T_rx_s + GPS_STARTOFFSET_ms / 1000.0;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_phase_rads = Carrier_phase_lin_rads;
current_gnss_synchro[gnss_synchro_map_iter->second.Channel_ID].Carrier_Doppler_hz = Carrier_Doppler_lin_hz;
}
if(d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
for (unsigned int i = 0; i < d_nchannels; i++)
{
tmp_double = current_gnss_synchro[i].RX_time;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].TOW_at_current_symbol_s;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].Carrier_Doppler_hz;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].Carrier_phase_rads/GPS_TWO_PI;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].Pseudorange_m;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].PRN;
d_dump_file.write((char*)&tmp_double, sizeof(double));
tmp_double = current_gnss_synchro[i].Flag_valid_pseudorange;
d_dump_file.write((char*)&tmp_double, sizeof(double));
}
}
catch (const std::ifstream::failure& e)
{
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
for (unsigned int i = 0; i < d_nchannels; i++)
{
out[i][n_outputs] = current_gnss_synchro[i];
}
n_outputs++;
}
//Move RX time
T_rx_s = T_rx_s + T_rx_step_s;
//pop old elements from queue
for (unsigned int i = 0; i < d_nchannels; i++)
{
while (d_gnss_synchro_history_queue[i].front().Tracking_sample_counter / (double)d_gnss_synchro_history_queue[i].front().fs < (T_rx_s - past_history_s))
{
d_gnss_synchro_history_queue[i].pop_front();
}
}
// Multi-rate consume!
for (unsigned int i = 0; i < d_nchannels; i++)
{
consume(i, n_consume[i]); // which input, how many items
}
}while(channel_history_ok == true && d_max_noutputs>n_outputs);
//Multi-rate consume!
for (unsigned int i = 0; i < d_nchannels; i++)
{
consume(i, n_consume[i]); //which input, how many items
}
return n_outputs;
return n_outputs;
}

View File

@ -52,26 +52,26 @@ hybrid_make_observables_cc(unsigned int n_channels, bool dump, std::string dump_
class hybrid_observables_cc : public gr::block
{
public:
~hybrid_observables_cc ();
int general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
~hybrid_observables_cc ();
int general_work (int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
private:
friend hybrid_observables_cc_sptr
hybrid_make_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history);
hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history);
friend hybrid_observables_cc_sptr
hybrid_make_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history);
hybrid_observables_cc(unsigned int nchannels, bool dump, std::string dump_filename, unsigned int deep_history);
//Tracking observable history
std::vector<std::deque<Gnss_Synchro>> d_gnss_synchro_history_queue;
//Tracking observable history
std::vector<std::deque<Gnss_Synchro>> d_gnss_synchro_history_queue;
double T_rx_s;
double T_rx_step_s;
int d_max_noutputs;
bool d_dump;
unsigned int d_nchannels;
unsigned int history_deep;
std::string d_dump_filename;
std::ofstream d_dump_file;
double T_rx_s;
double T_rx_step_s;
int d_max_noutputs;
bool d_dump;
unsigned int d_nchannels;
unsigned int history_deep;
std::string d_dump_filename;
std::ofstream d_dump_file;
};
#endif

View File

@ -21,6 +21,36 @@ list(SORT SIGNAL_SOURCE_ADAPTER_HEADERS)
# Optional drivers
if(ENABLE_PLUTOSDR)
##############################################
# ADALM-PLUTO (Analog Devices Inc.)
##############################################
find_package(iio REQUIRED)
if(NOT IIO_FOUND)
message("gnuradio-iio not found, installation is required")
message(FATAL_ERROR "gnuradio-iio required for building gnss-sdr with this option enabled")
else(NOT IIO_FOUND)
set(OPT_LIBRARIES ${OPT_LIBRARIES} ${IIO_LIBRARIES})
set(OPT_DRIVER_INCLUDE_DIRS ${OPT_DRIVER_INCLUDE_DIRS} ${IIO_INCLUDE_DIRS})
set(OPT_DRIVER_SOURCES ${OPT_DRIVER_SOURCES} plutosdr_signal_source.cc)
endif(NOT IIO_FOUND)
endif(ENABLE_PLUTOSDR)
if(ENABLE_FMCOMMS2)
###############################################
# FMCOMMS2 based SDR Hardware
###############################################
find_package(iio REQUIRED)
if(NOT IIO_FOUND)
message("gnuradio-iio not found, installation is required")
message(FATAL_ERROR "gnuradio-iio required for building gnss-sdr with this option enabled")
else(NOT IIO_FOUND)
set(OPT_LIBRARIES ${OPT_LIBRARIES} ${IIO_LIBRARIES})
set(OPT_DRIVER_INCLUDE_DIRS ${OPT_DRIVER_INCLUDE_DIRS} ${IIO_INCLUDE_DIRS})
set(OPT_DRIVER_SOURCES ${OPT_DRIVER_SOURCES} fmcomms2_signal_source.cc plutosdr_signal_source.cc)
endif(NOT IIO_FOUND)
endif(ENABLE_FMCOMMS2)
if(ENABLE_GN3S)
##############################################
# GN3S (USB dongle)

View File

@ -0,0 +1,179 @@
/*!
* \filei fmcomms2_signal_source.cc
* \brief signal source for sdr hardware from analog devices based on
* fmcomms2 evaluation board.
* \author Rodrigo Muñoz, 2017, rmunozl(at)inacap.cl
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "fmcomms2_signal_source.h"
#include <cstdio>
#include <iostream>
#include <boost/format.hpp>
#include <glog/logging.h>
#include <gnuradio/blocks/file_sink.h>
#include "configuration_interface.h"
#include "gnss_sdr_valve.h"
#include "GPS_L1_CA.h"
using google::LogMessage;
Fmcomms2SignalSource::Fmcomms2SignalSource(ConfigurationInterface* configuration,
std::string role, unsigned int in_stream, unsigned int out_stream,
boost::shared_ptr<gr::msg_queue> queue) :
role_(role), in_stream_(in_stream), out_stream_(out_stream),
queue_(queue)
{
std::string default_item_type = "gr_complex";
std::string default_dump_file = "./data/signal_source.dat";
uri_ = configuration->property(role + ".device_address", std::string("192.168.2.1"));
freq_ = configuration->property(role + ".freq", GPS_L1_FREQ_HZ);
sample_rate_ = configuration->property(role + ".sampling_frequency", 2600000);
bandwidth_ = configuration->property(role + ".bandwidth", 2000000);
rx1_en_ = configuration->property(role + ".rx1_enable", true);
rx2_en_ = configuration->property(role + ".rx2_enable", false);
buffer_size_ = configuration->property(role + ".buffer_size", 0xA0000);
decimation_ = configuration->property(role + ".decimation", 1);
quadrature_ = configuration->property(role + ".quadrature", true);
rf_dc_ = configuration->property(role + ".rf_dc", true);
bb_dc_ = configuration->property(role + ".bb_dc", true);
gain_mode_rx1_ = configuration->property(role + ".gain_mode_rx1", std::string("manual"));
gain_mode_rx2_ = configuration->property(role + ".gain_mode_rx2", std::string("manual"));
rf_gain_rx1_ = configuration->property(role + ".gain_rx1", 64.0);
rf_gain_rx2_ = configuration->property(role + ".gain_rx2", 64.0);
rf_port_select_ = configuration->property(role + ".rf_port_select", std::string("A_BALANCED"));
filter_file_ = configuration->property(role + ".filter_file", std::string(""));
filter_auto_ = configuration->property(role + ".filter_auto", true);
item_type_ = configuration->property(role + ".item_type", default_item_type);
samples_ = configuration->property(role + ".samples", 0);
dump_ = configuration->property(role + ".dump", false);
dump_filename_ = configuration->property(role + ".dump_filename", default_dump_file);
item_size_ = sizeof(gr_complex);
std::cout << "device address: " << uri_ << std::endl;
std::cout << "LO frequency : " << freq_ << "Hz" << std::endl;
std::cout << "sample rate: " << sample_rate_ << "Hz" << std::endl;
if(item_type_.compare("gr_complex")==0)
{
fmcomms2_source_f32c_ = gr::iio::fmcomms2_source_f32c::make(
uri_.c_str(), freq_, sample_rate_,
decimation_, bandwidth_,
rx1_en_, rx2_en_,
buffer_size_, quadrature_, rf_dc_,
bb_dc_, gain_mode_rx1_.c_str(), rf_gain_rx1_,
gain_mode_rx2_.c_str(), rf_gain_rx2_,
rf_port_select_.c_str(), filter_file_.c_str(),
filter_auto_);
}
else
{
LOG(FATAL) << "Exception: item type " << item_type_ << " not suported!";
}
if (samples_ != 0)
{
DLOG(INFO) << "Send STOP signal after " << samples_ << " samples";
valve_ = gnss_sdr_make_valve(item_size_, samples_, queue_);
DLOG(INFO) << "valve(" << valve_->unique_id() << ")";
}
if (dump_)
{
DLOG(INFO) << "Dumping output into file " << dump_filename_;
file_sink_ = gr::blocks::file_sink::make(item_size_, dump_filename_.c_str());
DLOG(INFO) << "file_sink(" << file_sink_->unique_id() << ")";
}
}
Fmcomms2SignalSource::~Fmcomms2SignalSource()
{}
void Fmcomms2SignalSource::connect(gr::top_block_sptr top_block)
{
if (samples_ != 0)
{
top_block->connect(fmcomms2_source_f32c_, 0, valve_, 0);
DLOG(INFO) << "connected fmcomms2 source to valve";
if (dump_)
{
top_block->connect(valve_, 0, file_sink_, 0);
DLOG(INFO) << "connected valve to file sink";
}
}
else
{
if (dump_)
{
top_block->connect(fmcomms2_source_f32c_ , 0, file_sink_, 0);
DLOG(INFO) << "connected fmcomms2 source to file sink";
}
}
}
void Fmcomms2SignalSource::disconnect(gr::top_block_sptr top_block)
{
if (samples_ != 0)
{
top_block->disconnect(fmcomms2_source_f32c_, 0, valve_, 0);
if (dump_)
{
top_block->disconnect(valve_, 0, file_sink_, 0);
}
}
else
{
if (dump_)
{
top_block->disconnect(fmcomms2_source_f32c_, 0, file_sink_, 0);
}
}
}
gr::basic_block_sptr Fmcomms2SignalSource::get_left_block()
{
LOG(WARNING) << "Trying to get signal source left block.";
return gr::basic_block_sptr();
}
gr::basic_block_sptr Fmcomms2SignalSource::get_right_block()
{
if (samples_ != 0)
{
return valve_;
}
else
{
return (fmcomms2_source_f32c_);
}
}

View File

@ -0,0 +1,116 @@
/*!
* \file fmcomms2_signal_source.h
* \brief Interface to use SDR hardware based in FMCOMMS2 driver from analog
* devices, for example FMCOMMS4 and ADALM-PLUTO (PlutoSdr)
* \author Rodrigo Muñoz, 2017. rmunozl(at)inacap.cl
*
* This class represent a fmcomms2 signal source. It use the gr_iio block
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_FMCOMMS2_SIGNAL_SOURCE_H_
#define GNSS_SDR_FMCOMMS2_SIGNAL_SOURCE_H_
#include <string>
#include <boost/shared_ptr.hpp>
#include <gnuradio/msg_queue.h>
#include <gnuradio/blocks/file_sink.h>
#include <iio/fmcomms2_source.h>
#include "gnss_block_interface.h"
class ConfigurationInterface;
class Fmcomms2SignalSource: public GNSSBlockInterface
{
public:
Fmcomms2SignalSource(ConfigurationInterface* configuration,
std::string role, unsigned int in_stream,
unsigned int out_stream, boost::shared_ptr<gr::msg_queue> queue);
virtual ~Fmcomms2SignalSource();
inline std::string role() override
{
return role_;
}
/*!
* \brief Returns "fmcomms2_Signal_Source"
*/
inline std::string implementation() override
{
return "Fmcomms2_Signal_Source";
}
inline size_t item_size() override
{
return item_size_;
}
void connect(gr::top_block_sptr top_block) override;
void disconnect(gr::top_block_sptr top_block) override;
gr::basic_block_sptr get_left_block() override;
gr::basic_block_sptr get_right_block() override;
private:
std::string role_;
// Front-end settings
std::string uri_;//device direction
unsigned long freq_; //frequency of local oscilator
unsigned long sample_rate_;
unsigned long bandwidth_;
unsigned long buffer_size_; //reception buffer
unsigned int decimation_;
bool rx1_en_;
bool rx2_en_;
bool quadrature_;
bool rf_dc_;
bool bb_dc_;
std::string gain_mode_rx1_;
std::string gain_mode_rx2_;
double rf_gain_rx1_;
double rf_gain_rx2_;
std::string rf_port_select_;
std::string filter_file_;
bool filter_auto_;
unsigned int in_stream_;
unsigned int out_stream_;
std::string item_type_;
size_t item_size_;
long samples_;
bool dump_;
std::string dump_filename_;
gr::iio::fmcomms2_source_f32c::sptr fmcomms2_source_f32c_;
boost::shared_ptr<gr::block> valve_;
gr::blocks::file_sink::sptr file_sink_;
boost::shared_ptr<gr::msg_queue> queue_;
};
#endif /*GNSS_SDR_FMCOMMS2_SIGNAL_SOURCE_H_*/

View File

@ -0,0 +1,169 @@
/*!
* \file plutosdr_signal_source.cc
* \brief Signal source for PlutoSDR
* \author Rodrigo Muñoz, 2017, rmunozl(at)inacap.cl
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "plutosdr_signal_source.h"
#include <iostream>
#include <boost/format.hpp>
#include <glog/logging.h>
#include <gnuradio/blocks/file_sink.h>
#include "configuration_interface.h"
#include "gnss_sdr_valve.h"
#include "GPS_L1_CA.h"
using google::LogMessage;
PlutosdrSignalSource::PlutosdrSignalSource(ConfigurationInterface* configuration,
std::string role, unsigned int in_stream, unsigned int out_stream,
boost::shared_ptr<gr::msg_queue> queue) :
role_(role), in_stream_(in_stream), out_stream_(out_stream),
queue_(queue)
{
std::string default_item_type = "gr_complex";
std::string default_dump_file = "./data/signal_source.dat";
uri_ = configuration->property(role + ".device_address", std::string("192.168.2.1"));
freq_ = configuration->property(role + ".freq", GPS_L1_FREQ_HZ);
sample_rate_ configuration->property(role + ".sampling_frequency", 3000000);
bandwidth_ = configuration->property(role + ".bandwidth", 2000000);
buffer_size_ = configuration->property(role + ".buffer_size", 0xA0000);
decimation_ = configuration->property(role + ".decimation", 1);
quadrature_ = configuration->property(role + ".quadrature", true);
rf_dc_ = configuration->property(role + ".rf_dc", true);
bb_dc_ = configuration->property(role + ".bb_dc", true);
gain_mode_ = configuration->property(role + ".gain_mode", std::string("manual"));
rf_gain_ = configuration->property(role + ".gain", 50.0);
filter_file_ = configuration->property(role + ".filter_file", std::string(""));
filter_auto_ = configuration->property(role + ".filter_auto", true);
item_type_ = configuration->property(role + ".item_type", default_item_type);
samples_ = configuration->property(role + ".samples", 0);
dump_ = configuration->property(role + ".dump", false);
dump_filename_ = configuration->property(role + ".dump_filename", default_dump_file);
if(item_type_.compare("gr_complex") != 0)
{
std::cout << "bad item_type!!" << std::endl;
LOG(FATAL) << "Exception: item type must be gr_complex!";
}
item_size_ = sizeof(gr_complex);
std::cout << "device address: " << uri_ << std::endl;
std::cout << "frequency : " << freq_ << "Hz" << std::endl;
std::cout << "sample rate: " << sample_rate_ << "Hz" << std::endl;
std::cout << "gain mode: " << gain_mode_ << std::endl;
std::cout << "item type: " << item_type_ << std::endl;
plutosdr_source_ = gr::iio::pluto_source::make(uri_, freq_, sample_rate_,
decimation_, bandwidth_, buffer_size_, quadrature_, rf_dc_, bb_dc_,
gain_mode_.c_str(), rf_gain_,filter_file_.c_str(), filter_auto_);
if (samples_ != 0)
{
DLOG(INFO) << "Send STOP signal after " << samples_ << " samples";
valve_ = gnss_sdr_make_valve(item_size_, samples_, queue_);
DLOG(INFO) << "valve(" << valve_->unique_id() << ")";
}
if (dump_)
{
DLOG(INFO) << "Dumping output into file " << dump_filename_;
file_sink_ = gr::blocks::file_sink::make(item_size_, dump_filename_.c_str());
DLOG(INFO) << "file_sink(" << file_sink_->unique_id() << ")";
}
}
PlutosdrSignalSource::~PlutosdrSignalSource()
{}
void PlutosdrSignalSource::connect(gr::top_block_sptr top_block)
{
if (samples_ != 0)
{
top_block->connect(plutosdr_source_, 0, valve_, 0);
DLOG(INFO) << "connected plutosdr source to valve";
if (dump_)
{
top_block->connect(valve_, 0, file_sink_, 0);
DLOG(INFO) << "connected valve to file sink";
}
}
else
{
if (dump_)
{
top_block->connect(plutosdr_source_, 0, file_sink_, 0);
DLOG(INFO) << "connected plutosdr source to file sink";
}
}
}
void PlutosdrSignalSource::disconnect(gr::top_block_sptr top_block)
{
if (samples_ != 0)
{
top_block->disconnect(plutosdr_source_, 0, valve_, 0);
if (dump_)
{
top_block->disconnect(valve_, 0, file_sink_, 0);
}
}
else
{
if (dump_)
{
top_block->disconnect(plutosdr_source_, 0, file_sink_, 0);
}
}
}
gr::basic_block_sptr PlutosdrSignalSource::get_left_block()
{
LOG(WARNING) << "Trying to get signal source left block.";
return gr::basic_block_sptr();
}
gr::basic_block_sptr PlutosdrSignalSource::get_right_block()
{
if (samples_ != 0)
{
return valve_;
}
else
{
return plutosdr_source_;
}
}

View File

@ -0,0 +1,111 @@
/*!
* \file plutosdr_signal_source.h
* \brief Signal source for PlutoSDR
* \author Rodrigo Muñoz, 2017, rmunozl(at)inacap.cl
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_PLUTOSDR_SIGNAL_SOURCE_H_
#define GNSS_SDR_PLUTOSDR_SIGNAL_SOURCE_H_
#include <string>
#include <boost/shared_ptr.hpp>
#include <gnuradio/msg_queue.h>
#include <gnuradio/blocks/file_sink.h>
#include <iio/pluto_source.h>
#include "gnss_block_interface.h"
class ConfigurationInterface;
/*!
*/
class PlutosdrSignalSource: public GNSSBlockInterface
{
public:
PlutosdrSignalSource(ConfigurationInterface* configuration,
std::string role, unsigned int in_stream,
unsigned int out_stream, boost::shared_ptr<gr::msg_queue> queue);
virtual ~PlutosdrSignalSource();
std::string role() override
{
return role_;
}
/*!
* \brief Returns "Plutosdr_Signal_Source"
*/
std::string implementation() override
{
return "Plutosdr_Signal_Source";
}
size_t item_size() override
{
return item_size_;
}
void connect(gr::top_block_sptr top_block) override;
void disconnect(gr::top_block_sptr top_block) override;
gr::basic_block_sptr get_left_block() override;
gr::basic_block_sptr get_right_block() override;
private:
std::string role_;
// Front-end settings
std::string uri_; // device direction
unsigned long freq_; // frequency of local oscilator
unsigned long sample_rate_;
unsigned long bandwidth_;
unsigned long buffer_size_; // reception buffer
unsigned int decimation_;
bool quadrature_;
bool rf_dc_;
bool bb_dc_;
std::string gain_mode_;
double rf_gain_;
std::string filter_file_;
bool filter_auto_;
unsigned int in_stream_;
unsigned int out_stream_;
std::string item_type_;
size_t item_size_;
long samples_;
bool dump_;
std::string dump_filename_;
gr::iio::pluto_source::sptr plutosdr_source_;
boost::shared_ptr<gr::block> valve_;
gr::blocks::file_sink::sptr file_sink_;
boost::shared_ptr<gr::msg_queue> queue_;
};
#endif /*GNSS_SDR_PLUTOSDR_SIGNAL_SOURCE_H_*/

View File

@ -36,7 +36,7 @@
*/
#ifndef GNSS_SDR_RTL_TCP_SIGNAL_SOURCE_C_H
#define GNSS_SDR_RTL_TCP_SIGNAL_SOURCE_C_H
#define GNSS_SDR_RTL_TCP_SIGNAL_SOURCE_C_H
#include "rtl_tcp_dongle_info.h"
#include <boost/asio.hpp>
@ -67,8 +67,8 @@ public:
~rtl_tcp_signal_source_c();
int work (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items);
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items);
void set_frequency (int frequency);
void set_sample_rate (int sample_rate);
@ -110,13 +110,15 @@ private:
void handle_read (const boost::system::error_code &ec,
size_t bytes_transferred);
inline bool not_full ( ) const {
inline bool not_full ( ) const
{
return unread_ < buffer_.capacity( );
}
inline bool not_empty ( ) const {
inline bool not_empty ( ) const
{
return unread_ > 0 || io_service_.stopped ();
}
};
#endif //GNSS_SDR_RTL_TCP_SIGNAL_SOURCE_C_H
#endif // GNSS_SDR_RTL_TCP_SIGNAL_SOURCE_C_H

View File

@ -29,25 +29,21 @@
*
* -------------------------------------------------------------------------
*/
#include "rtl_tcp_commands.h"
#include <string.h>
#include <string>
using boost::asio::ip::tcp;
boost::system::error_code
rtl_tcp_command (RTL_TCP_COMMAND id, unsigned param, tcp::socket &socket) {
boost::system::error_code rtl_tcp_command (RTL_TCP_COMMAND id, unsigned param, boost::asio::ip::tcp::socket &socket)
{
// Data payload
unsigned char data[sizeof (unsigned char) + sizeof (unsigned)];
unsigned char data[sizeof(unsigned char) + sizeof(unsigned)];
data[0] = static_cast<unsigned char> (id);
data[0] = static_cast<unsigned char>(id);
unsigned nparam =
boost::asio::detail::socket_ops::host_to_network_long (param);
::memcpy (&data[1], &nparam, sizeof (nparam));
unsigned nparam = boost::asio::detail::socket_ops::host_to_network_long(param);
std::memcpy(&data[1], &nparam, sizeof(nparam));
boost::system::error_code ec;
socket.send (boost::asio::buffer (data), 0, ec);
socket.send(boost::asio::buffer(data), 0, ec);
return ec;
}

View File

@ -48,8 +48,7 @@ enum RTL_TCP_COMMAND {
/*!
* \brief Send a command to rtl_tcp over the given socket.
*/
boost::system::error_code
rtl_tcp_command (RTL_TCP_COMMAND id, unsigned param,
boost::asio::ip::tcp::socket &socket);
boost::system::error_code rtl_tcp_command (RTL_TCP_COMMAND id, unsigned param,
boost::asio::ip::tcp::socket &socket);
#endif // GNSS_SDR_RTL_TCP_COMMANDS_H

View File

@ -30,45 +30,47 @@
*
* -------------------------------------------------------------------------
*/
#include "rtl_tcp_dongle_info.h"
#include <string.h>
#include <string>
#include <boost/foreach.hpp>
using boost::asio::ip::tcp;
rtl_tcp_dongle_info::rtl_tcp_dongle_info ()
: tuner_type_ (0), tuner_gain_count_ (0)
rtl_tcp_dongle_info::rtl_tcp_dongle_info() : tuner_type_(0), tuner_gain_count_(0)
{
::memset (magic_, 0, sizeof (magic_));
std::memset(magic_, 0, sizeof(magic_));
}
boost::system::error_code rtl_tcp_dongle_info::read (tcp::socket &socket) {
boost::system::error_code rtl_tcp_dongle_info::read(boost::asio::ip::tcp::socket &socket)
{
boost::system::error_code ec;
unsigned char data[sizeof (char) * 4 + sizeof (uint32_t) * 2];
socket.receive (boost::asio::buffer (data), 0, ec);
if (!ec) {
::memcpy (magic_, data, 4);
unsigned char data[sizeof(char) * 4 + sizeof(uint32_t) * 2];
socket.receive(boost::asio::buffer(data), 0, ec);
if (!ec)
{
std::memcpy(magic_, data, 4);
uint32_t type;
::memcpy (&type, &data[4], 4);
uint32_t type;
std::memcpy(&type, &data[4], 4);
tuner_type_ =
boost::asio::detail::socket_ops::network_to_host_long (type);
tuner_type_ = boost::asio::detail::socket_ops::network_to_host_long(type);
uint32_t count;
std ::memcpy(&count, &data[8], 4);
uint32_t count;
::memcpy (&count, &data[8], 4);
tuner_gain_count_ =
boost::asio::detail::socket_ops::network_to_host_long (count);
}
tuner_gain_count_ = boost::asio::detail::socket_ops::network_to_host_long(count);
}
return ec;
}
const char *rtl_tcp_dongle_info::get_type_name () const {
switch (get_tuner_type()) {
const char *rtl_tcp_dongle_info::get_type_name() const
{
switch(get_tuner_type())
{
default:
return "UNKNOWN";
case TUNER_E4000:
@ -86,29 +88,32 @@ const char *rtl_tcp_dongle_info::get_type_name () const {
}
}
double rtl_tcp_dongle_info::clip_gain (int gain) const {
double rtl_tcp_dongle_info::clip_gain(int gain) const
{
// the following gain values have been copied from librtlsdr
// all gain values are expressed in tenths of a dB
std::vector<double> gains;
switch (get_tuner_type()) {
switch (get_tuner_type())
{
case TUNER_E4000:
gains = { -10, 15, 40, 65, 90, 115, 140, 165, 190, 215,
240, 290, 340, 420 };
240, 290, 340, 420 };
break;
case TUNER_FC0012:
gains = { -99, -40, 71, 179, 192 };
break;
case TUNER_FC0013:
gains = { -99, -73, -65, -63, -60, -58, -54, 58, 61,
63, 65, 67, 68, 70, 71, 179, 181, 182,
184, 186, 188, 191, 197 };
63, 65, 67, 68, 70, 71, 179, 181, 182,
184, 186, 188, 191, 197 };
break;
case TUNER_R820T:
gains = { 0, 9, 14, 27, 37, 77, 87, 125, 144, 157,
166, 197, 207, 229, 254, 280, 297, 328,
338, 364, 372, 386, 402, 421, 434, 439,
445, 480, 496 };
166, 197, 207, 229, 254, 280, 297, 328,
338, 364, 372, 386, 402, 421, 434, 439,
445, 480, 496 };
break;
default:
// no gains
@ -116,29 +121,37 @@ double rtl_tcp_dongle_info::clip_gain (int gain) const {
}
// clip
if (gains.size() == 0) {
// no defined gains to clip to
return gain;
}
else {
double last_stop = gains.front ();
BOOST_FOREACH (double g, gains) {
g /= 10.0;
if (gain < g) {
if (std::abs (gain - g) < std::abs (gain - last_stop)) {
return g;
}
else {
return last_stop;
}
}
last_stop = g;
if (gains.size() == 0)
{
// no defined gains to clip to
return gain;
}
else
{
double last_stop = gains.front();
BOOST_FOREACH (double g, gains)
{
g /= 10.0;
if (gain < g)
{
if (std::abs(gain - g) < std::abs(gain - last_stop))
{
return g;
}
else
{
return last_stop;
}
}
last_stop = g;
}
return last_stop;
}
return last_stop;
}
}
bool rtl_tcp_dongle_info::is_valid () const {
return ::memcmp (magic_, "RTL0", 4) == 0;
bool rtl_tcp_dongle_info::is_valid() const
{
return std::memcmp(magic_, "RTL0", 4) == 0;
}

View File

@ -29,6 +29,7 @@
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_RTL_TCP_DONGLE_INFO_H
#define GNSS_SDR_RTL_TCP_DONGLE_INFO_H
@ -38,9 +39,16 @@
* \brief This class represents the dongle information
* which is sent by rtl_tcp.
*/
class rtl_tcp_dongle_info {
public:
enum {
class rtl_tcp_dongle_info
{
private:
char magic_[4];
uint32_t tuner_type_;
uint32_t tuner_gain_count_;
public:
enum
{
TUNER_UNKNOWN = 0,
TUNER_E4000,
TUNER_FC0012,
@ -50,28 +58,23 @@ class rtl_tcp_dongle_info {
TUNER_R828D
};
private:
char magic_[4];
uint32_t tuner_type_;
uint32_t tuner_gain_count_;
rtl_tcp_dongle_info();
public:
rtl_tcp_dongle_info ();
boost::system::error_code read(boost::asio::ip::tcp::socket &socket);
boost::system::error_code read (
boost::asio::ip::tcp::socket &socket);
bool is_valid() const;
bool is_valid () const;
const char *get_type_name() const;
const char *get_type_name () const;
double clip_gain(int gain) const;
double clip_gain (int gain) const;
inline uint32_t get_tuner_type () const {
inline uint32_t get_tuner_type() const
{
return tuner_type_;
}
inline uint32_t get_tuner_gain_count () const {
inline uint32_t get_tuner_gain_count() const
{
return tuner_gain_count_;
}
};

View File

@ -53,13 +53,13 @@ public:
unsigned int out_streams);
virtual ~GlonassL1CaTelemetryDecoder();
std::string role()
std::string role() override
{
return role_;
}
//! Returns "GLONASS_L1_CA_Telemetry_Decoder"
std::string implementation()
std::string implementation() override
{
return "GLONASS_L1_CA_Telemetry_Decoder";
}
@ -69,11 +69,11 @@ public:
gr::basic_block_sptr get_right_block() override;
void set_satellite(const Gnss_Satellite & satellite) override;
void set_channel(int channel) override {telemetry_decoder_->set_channel(channel);}
void reset()
void reset() override
{
return;
}
size_t item_size()
size_t item_size() override
{
return 0;
}

View File

@ -109,7 +109,7 @@ void galileo_e5a_telemetry_decoder_cc::deinterleaver(int rows, int cols, double
}
void galileo_e5a_telemetry_decoder_cc::decode_word(double *page_symbols,int frame_length)
void galileo_e5a_telemetry_decoder_cc::decode_word(double *page_symbols, int frame_length)
{
double page_symbols_deint[frame_length];
// 1. De-interleave
@ -530,7 +530,7 @@ int galileo_e5a_telemetry_decoder_cc::general_work (int noutput_items __attribut
}
void galileo_e5a_telemetry_decoder_cc::set_satellite(Gnss_Satellite satellite)
void galileo_e5a_telemetry_decoder_cc::set_satellite(const Gnss_Satellite & satellite)
{
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
DLOG(INFO) << "Setting decoder Finite State Machine to satellite " << d_satellite;

View File

@ -66,8 +66,8 @@ class galileo_e5a_telemetry_decoder_cc : public gr::block
{
public:
~galileo_e5a_telemetry_decoder_cc();
void set_satellite(Gnss_Satellite satellite); //!< Set satellite PRN
void set_channel(int channel); //!< Set receiver's channel
void set_satellite(const Gnss_Satellite & satellite); //!< Set satellite PRN
void set_channel(int channel); //!< Set receiver's channel
/*!
* \brief This is where all signal processing takes place
*/
@ -83,13 +83,11 @@ private:
void deinterleaver(int rows, int cols, double *in, double *out);
void decode_word(double *page_symbols,int frame_length);
void decode_word(double *page_symbols, int frame_length);
int d_preamble_bits[GALILEO_FNAV_PREAMBLE_LENGTH_BITS];
// signed int d_page_symbols[GALILEO_FNAV_SYMBOLS_PER_PAGE + GALILEO_FNAV_PREAMBLE_LENGTH_BITS];
double d_page_symbols[GALILEO_FNAV_SYMBOLS_PER_PAGE + GALILEO_FNAV_PREAMBLE_LENGTH_BITS];
// signed int *d_preamble_symbols;
double d_current_symbol;
long unsigned int d_symbol_counter;
int d_prompt_counter;

View File

@ -221,7 +221,8 @@ void glonass_l1_ca_telemetry_decoder_cc::decode_string(double *frame_symbols,int
if(d_nav.flag_update_slot_number == true)
{
LOG(INFO) << "GLONASS GNAV Slot Number Identified on channel " << d_channel;
d_satellite.what_block(d_satellite.get_system(), d_nav.get_ephemeris().d_n);
d_satellite.update_PRN(d_nav.gnav_ephemeris.d_n);
d_satellite.what_block(d_satellite.get_system(), d_nav.gnav_ephemeris.d_n);
d_nav.flag_update_slot_number = false;
}
}
@ -354,7 +355,7 @@ int glonass_l1_ca_telemetry_decoder_cc::general_work (int noutput_items __attrib
if (this->d_flag_preamble == true and d_nav.flag_TOW_new == true)
//update TOW at the preamble instant
{
d_TOW_at_current_symbol = floor((d_nav.d_TOW - GLONASS_GNAV_PREAMBLE_DURATION_S)*1000.0)/1000.0;
d_TOW_at_current_symbol = floor((d_nav.gnav_ephemeris.d_TOW - GLONASS_GNAV_PREAMBLE_DURATION_S)*1000)/1000;
d_nav.flag_TOW_new = false;
}
@ -380,7 +381,7 @@ int glonass_l1_ca_telemetry_decoder_cc::general_work (int noutput_items __attrib
}
current_symbol.PRN = this->d_satellite.get_PRN();
current_symbol.TOW_at_current_symbol_s = floor(d_TOW_at_current_symbol*1000.0)/1000.0;
current_symbol.TOW_at_current_symbol_s = d_TOW_at_current_symbol;
current_symbol.TOW_at_current_symbol_s -=delta_t; //Galileo to GPS TOW
if(d_dump == true)

View File

@ -237,7 +237,7 @@ int gps_l1_ca_telemetry_decoder_cc::general_work (int noutput_items __attribute_
if (d_stat == 1)
{
preamble_diff_ms = round(((static_cast<double>(d_symbol_history.at(0).Tracking_sample_counter) - static_cast<double>(d_preamble_time_samples)) / static_cast<double>(d_symbol_history.at(0).fs)) * 1000.0);
if (preamble_diff_ms > GPS_SUBFRAME_MS+1)
if (preamble_diff_ms > GPS_SUBFRAME_MS + 1)
{
DLOG(INFO) << "Lost of frame sync SAT " << this->d_satellite << " preamble_diff= " << preamble_diff_ms;
d_stat = 0; //lost of frame sync
@ -344,16 +344,16 @@ int gps_l1_ca_telemetry_decoder_cc::general_work (int noutput_items __attribute_
}
//2. Add the telemetry decoder information
if (this->d_flag_preamble == true and d_flag_new_tow_available==true)
if (this->d_flag_preamble == true and d_flag_new_tow_available == true)
{
//double decoder_latency_ms=(double)(current_symbol.Tracking_sample_counter-d_symbol_history.at(0).Tracking_sample_counter)
// /(double)current_symbol.fs;
// update TOW at the preamble instant (account with decoder latency)
d_TOW_at_Preamble = d_GPS_FSM.d_nav.d_TOW + 2*GPS_L1_CA_CODE_PERIOD + GPS_CA_PREAMBLE_DURATION_S;
d_TOW_at_Preamble = d_GPS_FSM.d_nav.d_TOW + 2 * GPS_L1_CA_CODE_PERIOD + GPS_CA_PREAMBLE_DURATION_S;
d_TOW_at_current_symbol = floor(d_TOW_at_Preamble*1000.0)/1000.0;
d_TOW_at_current_symbol = floor(d_TOW_at_Preamble * 1000.0) / 1000.0;
flag_TOW_set = true;
d_flag_new_tow_available=false;
d_flag_new_tow_available = false;
}
else
{

View File

@ -124,6 +124,16 @@ else(OPENCL_FOUND)
add_definitions(-DOPENCL_BLOCKS=0)
endif(OPENCL_FOUND)
#enable SDR Hardware based on fmcomms2
if(ENABLE_PLUTOSDR)
add_definitions(-DPLUTOSDR_DRIVER=1)
endif(ENABLE_PLUTOSDR)
if(ENABLE_FMCOMMS2)
add_definitions(-DFMCOMMS2_DRIVER=1)
add_definitions(-DPLUTOSDR_DRIVER=1)
endif(ENABLE_FMCOMMS2)
add_definitions(-DGNSSSDR_INSTALL_DIR="${CMAKE_INSTALL_PREFIX}")
file(GLOB GNSS_RECEIVER_HEADERS "*.h")

View File

@ -422,7 +422,14 @@ void ControlThread::init()
{
// Instantiates a control queue, a GNSS flowgraph, and a control message factory
control_queue_ = gr::msg_queue::make(0);
flowgraph_ = std::make_shared<GNSSFlowgraph>(configuration_, control_queue_);
try
{
flowgraph_ = std::make_shared<GNSSFlowgraph>(configuration_, control_queue_);
}
catch (const boost::bad_lexical_cast& e )
{
std::cout << "Caught bad lexical cast with error " << e.what() << std::endl;
}
control_message_factory_ = std::make_shared<ControlMessageFactory>();
stop_ = false;
processed_control_messages_ = 0;

View File

@ -65,6 +65,8 @@
#include "freq_xlating_fir_filter.h"
#include "beamformer_filter.h"
#include "pulse_blanking_filter.h"
#include "notch_filter.h"
#include "notch_filter_lite.h"
#include "gps_l1_ca_pcps_acquisition.h"
#include "gps_l2_m_pcps_acquisition.h"
#include "gps_l1_ca_pcps_tong_acquisition.h"
@ -121,6 +123,14 @@
#include "uhd_signal_source.h"
#endif
#if PLUTOSDR_DRIVER
#include "plutosdr_signal_source.h"
#endif
#if FMCOMMS2_DRIVER
#include "fmcomms2_signal_source.h"
#endif
#if FLEXIBAND_DRIVER
#include "flexiband_signal_source.h"
#endif
@ -916,6 +926,24 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetBlock(
}
#endif
#if PLUTOSDR_DRIVER
else if (implementation.compare("Plutosdr_Signal_Source") == 0)
{
std::unique_ptr<GNSSBlockInterface> block_(new PlutosdrSignalSource(configuration.get(), role, in_streams,
out_streams, queue));
block = std::move(block_);
}
#endif
#if FMCOMMS2_DRIVER
else if (implementation.compare("Fmcomms2_Signal_Source") == 0)
{
std::unique_ptr<GNSSBlockInterface> block_(new Fmcomms2SignalSource(configuration.get(), role, in_streams,
out_streams, queue));
block = std::move(block_);
}
#endif
#if FLEXIBAND_DRIVER
else if (implementation.compare("Flexiband_Signal_Source") == 0)
{
@ -988,6 +1016,18 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetBlock(
out_streams));
block = std::move(block_);
}
else if (implementation.compare("Notch_Filter") == 0)
{
std::unique_ptr<GNSSBlockInterface> block_(new NotchFilter(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
else if (implementation.compare("Notch_Filter_Lite") == 0)
{
std::unique_ptr<GNSSBlockInterface> block_(new NotchFilterLite(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
// RESAMPLER -------------------------------------------------------------------

View File

@ -91,8 +91,6 @@ const int GLONASS_L1_CA_NBR_SATS = 24; // STRING DATA WITHOUT PREAMB
//FIXME Probably should use leap seconds definitions of rtklib
const double GLONASS_LEAP_SECONDS[21][7] = { /* leap seconds (y,m,d,h,m,s,utc-gpst) */
{2019, 1, 1, 0, 0, 0, -20},
{2018, 1, 1, 0, 0, 0, -19},
{2017, 1, 1, 0, 0, 0, -18},
{2015, 7, 1, 0, 0, 0, -17},
{2012, 7, 1, 0, 0, 0, -16},
@ -149,7 +147,7 @@ const int GLONASS_L1_CA_HISTORY_DEEP = 100;
// NAVIGATION MESSAGE DEMODULATION AND DECODING
#define GLONASS_GNAV_PREAMBLE {1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0}
const double GLONASS_GNAV_PREAMBLE_DURATION_S = 0.3;
const double GLONASS_GNAV_PREAMBLE_DURATION_S = 0.300;
const int GLONASS_GNAV_PREAMBLE_LENGTH_BITS = 30;
const int GLONASS_GNAV_PREAMBLE_LENGTH_SYMBOLS = 300;
const int GLONASS_GNAV_PREAMBLE_PERIOD_SYMBOLS = 2000;

View File

@ -79,20 +79,87 @@ Glonass_Gnav_Ephemeris::Glonass_Gnav_Ephemeris()
d_tau_c = 0.0;
d_TOW = 0.0; // tow of the start of frame
d_WN = 0.0; // week number of the start of frame
d_tod = 0.0;
}
boost::posix_time::ptime Glonass_Gnav_Ephemeris::compute_GLONASS_time(const double offset_time) const
{
boost::posix_time::time_duration t(0, 0, offset_time + d_tau_c);
boost::posix_time::time_duration t(0, 0, offset_time + d_tau_c + d_tau_n);
boost::gregorian::date d1(d_yr, 1, 1);
boost::gregorian::days d2(d_N_T);
boost::gregorian::days d2(d_N_T - 1);
boost::posix_time::ptime glonass_time(d1+d2, t);
return glonass_time;
}
boost::posix_time::ptime Glonass_Gnav_Ephemeris::glot_to_utc(const double offset_time, const double glot2utc_corr) const
{
double tod = 0.0;
double utcsu2utc = 3*3600;
double glot2utcsu = 3*3600;
tod = offset_time - glot2utcsu - utcsu2utc + glot2utc_corr + d_tau_n;
boost::posix_time::time_duration t(0, 0, tod);
boost::gregorian::date d1(d_yr, 1, 1);
boost::gregorian::days d2(d_N_T - 1);
boost::posix_time::ptime utc_time(d1+d2, t);
return utc_time;
}
void Glonass_Gnav_Ephemeris::glot_to_gpst(double tod_offset, double glot2utc_corr, double glot2gpst_corr, double * wn, double * tow) const
{
double tod = 0.0;
double dayofweek = 0.0;
double utcsu2utc = 3*3600;
double glot2utcsu = 3*3600;
double days = 0.0;
double total_sec = 0.0, sec_of_day = 0.0;
int i = 0;
boost::gregorian::date gps_epoch { 1980, 1, 6 };
// tk is relative to UTC(SU) + 3.00 hrs, so we need to convert to utc and add corrections
// tk plus 10 sec is the true tod since get_TOW is called when in str5
tod = tod_offset - glot2utcsu - utcsu2utc;
boost::posix_time::time_duration t(0, 0, tod);
boost::gregorian::date d1(d_yr, 1, 1);
boost::gregorian::days d2(d_N_T-1);
boost::posix_time::ptime glonass_time(d1+d2, t);
boost::gregorian::date utc_date = glonass_time.date();
// Total number of days
std::string fdat = boost::posix_time::to_simple_string(glonass_time);
days = static_cast<double>((utc_date - gps_epoch).days());
// Total number of seconds
sec_of_day = static_cast<double>((glonass_time.time_of_day()).total_seconds());
total_sec = days*86400 + sec_of_day;
for (i = 0; GLONASS_LEAP_SECONDS[i][0]>0; i++)
{
if (d_yr >= GLONASS_LEAP_SECONDS[i][0])
{
// We add the leap second when going from utc to gpst
total_sec += fabs(GLONASS_LEAP_SECONDS[i][6]);
break;
}
}
// Compute Week number
*wn = floor(total_sec/604800);
// Compute the arithmetic modules to wrap around range
*tow = total_sec - 604800*floor(total_sec/604800);
// Perform corrections from fractional seconds
*tow += glot2utc_corr + glot2gpst_corr;
}
double Glonass_Gnav_Ephemeris::check_t(double time)
{
double corrTime;

View File

@ -99,10 +99,10 @@ public:
double d_satClkDrift; //!< GLONASS clock error
double d_dtr; //!< relativistic clock correction term
double d_iode; //!< Issue of data, ephemeris (Bit 0-6 of tb)
double d_tau_c;
double d_TOW; // tow of the start of frame
double d_WN; // week number of the start of frame
double d_tod;
double d_tau_c; //!< GLONASST 2 UTC correction (todo) may be eliminated
double d_TOW; //!< GLONASST IN GPST seconds of week
double d_WN; //!< GLONASST IN GPST week number of the start of frame
double d_tod; //!< Time of Day since ephemeris where decoded
template<class Archive>
@ -159,6 +159,26 @@ public:
*/
boost::posix_time::ptime compute_GLONASS_time(const double offset_time) const;
/*!
* \brief Converts from GLONASST to UTC
* \details The function simply adjust for the 6 hrs offset between GLONASST and UTC
* \param[in] offset_time Is the start of day offset
* \param[in] glot2utc_corr Correction from GLONASST to UTC
* \returns UTC time as a boost::posix_time::ptime object
*/
boost::posix_time::ptime glot_to_utc(const double offset_time, const double glot2utc_corr) const;
/*!
* \brief Converts from GLONASST to GPST
* \details Converts from GLONASST to GPST in time of week (TOW) and week number (WN) format
* \param[in] tod_offset Is the start of day offset
* \param[in] glot2utc_corr Correction from GLONASST to UTC
* \param[in] glot2gpst_corr Correction from GLONASST to GPST
* \param[out] WN Week Number, not in mod(1024) format
* \param[out] TOW Time of Week in seconds of week
*/
void glot_to_gpst(double tod_offset, double glot2utc_corr, double glot2gpst_corr, double * WN, double * TOW) const;
/*!
* Default constructor
*/

View File

@ -43,6 +43,7 @@
void Glonass_Gnav_Navigation_Message::reset()
{
//!< Satellite Identification
i_satellite_PRN = 0;
i_alm_satellite_slot_number = 0; //!< SV Orbit Slot Number
flag_update_slot_number = false;
@ -74,7 +75,6 @@ void Glonass_Gnav_Navigation_Message::reset()
//broadcast orbit 1
flag_TOW_set = false;
flag_TOW_new = false;
d_TOW = 0.0; //!< Time of GPS Week of the ephemeris set (taken from subframes TOW) [s]
flag_CRC_test = false;
d_frame_ID = 0;
@ -325,7 +325,7 @@ double Glonass_Gnav_Navigation_Message::get_WN()
boost::gregorian::date gps_epoch { 1980, 1, 6 };
// Map to UTC
boost::gregorian::date glo_date(gnav_ephemeris.d_yr, 1, 1);
boost::gregorian::days d2(gnav_ephemeris.d_N_T);
boost::gregorian::days d2(gnav_ephemeris.d_N_T-1);
glo_date = glo_date + d2;
@ -363,7 +363,7 @@ double Glonass_Gnav_Navigation_Message::get_TOW()
// tk is relative to UTC(SU) + 3.00 hrs, so we need to convert to utc and add corrections
// tk plus 10 sec is the true tod since get_TOW is called when in str5
TOD = (gnav_ephemeris.d_t_k + 10) - glot2utcsu - utcsu2utc + gnav_utc_model.d_tau_c + gnav_utc_model.d_tau_gps;
TOD = (gnav_ephemeris.d_t_k + 10) - glot2utcsu - utcsu2utc;// + gnav_utc_model.d_tau_c + gnav_utc_model.d_tau_gps;
boost::gregorian::date glo_date(gnav_ephemeris.d_yr, 1, 1);
@ -375,10 +375,10 @@ double Glonass_Gnav_Navigation_Message::get_TOW()
for (i = 0; GLONASS_LEAP_SECONDS[i][0]>0; i++)
{
if (GLONASS_LEAP_SECONDS[i][0] == gnav_ephemeris.d_yr)
if (gnav_ephemeris.d_yr >= GLONASS_LEAP_SECONDS[i][0])
{
// We add the leap second when going from utc to gpst
TOW += GLONASS_LEAP_SECONDS[i][6];
TOW += fabs(GLONASS_LEAP_SECONDS[i][6]);
}
}
// Compute the arithmetic modules to wrap around range
@ -513,18 +513,18 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
// 3). Set TOW once the year has been defined, it helps with leap second determination
if (flag_ephemeris_str_1 == true)
{
d_TOW = get_TOW();
gnav_ephemeris.d_TOW = d_TOW;
gnav_ephemeris.d_WN = get_WN();
flag_TOW_set = true;
flag_TOW_new = true;
}
{
gnav_ephemeris.glot_to_gpst(gnav_ephemeris.d_t_k+10, gnav_utc_model.d_tau_c, gnav_utc_model.d_tau_gps, &gnav_ephemeris.d_WN, &gnav_ephemeris.d_TOW);
flag_TOW_set = true;
flag_TOW_new = true;
}
// 4) Set time of day (tod) when ephemeris data is complety decoded
gnav_ephemeris.d_tod = gnav_ephemeris.d_t_k + 2*d_string_ID;
}
break;
case 6:
@ -573,8 +573,8 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
flag_almanac_str_7 = true;
}
break;
break;
case 8:
// --- It is string 8 ----------------------------------------------
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
@ -594,7 +594,6 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
flag_almanac_str_8 = true;
break;
case 9:
// --- It is string 9 ----------------------------------------------
if (flag_almanac_str_8 == true)
@ -617,7 +616,6 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
flag_almanac_str_9 = true;
}
break;
case 10:
// --- It is string 10 ---------------------------------------------
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
@ -660,7 +658,6 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
flag_almanac_str_11 = true;
}
break;
case 12:
// --- It is string 12 ---------------------------------------------
i_alm_satellite_slot_number = static_cast<unsigned int>(read_navigation_unsigned(string_bits, n_A));
@ -702,7 +699,6 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
flag_almanac_str_13 = true;
}
break;
case 14:
// --- It is string 14 ---------------------------------------------
if (d_frame_ID == 5)
@ -750,14 +746,15 @@ int Glonass_Gnav_Navigation_Message::string_decoder(std::string frame_string)
flag_almanac_str_15 = true;
}
break;
default:
LOG(INFO) << "GLONASS GNAV: Invalid String ID of received. Received " << d_string_ID
<< ", but acceptable range is from 1-15";
break;
} // switch string ID ...
return d_string_ID;
}

View File

@ -65,6 +65,10 @@ public:
unsigned int d_string_ID;
bool flag_update_slot_number;
// satellite identification info
int i_channel_ID;
unsigned int i_satellite_PRN;
Glonass_Gnav_Ephemeris gnav_ephemeris; //!< Ephemeris information decoded
Glonass_Gnav_Utc_Model gnav_utc_model; //!< UTC model information
Glonass_Gnav_Almanac gnav_almanac[GLONASS_L1_CA_NBR_SATS]; //!< Almanac information for all 24 satellites
@ -97,7 +101,6 @@ public:
bool flag_TOW_set; //!< Flag indicating when the TOW has been set
bool flag_TOW_new; //!< Flag indicating when a new TOW has been computed
double d_TOW; //!< Time of GPS Week of the ephemeris set (taken from subframes TOW) [s]
// Clock terms
double d_satClkCorr; // Satellite clock error

View File

@ -135,6 +135,27 @@ void Gnss_Satellite::set_system(const std::string& system_)
}
void Gnss_Satellite::update_PRN(unsigned int PRN_)
{
if (system.compare("Glonass") != 0)
{
DLOG(INFO) << "Trying to update PRN for not GLONASS system";
PRN = 0;
}
else
{
if (PRN_ < 1 or PRN_ > 24)
{
DLOG(INFO) << "This PRN is not defined";
// Adjusting for PRN 26, now used in
PRN = PRN_;
}
else
{
PRN = PRN_;
}
}
}
void Gnss_Satellite::set_PRN(unsigned int PRN_)

View File

@ -50,6 +50,7 @@ public:
Gnss_Satellite(); //!< Default Constructor.
Gnss_Satellite(const std::string& system_, unsigned int PRN_); //!< Concrete GNSS satellite Constructor.
~Gnss_Satellite(); //!< Default Destructor.
void update_PRN(unsigned int PRN); //!< Updates the PRN Number when information is decoded, only applies to GLONASS GNAV messages
unsigned int get_PRN() const; //!< Gets satellite's PRN
std::string get_system() const; //!< Gets the satellite system {"GPS", "GLONASS", "SBAS", "Galileo", "Beidou"}
std::string get_system_short() const; //!< Gets the satellite system {"G", "R", "SBAS", "E", "C"}

View File

@ -158,6 +158,11 @@ if(ENABLE_FPGA)
add_definitions(-DFPGA_BLOCKS_TEST=1)
endif(ENABLE_FPGA)
find_package(Gnuplot)
if(GNUPLOT_FOUND)
add_definitions(-DGNUPLOT_EXECUTABLE="${GNUPLOT_EXECUTABLE}")
endif(GNUPLOT_FOUND)
################################################################################
# Optional generator
################################################################################
@ -567,6 +572,9 @@ if(NOT ${ENABLE_PACKAGING})
add_executable(gnss_block_test ${CMAKE_CURRENT_SOURCE_DIR}/single_test_main.cc
${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/sources/file_signal_source_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/filter/fir_filter_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/filter/pulse_blanking_filter_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/filter/notch_filter_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/filter/notch_filter_lite_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/adapter/pass_through_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/signal-processing-blocks/adapter/adapter_test.cc
${CMAKE_CURRENT_SOURCE_DIR}/unit-tests/control-plane/gnss_block_factory_test.cc

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,45 @@
/*!
* \file test_flags.h
* \brief Helper file for unit testing
* \author Carles Fernandez-Prades, 2017. cfernandez(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_TEST_FLAGS_H_
#define GNSS_SDR_TEST_FLAGS_H_
#include <gflags/gflags.h>
#if defined GNUPLOT_EXECUTABLE
DEFINE_string(gnuplot_executable, std::string(GNUPLOT_EXECUTABLE), "Gnuplot binary path");
#elif !defined GNUPLOT_EXECUTABLE
DEFINE_string(gnuplot_executable, "", "Gnuplot binary path");
#endif
DEFINE_bool(plot_acq_grid, false, "Plots acquisition grid with gnuplot");
DEFINE_int32(plot_decimate, 1, "Decimate plots");
#endif

View File

@ -29,11 +29,13 @@
* -------------------------------------------------------------------------
*/
#include <algorithm>
#include <chrono>
#include <cmath>
#include <fstream>
#include <numeric>
#include <thread>
#include <boost/filesystem.hpp>
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
@ -43,10 +45,13 @@
#include "in_memory_configuration.h"
#include "file_configuration.h"
#include "MATH_CONSTANTS.h"
#include "gnuplot_i.h"
#include "test_flags.h"
#include "signal_generator_flags.h"
DEFINE_string(config_file_ptest, std::string(""), "File containing the configuration parameters for the position test.");
DEFINE_bool(plot_position_test, false, "Plots results of FFTLengthTest with gnuplot");
// For GPS NAVIGATION (L1)
concurrent_queue<Gps_Acq_Assist> global_gps_acq_assist_queue;
@ -73,6 +78,9 @@ public:
int configure_receiver();
int run_receiver();
void check_results();
void print_results(const std::vector<double> & east,
const std::vector<double> & north,
const std::vector<double> & up);
double compute_stdev_precision(const std::vector<double> & vec);
double compute_stdev_accuracy(const std::vector<double> & vec, double ref);
@ -333,7 +341,6 @@ int StaticPositionSystemTest::configure_receiver()
// Set Acquisition
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_Tong_Acquisition");
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition_1C.if", std::to_string(zero));
config->set_property("Acquisition_1C.coherent_integration_time_ms", std::to_string(coherent_integration_time_ms));
config->set_property("Acquisition_1C.threshold", std::to_string(threshold));
config->set_property("Acquisition_1C.doppler_max", std::to_string(doppler_max));
@ -348,7 +355,6 @@ int StaticPositionSystemTest::configure_receiver()
config->set_property("Tracking_1C.implementation", "GPS_L1_CA_DLL_PLL_Tracking");
//config->set_property("Tracking_1C.implementation", "GPS_L1_CA_DLL_PLL_C_Aid_Tracking");
config->set_property("Tracking_1C.item_type", "gr_complex");
config->set_property("Tracking_1C.if", std::to_string(zero));
config->set_property("Tracking_1C.dump", "false");
config->set_property("Tracking_1C.dump_filename", "./tracking_ch_");
config->set_property("Tracking_1C.pll_bw_hz", std::to_string(pll_bw_hz));
@ -542,9 +548,105 @@ void StaticPositionSystemTest::check_results()
// Sanity Check
double precision_SEP = 0.51 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision);
ASSERT_LT(precision_SEP, 20.0);
if(FLAGS_plot_position_test == true)
{
print_results(pos_e, pos_n, pos_u);
}
}
void StaticPositionSystemTest::print_results(const std::vector<double> & east,
const std::vector<double> & north,
const std::vector<double> & up)
{
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
if(gnuplot_executable.empty())
{
std::cout << "WARNING: Although the flag plot_position_test has been set to TRUE," << std::endl;
std::cout << "gnuplot has not been found in your system." << std::endl;
std::cout << "Test results will not be plotted." << std::endl;
}
else
{
double sigma_E_2_precision = std::pow(compute_stdev_precision(east), 2.0);
double sigma_N_2_precision = std::pow(compute_stdev_precision(north), 2.0);
double sigma_U_2_precision = std::pow(compute_stdev_precision(up), 2.0);
double mean_east = std::accumulate(east.begin(), east.end(), 0.0) / east.size();
double mean_north = std::accumulate(north.begin(), north.end(), 0.0) / north.size();
auto it_max_east = std::max_element(std::begin(east), std::end(east));
auto it_min_east = std::min_element(std::begin(east), std::end(east));
auto it_max_north = std::max_element(std::begin(north), std::end(north));
auto it_min_north = std::min_element(std::begin(north), std::end(north));
auto it_max_up = std::max_element(std::begin(up), std::end(up));
auto it_min_up = std::min_element(std::begin(up), std::end(up));
auto east_range = std::max(*it_max_east, std::abs(*it_min_east));
auto north_range = std::max(*it_max_north, std::abs(*it_min_north));
auto up_range = std::max(*it_max_up, std::abs(*it_min_up));
double range = std::max(east_range, north_range) * 1.1;
double range_3d = std::max(std::max(east_range, north_range), up_range) * 1.1;
double two_drms = 2 * sqrt(sigma_E_2_precision + sigma_N_2_precision);
double ninty_sas = 0.833 * (sigma_E_2_precision + sigma_N_2_precision + sigma_U_2_precision);
try
{
boost::filesystem::path p(gnuplot_executable);
boost::filesystem::path dir = p.parent_path();
std::string gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
Gnuplot g1("points");
g1.set_title("2D precision");
g1.set_xlabel("East [m]");
g1.set_ylabel("North [m]");
g1.cmd("set size ratio -1");
g1.cmd("set xrange [-" + std::to_string(range) + ":" + std::to_string(range) + "]");
g1.cmd("set yrange [-" + std::to_string(range) + ":" + std::to_string(range) + "]");
g1.plot_xy(east, north, "2D Position Fixes");
g1.set_style("lines").plot_circle(mean_east, mean_north, two_drms, "2DRMS");
g1.set_style("lines").plot_circle(mean_east, mean_north, two_drms / 2.0, "DRMS");
g1.cmd("set grid front");
g1.cmd("replot");
g1.savetops("Position_test_2D");
g1.savetopdf("Position_test_2D", 18);
g1.showonscreen(); // window output
Gnuplot g2("points");
g2.set_title("3D precision");
g2.set_xlabel("East [m]");
g2.set_ylabel("North [m]");
g2.set_zlabel("Up [m]");
g2.cmd("set size ratio -1");
g2.cmd("set xrange [-" + std::to_string(range_3d) + ":" + std::to_string(range_3d) + "]");
g2.cmd("set yrange [-" + std::to_string(range_3d) + ":" + std::to_string(range_3d) + "]");
g2.cmd("set zrange [-" + std::to_string(range_3d) + ":" + std::to_string(range_3d) + "]");
g2.cmd("set view equal xyz");
g2.cmd("set ticslevel 0");
g2.cmd("set style fill transparent solid 0.30 border\n set parametric\n set urange [0:2.0*pi]\n set vrange [-pi/2:pi/2]\n r = " +
std::to_string(ninty_sas) +
"\n fx(v,u) = r*cos(v)*cos(u)\n fy(v,u) = r*cos(v)*sin(u)\n fz(v) = r*sin(v) \n splot fx(v,u),fy(v,u),fz(v) title \"90\%-SAS\" lt rgb \"gray\"\n");
g2.plot_xyz(east, north, up, "3D Position Fixes");
g2.savetops("Position_test_3D");
g2.savetopdf("Position_test_3D");
g2.showonscreen(); // window output
}
catch (const GnuplotException & ge)
{
std::cout << ge.what() << std::endl;
}
}
}
TEST_F(StaticPositionSystemTest, Position_system_test)
{
if(FLAGS_config_file_ptest.empty())

View File

@ -73,6 +73,7 @@ DECLARE_string(log_dir);
#include "unit-tests/arithmetic/multiply_test.cc"
#include "unit-tests/arithmetic/code_generation_test.cc"
#include "unit-tests/arithmetic/fft_length_test.cc"
#include "unit-tests/arithmetic/fft_speed_test.cc"
#include "unit-tests/control-plane/file_configuration_test.cc"
#include "unit-tests/control-plane/in_memory_configuration_test.cc"
@ -90,6 +91,9 @@ DECLARE_string(log_dir);
#include "unit-tests/signal-processing-blocks/adapter/adapter_test.cc"
#include "unit-tests/signal-processing-blocks/filter/fir_filter_test.cc"
#include "unit-tests/signal-processing-blocks/filter/pulse_blanking_filter_test.cc"
#include "unit-tests/signal-processing-blocks/filter/notch_filter_test.cc"
#include "unit-tests/signal-processing-blocks/filter/notch_filter_lite_test.cc"
#include "unit-tests/signal-processing-blocks/resampler/direct_resampler_conditioner_cc_test.cc"

View File

@ -29,26 +29,55 @@
* -------------------------------------------------------------------------
*/
#include <algorithm>
#include <chrono>
#include <functional>
#include <random>
#include <boost/filesystem.hpp>
#include <gnuradio/fft/fft.h>
#include "gnuplot_i.h"
#include "test_flags.h"
DEFINE_int32(fft_iterations_test, 1000, "Number of averaged iterations in FFT length timing test");
DEFINE_bool(plot_fft_length_test, false, "Plots results of FFTLengthTest with gnuplot");
// Note from FFTW documentation: the standard FFTW distribution works most efficiently for arrays whose
// size can be factored into small primes (2, 3, 5, and 7), and otherwise it uses a slower general-purpose routine.
TEST(FFTLengthTest, MeasureExecutionTime)
{
unsigned int d_fft_size;
unsigned int fft_sizes [] = { 512, 1000, 1024, 1100, 1297, 1400, 1500, 1960, 2000, 2048, 2221, 2500, 3000, 3500, 4000,
4096, 4200, 4500, 4725, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8192, 8500, 9000, 9500, 10000, 10368, 11000,
12000, 15000, 16000, 16384, 27000, 32768, 50000, 65536 };
std::chrono::time_point<std::chrono::system_clock> start, end;
unsigned int fft_sizes [18] = { 1000, 1024, 1960, 2000, 2048, 4000, 4096, 4725, 8000, 8192, 10368, 12000, 16000, 16384, 27000, 32768, 50000, 65536 };
double execution_times [18];
std::random_device r;
std::default_random_engine e1(r());
std::default_random_engine e2(r());
std::uniform_real_distribution<float> uniform_dist(-1, 1);
auto func = [] (float a, float b) { return gr_complex(a, b); }; // Helper lambda function that returns a gr_complex
auto random_number1 = std::bind(uniform_dist, e1);
auto random_number2 = std::bind(uniform_dist, e2);
auto gen = std::bind(func, random_number1, random_number2); // Function that returns a random gr_complex
std::vector<unsigned int> fft_sizes_v(fft_sizes, fft_sizes + sizeof(fft_sizes) / sizeof(unsigned int) );
std::sort(fft_sizes_v.begin(), fft_sizes_v.end());
std::vector<unsigned int>::const_iterator it;
unsigned int d_fft_size;
std::vector<double> execution_times;
std::vector<unsigned int> powers_of_two;
std::vector<double> execution_times_powers_of_two;
EXPECT_NO_THROW(
for(int i = 0; i < 18; i++)
for(it = fft_sizes_v.cbegin(); it != fft_sizes_v.cend(); ++it)
{
gr::fft::fft_complex* d_fft;
d_fft_size = fft_sizes[i];
d_fft_size = *it;
d_fft = new gr::fft::fft_complex(d_fft_size, true);
std::fill_n( d_fft->get_inbuf(), d_fft_size, gr_complex( 0.0, 0.0 ) );
std::generate_n( d_fft->get_inbuf(), d_fft_size, gen );
start = std::chrono::system_clock::now();
for(int k = 0; k < FLAGS_fft_iterations_test; k++)
@ -57,9 +86,64 @@ TEST(FFTLengthTest, MeasureExecutionTime)
}
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
execution_times[i] = elapsed_seconds.count() / static_cast<double>(FLAGS_fft_iterations_test);
std::cout << "FFT execution time for length=" << d_fft_size << " : " << execution_times[i] << " [s]" << std::endl;
double exec_time = elapsed_seconds.count() / static_cast<double>(FLAGS_fft_iterations_test);
execution_times.push_back(exec_time * 1e3);
std::cout << "FFT execution time for length=" << d_fft_size << " : " << exec_time << " [s]" << std::endl;
delete d_fft;
if( (d_fft_size & (d_fft_size - 1)) == 0 ) // if it is a power of two
{
powers_of_two.push_back(d_fft_size);
execution_times_powers_of_two.push_back(exec_time / 1e-3);
}
}
);
if(FLAGS_plot_fft_length_test == true)
{
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
if(gnuplot_executable.empty())
{
std::cout << "WARNING: Although the flag plot_fft_length_test has been set to TRUE," << std::endl;
std::cout << "gnuplot has not been found in your system." << std::endl;
std::cout << "Test results will not be plotted." << std::endl;
}
else
{
try
{
boost::filesystem::path p(gnuplot_executable);
boost::filesystem::path dir = p.parent_path();
std::string gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
Gnuplot g1("linespoints");
g1.set_title("FFT execution times for different lengths");
g1.set_grid();
g1.set_xlabel("FFT length");
g1.set_ylabel("Execution time [ms]");
g1.plot_xy(fft_sizes_v, execution_times, "FFT execution time (averaged over " + std::to_string(FLAGS_fft_iterations_test) + " iterations)");
g1.set_style("points").plot_xy(powers_of_two, execution_times_powers_of_two, "Power of 2");
g1.savetops("FFT_execution_times_extended");
g1.savetopdf("FFT_execution_times_extended", 18);
g1.showonscreen(); // window output
Gnuplot g2("linespoints");
g2.set_title("FFT execution times for different lengths (up to 2^{14}=16384)");
g2.set_grid();
g2.set_xlabel("FFT length");
g2.set_ylabel("Execution time [ms]");
g2.set_xrange(0, 16384);
g2.plot_xy(fft_sizes_v, execution_times, "FFT execution time (averaged over " + std::to_string(FLAGS_fft_iterations_test) + " iterations)");
g2.set_style("points").plot_xy(powers_of_two, execution_times_powers_of_two, "Power of 2");
g2.savetops("FFT_execution_times");
g2.savetopdf("FFT_execution_times", 18);
g2.showonscreen(); // window output
}
catch (const GnuplotException & ge)
{
std::cout << ge.what() << std::endl;
}
}
}
}

View File

@ -0,0 +1,81 @@
/*!
* \file fft_speed_test.cc
* \brief This file implements timing tests for the Armadillo
* and GNU Radio FFT implementations
* \author Antonio Ramos, 2017. antonio.ramos(at)cttc.es
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <chrono>
#include <memory>
#include <gnuradio/fft/fft.h>
#include <armadillo>
DEFINE_int32(fft_speed_iterations_test, 100, "Number of averaged iterations in FFT length timing test");
TEST(FFTSpeedTest, ArmadilloVSGNURadioExecutionTime)
{
unsigned int d_fft_size;
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds;
unsigned int fft_sizes [19] = { 16, 25, 32, 45, 64, 95, 128, 195, 256, 325, 512, 785, 1024, 1503, 2048, 3127, 4096, 6349, 8192 };
double d_execution_time;
EXPECT_NO_THROW(
for(int i = 0; i < 19; i++)
{
d_fft_size = fft_sizes[i];
gr::fft::fft_complex* d_gr_fft;
d_gr_fft = new gr::fft::fft_complex(d_fft_size, true);
arma::arma_rng::set_seed_random();
arma::cx_fvec d_arma_fft = arma::cx_fvec(d_fft_size).randn() + gr_complex(0.0, 1.0) * arma::cx_fvec(d_fft_size).randn();
arma::cx_fvec d_arma_fft_result(d_fft_size);
memcpy(d_gr_fft->get_inbuf(), d_arma_fft.memptr(), sizeof(gr_complex) * d_fft_size);
start = std::chrono::system_clock::now();
for(int k = 0; k < FLAGS_fft_speed_iterations_test; k++)
{
d_gr_fft->execute();
}
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
d_execution_time = elapsed_seconds.count() / static_cast<double>(FLAGS_fft_speed_iterations_test);
std::cout << "GNU Radio FFT execution time for length = " << d_fft_size << " : " << d_execution_time * 1e6 << " [us]" << std::endl;
delete d_gr_fft;
start = std::chrono::system_clock::now();
for(int k = 0; k < FLAGS_fft_speed_iterations_test; k++)
{
d_arma_fft_result = arma::fft(d_arma_fft);
}
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
d_execution_time = elapsed_seconds.count() / static_cast<double>(FLAGS_fft_speed_iterations_test);
std::cout << "Armadillo FFT execution time for length = " << d_fft_size << " : " << d_execution_time * 1e6 << " [us]" << std::endl;
}
);
}

View File

@ -155,6 +155,45 @@ TEST(GNSSBlockFactoryTest, InstantiateFreqXlatingFIRFilter)
EXPECT_STREQ("Freq_Xlating_Fir_Filter", input_filter->implementation().c_str());
}
TEST(GNSSBlockFactoryTest, InstantiatePulseBlankingFilter)
{
std::shared_ptr<InMemoryConfiguration> configuration = std::make_shared<InMemoryConfiguration>();
gr::msg_queue::sptr queue = gr::msg_queue::make(0);
configuration->set_property("InputFilter.implementation", "Pulse_Blanking_Filter");
std::unique_ptr<GNSSBlockFactory> factory;
std::unique_ptr<GNSSBlockInterface> input_filter = factory->GetBlock(configuration, "InputFilter", "Pulse_Blanking_Filter", 1, 1);
EXPECT_STREQ("InputFilter", input_filter->role().c_str());
EXPECT_STREQ("Pulse_Blanking_Filter", input_filter->implementation().c_str());
}
TEST(GNSSBlockFactoryTest, InstantiateNotchFilter)
{
std::shared_ptr<InMemoryConfiguration> configuration = std::make_shared<InMemoryConfiguration>();
gr::msg_queue::sptr queue = gr::msg_queue::make(0);
configuration->set_property("InputFilter.implementation", "Notch_Filter");
std::unique_ptr<GNSSBlockFactory> factory;
std::unique_ptr<GNSSBlockInterface> input_filter = factory->GetBlock(configuration, "InputFilter", "Notch_Filter", 1, 1);
EXPECT_STREQ("InputFilter", input_filter->role().c_str());
EXPECT_STREQ("Notch_Filter", input_filter->implementation().c_str());
}
TEST(GNSSBlockFactoryTest, InstantiateNotchFilterLite)
{
std::shared_ptr<InMemoryConfiguration> configuration = std::make_shared<InMemoryConfiguration>();
gr::msg_queue::sptr queue = gr::msg_queue::make(0);
configuration->set_property("InputFilter.implementation", "Notch_Filter_Lite");
std::unique_ptr<GNSSBlockFactory> factory;
std::unique_ptr<GNSSBlockInterface> input_filter = factory->GetBlock(configuration, "InputFilter", "Notch_Filter_Lite", 1, 1);
EXPECT_STREQ("InputFilter", input_filter->role().c_str());
EXPECT_STREQ("Notch_Filter_Lite", input_filter->implementation().c_str());
}
TEST(GNSSBlockFactoryTest, InstantiateDirectResampler)
{
std::shared_ptr<InMemoryConfiguration> configuration = std::make_shared<InMemoryConfiguration>();

View File

@ -238,15 +238,14 @@ void GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test::config_1()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms", std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition");
config->set_property("Acquisition.threshold", "0.2");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1B.implementation", "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition");
config->set_property("Acquisition_1B.item_type", "gr_complex");
config->set_property("Acquisition_1B.coherent_integration_time_ms", std::to_string(integration_time_ms));
config->set_property("Acquisition_1B.max_dwells", "1");
config->set_property("Acquisition_1B.threshold", "0.2");
config->set_property("Acquisition_1B.doppler_max", "10000");
config->set_property("Acquisition_1B.doppler_step", "250");
config->set_property("Acquisition_1B.dump", "false");
}
@ -324,15 +323,14 @@ void GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test::config_2()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms", std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition");
config->set_property("Acquisition.pfa", "0.1");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1B.implementation", "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition");
config->set_property("Acquisition_1B.item_type", "gr_complex");
config->set_property("Acquisition_1B.coherent_integration_time_ms", std::to_string(integration_time_ms));
config->set_property("Acquisition_1B.max_dwells", "1");
config->set_property("Acquisition_1B.pfa", "0.1");
config->set_property("Acquisition_1B.doppler_max", "10000");
config->set_property("Acquisition_1B.doppler_step", "250");
config->set_property("Acquisition_1B.dump", "false");
}
@ -421,43 +419,43 @@ void GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test::stop_queue()
TEST_F(GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test, Instantiate)
{
config_1();
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition", 1, 1);
}
TEST_F(GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test, ConnectAndRun)
{
int nsamples = floor(fs_in*integration_time_ms*1e-3);
int nsamples = floor(fs_in * integration_time_ms * 1e-3);
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
std::chrono::duration<double> elapsed_seconds(0.0);
config_1();
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Acquisition test");
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1Pcps8msAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test_msg_rx> msg_rx = GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max." << std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1B.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step." << std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1B.doppler_step", 500));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold." << std::endl;
acquisition->set_threshold(config->property("Acquisition_1B.threshold", 0.0));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
@ -466,14 +464,14 @@ TEST_F(GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test, ConnectAndRun)
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
@ -485,33 +483,33 @@ TEST_F(GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test, ValidationOfResults)
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Acquisition test");
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition", 1, 1, queue);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition", 1, 1, queue);
acquisition = std::dynamic_pointer_cast<GalileoE1Pcps8msAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test_msg_rx> msg_rx = GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max." << std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1B.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step." << std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1B.doppler_step", 500));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold." << std::endl;
acquisition->set_threshold(config->property("Acquisition_1B.threshold", 0.0));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
@ -523,7 +521,7 @@ TEST_F(GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test, ValidationOfResults)
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
// i = 0 --> satellite in acquisition is visible
// i = 1 --> satellite in acquisition is not visible
@ -546,7 +544,7 @@ TEST_F(GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test, ValidationOfResults)
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
stop_queue();
@ -574,33 +572,33 @@ TEST_F(GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test, ValidationOfResultsProb
config_2();
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Acquisition test");
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_8ms_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1Pcps8msAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test_msg_rx> msg_rx = GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max." << std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1B.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step." << std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1B.doppler_step", 500));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold." << std::endl;
acquisition->set_threshold(config->property("Acquisition_1B.threshold", 0.0));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
@ -612,7 +610,7 @@ TEST_F(GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test, ValidationOfResultsProb
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
@ -637,7 +635,7 @@ TEST_F(GalileoE1Pcps8msAmbiguousAcquisitionGSoC2013Test, ValidationOfResultsProb
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
stop_queue();
if (i == 0)
{

View File

@ -241,17 +241,16 @@ void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::config_1()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
config->set_property("Acquisition_1B.implementation", "Galileo_E1_PCPS_Ambiguous_Acquisition");
config->set_property("Acquisition_1B.item_type", "gr_complex");
config->set_property("Acquisition_1B.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.bit_transition_flag","false");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_Ambiguous_Acquisition");
config->set_property("Acquisition.threshold", "0.1");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1B.max_dwells", "1");
config->set_property("Acquisition_1B.bit_transition_flag","false");
config->set_property("Acquisition_1B.threshold", "0.1");
config->set_property("Acquisition_1B.doppler_max", "10000");
config->set_property("Acquisition_1B.doppler_step", "250");
config->set_property("Acquisition_1B.dump", "false");
}
@ -267,7 +266,7 @@ void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::config_2()
expected_delay_chips = 600;
expected_doppler_hz = 750;
max_doppler_error_hz = 2/(3*integration_time_ms*1e-3);
max_doppler_error_hz = 2 / (3 * integration_time_ms * 1e-3);
max_delay_error_chips = 0.50;
num_of_realizations = 100;
@ -331,17 +330,16 @@ void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::config_2()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
config->set_property("Acquisition_1B.implementation", "Galileo_E1_PCPS_Ambiguous_Acquisition");
config->set_property("Acquisition_1B.item_type", "gr_complex");
config->set_property("Acquisition_1B.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.bit_transition_flag","false");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_Ambiguous_Acquisition");
config->set_property("Acquisition.pfa", "0.1");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1B.max_dwells", "1");
config->set_property("Acquisition_1B.bit_transition_flag","false");
config->set_property("Acquisition_1B.pfa", "0.1");
config->set_property("Acquisition_1B.doppler_max", "10000");
config->set_property("Acquisition_1B.doppler_step", "250");
config->set_property("Acquisition_1B.dump", "false");
}
@ -424,7 +422,7 @@ void GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test::stop_queue()
TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, Instantiate)
{
config_1();
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsAmbiguousAcquisition>(acq_);
}
@ -438,7 +436,7 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, ConnectAndRun)
queue = gr::msg_queue::make(0);
config_1();
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test_msg_rx> msg_rx = GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
@ -449,14 +447,14 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, ConnectAndRun)
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
@ -467,33 +465,33 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, ValidationOfResults)
config_1();
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test_msg_rx> msg_rx = GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max." << std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1B.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step." << std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1B.doppler_step", 500));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold." << std::endl;
acquisition->set_threshold(config->property("Acquisition_1B.threshold", 0.0));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
@ -505,7 +503,7 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, ValidationOfResults)
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
// i = 0 --> satellite in acquisition is visible
// i = 1 --> satellite in acquisition is not visible
@ -528,7 +526,7 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, ValidationOfResults)
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
stop_queue();
if (i == 0)
{
@ -553,33 +551,33 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, ValidationOfResultsProbabi
config_2();
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test_msg_rx> msg_rx = GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max." << std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1B.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step." << std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1B.doppler_step", 500));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold." << std::endl;
acquisition->set_threshold(config->property("Acquisition_1B.threshold", 0.0));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
@ -591,7 +589,7 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, ValidationOfResultsProbabi
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
@ -616,7 +614,7 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoC2013Test, ValidationOfResultsProbabi
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
stop_queue();

View File

@ -158,17 +158,16 @@ void GalileoE1PcpsAmbiguousAcquisitionGSoCTest::init()
signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = 11;
config->set_property("Acquisition_1B.implementation", "Galileo_E1_PCPS_Ambiguous_Acquisition");
config->set_property("GNSS-SDR.internal_fs_sps", "4000000");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms", "4");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_Ambiguous_Acquisition");
config->set_property("Acquisition.threshold", "0.1");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "125");
config->set_property("Acquisition.repeat_satellite", "false");
config->set_property("Acquisition0.cboc", "true");
config->set_property("Acquisition_1B.item_type", "gr_complex");
config->set_property("Acquisition_1B.coherent_integration_time_ms", "4");
config->set_property("Acquisition_1B.dump", "false");
config->set_property("Acquisition_1B.threshold", "0.1");
config->set_property("Acquisition_1B.doppler_max", "10000");
config->set_property("Acquisition_1B.doppler_step", "125");
config->set_property("Acquisition_1B.repeat_satellite", "false");
config->set_property("Acquisition_1B.cboc", "true");
}
@ -205,7 +204,7 @@ void GalileoE1PcpsAmbiguousAcquisitionGSoCTest::stop_queue()
TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoCTest, Instantiate)
{
init();
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<AcquisitionInterface> acquisition = std::dynamic_pointer_cast<AcquisitionInterface>(acq_);
EXPECT_STREQ("Galileo_E1_PCPS_Ambiguous_Acquisition", acquisition->implementation().c_str());
}
@ -221,7 +220,7 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoCTest, ConnectAndRun)
top_block = gr::make_top_block("Acquisition test");
init();
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<AcquisitionInterface> acquisition = std::dynamic_pointer_cast<AcquisitionInterface>(acq_);
boost::shared_ptr<GalileoE1PcpsAmbiguousAcquisitionGSoCTest_msg_rx> msg_rx = GalileoE1PcpsAmbiguousAcquisitionGSoCTest_msg_rx_make(channel_internal_queue);
@ -232,14 +231,14 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoCTest, ConnectAndRun)
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
@ -258,27 +257,27 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoCTest, ValidationOfResults)
ASSERT_NO_THROW( {
acquisition->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.00001));
}) << "Failure setting threshold." << std::endl;
acquisition->set_threshold(config->property("Acquisition_1B.threshold", 0.00001));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max." << std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1B.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 250));
}) << "Failure setting doppler_step." << std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1B.doppler_step", 250));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
ASSERT_NO_THROW( {
std::string path = std::string(TEST_PATH);
@ -288,7 +287,7 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoCTest, ValidationOfResults)
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex), file_name, false);
top_block->connect(file_source, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
ASSERT_NO_THROW( {
start_queue();
@ -296,14 +295,14 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionGSoCTest, ValidationOfResults)
acquisition->init();
acquisition->reset();
acquisition->set_state(1);
}) << "Failure starting acquisition" << std::endl;
}) << "Failure starting acquisition";
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
stop_queue();

View File

@ -47,8 +47,11 @@
#include "gnss_sdr_valve.h"
#include "gnss_signal.h"
#include "gnss_synchro.h"
#include "gnuplot_i.h"
#include "test_flags.h"
#include "acquisition_dump_reader.h"
#include "galileo_e1_pcps_ambiguous_acquisition.h"
#include "Galileo_E1.h"
// ######## GNURADIO BLOCK MESSAGE RECEVER #########
class GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx;
@ -115,18 +118,23 @@ protected:
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
gnss_synchro = Gnss_Synchro();
doppler_max = 10000;
doppler_step = 250;
}
~GalileoE1PcpsAmbiguousAcquisitionTest()
{}
void init();
void plot_grid();
gr::top_block_sptr top_block;
std::shared_ptr<GNSSBlockFactory> factory;
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro;
size_t item_size;
unsigned int doppler_max;
unsigned int doppler_step;
};
@ -134,28 +142,92 @@ void GalileoE1PcpsAmbiguousAcquisitionTest::init()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'E';
std::string signal = "1C";
std::string signal = "1B";
signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = 1;
config->set_property("Acquisition_1B.implementation", "Galileo_E1_PCPS_Ambiguous_Acquisition");
config->set_property("GNSS-SDR.internal_fs_sps", "4000000");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms", "4");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_Ambiguous_Acquisition");
config->set_property("Acquisition.threshold", "0.0001");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.repeat_satellite", "false");
config->set_property("Acquisition1.cboc", "true");
config->set_property("Acquisition_1B.item_type", "gr_complex");
config->set_property("Acquisition_1B.coherent_integration_time_ms", "4");
if(FLAGS_plot_acq_grid == true)
{
config->set_property("Acquisition_1B.dump", "true");
}
else
{
config->set_property("Acquisition_1B.dump", "false");
}
config->set_property("Acquisition_1B.dump_filename", "./tmp-acq-gal1/acquisition.dat");
config->set_property("Acquisition_1B.threshold", "0.0001");
config->set_property("Acquisition_1B.doppler_max", std::to_string(doppler_max));
config->set_property("Acquisition_1B.doppler_step", std::to_string(doppler_step));
config->set_property("Acquisition_1B.repeat_satellite", "false");
config->set_property("Acquisition_1B.cboc", "true");
}
void GalileoE1PcpsAmbiguousAcquisitionTest::plot_grid()
{
//load the measured values
std::string basename = "./tmp-acq-gal1/acquisition_E_1B";
unsigned int sat = static_cast<unsigned int>(gnss_synchro.PRN);
unsigned int samples_per_code = static_cast<unsigned int>(round(4000000 / (Galileo_E1_CODE_CHIP_RATE_HZ / Galileo_E1_B_CODE_LENGTH_CHIPS))); // !!
acquisition_dump_reader acq_dump(basename, sat, doppler_max, doppler_step, samples_per_code);
if(!acq_dump.read_binary_acq()) std::cout << "Error reading files" << std::endl;
std::vector<int> * doppler = &acq_dump.doppler;
std::vector<unsigned int> * samples = &acq_dump.samples;
std::vector<std::vector<float> > * mag = &acq_dump.mag;
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
if(gnuplot_executable.empty())
{
std::cout << "WARNING: Although the flag plot_acq_grid has been set to TRUE," << std::endl;
std::cout << "gnuplot has not been found in your system." << std::endl;
std::cout << "Test results will not be plotted." << std::endl;
}
else
{
std::cout << "Plotting the acquisition grid. This can take a while..." << std::endl;
try
{
boost::filesystem::path p(gnuplot_executable);
boost::filesystem::path dir = p.parent_path();
std::string gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
Gnuplot g1("lines");
g1.set_title("Galileo E1b/c signal acquisition for satellite PRN #" + std::to_string(gnss_synchro.PRN));
g1.set_xlabel("Doppler [Hz]");
g1.set_ylabel("Sample");
//g1.cmd("set view 60, 105, 1, 1");
g1.plot_grid3d(*doppler, *samples, *mag);
g1.savetops("Galileo_E1_acq_grid");
g1.savetopdf("Galileo_E1_acq_grid");
g1.showonscreen();
}
catch (const GnuplotException & ge)
{
std::cout << ge.what() << std::endl;
}
}
std::string data_str = "./tmp-acq-gal1";
if (boost::filesystem::exists(data_str))
{
boost::filesystem::remove_all(data_str);
}
}
TEST_F(GalileoE1PcpsAmbiguousAcquisitionTest, Instantiate)
{
init();
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<AcquisitionInterface> acquisition = std::dynamic_pointer_cast<AcquisitionInterface>(acq_);
}
@ -169,7 +241,7 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionTest, ConnectAndRun)
top_block = gr::make_top_block("Acquisition test");
gr::msg_queue::sptr queue = gr::msg_queue::make(0);
init();
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<AcquisitionInterface> acquisition = std::dynamic_pointer_cast<AcquisitionInterface>(acq_);
boost::shared_ptr<GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx> msg_rx = GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx_make();
@ -180,14 +252,14 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionTest, ConnectAndRun)
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(),pmt::mp("events"), msg_rx,pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
@ -197,37 +269,47 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionTest, ValidationOfResults)
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
if(FLAGS_plot_acq_grid == true)
{
std::string data_str = "./tmp-acq-gal1";
if (boost::filesystem::exists(data_str))
{
boost::filesystem::remove_all(data_str);
}
boost::filesystem::create_directory(data_str);
}
double expected_delay_samples = 2920; //18250;
double expected_doppler_hz = -632;
init();
top_block = gr::make_top_block("Acquisition test");
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GalileoE1PcpsAmbiguousAcquisition> acquisition = std::dynamic_pointer_cast<GalileoE1PcpsAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx> msg_rx = GalileoE1PcpsAmbiguousAcquisitionTest_msg_rx_make();
ASSERT_NO_THROW( {
acquisition->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 1e-9));
}) << "Failure setting threshold." << std::endl;
acquisition->set_threshold(config->property("Acquisition_1B.threshold", 1e-9));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max." << std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1B.doppler_max", doppler_max));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 250));
}) << "Failure setting doppler_step." << std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1B.doppler_step", doppler_step));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
ASSERT_NO_THROW( {
std::string path = std::string(TEST_PATH);
@ -236,7 +318,7 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionTest, ValidationOfResults)
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex), file_name, false);
top_block->connect(file_source, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
acquisition->set_local_code();
acquisition->init();
@ -248,7 +330,7 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionTest, ValidationOfResults)
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
unsigned long int nsamples = gnss_synchro.Acq_samplestamp_samples;
std::cout << "Acquired " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
@ -263,5 +345,10 @@ TEST_F(GalileoE1PcpsAmbiguousAcquisitionTest, ValidationOfResults)
EXPECT_LE(doppler_error_hz, 166) << "Doppler error exceeds the expected value: 166 Hz = 2/(3*integration period)";
EXPECT_LT(delay_error_chips, 0.175) << "Delay error exceeds the expected value: 0.175 chips";
if(FLAGS_plot_acq_grid == true)
{
plot_grid();
}
}

View File

@ -242,16 +242,16 @@ void GalileoE1PcpsCccwsrAmbiguousAcquisitionTest::config_1()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
config->set_property("Acquisition_1B.item_type", "gr_complex");
config->set_property("Acquisition_1B.if", "0");
config->set_property("Acquisition_1B.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition");
config->set_property("Acquisition.threshold", "0.7");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1B.max_dwells", "1");
config->set_property("Acquisition_1B.implementation", "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition");
config->set_property("Acquisition_1B.threshold", "0.7");
config->set_property("Acquisition_1B.doppler_max", "10000");
config->set_property("Acquisition_1B.doppler_step", "250");
config->set_property("Acquisition_1B.dump", "false");
}
@ -331,16 +331,15 @@ void GalileoE1PcpsCccwsrAmbiguousAcquisitionTest::config_2()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
config->set_property("Acquisition_1B.implementation", "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition");
config->set_property("Acquisition_1B.item_type", "gr_complex");
config->set_property("Acquisition_1B.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition");
config->set_property("Acquisition.threshold", "0.00215"); // Pfa,a = 0.1
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1B.max_dwells", "1");
config->set_property("Acquisition_1B.threshold", "0.00215"); // Pfa,a = 0.1
config->set_property("Acquisition_1B.doppler_max", "10000");
config->set_property("Acquisition_1B.doppler_step", "250");
config->set_property("Acquisition_1B.dump", "false");
}
@ -425,7 +424,7 @@ void GalileoE1PcpsCccwsrAmbiguousAcquisitionTest::stop_queue()
TEST_F(GalileoE1PcpsCccwsrAmbiguousAcquisitionTest, Instantiate)
{
config_1();
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsCccwsrAmbiguousAcquisition>(acq_);
}
@ -440,7 +439,7 @@ TEST_F(GalileoE1PcpsCccwsrAmbiguousAcquisitionTest, ConnectAndRun)
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsCccwsrAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1PcpsCccwsrAmbiguousAcquisitionTest_msg_rx> msg_rx = GalileoE1PcpsCccwsrAmbiguousAcquisitionTest_msg_rx_make(channel_internal_queue);
@ -451,14 +450,14 @@ TEST_F(GalileoE1PcpsCccwsrAmbiguousAcquisitionTest, ConnectAndRun)
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test."<< std::endl;
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block."<< std::endl;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
@ -469,33 +468,33 @@ TEST_F(GalileoE1PcpsCccwsrAmbiguousAcquisitionTest, ValidationOfResults)
config_1();
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsCccwsrAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1PcpsCccwsrAmbiguousAcquisitionTest_msg_rx> msg_rx = GalileoE1PcpsCccwsrAmbiguousAcquisitionTest_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel."<< std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro."<< std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max."<< std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1B.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step."<< std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1B.doppler_step", 500));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.00001));
}) << "Failure setting threshold."<< std::endl;
acquisition->set_threshold(config->property("Acquisition_1B.threshold", 0.00001));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block."<< std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
acquisition->reset();
@ -508,7 +507,7 @@ TEST_F(GalileoE1PcpsCccwsrAmbiguousAcquisitionTest, ValidationOfResults)
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
// i = 0 --> satellite in acquisition is visible
// i = 1 --> satellite in acquisition is not visible
@ -532,7 +531,7 @@ TEST_F(GalileoE1PcpsCccwsrAmbiguousAcquisitionTest, ValidationOfResults)
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
stop_queue();
@ -552,12 +551,12 @@ TEST_F(GalileoE1PcpsCccwsrAmbiguousAcquisitionTest, ValidationOfResults)
#ifdef OLD_BOOST
ASSERT_NO_THROW( {
ch_thread.timed_join(boost::posix_time::seconds(1));
}) << "Failure while waiting the queue to stop" << std::endl;
}) << "Failure while waiting the queue to stop";
#endif
#ifndef OLD_BOOST
ASSERT_NO_THROW( {
ch_thread.try_join_until(boost::chrono::steady_clock::now() + boost::chrono::milliseconds(50));
}) << "Failure while waiting the queue to stop" << std::endl;
}) << "Failure while waiting the queue to stop";
#endif
}
}
@ -568,33 +567,33 @@ TEST_F(GalileoE1PcpsCccwsrAmbiguousAcquisitionTest, ValidationOfResultsProbabili
config_2();
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_CCCWSR_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsCccwsrAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1PcpsCccwsrAmbiguousAcquisitionTest_msg_rx> msg_rx = GalileoE1PcpsCccwsrAmbiguousAcquisitionTest_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel."<< std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro."<< std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max."<< std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1B.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step."<< std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1B.doppler_step", 500));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.00215));
}) << "Failure setting threshold."<< std::endl;
acquisition->set_threshold(config->property("Acquisition_1B.threshold", 0.00215));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block."<< std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
acquisition->reset();
@ -607,7 +606,7 @@ TEST_F(GalileoE1PcpsCccwsrAmbiguousAcquisitionTest, ValidationOfResultsProbabili
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
@ -635,7 +634,7 @@ TEST_F(GalileoE1PcpsCccwsrAmbiguousAcquisitionTest, ValidationOfResultsProbabili
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block."<< std::endl;
}) << "Failure running the top_block.";
stop_queue();

View File

@ -260,18 +260,17 @@ void GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test::config_1()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
config->set_property("Acquisition_1B.implementation", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition");
config->set_property("Acquisition_1B.item_type", "gr_complex");
config->set_property("Acquisition_1B.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.bit_transition_flag","false");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition");
config->set_property("Acquisition.threshold", "1");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.folding_factor", "2");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1B.max_dwells", "1");
config->set_property("Acquisition_1B.bit_transition_flag","false");
config->set_property("Acquisition_1B.threshold", "1");
config->set_property("Acquisition_1Bdoppler_max", "10000");
config->set_property("Acquisition_1B.doppler_step", "250");
config->set_property("Acquisition_1B.folding_factor", "2");
config->set_property("Acquisition_1B.dump", "false");
}
@ -355,18 +354,17 @@ void GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test::config_2()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
config->set_property("Acquisition_1B.implementation", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition");
config->set_property("Acquisition_1B.item_type", "gr_complex");
config->set_property("Acquisition_1B.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.bit_transition_flag","false");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition");
config->set_property("Acquisition.threshold", std::to_string(FLAGS_e1_value_threshold));
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "125");
config->set_property("Acquisition.folding_factor", "2");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1B.max_dwells", "1");
config->set_property("Acquisition_1B.bit_transition_flag","false");
config->set_property("Acquisition_1B.threshold", std::to_string(FLAGS_e1_value_threshold));
config->set_property("Acquisition_1B.doppler_max", "10000");
config->set_property("Acquisition_1B.doppler_step", "125");
config->set_property("Acquisition_1B.folding_factor", "2");
config->set_property("Acquisition_1B.dump", "false");
}
@ -446,18 +444,17 @@ void GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test::config_3()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
config->set_property("Acquisition_1B.implementation", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition");
config->set_property("Acquisition_1B.item_type", "gr_complex");
config->set_property("Acquisition_1B.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.bit_transition_flag","false");
config->set_property("Acquisition.implementation", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition");
config->set_property("Acquisition.threshold", "0.2");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "125");
config->set_property("Acquisition.folding_factor", "4");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1B.max_dwells", "1");
config->set_property("Acquisition_1B.bit_transition_flag","false");
config->set_property("Acquisition_1B.threshold", "0.2");
config->set_property("Acquisition_1B.doppler_max", "10000");
config->set_property("Acquisition_1B.doppler_step", "125");
config->set_property("Acquisition_1B.folding_factor", "4");
config->set_property("Acquisition_1B.dump", "false");
}
@ -551,7 +548,7 @@ void GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test::stop_queue()
TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, Instantiate)
{
config_1();
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsQuickSyncAmbiguousAcquisition>(acq_);
}
@ -567,7 +564,7 @@ TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, ConnectAndRun)
config_1();
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsQuickSyncAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test_msg_rx> msg_rx = GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test_msg_rx_make(channel_internal_queue);
@ -580,14 +577,14 @@ TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, ConnectAndRun)
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test."<< std::endl;
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW( {
begin = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - begin;
}) << "Failure running the top_block."<< std::endl;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
LOG(INFO) << "----end connect and run test-----";
@ -602,33 +599,33 @@ TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, ValidationOfResul
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsQuickSyncAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test_msg_rx> msg_rx = GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(0);
}) << "Failure setting channel."<< std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro."<< std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max."<< std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1B.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 125));
}) << "Failure setting doppler_step."<< std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1B.doppler_step", 125));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(1);
}) << "Failure setting threshold."<< std::endl;
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
acquisition->reset();
@ -641,7 +638,7 @@ TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, ValidationOfResul
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
// i = 0 --> satellite in acquisition is visible
@ -666,7 +663,7 @@ TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, ValidationOfResul
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block."<< std::endl;
}) << "Failure running the top_block.";
stop_queue();
@ -693,33 +690,33 @@ TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, ValidationOfResul
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsQuickSyncAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test_msg_rx> msg_rx = GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel."<< std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro."<< std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max."<< std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1B.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(50);
}) << "Failure setting doppler_step."<< std::endl;
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(5);
}) << "Failure setting threshold."<< std::endl;
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
acquisition->reset();
@ -732,7 +729,7 @@ TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, ValidationOfResul
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
// i = 0 --> satellite in acquisition is visible
// i = 1 --> satellite in acquisition is not visible
@ -757,7 +754,7 @@ TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, ValidationOfResul
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
stop_queue();
if (i == 0)
@ -781,33 +778,33 @@ TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, ValidationOfResul
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_QuickSync_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsQuickSyncAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test_msg_rx> msg_rx = GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel."<< std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro."<< std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max."<< std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1B.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step."<< std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1B.doppler_step", 500));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold."<< std::endl;
acquisition->set_threshold(config->property("Acquisition_1B.threshold", 0.0));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
@ -819,7 +816,7 @@ TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, ValidationOfResul
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
@ -846,7 +843,7 @@ TEST_F(GalileoE1PcpsQuickSyncAmbiguousAcquisitionGSoC2014Test, ValidationOfResul
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
stop_queue();

View File

@ -246,17 +246,16 @@ void GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test::config_1()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition_Galileo.item_type", "gr_complex");
config->set_property("Acquisition_Galileo.if", "0");
config->set_property("Acquisition_Galileo.coherent_integration_time_ms",
config->set_property("Acquisition_1B.implementation", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition");
config->set_property("Acquisition_1B.item_type", "gr_complex");
config->set_property("Acquisition_1B.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition_Galileo.tong_init_val", "1");
config->set_property("Acquisition_Galileo.tong_max_val", "8");
config->set_property("Acquisition_Galileo.implementation", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition");
config->set_property("Acquisition_Galileo.threshold", "0.3");
config->set_property("Acquisition_Galileo.doppler_max", "10000");
config->set_property("Acquisition_Galileo.doppler_step", "250");
config->set_property("Acquisition_Galileo.dump", "false");
config->set_property("Acquisition_1B.tong_init_val", "1");
config->set_property("Acquisition_1B.tong_max_val", "8");
config->set_property("Acquisition_1B.threshold", "0.3");
config->set_property("Acquisition_1B.doppler_max", "10000");
config->set_property("Acquisition_1B.doppler_step", "250");
config->set_property("Acquisition_1B.dump", "false");
}
@ -336,17 +335,16 @@ void GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test::config_2()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition_Galileo.item_type", "gr_complex");
config->set_property("Acquisition_Galileo.if", "0");
config->set_property("Acquisition_Galileo.coherent_integration_time_ms",
config->set_property("Acquisition_1B.implementation", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition");
config->set_property("Acquisition_1B.item_type", "gr_complex");
config->set_property("Acquisition_1B.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition_Galileo.tong_init_val", "1");
config->set_property("Acquisition_Galileo.tong_max_val", "8");
config->set_property("Acquisition_Galileo.implementation", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition");
config->set_property("Acquisition_Galileo.threshold", "0.00028"); // Pfa,a = 0.1
config->set_property("Acquisition_Galileo.doppler_max", "10000");
config->set_property("Acquisition_Galileo.doppler_step", "250");
config->set_property("Acquisition_Galileo.dump", "false");
config->set_property("Acquisition_1B.tong_init_val", "1");
config->set_property("Acquisition_1B.tong_max_val", "8");
config->set_property("Acquisition_1B.threshold", "0.00028"); // Pfa,a = 0.1
config->set_property("Acquisition_1B.doppler_max", "10000");
config->set_property("Acquisition_1B.doppler_step", "250");
config->set_property("Acquisition_1B.dump", "false");
}
@ -431,7 +429,7 @@ void GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test::stop_queue()
TEST_F(GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test, Instantiate)
{
config_1();
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsTongAmbiguousAcquisition>(acq_);
}
@ -440,11 +438,11 @@ TEST_F(GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test, ConnectAndRun)
{
int nsamples = floor(fs_in*integration_time_ms*1e-3);
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
std::chrono::duration<double> elapsed_seconds(0.0);
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
config_1();
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsTongAmbiguousAcquisition>(acq_);
ASSERT_NO_THROW( {
@ -453,14 +451,14 @@ TEST_F(GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test, ConnectAndRun)
boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
@ -471,33 +469,33 @@ TEST_F(GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test, ValidationOfResults)
config_1();
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsTongAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test_msg_rx> msg_rx = GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(5000);
}) << "Failure setting doppler_max." << std::endl;
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(100);
}) << "Failure setting doppler_step." << std::endl;
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(0.01);
}) << "Failure setting threshold." << std::endl;
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->reset();
acquisition->init();
@ -510,7 +508,7 @@ TEST_F(GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test, ValidationOfResults)
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
// i = 0 --> satellite in acquisition is visible
// i = 1 --> satellite in acquisition is not visible
@ -534,7 +532,7 @@ TEST_F(GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test, ValidationOfResults)
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
stop_queue();
@ -560,33 +558,33 @@ TEST_F(GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test, ValidationOfResultsPro
config_2();
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition", 1, 1);
std::shared_ptr<GNSSBlockInterface> acq_ = factory->GetBlock(config, "Acquisition_1B", "Galileo_E1_PCPS_Tong_Ambiguous_Acquisition", 1, 1);
acquisition = std::dynamic_pointer_cast<GalileoE1PcpsTongAmbiguousAcquisition>(acq_);
boost::shared_ptr<GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test_msg_rx> msg_rx = GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max." << std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1B.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step." << std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1B.doppler_step", 500));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.00028));
}) << "Failure setting threshold." << std::endl;
acquisition->set_threshold(config->property("Acquisition_1B.threshold", 0.00028));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
@ -598,7 +596,7 @@ TEST_F(GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test, ValidationOfResultsPro
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
@ -623,7 +621,7 @@ TEST_F(GalileoE1PcpsTongAmbiguousAcquisitionGSoC2013Test, ValidationOfResultsPro
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
stop_queue();

View File

@ -257,15 +257,13 @@ void GalileoE5aPcpsAcquisitionGSoC2014GensourceTest::config_1()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition_5X.implementation", "Galileo_E5a_Noncoherent_IQ_Acquisition_CAF");
config->set_property("Acquisition_5X.item_type", "gr_complex");
config->set_property("Acquisition_5X.if", "0");
config->set_property("Acquisition_5X.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition_5X.max_dwells", "1");
config->set_property("Acquisition_5X.CAF_window_hz",std::to_string(CAF_window_hz));
config->set_property("Acquisition_5X.Zero_padding",std::to_string(Zero_padding));
config->set_property("Acquisition_5X.implementation", "Galileo_E5a_Noncoherent_IQ_Acquisition_CAF");
config->set_property("Acquisition_5X.pfa","0.003");
// config->set_property("Acquisition_5X.threshold", "0.01");
config->set_property("Acquisition_5X.doppler_max", "10000");
@ -298,12 +296,11 @@ void GalileoE5aPcpsAcquisitionGSoC2014GensourceTest::config_2()
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(fs_in));
config->set_property("Acquisition_5X.implementation", "Galileo_E5a_PCPS_Acquisition");
config->set_property("Acquisition_5X.item_type", "gr_complex");
config->set_property("Acquisition_5X.if", "0");
config->set_property("Acquisition_5X.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition_5X.max_dwells", "1");
config->set_property("Acquisition_5X.implementation", "Galileo_E5a_PCPS_Acquisition");
config->set_property("Acquisition_5X.threshold", "0.1");
config->set_property("Acquisition_5X.doppler_max", "10000");
config->set_property("Acquisition_5X.doppler_step", "250");
@ -530,7 +527,7 @@ void GalileoE5aPcpsAcquisitionGSoC2014GensourceTest::stop_queue()
TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, Instantiate)
{
config_1();
acquisition = std::make_shared<GalileoE5aNoncoherentIQAcquisitionCaf>(config.get(), "Acquisition", 1, 1);
acquisition = std::make_shared<GalileoE5aNoncoherentIQAcquisitionCaf>(config.get(), "Acquisition_5X", 1, 1);
}
@ -541,7 +538,7 @@ TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, ConnectAndRun)
int nsamples = 21000*3;
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
acquisition = std::make_shared<GalileoE5aNoncoherentIQAcquisitionCaf>(config.get(), "Acquisition", 1, 1);
acquisition = std::make_shared<GalileoE5aNoncoherentIQAcquisitionCaf>(config.get(), "Acquisition_5X", 1, 1);
boost::shared_ptr<GalileoE5aPcpsAcquisitionGSoC2014GensourceTest_msg_rx> msg_rx = GalileoE5aPcpsAcquisitionGSoC2014GensourceTest_msg_rx_make(channel_internal_queue);
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Acquisition test");
@ -553,14 +550,14 @@ TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, ConnectAndRun)
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test."<< std::endl;
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block."<< std::endl;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
@ -571,32 +568,32 @@ TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, ValidationOfSIM)
config_1();
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Acquisition test");
acquisition = std::make_shared<GalileoE5aNoncoherentIQAcquisitionCaf>(config.get(), "Acquisition", 1, 1);
acquisition = std::make_shared<GalileoE5aNoncoherentIQAcquisitionCaf>(config.get(), "Acquisition_5X", 1, 1);
boost::shared_ptr<GalileoE5aPcpsAcquisitionGSoC2014GensourceTest_msg_rx> msg_rx = GalileoE5aPcpsAcquisitionGSoC2014GensourceTest_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(0);
}) << "Failure setting channel."<< std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro."<< std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition_5X.doppler_max", 5000));
}) << "Failure setting doppler_max."<< std::endl;
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition_5X.doppler_step", 100));
}) << "Failure setting doppler_step."<< std::endl;
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition_5X.threshold", 0.0001));
}) << "Failure setting threshold."<< std::endl;
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block."<< std::endl;
}) << "Failure connecting acquisition to the top_block.";
// USING THE SIGNAL GENERATOR
@ -609,7 +606,7 @@ TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, ValidationOfSIM)
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
acquisition->reset();
acquisition->init();
@ -641,7 +638,7 @@ TEST_F(GalileoE5aPcpsAcquisitionGSoC2014GensourceTest, ValidationOfSIM)
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block."<< std::endl;
}) << "Failure running the top_block.";
stop_queue();

View File

@ -244,17 +244,16 @@ void GpsL1CaPcpsAcquisitionGSoC2013Test::config_1()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition_1C.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition.threshold", "0.8");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.bit_transition_flag", "false");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1C.max_dwells", "1");
config->set_property("Acquisition_1C.threshold", "0.8");
config->set_property("Acquisition_1C.doppler_max", "10000");
config->set_property("Acquisition_1C.doppler_step", "250");
config->set_property("Acquisition_1C.bit_transition_flag", "false");
config->set_property("Acquisition_1C.dump", "false");
}
@ -332,17 +331,16 @@ void GpsL1CaPcpsAcquisitionGSoC2013Test::config_2()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition_1C.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition.pfa", "0.1");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.bit_transition_flag", "false");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1C.max_dwells", "1");
config->set_property("Acquisition_1C.pfa", "0.1");
config->set_property("Acquisition_1C.doppler_max", "10000");
config->set_property("Acquisition_1C.doppler_step", "250");
config->set_property("Acquisition_1C.bit_transition_flag", "false");
config->set_property("Acquisition_1C.dump", "false");
}
@ -439,7 +437,7 @@ TEST_F(GpsL1CaPcpsAcquisitionGSoC2013Test, ConnectAndRun)
top_block = gr::make_top_block("Acquisition test");
config_1();
acquisition = new GpsL1CaPcpsAcquisition(config.get(), "Acquisition", 1, 1);
acquisition = new GpsL1CaPcpsAcquisition(config.get(), "Acquisition_1C", 1, 1);
boost::shared_ptr<GpsL1CaPcpsAcquisitionGSoC2013Test_msg_rx> msg_rx = GpsL1CaPcpsAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
@ -449,14 +447,14 @@ TEST_F(GpsL1CaPcpsAcquisitionGSoC2013Test, ConnectAndRun)
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test."<< std::endl;
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block."<< std::endl;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
@ -470,33 +468,33 @@ TEST_F(GpsL1CaPcpsAcquisitionGSoC2013Test, ValidationOfResults)
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Acquisition test");
acquisition = new GpsL1CaPcpsAcquisition(config.get(), "Acquisition", 1, 1);
acquisition = new GpsL1CaPcpsAcquisition(config.get(), "Acquisition_1C", 1, 1);
boost::shared_ptr<GpsL1CaPcpsAcquisitionGSoC2013Test_msg_rx> msg_rx = GpsL1CaPcpsAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel."<< std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro."<< std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(10000);
}) << "Failure setting doppler_max."<< std::endl;
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(500);
}) << "Failure setting doppler_step."<< std::endl;
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(0.5);
}) << "Failure setting threshold."<< std::endl;
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting acquisition to the top_block."<< std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
@ -507,7 +505,7 @@ TEST_F(GpsL1CaPcpsAcquisitionGSoC2013Test, ValidationOfResults)
signal_source.reset(new GenSignalSource(signal_generator, filter, "SignalSource", queue));
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
// i = 0 --> satellite in acquisition is visible
// i = 1 --> satellite in acquisition is not visible
@ -530,7 +528,7 @@ TEST_F(GpsL1CaPcpsAcquisitionGSoC2013Test, ValidationOfResults)
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block."<< std::endl;
}) << "Failure running the top_block.";
if (i == 0)
{
@ -548,12 +546,12 @@ TEST_F(GpsL1CaPcpsAcquisitionGSoC2013Test, ValidationOfResults)
#ifdef OLD_BOOST
ASSERT_NO_THROW( {
ch_thread.timed_join(boost::posix_time::seconds(1));
}) << "Failure while waiting the queue to stop" << std::endl;
}) << "Failure while waiting the queue to stop";
#endif
#ifndef OLD_BOOST
ASSERT_NO_THROW( {
ch_thread.try_join_until(boost::chrono::steady_clock::now() + boost::chrono::milliseconds(50));
}) << "Failure while waiting the queue to stop" << std::endl;
}) << "Failure while waiting the queue to stop";
#endif
}
@ -566,33 +564,33 @@ TEST_F(GpsL1CaPcpsAcquisitionGSoC2013Test, ValidationOfResultsProbabilities)
config_2();
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Acquisition test");
acquisition = new GpsL1CaPcpsAcquisition(config.get(), "Acquisition", 1, 1);
acquisition = new GpsL1CaPcpsAcquisition(config.get(), "Acquisition_1C", 1, 1);
boost::shared_ptr<GpsL1CaPcpsAcquisitionGSoC2013Test_msg_rx> msg_rx = GpsL1CaPcpsAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel."<< std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro."<< std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max."<< std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1C.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step."<< std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1C.doppler_step", 500));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold."<< std::endl;
acquisition->set_threshold(config->property("Acquisition_1C.threshold", 0.0));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting acquisition to the top_block."<< std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
@ -603,7 +601,7 @@ TEST_F(GpsL1CaPcpsAcquisitionGSoC2013Test, ValidationOfResultsProbabilities)
signal_source.reset(new GenSignalSource(signal_generator, filter, "SignalSource", queue));
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test." ;
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
@ -628,7 +626,7 @@ TEST_F(GpsL1CaPcpsAcquisitionGSoC2013Test, ValidationOfResultsProbabilities)
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block."<< std::endl;
}) << "Failure running the top_block.";
if (i == 0)
{
@ -643,12 +641,12 @@ TEST_F(GpsL1CaPcpsAcquisitionGSoC2013Test, ValidationOfResultsProbabilities)
#ifdef OLD_BOOST
ASSERT_NO_THROW( {
ch_thread.timed_join(boost::posix_time::seconds(1));
}) << "Failure while waiting the queue to stop" << std::endl;
}) << "Failure while waiting the queue to stop";
#endif
#ifndef OLD_BOOST
ASSERT_NO_THROW( {
ch_thread.try_join_until(boost::chrono::steady_clock::now() + boost::chrono::milliseconds(50));
}) << "Failure while waiting the queue to stop" << std::endl;
}) << "Failure while waiting the queue to stop";
#endif
}

View File

@ -34,6 +34,7 @@
#include <chrono>
#include <iostream>
#include <boost/filesystem.hpp>
#include <boost/make_shared.hpp>
#include <gnuradio/top_block.h>
#include <gnuradio/blocks/file_source.h>
@ -47,6 +48,9 @@
#include "in_memory_configuration.h"
#include "gnss_sdr_valve.h"
#include "gnss_synchro.h"
#include "gnuplot_i.h"
#include "test_flags.h"
#include "acquisition_dump_reader.h"
#include "gps_l1_ca_pcps_acquisition.h"
@ -114,18 +118,23 @@ protected:
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
gnss_synchro = Gnss_Synchro();
doppler_max = 5000;
doppler_step = 100;
}
~GpsL1CaPcpsAcquisitionTest()
{}
void init();
void plot_grid();
gr::top_block_sptr top_block;
std::shared_ptr<GNSSBlockFactory> factory;
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro;
size_t item_size;
unsigned int doppler_max;
unsigned int doppler_step;
};
@ -137,23 +146,86 @@ void GpsL1CaPcpsAcquisitionTest::init()
signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = 1;
config->set_property("GNSS-SDR.internal_fs_sps", "4000000");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms", "1");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition.threshold", "0.00001");
config->set_property("Acquisition.doppler_max", "5000");
config->set_property("Acquisition.doppler_step", "500");
config->set_property("Acquisition.repeat_satellite", "false");
//config->set_property("Acquisition.pfa", "0.0");
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition_1C.coherent_integration_time_ms", "1");
if(FLAGS_plot_acq_grid == true)
{
config->set_property("Acquisition_1C.dump", "true");
}
else
{
config->set_property("Acquisition_1C.dump", "false");
}
config->set_property("Acquisition_1C.dump_filename", "./tmp-acq-gps1/acquisition.dat");
config->set_property("Acquisition_1C.threshold", "0.00001");
config->set_property("Acquisition_1C.doppler_max", std::to_string(doppler_max));
config->set_property("Acquisition_1C.doppler_step", std::to_string(doppler_step));
config->set_property("Acquisition_1C.repeat_satellite", "false");
//config->set_property("Acquisition_1C.pfa", "0.0");
}
void GpsL1CaPcpsAcquisitionTest::plot_grid()
{
//load the measured values
std::string basename = "./tmp-acq-gps1/acquisition_G_1C";
unsigned int sat = static_cast<unsigned int>(gnss_synchro.PRN);
unsigned int samples_per_code = static_cast<unsigned int>(round(4000000 / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS))); // !!
acquisition_dump_reader acq_dump(basename, sat, doppler_max, doppler_step, samples_per_code);
if(!acq_dump.read_binary_acq()) std::cout << "Error reading files" << std::endl;
std::vector<int> *doppler = &acq_dump.doppler;
std::vector<unsigned int> *samples = &acq_dump.samples;
std::vector<std::vector<float> > *mag = &acq_dump.mag;
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
if(gnuplot_executable.empty())
{
std::cout << "WARNING: Although the flag plot_acq_grid has been set to TRUE," << std::endl;
std::cout << "gnuplot has not been found in your system." << std::endl;
std::cout << "Test results will not be plotted." << std::endl;
}
else
{
std::cout << "Plotting the acquisition grid. This can take a while..." << std::endl;
try
{
boost::filesystem::path p(gnuplot_executable);
boost::filesystem::path dir = p.parent_path();
std::string gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
Gnuplot g1("lines");
g1.set_title("GPS L1 C/A signal acquisition for satellite PRN #" + std::to_string(gnss_synchro.PRN));
g1.set_xlabel("Doppler [Hz]");
g1.set_ylabel("Sample");
//g1.cmd("set view 60, 105, 1, 1");
g1.plot_grid3d(*doppler, *samples, *mag);
g1.savetops("GPS_L1_acq_grid");
g1.savetopdf("GPS_L1_acq_grid");
g1.showonscreen();
}
catch (const GnuplotException & ge)
{
std::cout << ge.what() << std::endl;
}
}
std::string data_str = "./tmp-acq-gps1";
if (boost::filesystem::exists(data_str))
{
boost::filesystem::remove_all(data_str);
}
}
TEST_F(GpsL1CaPcpsAcquisitionTest, Instantiate)
{
init();
boost::shared_ptr<GpsL1CaPcpsAcquisition> acquisition = boost::make_shared<GpsL1CaPcpsAcquisition>(config.get(), "Acquisition", 1, 1);
boost::shared_ptr<GpsL1CaPcpsAcquisition> acquisition = boost::make_shared<GpsL1CaPcpsAcquisition>(config.get(), "Acquisition_1C", 1, 1);
}
@ -167,7 +239,7 @@ TEST_F(GpsL1CaPcpsAcquisitionTest, ConnectAndRun)
top_block = gr::make_top_block("Acquisition test");
init();
boost::shared_ptr<GpsL1CaPcpsAcquisition> acquisition = boost::make_shared<GpsL1CaPcpsAcquisition>(config.get(), "Acquisition", 1, 1);
boost::shared_ptr<GpsL1CaPcpsAcquisition> acquisition = boost::make_shared<GpsL1CaPcpsAcquisition>(config.get(), "Acquisition_1C", 1, 1);
boost::shared_ptr<GpsL1CaPcpsAcquisitionTest_msg_rx> msg_rx = GpsL1CaPcpsAcquisitionTest_msg_rx_make();
ASSERT_NO_THROW( {
@ -178,14 +250,14 @@ TEST_F(GpsL1CaPcpsAcquisitionTest, ConnectAndRun)
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
@ -194,7 +266,7 @@ TEST_F(GpsL1CaPcpsAcquisitionTest, ConnectAndRun)
TEST_F(GpsL1CaPcpsAcquisitionTest, ValidationOfResults)
{
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
std::chrono::duration<double> elapsed_seconds(0.0);
top_block = gr::make_top_block("Acquisition test");
double expected_delay_samples = 524;
@ -202,32 +274,42 @@ TEST_F(GpsL1CaPcpsAcquisitionTest, ValidationOfResults)
init();
std::shared_ptr<GpsL1CaPcpsAcquisition> acquisition = std::make_shared<GpsL1CaPcpsAcquisition>(config.get(), "Acquisition", 1, 1);
if(FLAGS_plot_acq_grid == true)
{
std::string data_str = "./tmp-acq-gps1";
if (boost::filesystem::exists(data_str))
{
boost::filesystem::remove_all(data_str);
}
boost::filesystem::create_directory(data_str);
}
std::shared_ptr<GpsL1CaPcpsAcquisition> acquisition = std::make_shared<GpsL1CaPcpsAcquisition>(config.get(), "Acquisition_1C", 1, 1);
boost::shared_ptr<GpsL1CaPcpsAcquisitionTest_msg_rx> msg_rx = GpsL1CaPcpsAcquisitionTest_msg_rx_make();
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_threshold(0.001);
}) << "Failure setting threshold." << std::endl;
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(5000);
}) << "Failure setting doppler_max." << std::endl;
acquisition->set_doppler_max(doppler_max);
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(100);
}) << "Failure setting doppler_step." << std::endl;
acquisition->set_doppler_step(doppler_step);
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
ASSERT_NO_THROW( {
std::string path = std::string(TEST_PATH);
@ -236,7 +318,7 @@ TEST_F(GpsL1CaPcpsAcquisitionTest, ValidationOfResults)
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex), file_name, false);
top_block->connect(file_source, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
acquisition->set_local_code();
acquisition->set_state(1); // Ensure that acquisition starts at the first sample
@ -247,7 +329,7 @@ TEST_F(GpsL1CaPcpsAcquisitionTest, ValidationOfResults)
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
unsigned long int nsamples = gnss_synchro.Acq_samplestamp_samples;
std::cout << "Acquired " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
@ -259,4 +341,9 @@ TEST_F(GpsL1CaPcpsAcquisitionTest, ValidationOfResults)
EXPECT_LE(doppler_error_hz, 666) << "Doppler error exceeds the expected value: 666 Hz = 2/(3*integration period)";
EXPECT_LT(delay_error_chips, 0.5) << "Delay error exceeds the expected value: 0.5 chips";
if(FLAGS_plot_acq_grid == true)
{
plot_grid();
}
}

View File

@ -259,19 +259,17 @@ void GpsL1CaPcpsAcquisitionTestFpga::init()
signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = 1;
config->set_property("GNSS-SDR.internal_fs_sps", "4000000");
config->set_property("Acquisition.item_type", "cshort");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms", "1");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition.implementation",
"GPS_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition.threshold", "0.001");
config->set_property("Acquisition.doppler_max", "5000");
config->set_property("Acquisition.doppler_step", "500");
config->set_property("Acquisition.repeat_satellite", "false");
config->set_property("Acquisition.pfa", "0.0");
config->set_property("Acquisition.select_queue_Fpga", "0");
config->set_property("Acquisition.devicename", "/dev/uio0");
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_Acquisition");
config->set_property("Acquisition_1C.item_type", "cshort");
config->set_property("Acquisition_1C.coherent_integration_time_ms", "1");
config->set_property("Acquisition_1C.dump", "false");
config->set_property("Acquisition_1C.threshold", "0.001");
config->set_property("Acquisition_1C.doppler_max", "5000");
config->set_property("Acquisition_1C.doppler_step", "500");
config->set_property("Acquisition_1C.repeat_satellite", "false");
config->set_property("Acquisition_1C.pfa", "0.0");
config->set_property("Acquisition_1C.select_queue_Fpga", "0");
config->set_property("Acquisition_1C.devicename", "/dev/uio0");
}
@ -279,7 +277,7 @@ TEST_F(GpsL1CaPcpsAcquisitionTestFpga, Instantiate)
{
init();
boost::shared_ptr<GpsL1CaPcpsAcquisitionFpga> acquisition =
boost::make_shared<GpsL1CaPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 1);
boost::make_shared<GpsL1CaPcpsAcquisitionFpga>(config.get(), "Acquisition_1C", 0, 1);
}
@ -294,39 +292,39 @@ TEST_F(GpsL1CaPcpsAcquisitionTestFpga, ValidationOfResults)
init();
std::shared_ptr < GpsL1CaPcpsAcquisitionFpga > acquisition =
std::make_shared < GpsL1CaPcpsAcquisitionFpga > (config.get(), "Acquisition", 0, 1);
std::make_shared < GpsL1CaPcpsAcquisitionFpga > (config.get(), "Acquisition_1C", 0, 1);
boost::shared_ptr<GpsL1CaPcpsAcquisitionTestFpga_msg_rx> msg_rx = GpsL1CaPcpsAcquisitionTestFpga_msg_rx_make();
ASSERT_NO_THROW(
{
acquisition->set_channel(1);
})<< "Failure setting channel." << std::endl;
})<< "Failure setting channel.";
ASSERT_NO_THROW(
{
acquisition->set_gnss_synchro(&gnss_synchro);
})<< "Failure setting gnss_synchro." << std::endl;
})<< "Failure setting gnss_synchro.";
ASSERT_NO_THROW(
{
acquisition->set_threshold(0.1);
})<< "Failure setting threshold." << std::endl;
})<< "Failure setting threshold.";
ASSERT_NO_THROW(
{
acquisition->set_doppler_max(10000);
})<< "Failure setting doppler_max." << std::endl;
})<< "Failure setting doppler_max.";
ASSERT_NO_THROW(
{
acquisition->set_doppler_step(250);
})<< "Failure setting doppler_step." << std::endl;
})<< "Failure setting doppler_step.";
ASSERT_NO_THROW(
{
acquisition->connect(top_block);
})<< "Failure connecting acquisition to the top_block." << std::endl;
})<< "Failure connecting acquisition to the top_block.";
// uncomment the next line to load the file from the current directory
std::string file = "./GPS_L1_CA_ID_1_Fs_4Msps_2ms.dat";
@ -349,7 +347,7 @@ TEST_F(GpsL1CaPcpsAcquisitionTestFpga, ValidationOfResults)
top_block->connect(file_source, 0, throttle_block, 0);
top_block->connect(throttle_block, 0, null_sink, 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
})<< "Failure connecting the blocks of acquisition test." << std::endl;
})<< "Failure connecting the blocks of acquisition test." ;
acquisition->set_state(1); // Ensure that acquisition starts at the first state
acquisition->init();
@ -366,7 +364,7 @@ TEST_F(GpsL1CaPcpsAcquisitionTestFpga, ValidationOfResults)
top_block->wait();
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
})<< "Failure running the top_block." << std::endl;
})<< "Failure running the top_block.";
t3.join();

View File

@ -240,17 +240,16 @@ void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::config_1()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_OpenCl_Acquisition");
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition_1C.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_OpenCl_Acquisition");
config->set_property("Acquisition.threshold", "0.8");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.bit_transition_flag", "false");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1C.max_dwells", "1");
config->set_property("Acquisition_1C.threshold", "0.8");
config->set_property("Acquisition_1C.doppler_max", "10000");
config->set_property("Acquisition_1C.doppler_step", "250");
config->set_property("Acquisition_1C.bit_transition_flag", "false");
config->set_property("Acquisition_1C.dump", "false");
}
@ -328,17 +327,16 @@ void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::config_2()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_OpenCl_Acquisition");
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_OpenCl_Acquisition");
config->set_property("Acquisition.pfa", "0.1");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.bit_transition_flag", "false");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1C.max_dwells", "1");
config->set_property("Acquisition_1C.pfa", "0.1");
config->set_property("Acquisition_1C.doppler_max", "10000");
config->set_property("Acquisition_1C.doppler_step", "250");
config->set_property("Acquisition_1C.bit_transition_flag", "false");
config->set_property("Acquisition_1C.dump", "false");
}
@ -423,7 +421,7 @@ void GpsL1CaPcpsOpenClAcquisitionGSoC2013Test::stop_queue()
TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, Instantiate)
{
config_1();
acquisition = std::make_shared<GpsL1CaPcpsOpenClAcquisition>(config.get(), "Acquisition", 1, 1);
acquisition = std::make_shared<GpsL1CaPcpsOpenClAcquisition>(config.get(), "Acquisition_1C", 1, 1);
}
@ -434,7 +432,7 @@ TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, ConnectAndRun)
std::chrono::duration<double> elapsed_seconds(0);
config_1();
acquisition = std::make_shared<GpsL1CaPcpsOpenClAcquisition>(config.get(), "Acquisition", 1, 1);
acquisition = std::make_shared<GpsL1CaPcpsOpenClAcquisition>(config.get(), "Acquisition_1C", 1, 1);
boost::shared_ptr<GpsL1CaPcpsOpenClAcquisitionGSoC2013Test_msg_rx> msg_rx = GpsL1CaPcpsOpenClAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
@ -444,14 +442,14 @@ TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, ConnectAndRun)
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
@ -466,27 +464,27 @@ TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, ValidationOfResults)
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max." << std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1C.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step." << std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1C.doppler_step", 500));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold." << std::endl;
acquisition->set_threshold(config->property("Acquisition_1C.threshold", 0.0));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
@ -498,7 +496,7 @@ TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, ValidationOfResults)
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
// i = 0 --> satellite in acquisition is visible
// i = 1 --> satellite in acquisition is not visible
@ -521,7 +519,7 @@ TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, ValidationOfResults)
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
if (i == 0)
{
@ -544,32 +542,32 @@ TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, ValidationOfResultsProbabilitie
{
config_2();
acquisition = std::make_shared<GpsL1CaPcpsOpenClAcquisition>(config.get(), "Acquisition", 1, 1);
acquisition = std::make_shared<GpsL1CaPcpsOpenClAcquisition>(config.get(), "Acquisition_1C", 1, 1);
boost::shared_ptr<GpsL1CaPcpsOpenClAcquisitionGSoC2013Test_msg_rx> msg_rx = GpsL1CaPcpsOpenClAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max." << std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1C.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step." << std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1C.doppler_step", 500));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold." << std::endl;
acquisition->set_threshold(config->property("Acquisition_1C.threshold", 0.0));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
@ -581,7 +579,7 @@ TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, ValidationOfResultsProbabilitie
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
@ -606,7 +604,7 @@ TEST_F(GpsL1CaPcpsOpenClAcquisitionGSoC2013Test, ValidationOfResultsProbabilitie
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
if (i == 0)
{

View File

@ -255,17 +255,16 @@ void GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test::config_1()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_QuickSync_Acquisition");
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition_1C.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_QuickSync_Acquisition");
config->set_property("Acquisition.threshold", "250");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.bit_transition_flag", "false");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1C.max_dwells", "1");
config->set_property("Acquisition_1C.threshold", "250");
config->set_property("Acquisition_1C.doppler_max", "10000");
config->set_property("Acquisition_1C.doppler_step", "250");
config->set_property("Acquisition_1C.bit_transition_flag", "false");
config->set_property("Acquisition_1C.dump", "false");
}
@ -347,17 +346,16 @@ void GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test::config_2()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_QuickSync_Acquisition");
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition_1C.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "1");
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_QuickSync_Acquisition");
config->set_property("Acquisition.threshold", std::to_string(FLAGS_value_threshold));
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "100");
config->set_property("Acquisition.bit_transition_flag", "false");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1C.max_dwells", "1");
config->set_property("Acquisition_1C.threshold", std::to_string(FLAGS_value_threshold));
config->set_property("Acquisition_1C.doppler_max", "10000");
config->set_property("Acquisition_1C.doppler_step", "100");
config->set_property("Acquisition_1C.bit_transition_flag", "false");
config->set_property("Acquisition_1C.dump", "false");
}
@ -439,17 +437,16 @@ void GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test::config_3()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_QuickSync_Acquisition");
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition_1C.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.max_dwells", "2");
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_QuickSync_Acquisition");
config->set_property("Acquisition.threshold", "0.01");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.bit_transition_flag", "false");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1C.max_dwells", "2");
config->set_property("Acquisition_1C.threshold", "0.01");
config->set_property("Acquisition_1C.doppler_max", "10000");
config->set_property("Acquisition_1C.doppler_step", "250");
config->set_property("Acquisition_1C.bit_transition_flag", "false");
config->set_property("Acquisition_1C.dump", "false");
}
@ -537,7 +534,7 @@ void GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test::stop_queue()
TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, Instantiate)
{
config_1();
acquisition = std::make_shared<GpsL1CaPcpsQuickSyncAcquisition>(config.get(), "Acquisition", 1, 1);
acquisition = std::make_shared<GpsL1CaPcpsQuickSyncAcquisition>(config.get(), "Acquisition_1C", 1, 1);
}
@ -545,13 +542,13 @@ TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, ConnectAndRun)
{
int nsamples = floor(fs_in * integration_time_ms * 1e-3);
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
std::chrono::duration<double> elapsed_seconds(0.0);
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
boost::shared_ptr<GpsL1CaPcpsAcquisitionGSoC2013Test_msg_rx> msg_rx = GpsL1CaPcpsAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
config_1();
acquisition = std::make_shared<GpsL1CaPcpsQuickSyncAcquisition>(config.get(), "Acquisition", 1, 1);
acquisition = std::make_shared<GpsL1CaPcpsQuickSyncAcquisition>(config.get(), "Acquisition_1C", 1, 1);
ASSERT_NO_THROW( {
acquisition->connect(top_block);
@ -560,14 +557,14 @@ TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, ConnectAndRun)
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test."<< std::endl;
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block."<< std::endl;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
@ -578,32 +575,32 @@ TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, ValidationOfResults)
config_1();
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
acquisition = std::make_shared<GpsL1CaPcpsQuickSyncAcquisition>(config.get(), "Acquisition", 1, 1);
acquisition = std::make_shared<GpsL1CaPcpsQuickSyncAcquisition>(config.get(), "Acquisition_1C", 1, 1);
boost::shared_ptr<GpsL1CaPcpsAcquisitionGSoC2013Test_msg_rx> msg_rx = GpsL1CaPcpsAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel."<< std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro."<< std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(10000);
}) << "Failure setting doppler_max."<< std::endl;
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(250);
}) << "Failure setting doppler_step."<< std::endl;
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(100);
}) << "Failure setting threshold."<< std::endl;
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block."<< std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
acquisition->reset();
@ -616,7 +613,7 @@ TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, ValidationOfResults)
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
// i = 0 --> satellite in acquisition is visible
// i = 1 --> satellite in acquisition is not visible
@ -642,7 +639,7 @@ TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, ValidationOfResults)
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
stop_queue();
@ -672,32 +669,32 @@ TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, ValidationOfResultsWithNoise
config_1();
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
acquisition = std::make_shared<GpsL1CaPcpsQuickSyncAcquisition>(config.get(), "Acquisition", 1, 1);
acquisition = std::make_shared<GpsL1CaPcpsQuickSyncAcquisition>(config.get(), "Acquisition_1C", 1, 1);
boost::shared_ptr<GpsL1CaPcpsAcquisitionGSoC2013Test_msg_rx> msg_rx = GpsL1CaPcpsAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel."<< std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(10000);
}) << "Failure setting doppler_max."<< std::endl;
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(250);
}) << "Failure setting doppler_step."<< std::endl;
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(100);
}) << "Failure setting threshold." << std::endl;
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
acquisition->reset();
@ -710,7 +707,7 @@ TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, ValidationOfResultsWithNoise
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
// i = 0 --> satellite in acquisition is visible
// i = 1 --> satellite in acquisition is not visible
@ -736,7 +733,7 @@ TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, ValidationOfResultsWithNoise
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
stop_queue();
@ -764,32 +761,20 @@ TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, ValidationOfResultsProbabili
config_2();
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
acquisition = std::make_shared<GpsL1CaPcpsQuickSyncAcquisition>(config.get(), "Acquisition", 1, 1);
acquisition = std::make_shared<GpsL1CaPcpsQuickSyncAcquisition>(config.get(), "Acquisition_1C", 1, 1);
boost::shared_ptr<GpsL1CaPcpsAcquisitionGSoC2013Test_msg_rx> msg_rx = GpsL1CaPcpsAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel."<< std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro."<< std::endl;
/* ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step."<< std::endl;
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold."<< std::endl; */
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block."<< std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
acquisition->reset();
@ -802,7 +787,7 @@ TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, ValidationOfResultsProbabili
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
@ -829,7 +814,7 @@ TEST_F(GpsL1CaPcpsQuickSyncAcquisitionGSoC2014Test, ValidationOfResultsProbabili
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
stop_queue();

View File

@ -240,17 +240,16 @@ void GpsL1CaPcpsTongAcquisitionGSoC2013Test::config_1()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_Tong_Acquisition");
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition_1C.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Tong_Acquisition");
config->set_property("Acquisition.threshold", "0.8");
config->set_property("Acquisition.tong_init_val", "1");
config->set_property("Acquisition.tong_max_val", "8");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1C.threshold", "0.8");
config->set_property("Acquisition_1C.tong_init_val", "1");
config->set_property("Acquisition_1C.tong_max_val", "8");
config->set_property("Acquisition_1C.doppler_max", "10000");
config->set_property("Acquisition_1C.doppler_step", "250");
config->set_property("Acquisition_1C.dump", "false");
}
@ -328,17 +327,16 @@ void GpsL1CaPcpsTongAcquisitionGSoC2013Test::config_2()
config->set_property("InputFilter.filter_type", "bandpass");
config->set_property("InputFilter.grid_density", "16");
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.coherent_integration_time_ms",
config->set_property("Acquisition_1C.implementation", "GPS_L1_CA_PCPS_Tong_Acquisition");
config->set_property("Acquisition_1C.item_type", "gr_complex");
config->set_property("Acquisition_1C.coherent_integration_time_ms",
std::to_string(integration_time_ms));
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Tong_Acquisition");
config->set_property("Acquisition.threshold", "0.00108"); // Pfa,a = 0.1
config->set_property("Acquisition.tong_init_val", "1");
config->set_property("Acquisition.tong_max_val", "8");
config->set_property("Acquisition.doppler_max", "10000");
config->set_property("Acquisition.doppler_step", "250");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition_1C.threshold", "0.00108"); // Pfa,a = 0.1
config->set_property("Acquisition_1C.tong_init_val", "1");
config->set_property("Acquisition_1C.tong_max_val", "8");
config->set_property("Acquisition_1C.doppler_max", "10000");
config->set_property("Acquisition_1C.doppler_step", "250");
config->set_property("Acquisition_1C.dump", "false");
}
@ -422,7 +420,7 @@ void GpsL1CaPcpsTongAcquisitionGSoC2013Test::stop_queue()
TEST_F(GpsL1CaPcpsTongAcquisitionGSoC2013Test, Instantiate)
{
config_1();
acquisition = std::make_shared<GpsL1CaPcpsTongAcquisition>(config.get(), "Acquisition", 1, 1);
acquisition = std::make_shared<GpsL1CaPcpsTongAcquisition>(config.get(), "Acquisition_1C", 1, 1);
}
@ -435,7 +433,7 @@ TEST_F(GpsL1CaPcpsTongAcquisitionGSoC2013Test, ConnectAndRun)
queue = gr::msg_queue::make(0);
config_1();
acquisition = std::make_shared<GpsL1CaPcpsTongAcquisition>(config.get(), "Acquisition", 1, 1);
acquisition = std::make_shared<GpsL1CaPcpsTongAcquisition>(config.get(), "Acquisition_1C", 1, 1);
boost::shared_ptr<GpsL1CaPcpsTongAcquisitionGSoC2013Test_msg_rx> msg_rx = GpsL1CaPcpsTongAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
@ -445,14 +443,14 @@ TEST_F(GpsL1CaPcpsTongAcquisitionGSoC2013Test, ConnectAndRun)
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
@ -464,32 +462,32 @@ TEST_F(GpsL1CaPcpsTongAcquisitionGSoC2013Test, ValidationOfResults)
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
acquisition = std::make_shared<GpsL1CaPcpsTongAcquisition>(config.get(), "Acquisition", 1, 1);
acquisition = std::make_shared<GpsL1CaPcpsTongAcquisition>(config.get(), "Acquisition_1C", 1, 1);
boost::shared_ptr<GpsL1CaPcpsTongAcquisitionGSoC2013Test_msg_rx> msg_rx = GpsL1CaPcpsTongAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max." << std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1C.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step." << std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1C.doppler_step", 500));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold." << std::endl;
acquisition->set_threshold(config->property("Acquisition_1C.threshold", 0.0));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
@ -501,7 +499,7 @@ TEST_F(GpsL1CaPcpsTongAcquisitionGSoC2013Test, ValidationOfResults)
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
// i = 0 --> satellite in acquisition is visible
// i = 1 --> satellite in acquisition is not visible
@ -525,7 +523,7 @@ TEST_F(GpsL1CaPcpsTongAcquisitionGSoC2013Test, ValidationOfResults)
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
stop_queue();
@ -552,32 +550,32 @@ TEST_F(GpsL1CaPcpsTongAcquisitionGSoC2013Test, ValidationOfResultsProbabilities)
config_2();
top_block = gr::make_top_block("Acquisition test");
queue = gr::msg_queue::make(0);
acquisition = std::make_shared<GpsL1CaPcpsTongAcquisition>(config.get(), "Acquisition", 1, 1);
acquisition = std::make_shared<GpsL1CaPcpsTongAcquisition>(config.get(), "Acquisition_1C", 1, 1);
boost::shared_ptr<GpsL1CaPcpsTongAcquisitionGSoC2013Test_msg_rx> msg_rx = GpsL1CaPcpsTongAcquisitionGSoC2013Test_msg_rx_make(channel_internal_queue);
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(config->property("Acquisition.doppler_max", 10000));
}) << "Failure setting doppler_max." << std::endl;
acquisition->set_doppler_max(config->property("Acquisition_1C.doppler_max", 10000));
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(config->property("Acquisition.doppler_step", 500));
}) << "Failure setting doppler_step." << std::endl;
acquisition->set_doppler_step(config->property("Acquisition_1C.doppler_step", 500));
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->set_threshold(config->property("Acquisition.threshold", 0.0));
}) << "Failure setting threshold." << std::endl;
acquisition->set_threshold(config->property("Acquisition_1C.threshold", 0.0));
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
acquisition->init();
@ -589,7 +587,7 @@ TEST_F(GpsL1CaPcpsTongAcquisitionGSoC2013Test, ValidationOfResultsProbabilities)
signal_source->connect(top_block);
top_block->connect(signal_source->get_right_block(), 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
std::cout << "Probability of false alarm (target) = " << 0.1 << std::endl;
@ -614,7 +612,7 @@ TEST_F(GpsL1CaPcpsTongAcquisitionGSoC2013Test, ValidationOfResultsProbabilities)
EXPECT_NO_THROW( {
top_block->run(); // Start threads and wait
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
stop_queue();

View File

@ -34,6 +34,7 @@
#include <chrono>
#include <iostream>
#include <boost/filesystem.hpp>
#include <boost/make_shared.hpp>
#include <gnuradio/top_block.h>
#include <gnuradio/blocks/file_source.h>
@ -49,6 +50,9 @@
#include "in_memory_configuration.h"
#include "gnss_sdr_valve.h"
#include "gnss_synchro.h"
#include "gnuplot_i.h"
#include "test_flags.h"
#include "acquisition_dump_reader.h"
#include "gps_l2_m_pcps_acquisition.h"
#include "GPS_L2C.h"
@ -70,7 +74,6 @@ private:
public:
int rx_message;
~GpsL2MPcpsAcquisitionTest_msg_rx(); //!< Default destructor
};
GpsL2MPcpsAcquisitionTest_msg_rx_sptr GpsL2MPcpsAcquisitionTest_msg_rx_make()
@ -114,8 +117,10 @@ protected:
factory = std::make_shared<GNSSBlockFactory>();
config = std::make_shared<InMemoryConfiguration>();
item_size = sizeof(gr_complex);
sampling_freqeuncy_hz = 0;
sampling_frequency_hz = 5000000;
nsamples = 0;
doppler_max = 3000;
doppler_step = 125;
gnss_synchro = Gnss_Synchro();
}
@ -123,6 +128,7 @@ protected:
{}
void init();
void plot_grid();
gr::msg_queue::sptr queue;
gr::top_block_sptr top_block;
@ -130,8 +136,10 @@ protected:
std::shared_ptr<InMemoryConfiguration> config;
Gnss_Synchro gnss_synchro;
size_t item_size;
int sampling_freqeuncy_hz;
int sampling_frequency_hz;
int nsamples;
unsigned int doppler_max;
unsigned int doppler_step;
};
@ -140,22 +148,83 @@ void GpsL2MPcpsAcquisitionTest::init()
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'G';
std::string signal = "2S";
//strncpy(gnss_synchro.Signal, signal.c_str(), 3);
std::memcpy(static_cast<void*>(gnss_synchro.Signal), signal.c_str(), 3); // copy string into synchro char array: 2 char + null
gnss_synchro.Signal[2] = 0; // make sure that string length is only two characters
gnss_synchro.PRN = 7;
sampling_freqeuncy_hz = 5000000;
nsamples = round(static_cast<double>(sampling_freqeuncy_hz) * GPS_L2_M_PERIOD) * 2;
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(sampling_freqeuncy_hz));
config->set_property("Acquisition.item_type", "gr_complex");
config->set_property("Acquisition.if", "0");
config->set_property("Acquisition.dump", "false");
config->set_property("Acquisition.implementation", "GPS_L2_M_PCPS_Acquisition");
config->set_property("Acquisition.threshold", "0.001");
config->set_property("Acquisition.doppler_max", "5000");
config->set_property("Acquisition.doppler_step", "100");
config->set_property("Acquisition.repeat_satellite", "false");
nsamples = round(static_cast<double>(sampling_frequency_hz) * GPS_L2_M_PERIOD) * 2;
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(sampling_frequency_hz));
config->set_property("Acquisition_2S.implementation", "GPS_L2_M_PCPS_Acquisition");
config->set_property("Acquisition_2S.item_type", "gr_complex");
if(FLAGS_plot_acq_grid == true)
{
config->set_property("Acquisition_2S.dump", "true");
}
else
{
config->set_property("Acquisition_2S.dump", "false");
}
config->set_property("Acquisition_2S.dump_filename", "./tmp-acq-gps2/acquisition.dat");
config->set_property("Acquisition_2S.threshold", "0.001");
config->set_property("Acquisition_2S.doppler_max", std::to_string(doppler_max));
config->set_property("Acquisition_2S.doppler_step", std::to_string(doppler_step));
config->set_property("Acquisition_2S.repeat_satellite", "false");
}
void GpsL2MPcpsAcquisitionTest::plot_grid()
{
//load the measured values
std::string basename = "./tmp-acq-gps2/acquisition_G_2S";
unsigned int sat = static_cast<unsigned int>(gnss_synchro.PRN);
unsigned int samples_per_code = static_cast<unsigned int>(floor(sampling_frequency_hz / (GPS_L2_M_CODE_RATE_HZ / GPS_L2_M_CODE_LENGTH_CHIPS)) - 1000); // !!
acquisition_dump_reader acq_dump(basename, sat, doppler_max, doppler_step, samples_per_code);
if(!acq_dump.read_binary_acq()) std::cout << "Error reading files" << std::endl;
std::vector<int> *doppler = &acq_dump.doppler;
std::vector<unsigned int> *samples = &acq_dump.samples;
std::vector<std::vector<float> > *mag = &acq_dump.mag;
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
if(gnuplot_executable.empty())
{
std::cout << "WARNING: Although the flag plot_acq_grid has been set to TRUE," << std::endl;
std::cout << "gnuplot has not been found in your system." << std::endl;
std::cout << "Test results will not be plotted." << std::endl;
}
else
{
std::cout << "Plotting the acquisition grid. This can take a while..." << std::endl;
try
{
boost::filesystem::path p(gnuplot_executable);
boost::filesystem::path dir = p.parent_path();
std::string gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
Gnuplot g1("lines");
g1.set_title("GPS L2CM signal acquisition for satellite PRN #" + std::to_string(gnss_synchro.PRN));
g1.set_xlabel("Doppler [Hz]");
g1.set_ylabel("Sample");
//g1.cmd("set view 60, 105, 1, 1");
g1.plot_grid3d(*doppler, *samples, *mag);
g1.savetops("GPS_L2CM_acq_grid");
g1.savetopdf("GPS_L2CM_acq_grid");
g1.showonscreen();
}
catch (const GnuplotException & ge)
{
std::cout << ge.what() << std::endl;
}
}
std::string data_str = "./tmp-acq-gps2";
if (boost::filesystem::exists(data_str))
{
boost::filesystem::remove_all(data_str);
}
}
@ -163,7 +232,7 @@ TEST_F(GpsL2MPcpsAcquisitionTest, Instantiate)
{
init();
queue = gr::msg_queue::make(0);
std::shared_ptr<GpsL2MPcpsAcquisition> acquisition = std::make_shared<GpsL2MPcpsAcquisition>(config.get(), "Acquisition", 1, 1);
std::shared_ptr<GpsL2MPcpsAcquisition> acquisition = std::make_shared<GpsL2MPcpsAcquisition>(config.get(), "Acquisition_2S", 1, 1);
}
@ -175,24 +244,23 @@ TEST_F(GpsL2MPcpsAcquisitionTest, ConnectAndRun)
queue = gr::msg_queue::make(0);
init();
std::shared_ptr<GpsL2MPcpsAcquisition> acquisition = std::make_shared<GpsL2MPcpsAcquisition>(config.get(), "Acquisition", 1, 1);
std::shared_ptr<GpsL2MPcpsAcquisition> acquisition = std::make_shared<GpsL2MPcpsAcquisition>(config.get(), "Acquisition_2S", 1, 1);
ASSERT_NO_THROW( {
acquisition->connect(top_block);
boost::shared_ptr<gr::analog::sig_source_c> source = gr::analog::sig_source_c::make(sampling_freqeuncy_hz, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0));
boost::shared_ptr<gr::analog::sig_source_c> source = gr::analog::sig_source_c::make(sampling_frequency_hz, gr::analog::GR_SIN_WAVE, 2000, 1, gr_complex(0));
boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
boost::shared_ptr<GpsL2MPcpsAcquisitionTest_msg_rx> msg_rx = GpsL2MPcpsAcquisitionTest_msg_rx_make();
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
@ -206,33 +274,44 @@ TEST_F(GpsL2MPcpsAcquisitionTest, ValidationOfResults)
queue = gr::msg_queue::make(0);
double expected_delay_samples = 1;//2004;
double expected_doppler_hz = 1200;//3000;
if(FLAGS_plot_acq_grid == true)
{
std::string data_str = "./tmp-acq-gps2";
if (boost::filesystem::exists(data_str))
{
boost::filesystem::remove_all(data_str);
}
boost::filesystem::create_directory(data_str);
}
init();
std::shared_ptr<GpsL2MPcpsAcquisition> acquisition = std::make_shared<GpsL2MPcpsAcquisition>(config.get(), "Acquisition", 1, 1);
std::shared_ptr<GpsL2MPcpsAcquisition> acquisition = std::make_shared<GpsL2MPcpsAcquisition>(config.get(), "Acquisition_2S", 1, 1);
boost::shared_ptr<GpsL2MPcpsAcquisitionTest_msg_rx> msg_rx = GpsL2MPcpsAcquisitionTest_msg_rx_make();
ASSERT_NO_THROW( {
acquisition->set_channel(1);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
acquisition->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
acquisition->set_threshold(0.001);
}) << "Failure setting threshold." << std::endl;
}) << "Failure setting threshold.";
ASSERT_NO_THROW( {
acquisition->set_doppler_max(5000);
}) << "Failure setting doppler_max." << std::endl;
acquisition->set_doppler_max(doppler_max);
}) << "Failure setting doppler_max.";
ASSERT_NO_THROW( {
acquisition->set_doppler_step(10);
}) << "Failure setting doppler_step." << std::endl;
acquisition->set_doppler_step(doppler_step);
}) << "Failure setting doppler_step.";
ASSERT_NO_THROW( {
acquisition->connect(top_block);
}) << "Failure connecting acquisition to the top_block." << std::endl;
}) << "Failure connecting acquisition to the top_block.";
ASSERT_NO_THROW( {
std::string path = std::string(TEST_PATH);
@ -249,22 +328,21 @@ TEST_F(GpsL2MPcpsAcquisitionTest, ValidationOfResults)
top_block->connect(file_source, 0, valve , 0);
top_block->connect(valve, 0, acquisition->get_left_block(), 0);
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of acquisition test." << std::endl;
}) << "Failure connecting the blocks of acquisition test.";
ASSERT_NO_THROW( {
acquisition->set_local_code();
acquisition->set_state(1); // Ensure that acquisition starts at the first sample
acquisition->init();
}) << "Failure set_state and init acquisition test" << std::endl;
}) << "Failure set_state and init acquisition test";
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
//unsigned long int Acq_samplestamp_samples = gnss_synchro.Acq_samplestamp_samples;
std::cout << "Acquisition process runtime duration: " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
std::cout << "gnss_synchro.Acq_doppler_hz = " << gnss_synchro.Acq_doppler_hz << " Hz" << std::endl;
@ -276,6 +354,11 @@ TEST_F(GpsL2MPcpsAcquisitionTest, ValidationOfResults)
float delay_error_chips = static_cast<float>(delay_error_samples * 1023 / 4000);
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
EXPECT_LE(doppler_error_hz, 200) << "Doppler error exceeds the expected value: 666 Hz = 2/(3*integration period)";
EXPECT_LE(doppler_error_hz, 200) << "Doppler error exceeds the expected value: 2/(3*integration period)";
EXPECT_LT(delay_error_chips, 0.5) << "Delay error exceeds the expected value: 0.5 chips";
if(FLAGS_plot_acq_grid == true)
{
plot_grid();
}
}

View File

@ -0,0 +1,169 @@
/*!
* \file notch_filter_lite_test.cc
* \brief Implements Unit Test for the NotchFilterLite class.
* \author Antonio Ramos, 2017. antonio.ramos(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <chrono>
#include <complex>
#include <iostream>
#include <stdint.h>
#include <gflags/gflags.h>
#include <gnuradio/top_block.h>
#include <gnuradio/analog/sig_source_waveform.h>
#include <gnuradio/analog/sig_source_c.h>
#include <gnuradio/msg_queue.h>
#include <gnuradio/blocks/null_sink.h>
#include <gtest/gtest.h>
#include "gnss_block_factory.h"
#include "gnss_block_interface.h"
#include "in_memory_configuration.h"
#include "gnss_sdr_valve.h"
#include "notch_filter_lite.h"
#include "file_signal_source.h"
DEFINE_int32(notch_filter_lite_test_nsamples, 1000000 , "Number of samples to filter in the tests (max: 2147483647)");
class NotchFilterLiteTest: public ::testing::Test
{
protected:
NotchFilterLiteTest()
{
queue = gr::msg_queue::make(0);
item_size = sizeof(gr_complex);
config = std::make_shared<InMemoryConfiguration>();
nsamples = FLAGS_notch_filter_lite_test_nsamples;
}
~NotchFilterLiteTest()
{}
void init();
void configure_gr_complex_gr_complex();
boost::shared_ptr<gr::msg_queue> queue;
gr::top_block_sptr top_block;
std::shared_ptr<InMemoryConfiguration> config;
size_t item_size;
int nsamples;
};
void NotchFilterLiteTest::init()
{
config->set_property("InputFilter.pfa", "0.01");
config->set_property("InputFilter.p_c_factor", "0.9");
config->set_property("InputFilter.length", "32");
config->set_property("InputFilter.segments_est", "12500");
config->set_property("InputFilter.segments_reset", "5000000");
}
void NotchFilterLiteTest::configure_gr_complex_gr_complex()
{
config->set_property("InputFilter.input_item_type", "gr_complex");
config->set_property("InputFilter.output_item_type", "gr_complex");
}
TEST_F(NotchFilterLiteTest, InstantiateGrComplexGrComplex)
{
init();
configure_gr_complex_gr_complex();
std::unique_ptr<NotchFilterLite> filter(new NotchFilterLite(config.get(), "InputFilter", 1, 1));
int res = 0;
if (filter) res = 1;
ASSERT_EQ(1, res);
}
TEST_F(NotchFilterLiteTest, ConnectAndRun)
{
int fs_in = 4000000;
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
top_block = gr::make_top_block("Notch filter lite test");
init();
configure_gr_complex_gr_complex();
std::shared_ptr<NotchFilterLite> filter = std::make_shared<NotchFilterLite>(config.get(), "InputFilter", 1, 1);
item_size = sizeof(gr_complex);
ASSERT_NO_THROW( {
filter->connect(top_block);
boost::shared_ptr<gr::block> source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000.0, 1.0, gr_complex(0.0));
boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
boost::shared_ptr<gr::block> null_sink = gr::blocks::null_sink::make(item_size);
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, filter->get_left_block(), 0);
top_block->connect(filter->get_right_block(), 0, null_sink, 0);
}) << "Failure connecting the top_block."<< std::endl;
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
std::cout << "Filtered " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
TEST_F(NotchFilterLiteTest, ConnectAndRunGrcomplex)
{
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
top_block = gr::make_top_block("Notch filter lite test");
init();
configure_gr_complex_gr_complex();
std::shared_ptr<NotchFilterLite> filter = std::make_shared<NotchFilterLite>(config.get(), "InputFilter", 1, 1);
std::shared_ptr<InMemoryConfiguration> config2 = std::make_shared<InMemoryConfiguration>();
config2->set_property("Test_Source.samples", std::to_string(nsamples));
config2->set_property("Test_Source.sampling_frequency", "4000000");
std::string path = std::string(TEST_PATH);
std::string filename = path + "signal_samples/GPS_L1_CA_ID_1_Fs_4Msps_2ms.dat";
config2->set_property("Test_Source.filename", filename);
config2->set_property("Test_Source.item_type", "gr_complex");
config2->set_property("Test_Source.repeat", "true");
item_size = sizeof(gr_complex);
ASSERT_NO_THROW( {
filter->connect(top_block);
boost::shared_ptr<FileSignalSource> source(new FileSignalSource(config2.get(), "Test_Source", 1, 1, queue));
source->connect(top_block);
boost::shared_ptr<gr::block> null_sink = gr::blocks::null_sink::make(item_size);
top_block->connect(source->get_right_block(), 0, filter->get_left_block(), 0);
top_block->connect(filter->get_right_block(), 0, null_sink, 0);
}) << "Failure connecting the top_block."<< std::endl;
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
std::cout << "Filtered " << nsamples << " gr_complex samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}

View File

@ -0,0 +1,169 @@
/*!
* \file notch_filter_test.cc
* \brief Implements Unit Test for the NotchFilter class.
* \author Antonio Ramos, 2017. antonio.ramos(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <chrono>
#include <complex>
#include <iostream>
#include <stdint.h>
#include <gflags/gflags.h>
#include <gnuradio/top_block.h>
#include <gnuradio/analog/sig_source_waveform.h>
#include <gnuradio/analog/sig_source_c.h>
#include <gnuradio/msg_queue.h>
#include <gnuradio/blocks/null_sink.h>
#include <gtest/gtest.h>
#include "gnss_block_factory.h"
#include "gnss_block_interface.h"
#include "in_memory_configuration.h"
#include "gnss_sdr_valve.h"
#include "notch_filter.h"
#include "file_signal_source.h"
DEFINE_int32(notch_filter_test_nsamples, 1000000 , "Number of samples to filter in the tests (max: 2147483647)");
class NotchFilterTest: public ::testing::Test
{
protected:
NotchFilterTest()
{
queue = gr::msg_queue::make(0);
item_size = sizeof(gr_complex);
config = std::make_shared<InMemoryConfiguration>();
nsamples = FLAGS_notch_filter_test_nsamples;
}
~NotchFilterTest()
{}
void init();
void configure_gr_complex_gr_complex();
boost::shared_ptr<gr::msg_queue> queue;
gr::top_block_sptr top_block;
std::shared_ptr<InMemoryConfiguration> config;
size_t item_size;
int nsamples;
};
void NotchFilterTest::init()
{
config->set_property("InputFilter.pfa", "0.01");
config->set_property("InputFilter.p_c_factor", "0.9");
config->set_property("InputFilter.length", "32");
config->set_property("InputFilter.segments_est", "12500");
config->set_property("InputFilter.segments_reset", "5000000");
}
void NotchFilterTest::configure_gr_complex_gr_complex()
{
config->set_property("InputFilter.input_item_type", "gr_complex");
config->set_property("InputFilter.output_item_type", "gr_complex");
}
TEST_F(NotchFilterTest, InstantiateGrComplexGrComplex)
{
init();
configure_gr_complex_gr_complex();
std::unique_ptr<NotchFilter> filter(new NotchFilter(config.get(), "InputFilter", 1, 1));
int res = 0;
if (filter) res = 1;
ASSERT_EQ(1, res);
}
TEST_F(NotchFilterTest, ConnectAndRun)
{
int fs_in = 4000000;
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
top_block = gr::make_top_block("Notch filter test");
init();
configure_gr_complex_gr_complex();
std::shared_ptr<NotchFilter> filter = std::make_shared<NotchFilter>(config.get(), "InputFilter", 1, 1);
item_size = sizeof(gr_complex);
ASSERT_NO_THROW( {
filter->connect(top_block);
boost::shared_ptr<gr::block> source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000.0, 1.0, gr_complex(0.0));
boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
boost::shared_ptr<gr::block> null_sink = gr::blocks::null_sink::make(item_size);
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, filter->get_left_block(), 0);
top_block->connect(filter->get_right_block(), 0, null_sink, 0);
}) << "Failure connecting the top_block."<< std::endl;
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
std::cout << "Filtered " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
TEST_F(NotchFilterTest, ConnectAndRunGrcomplex)
{
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
top_block = gr::make_top_block("Notch filter test");
init();
configure_gr_complex_gr_complex();
std::shared_ptr<NotchFilter> filter = std::make_shared<NotchFilter>(config.get(), "InputFilter", 1, 1);
std::shared_ptr<InMemoryConfiguration> config2 = std::make_shared<InMemoryConfiguration>();
config2->set_property("Test_Source.samples", std::to_string(nsamples));
config2->set_property("Test_Source.sampling_frequency", "4000000");
std::string path = std::string(TEST_PATH);
std::string filename = path + "signal_samples/GPS_L1_CA_ID_1_Fs_4Msps_2ms.dat";
config2->set_property("Test_Source.filename", filename);
config2->set_property("Test_Source.item_type", "gr_complex");
config2->set_property("Test_Source.repeat", "true");
item_size = sizeof(gr_complex);
ASSERT_NO_THROW( {
filter->connect(top_block);
boost::shared_ptr<FileSignalSource> source(new FileSignalSource(config2.get(), "Test_Source", 1, 1, queue));
source->connect(top_block);
boost::shared_ptr<gr::block> null_sink = gr::blocks::null_sink::make(item_size);
top_block->connect(source->get_right_block(), 0, filter->get_left_block(), 0);
top_block->connect(filter->get_right_block(), 0, null_sink, 0);
}) << "Failure connecting the top_block."<< std::endl;
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
std::cout << "Filtered " << nsamples << " gr_complex samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}

View File

@ -0,0 +1,168 @@
/*!
* \file pulse_blanking_filter_test.cc
* \brief Implements Unit Test for the PulseBlankingFilter class.
* \author Antonio Ramos, 2017. antonio.ramos(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <chrono>
#include <complex>
#include <iostream>
#include <stdint.h>
#include <gflags/gflags.h>
#include <gnuradio/top_block.h>
#include <gnuradio/analog/sig_source_waveform.h>
#include <gnuradio/analog/sig_source_c.h>
#include <gnuradio/msg_queue.h>
#include <gnuradio/blocks/null_sink.h>
#include <gtest/gtest.h>
#include "gnss_block_factory.h"
#include "gnss_block_interface.h"
#include "in_memory_configuration.h"
#include "gnss_sdr_valve.h"
#include "pulse_blanking_filter.h"
#include "file_signal_source.h"
DEFINE_int32(pb_filter_test_nsamples, 1000000 , "Number of samples to filter in the tests (max: 2147483647)");
class PulseBlankingFilterTest: public ::testing::Test
{
protected:
PulseBlankingFilterTest()
{
queue = gr::msg_queue::make(0);
item_size = sizeof(gr_complex);
config = std::make_shared<InMemoryConfiguration>();
nsamples = FLAGS_pb_filter_test_nsamples;
}
~PulseBlankingFilterTest()
{}
void init();
void configure_gr_complex_gr_complex();
boost::shared_ptr<gr::msg_queue> queue;
gr::top_block_sptr top_block;
std::shared_ptr<InMemoryConfiguration> config;
size_t item_size;
int nsamples;
};
void PulseBlankingFilterTest::init()
{
config->set_property("InputFilter.pfa", "0.04");
config->set_property("InputFilter.length", "32");
config->set_property("InputFilter.segments_est", "12500");
config->set_property("InputFilter.segments_reset", "5000000");
}
void PulseBlankingFilterTest::configure_gr_complex_gr_complex()
{
config->set_property("InputFilter.input_item_type", "gr_complex");
config->set_property("InputFilter.output_item_type", "gr_complex");
}
TEST_F(PulseBlankingFilterTest, InstantiateGrComplexGrComplex)
{
init();
configure_gr_complex_gr_complex();
std::unique_ptr<PulseBlankingFilter> filter(new PulseBlankingFilter(config.get(), "InputFilter", 1, 1));
int res = 0;
if (filter) res = 1;
ASSERT_EQ(1, res);
}
TEST_F(PulseBlankingFilterTest, ConnectAndRun)
{
int fs_in = 4000000;
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
top_block = gr::make_top_block("Pulse Blanking filter test");
init();
configure_gr_complex_gr_complex();
std::shared_ptr<PulseBlankingFilter> filter = std::make_shared<PulseBlankingFilter>(config.get(), "InputFilter", 1, 1);
item_size = sizeof(gr_complex);
ASSERT_NO_THROW( {
filter->connect(top_block);
boost::shared_ptr<gr::block> source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000.0, 1.0, gr_complex(0.0));
boost::shared_ptr<gr::block> valve = gnss_sdr_make_valve(sizeof(gr_complex), nsamples, queue);
boost::shared_ptr<gr::block> null_sink = gr::blocks::null_sink::make(item_size);
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, filter->get_left_block(), 0);
top_block->connect(filter->get_right_block(), 0, null_sink, 0);
}) << "Failure connecting the top_block."<< std::endl;
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
std::cout << "Filtered " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
TEST_F(PulseBlankingFilterTest, ConnectAndRunGrcomplex)
{
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
top_block = gr::make_top_block("Pulse Blanking filter test");
init();
configure_gr_complex_gr_complex();
std::shared_ptr<PulseBlankingFilter> filter = std::make_shared<PulseBlankingFilter>(config.get(), "InputFilter", 1, 1);
std::shared_ptr<InMemoryConfiguration> config2 = std::make_shared<InMemoryConfiguration>();
config2->set_property("Test_Source.samples", std::to_string(nsamples));
config2->set_property("Test_Source.sampling_frequency", "4000000");
std::string path = std::string(TEST_PATH);
std::string filename = path + "signal_samples/GPS_L1_CA_ID_1_Fs_4Msps_2ms.dat";
config2->set_property("Test_Source.filename", filename);
config2->set_property("Test_Source.item_type", "gr_complex");
config2->set_property("Test_Source.repeat", "true");
item_size = sizeof(gr_complex);
ASSERT_NO_THROW( {
filter->connect(top_block);
boost::shared_ptr<FileSignalSource> source(new FileSignalSource(config2.get(), "Test_Source", 1, 1, queue));
source->connect(top_block);
boost::shared_ptr<gr::block> null_sink = gr::blocks::null_sink::make(item_size);
top_block->connect(source->get_right_block(), 0, filter->get_left_block(), 0);
top_block->connect(filter->get_right_block(), 0, null_sink, 0);
}) << "Failure connecting the top_block."<< std::endl;
EXPECT_NO_THROW( {
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
std::cout << "Filtered " << nsamples << " gr_complex samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}

View File

@ -18,6 +18,7 @@
set(SIGNAL_PROCESSING_TESTING_LIB_SOURCES
acquisition_dump_reader.cc
tracking_dump_reader.cc
tlm_dump_reader.cc
observables_dump_reader.cc

View File

@ -0,0 +1,106 @@
/*!
* \file acquisition_dump_reader.cc
* \brief Helper file for unit testing
* \author Carles Fernandez-Prades, 2017. cfernandez(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include <complex>
#include "acquisition_dump_reader.h"
bool acquisition_dump_reader::read_binary_acq()
{
std::complex<float>* aux = new std::complex<float>[1];
for(unsigned int i = 0; i < d_num_doppler_bins; i++)
{
try
{
std::ifstream ifs;
ifs.exceptions( std::ifstream::failbit | std::ifstream::badbit );
ifs.open(d_dump_filenames.at(i).c_str(), std::ios::in | std::ios::binary);
d_dump_files.at(i).swap(ifs);
if (d_dump_files.at(i).is_open())
{
for(unsigned int k = 0; k < d_samples_per_code; k++)
{
d_dump_files.at(i).read(reinterpret_cast<char *>(&aux[0]), sizeof(std::complex<float>));
mag.at(i).at(k) = std::abs(*aux) / std::pow(d_samples_per_code, 2);
}
}
else
{
std::cout << "File " << d_dump_filenames.at(i).c_str() << " not found." << std::endl;
delete[] aux;
return false;
}
d_dump_files.at(i).close();
}
catch (const std::ifstream::failure &e)
{
std::cout << e.what() << std::endl;
delete[] aux;
return false;
}
}
delete[] aux;
return true;
}
acquisition_dump_reader::acquisition_dump_reader(const std::string & basename, unsigned int sat, unsigned int doppler_max, unsigned int doppler_step, unsigned int samples_per_code)
{
d_basename = basename;
d_sat = sat;
d_doppler_max = doppler_max;
d_doppler_step = doppler_step;
d_samples_per_code = samples_per_code;
d_num_doppler_bins = static_cast<unsigned int>(ceil( static_cast<double>(static_cast<int>(d_doppler_max) - static_cast<int>(-d_doppler_max)) / static_cast<double>(d_doppler_step)));
std::vector<std::vector<float> > mag_aux(d_num_doppler_bins, std::vector<float>(d_samples_per_code));
mag = mag_aux;
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
doppler.push_back(-static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index);
d_dump_filenames.push_back(d_basename + "_sat_" + std::to_string(d_sat) + "_doppler_" + std::to_string(doppler.at(doppler_index)) + ".dat");
std::ifstream ifs;
d_dump_files.push_back(std::move(ifs));
}
for (unsigned int k = 0; k < d_samples_per_code; k++)
{
samples.push_back(k);
}
}
acquisition_dump_reader::~acquisition_dump_reader()
{
for(unsigned int i = 0; i < d_num_doppler_bins; i++)
{
if (d_dump_files.at(i).is_open() == true)
{
d_dump_files.at(i).close();
}
}
}

View File

@ -0,0 +1,61 @@
/*!
* \file acquisition_dump_reader.h
* \brief Helper file for unit testing
* \author Carles Fernandez-Prades, 2017. cfernandez(at)cttc.es
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_ACQUISITION_DUMP_READER_H
#define GNSS_SDR_ACQUISITION_DUMP_READER_H
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
class acquisition_dump_reader
{
public:
acquisition_dump_reader(const std::string & basename, unsigned int sat, unsigned int doppler_max, unsigned int doppler_step, unsigned int samples_per_code);
~acquisition_dump_reader();
bool read_binary_acq();
std::vector<int> doppler;
std::vector<unsigned int> samples;
std::vector<std::vector<float> > mag;
private:
std::string d_basename;
unsigned int d_sat;
unsigned int d_doppler_max;
unsigned int d_doppler_step;
unsigned int d_samples_per_code;
unsigned int d_num_doppler_bins;
std::vector<std::string> d_dump_filenames;
std::vector<std::ifstream> d_dump_files;
};
#endif // GNSS_SDR_ACQUISITION_DUMP_READER_H

View File

@ -34,16 +34,16 @@ bool observables_dump_reader::read_binary_obs()
{
try
{
for(int i = 0; i < n_channels; i++)
{
d_dump_file.read(reinterpret_cast<char *>(&RX_time[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&TOW_at_current_symbol_s[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&Carrier_Doppler_hz[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&Acc_carrier_phase_hz[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&Pseudorange_m[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&valid[i]), sizeof(double));
}
for(int i = 0; i < n_channels; i++)
{
d_dump_file.read(reinterpret_cast<char *>(&RX_time[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&TOW_at_current_symbol_s[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&Carrier_Doppler_hz[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&Acc_carrier_phase_hz[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&Pseudorange_m[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&valid[i]), sizeof(double));
}
}
catch (const std::ifstream::failure &e)
{

View File

@ -32,7 +32,8 @@
bool tracking_dump_reader::read_binary_obs()
{
try {
try
{
d_dump_file.read(reinterpret_cast<char *>(&abs_E), sizeof(float));
d_dump_file.read(reinterpret_cast<char *>(&abs_P), sizeof(float));
d_dump_file.read(reinterpret_cast<char *>(&abs_L), sizeof(float));
@ -54,7 +55,7 @@ bool tracking_dump_reader::read_binary_obs()
d_dump_file.read(reinterpret_cast<char *>(&aux2), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&PRN), sizeof(unsigned int));
}
catch (const std::exception &e)
catch (const std::ifstream::failure &e)
{
return false;
}

View File

@ -40,7 +40,7 @@ bool tracking_true_obs_reader::read_binary_obs()
d_dump_file.read(reinterpret_cast<char *>(&prn_delay_chips), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&tow), sizeof(double));
}
catch (const std::exception &e)
catch (const std::ifstream::failure &e)
{
return false;
}

View File

@ -34,16 +34,16 @@ bool true_observables_reader::read_binary_obs()
{
try
{
for(int i=0;i<12;i++)
{
d_dump_file.read(reinterpret_cast<char *>(&gps_time_sec[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&doppler_l1_hz), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_l1_cycles[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&dist_m[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&true_dist_m[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&carrier_phase_l1_cycles[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&prn[i]), sizeof(double));
}
for(int i = 0; i < 12; i++)
{
d_dump_file.read(reinterpret_cast<char *>(&gps_time_sec[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&doppler_l1_hz), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_l1_cycles[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&dist_m[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&true_dist_m[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&carrier_phase_l1_cycles[i]), sizeof(double));
d_dump_file.read(reinterpret_cast<char *>(&prn[i]), sizeof(double));
}
}
catch (const std::ifstream::failure &e)
{

View File

@ -379,9 +379,9 @@ void HybridObservablesTest::check_results_carrier_phase(
ASSERT_LT(error_var_ch1, 1e-2);
ASSERT_LT(max_error_ch1, 5e-2);
ASSERT_GT(min_error_ch1, -5e-2);
}
void HybridObservablesTest::check_results_code_psudorange(
arma::vec & true_ch0_dist_m,
arma::vec & true_ch1_dist_m,
@ -401,8 +401,6 @@ void HybridObservablesTest::check_results_code_psudorange(
arma::vec delta_true_dist_m = true_ch0_dist_interp-true_ch1_dist_interp;
arma::vec delta_measured_dist_m = measuded_ch0_Pseudorange_m-measuded_ch1_Pseudorange_m;
//2. RMSE
arma::vec err;
@ -467,7 +465,7 @@ TEST_F(HybridObservablesTest, ValidationOfResults)
{
throw std::exception();
};
}) << "Failure opening true observables file" << std::endl;
}) << "Failure opening true observables file";
true_obs_file = std::string("./gps_l1_ca_obs_prn");
true_obs_file.append(std::to_string(test_satellite_PRN2));
@ -477,7 +475,7 @@ TEST_F(HybridObservablesTest, ValidationOfResults)
{
throw std::exception();
};
}) << "Failure opening true observables file" << std::endl;
}) << "Failure opening true observables file";
top_block = gr::make_top_block("Telemetry_Decoder test");
std::shared_ptr<TrackingInterface> tracking_ch0 = std::make_shared<GpsL1CaDllPllTracking>(config.get(), "Tracking_1C", 1, 1);
@ -494,14 +492,14 @@ TEST_F(HybridObservablesTest, ValidationOfResults)
{
throw std::exception();
};
})<< "Failure reading true observables file" << std::endl;
}) << "Failure reading true observables file";
ASSERT_NO_THROW({
if (true_obs_data_ch1.read_binary_obs() == false)
{
throw std::exception();
};
}) << "Failure reading true observables file" << std::endl;
}) << "Failure reading true observables file";
//restart the epoch counter
true_obs_data_ch0.restart();
@ -529,7 +527,7 @@ TEST_F(HybridObservablesTest, ValidationOfResults)
tlm_ch0->set_satellite(Gnss_Satellite(std::string("GPS"),gnss_synchro_ch0.PRN));
tlm_ch1->set_satellite(Gnss_Satellite(std::string("GPS"),gnss_synchro_ch1.PRN));
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
boost::shared_ptr<HybridObservablesTest_tlm_msg_rx> tlm_msg_rx_ch1 = HybridObservablesTest_tlm_msg_rx_make();
boost::shared_ptr<HybridObservablesTest_tlm_msg_rx> tlm_msg_rx_ch2 = HybridObservablesTest_tlm_msg_rx_make();
@ -540,17 +538,17 @@ TEST_F(HybridObservablesTest, ValidationOfResults)
ASSERT_NO_THROW( {
tracking_ch0->set_channel(gnss_synchro_ch0.Channel_ID);
tracking_ch1->set_channel(gnss_synchro_ch1.Channel_ID);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
tracking_ch0->set_gnss_synchro(&gnss_synchro_ch0);
tracking_ch1->set_gnss_synchro(&gnss_synchro_ch1);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
tracking_ch0->connect(top_block);
tracking_ch1->connect(top_block);
}) << "Failure connecting tracking to the top_block." << std::endl;
}) << "Failure connecting tracking to the top_block.";
ASSERT_NO_THROW( {
std::string file = "./" + filename_raw_data;
@ -574,7 +572,7 @@ TEST_F(HybridObservablesTest, ValidationOfResults)
top_block->connect(observables->get_right_block(), 0, sink_ch0, 0);
top_block->connect(observables->get_right_block(), 1, sink_ch1, 0);
}) << "Failure connecting the blocks." << std::endl;
}) << "Failure connecting the blocks.";
tracking_ch0->start_tracking();
tracking_ch1->start_tracking();
@ -584,7 +582,7 @@ TEST_F(HybridObservablesTest, ValidationOfResults)
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
//check results
//load the true values
@ -596,7 +594,7 @@ TEST_F(HybridObservablesTest, ValidationOfResults)
{
throw std::exception();
};
}) << "Failure opening true observables file" << std::endl;
}) << "Failure opening true observables file";
long int nepoch = true_observables.num_epochs();
@ -637,7 +635,6 @@ TEST_F(HybridObservablesTest, ValidationOfResults)
epoch_counter++;
}
});
//read measured values
@ -647,7 +644,7 @@ TEST_F(HybridObservablesTest, ValidationOfResults)
{
throw std::exception();
};
}) << "Failure opening dump observables file" << std::endl;
}) << "Failure opening dump observables file";
nepoch = estimated_observables.num_epochs();
std::cout << "Measured observation epochs=" << nepoch << std::endl;

View File

@ -170,7 +170,6 @@ GpsL1CADllPllTelemetryDecoderTest_tlm_msg_rx::~GpsL1CADllPllTelemetryDecoderTest
class GpsL1CATelemetryDecoderTest: public ::testing::Test
{
public:
std::string generator_binary;
std::string p1;
@ -357,7 +356,7 @@ TEST_F(GpsL1CATelemetryDecoderTest, ValidationOfResults)
{
throw std::exception();
};
}) << "Failure opening true observables file" << std::endl;
}) << "Failure opening true observables file";
top_block = gr::make_top_block("Telemetry_Decoder test");
std::shared_ptr<TrackingInterface> tracking = std::make_shared<GpsL1CaDllPllTracking>(config.get(), "Tracking_1C", 1, 1);
@ -371,7 +370,7 @@ TEST_F(GpsL1CATelemetryDecoderTest, ValidationOfResults)
{
throw std::exception();
};
})<< "Failure reading true observables file" << std::endl;
}) << "Failure reading true observables file";
//restart the epoch counter
true_obs_data.restart();
@ -388,15 +387,15 @@ TEST_F(GpsL1CATelemetryDecoderTest, ValidationOfResults)
ASSERT_NO_THROW( {
tracking->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
tracking->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
tracking->connect(top_block);
}) << "Failure connecting tracking to the top_block." << std::endl;
}) << "Failure connecting tracking to the top_block.";
ASSERT_NO_THROW( {
std::string file = "./" + filename_raw_data;
@ -409,7 +408,7 @@ TEST_F(GpsL1CATelemetryDecoderTest, ValidationOfResults)
top_block->connect(tracking->get_right_block(), 0, tlm->get_left_block(), 0);
top_block->connect(tlm->get_right_block(), 0, sink, 0);
top_block->msg_connect(tracking->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks." << std::endl;
}) << "Failure connecting the blocks.";
tracking->start_tracking();
@ -418,7 +417,7 @@ TEST_F(GpsL1CATelemetryDecoderTest, ValidationOfResults)
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
//check results
//load the true values
@ -449,7 +448,7 @@ TEST_F(GpsL1CATelemetryDecoderTest, ValidationOfResults)
{
throw std::exception();
};
}) << "Failure opening telemetry dump file" << std::endl;
}) << "Failure opening telemetry dump file";
nepoch = tlm_dump.num_epochs();
std::cout << "Measured observation epochs=" << nepoch << std::endl;

View File

@ -87,21 +87,21 @@ void GalileoE1DllPllVemlTrackingInternalTest::init()
gnss_synchro.PRN = 11;
config->set_property("GNSS-SDR.internal_fs_sps", "8000000");
config->set_property("Tracking_Galileo.item_type", "gr_complex");
config->set_property("Tracking_Galileo.dump", "false");
config->set_property("Tracking_Galileo.dump_filename", "../data/veml_tracking_ch_");
config->set_property("Tracking_Galileo.implementation", "Galileo_E1_DLL_PLL_VEML_Tracking");
config->set_property("Tracking_Galileo.early_late_space_chips", "0.15");
config->set_property("Tracking_Galileo.very_early_late_space_chips", "0.6");
config->set_property("Tracking_Galileo.pll_bw_hz", "30.0");
config->set_property("Tracking_Galileo.dll_bw_hz", "2.0");
config->set_property("Tracking_1B.implementation", "Galileo_E1_DLL_PLL_VEML_Tracking");
config->set_property("Tracking_1B.item_type", "gr_complex");
config->set_property("Tracking_1B.dump", "false");
config->set_property("Tracking_1B.dump_filename", "../data/veml_tracking_ch_");
config->set_property("Tracking_1B.early_late_space_chips", "0.15");
config->set_property("Tracking_1B.very_early_late_space_chips", "0.6");
config->set_property("Tracking_1B.pll_bw_hz", "30.0");
config->set_property("Tracking_1B.dll_bw_hz", "2.0");
}
TEST_F(GalileoE1DllPllVemlTrackingInternalTest, Instantiate)
{
init();
auto tracking = factory->GetBlock(config, "Tracking", "Galileo_E1_DLL_PLL_VEML_Tracking", 1, 1);
auto tracking = factory->GetBlock(config, "Tracking_1B", "Galileo_E1_DLL_PLL_VEML_Tracking", 1, 1);
EXPECT_STREQ("Galileo_E1_DLL_PLL_VEML_Tracking", tracking->implementation().c_str());
}
@ -117,16 +117,16 @@ TEST_F(GalileoE1DllPllVemlTrackingInternalTest, ConnectAndRun)
top_block = gr::make_top_block("Tracking test");
// Example using smart pointers and the block factory
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config, "Tracking", "Galileo_E1_DLL_PLL_VEML_Tracking", 1, 1);
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config, "Tracking_1B", "Galileo_E1_DLL_PLL_VEML_Tracking", 1, 1);
std::shared_ptr<GalileoE1DllPllVemlTracking> tracking = std::dynamic_pointer_cast<GalileoE1DllPllVemlTracking>(trk_);
ASSERT_NO_THROW( {
tracking->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
tracking->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
tracking->connect(top_block);
@ -136,8 +136,7 @@ TEST_F(GalileoE1DllPllVemlTrackingInternalTest, ConnectAndRun)
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, tracking->get_left_block(), 0);
top_block->connect(tracking->get_right_block(), 0, sink, 0);
}) << "Failure connecting the blocks of tracking test." << std::endl;
}) << "Failure connecting the blocks of tracking test.";
tracking->start_tracking();
@ -146,7 +145,7 @@ TEST_F(GalileoE1DllPllVemlTrackingInternalTest, ConnectAndRun)
top_block->run(); //Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
std::cout << "Processed " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}
@ -165,7 +164,7 @@ TEST_F(GalileoE1DllPllVemlTrackingInternalTest, ValidationOfResults)
top_block = gr::make_top_block("Tracking test");
// Example using smart pointers and the block factory
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config, "Tracking", "Galileo_E1_DLL_PLL_VEML_Tracking", 1, 1);
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config, "Tracking_1B", "Galileo_E1_DLL_PLL_VEML_Tracking", 1, 1);
std::shared_ptr<TrackingInterface> tracking = std::dynamic_pointer_cast<TrackingInterface>(trk_);
// gnss_synchro.Acq_delay_samples = 1753; // 4 Msps
@ -176,15 +175,15 @@ TEST_F(GalileoE1DllPllVemlTrackingInternalTest, ValidationOfResults)
ASSERT_NO_THROW( {
tracking->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
tracking->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
tracking->connect(top_block);
}) << "Failure connecting tracking to the top_block." << std::endl;
}) << "Failure connecting tracking to the top_block.";
ASSERT_NO_THROW( {
std::string path = std::string(TEST_PATH);
@ -198,7 +197,7 @@ TEST_F(GalileoE1DllPllVemlTrackingInternalTest, ValidationOfResults)
top_block->connect(skip_head, 0, valve, 0);
top_block->connect(valve, 0, tracking->get_left_block(), 0);
top_block->connect(tracking->get_right_block(), 0, sink, 0);
}) << "Failure connecting the blocks of tracking test." << std::endl;
}) << "Failure connecting the blocks of tracking test.";
tracking->start_tracking();
@ -207,7 +206,7 @@ TEST_F(GalileoE1DllPllVemlTrackingInternalTest, ValidationOfResults)
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
std::cout << "Tracked " << num_samples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}

View File

@ -81,22 +81,22 @@ void GalileoE5aTrackingTest::init()
{
gnss_synchro.Channel_ID = 0;
gnss_synchro.System = 'E';
std::string signal = "5Q";
std::string signal = "5X";
signal.copy(gnss_synchro.Signal, 2, 0);
gnss_synchro.PRN = 11;
config->set_property("GNSS-SDR.internal_fs_sps", "32000000");
config->set_property("Tracking_Galileo.item_type", "gr_complex");
config->set_property("Tracking_Galileo.dump", "false");
config->set_property("Tracking_Galileo.dump_filename", "../data/e5a_tracking_ch_");
config->set_property("Tracking_Galileo.implementation", "Galileo_E5a_DLL_PLL_Tracking");
config->set_property("Tracking_Galileo.early_late_space_chips", "0.5");
config->set_property("Tracking_Galileo.order", "2");
config->set_property("Tracking_Galileo.pll_bw_hz_init","20.0");
config->set_property("Tracking_Galileo.pll_bw_hz", "5");
config->set_property("Tracking_Galileo.dll_bw_hz_init","2.0");
config->set_property("Tracking_Galileo.dll_bw_hz", "2");
config->set_property("Tracking_Galileo.ti_ms", "1");
config->set_property("Tracking_5X.implementation", "Galileo_E5a_DLL_PLL_Tracking");
config->set_property("Tracking_5X.item_type", "gr_complex");
config->set_property("Tracking_5X.dump", "false");
config->set_property("Tracking_5X.dump_filename", "../data/e5a_tracking_ch_");
config->set_property("Tracking_5X.early_late_space_chips", "0.5");
config->set_property("Tracking_5X.order", "2");
config->set_property("Tracking_5X.pll_bw_hz_init","20.0");
config->set_property("Tracking_5X.pll_bw_hz", "5");
config->set_property("Tracking_5X.dll_bw_hz_init","2.0");
config->set_property("Tracking_5X.dll_bw_hz", "2");
config->set_property("Tracking_5X.ti_ms", "1");
}
@ -105,13 +105,13 @@ TEST_F(GalileoE5aTrackingTest, ValidationOfResults)
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
int fs_in = 32000000;
int nsamples = 32000000*5;
int nsamples = 32000000 * 5;
init();
queue = gr::msg_queue::make(0);
top_block = gr::make_top_block("Tracking test");
// Example using smart pointers and the block factory
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config, "Tracking", "Galileo_E5a_DLL_PLL_Tracking", 1, 1);
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config, "Tracking_5X", "Galileo_E5a_DLL_PLL_Tracking", 1, 1);
std::shared_ptr<TrackingInterface> tracking = std::dynamic_pointer_cast<TrackingInterface>(trk_);
//REAL
@ -123,15 +123,15 @@ TEST_F(GalileoE5aTrackingTest, ValidationOfResults)
ASSERT_NO_THROW( {
tracking->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
tracking->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
tracking->connect(top_block);
}) << "Failure connecting tracking to the top_block." << std::endl;
}) << "Failure connecting tracking to the top_block.";
ASSERT_NO_THROW( {
gr::analog::sig_source_c::sptr source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0));
@ -140,8 +140,7 @@ TEST_F(GalileoE5aTrackingTest, ValidationOfResults)
top_block->connect(source, 0, valve, 0);
top_block->connect(valve, 0, tracking->get_left_block(), 0);
top_block->connect(tracking->get_right_block(), 0, sink, 0);
}) << "Failure connecting the blocks of tracking test." << std::endl;
}) << "Failure connecting the blocks of tracking test.";
tracking->start_tracking();
@ -150,7 +149,7 @@ TEST_F(GalileoE5aTrackingTest, ValidationOfResults)
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
std::cout << "Tracked " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
}

View File

@ -30,10 +30,12 @@
* -------------------------------------------------------------------------
*/
#include <chrono>
#include <iostream>
#include <unistd.h>
#include <vector>
#include <armadillo>
#include <boost/filesystem.hpp>
#include <gnuradio/top_block.h>
#include <gnuradio/blocks/file_source.h>
#include <gnuradio/analog/sig_source_waveform.h>
@ -44,15 +46,15 @@
#include <gtest/gtest.h>
#include "GPS_L1_CA.h"
#include "gnss_block_factory.h"
#include "gnss_block_interface.h"
#include "tracking_interface.h"
#include "in_memory_configuration.h"
#include "gnss_synchro.h"
//#include "gps_l1_ca_dll_pll_tracking.h"
#include "gps_l1_ca_dll_pll_c_aid_tracking.h"
#include "tracking_true_obs_reader.h"
#include "tracking_dump_reader.h"
#include "signal_generator_flags.h"
#include "gnuplot_i.h"
#include "test_flags.h"
DEFINE_bool(plot_gps_l1_tracking_test, false, "Plots results of GpsL1CADllPllTrackingTest with gnuplot");
// ######## GNURADIO BLOCK MESSAGE RECEVER #########
@ -97,7 +99,7 @@ void GpsL1CADllPllTrackingTest_msg_rx::msg_handler_events(pmt::pmt_t msg)
GpsL1CADllPllTrackingTest_msg_rx::GpsL1CADllPllTrackingTest_msg_rx() :
gr::block("GpsL1CADllPllTrackingTest_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
gr::block("GpsL1CADllPllTrackingTest_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
{
this->message_port_register_in(pmt::mp("events"));
this->set_msg_handler(pmt::mp("events"), boost::bind(&GpsL1CADllPllTrackingTest_msg_rx::msg_handler_events, this, _1));
@ -121,6 +123,8 @@ public:
std::string p4;
std::string p5;
std::string implementation = "GPS_L1_CA_DLL_PLL_Tracking"; //"GPS_L1_CA_DLL_PLL_C_Aid_Tracking";
const int baseband_sampling_freq = FLAGS_fs_gen_sps;
std::string filename_rinex_obs = FLAGS_filename_rinex_obs;
@ -216,14 +220,14 @@ void GpsL1CADllPllTrackingTest::configure_receiver()
config->set_property("GNSS-SDR.internal_fs_sps", std::to_string(baseband_sampling_freq));
// Set Tracking
config->set_property("Tracking_1C.implementation", "GPS_L1_CA_DLL_PLL_Tracking");
config->set_property("Tracking_1C.implementation", implementation);
config->set_property("Tracking_1C.item_type", "gr_complex");
config->set_property("Tracking_1C.if", "0");
config->set_property("Tracking_1C.dump", "true");
config->set_property("Tracking_1C.dump_filename", "./tracking_ch_");
config->set_property("Tracking_1C.pll_bw_hz", "30.0");
config->set_property("Tracking_1C.pll_bw_hz", "20.0");
config->set_property("Tracking_1C.dll_bw_hz", "2.0");
config->set_property("Tracking_1C.early_late_space_chips", "0.5");
config->set_property("Tracking_1C.extend_correlation_ms", "1");
config->set_property("Tracking_1C.dump", "true");
config->set_property("Tracking_1C.dump_filename", "./tracking_ch_");
}
@ -232,8 +236,7 @@ void GpsL1CADllPllTrackingTest::check_results_doppler(arma::vec & true_time_s,
arma::vec & meas_time_s,
arma::vec & meas_value)
{
//1. True value interpolation to match the measurement times
// 1. True value interpolation to match the measurement times
arma::vec true_value_interp;
arma::uvec true_time_s_valid = find(true_time_s > 0);
true_time_s = true_time_s(true_time_s_valid);
@ -244,26 +247,26 @@ void GpsL1CADllPllTrackingTest::check_results_doppler(arma::vec & true_time_s,
arma::interp1(true_time_s, true_value, meas_time_s, true_value_interp);
//2. RMSE
// 2. RMSE
arma::vec err;
err = meas_value - true_value_interp;
arma::vec err2 = arma::square(err);
double rmse = sqrt(arma::mean(err2));
//3. Mean err and variance
// 3. Mean err and variance
double error_mean = arma::mean(err);
double error_var = arma::var(err);
// 5. Peaks
// 4. Peaks
double max_error = arma::max(err);
double min_error = arma::min(err);
//5. report
// 5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << "TRK Doppler RMSE=" << rmse
<< ", mean=" << error_mean
<< ", stdev="<< sqrt(error_var) << " (max,min)=" << max_error << "," << min_error << " [Hz]" << std::endl;
<< ", stdev=" << sqrt(error_var) << " (max,min)=" << max_error << "," << min_error << " [Hz]" << std::endl;
std::cout.precision (ss);
}
@ -273,7 +276,7 @@ void GpsL1CADllPllTrackingTest::check_results_acc_carrier_phase(arma::vec & true
arma::vec & meas_time_s,
arma::vec & meas_value)
{
//1. True value interpolation to match the measurement times
// 1. True value interpolation to match the measurement times
arma::vec true_value_interp;
arma::uvec true_time_s_valid = find(true_time_s > 0);
true_time_s = true_time_s(true_time_s_valid);
@ -284,13 +287,13 @@ void GpsL1CADllPllTrackingTest::check_results_acc_carrier_phase(arma::vec & true
arma::interp1(true_time_s, true_value, meas_time_s, true_value_interp);
//2. RMSE
// 2. RMSE
arma::vec err;
err = meas_value - true_value_interp;
arma::vec err2 = arma::square(err);
double rmse = sqrt(arma::mean(err2));
//3. Mean err and variance
// 3. Mean err and variance
double error_mean = arma::mean(err);
double error_var = arma::var(err);
@ -298,7 +301,7 @@ void GpsL1CADllPllTrackingTest::check_results_acc_carrier_phase(arma::vec & true
double max_error = arma::max(err);
double min_error = arma::min(err);
//5. report
// 5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << "TRK acc carrier phase RMSE=" << rmse
<< ", mean=" << error_mean
@ -312,7 +315,7 @@ void GpsL1CADllPllTrackingTest::check_results_codephase(arma::vec & true_time_s,
arma::vec & meas_time_s,
arma::vec & meas_value)
{
//1. True value interpolation to match the measurement times
// 1. True value interpolation to match the measurement times
arma::vec true_value_interp;
arma::uvec true_time_s_valid = find(true_time_s > 0);
true_time_s = true_time_s(true_time_s_valid);
@ -323,14 +326,14 @@ void GpsL1CADllPllTrackingTest::check_results_codephase(arma::vec & true_time_s,
arma::interp1(true_time_s, true_value, meas_time_s, true_value_interp);
//2. RMSE
// 2. RMSE
arma::vec err;
err = meas_value - true_value_interp;
arma::vec err2 = arma::square(err);
double rmse = sqrt(arma::mean(err2));
//3. Mean err and variance
// 3. Mean err and variance
double error_mean = arma::mean(err);
double error_var = arma::var(err);
@ -338,7 +341,7 @@ void GpsL1CADllPllTrackingTest::check_results_codephase(arma::vec & true_time_s,
double max_error = arma::max(err);
double min_error = arma::min(err);
//5. report
// 5. report
std::streamsize ss = std::cout.precision();
std::cout << std::setprecision(10) << "TRK code phase RMSE=" << rmse
<< ", mean=" << error_mean
@ -358,41 +361,33 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
generate_signal();
}
struct timeval tv;
long long int begin = 0;
long long int end = 0;
std::chrono::time_point<std::chrono::system_clock> start, end;
configure_receiver();
//open true observables log file written by the simulator
// open true observables log file written by the simulator
tracking_true_obs_reader true_obs_data;
int test_satellite_PRN = FLAGS_test_satellite_PRN;
std::cout << "Testing satellite PRN=" << test_satellite_PRN << std::endl;
std::string true_obs_file = std::string("./gps_l1_ca_obs_prn");
true_obs_file.append(std::to_string(test_satellite_PRN));
true_obs_file.append(".dat");
ASSERT_NO_THROW({
if (true_obs_data.open_obs_file(true_obs_file) == false)
{
throw std::exception();
};
}) << "Failure opening true observables file" << std::endl;
ASSERT_EQ(true_obs_data.open_obs_file(true_obs_file), true) << "Failure opening true observables file";
top_block = gr::make_top_block("Tracking test");
//std::shared_ptr<TrackingInterface> tracking = std::make_shared<GpsL1CaDllPllTracking>(config.get(), "Tracking_1C", 1, 1);
std::shared_ptr<TrackingInterface> tracking = std::make_shared<GpsL1CaDllPllCAidTracking>(config.get(), "Tracking_1C", 1, 1);
std::shared_ptr<GNSSBlockInterface> trk_ = factory->GetBlock(config, "Tracking_1C", implementation, 1, 1);
std::shared_ptr<TrackingInterface> tracking = std::dynamic_pointer_cast<TrackingInterface>(trk_);//std::make_shared<GpsL1CaDllPllCAidTracking>(config.get(), "Tracking_1C", 1, 1);
boost::shared_ptr<GpsL1CADllPllTrackingTest_msg_rx> msg_rx = GpsL1CADllPllTrackingTest_msg_rx_make();
// load acquisition data based on the first epoch of the true observations
ASSERT_NO_THROW({
if (true_obs_data.read_binary_obs() == false)
{
throw std::exception();
};
}) << "Failure reading true observables file" << std::endl;
ASSERT_EQ(true_obs_data.read_binary_obs(), true)
<< "Failure reading true tracking dump file." << std::endl
<< "Maybe sat PRN #" + std::to_string(FLAGS_test_satellite_PRN) +
" is not available?";
//restart the epoch counter
// restart the epoch counter
true_obs_data.restart();
std::cout << "Initial Doppler [Hz]=" << true_obs_data.doppler_l1_hz << " Initial code delay [Chips]=" << true_obs_data.prn_delay_chips << std::endl;
@ -402,15 +397,15 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
ASSERT_NO_THROW( {
tracking->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
tracking->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
tracking->connect(top_block);
}) << "Failure connecting tracking to the top_block." << std::endl;
}) << "Failure connecting tracking to the top_block.";
ASSERT_NO_THROW( {
std::string file = "./" + filename_raw_data;
@ -422,20 +417,18 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
top_block->connect(gr_interleaved_char_to_complex, 0, tracking->get_left_block(), 0);
top_block->connect(tracking->get_right_block(), 0, sink, 0);
top_block->msg_connect(tracking->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of tracking test." << std::endl;
}) << "Failure connecting the blocks of tracking test.";
tracking->start_tracking();
EXPECT_NO_THROW( {
gettimeofday(&tv, NULL);
begin = tv.tv_sec * 1000000 + tv.tv_usec;
start = std::chrono::system_clock::now();
top_block->run(); // Start threads and wait
gettimeofday(&tv, NULL);
end = tv.tv_sec * 1000000 + tv.tv_usec;
}) << "Failure running the top_block." << std::endl;
end = std::chrono::system_clock::now();
}) << "Failure running the top_block.";
//check results
//load the true values
// check results
// load the true values
long int nepoch = true_obs_data.num_epochs();
std::cout << "True observation epochs=" << nepoch << std::endl;
@ -458,13 +451,9 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
//load the measured values
tracking_dump_reader trk_dump;
ASSERT_NO_THROW({
if (trk_dump.open_obs_file(std::string("./tracking_ch_0.dat")) == false)
{
throw std::exception();
};
}) << "Failure opening tracking dump file" << std::endl;
ASSERT_EQ(trk_dump.open_obs_file(std::string("./tracking_ch_0.dat")), true)
<< "Failure opening tracking dump file";
nepoch = trk_dump.num_epochs();
std::cout << "Measured observation epochs=" << nepoch << std::endl;
@ -474,6 +463,12 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
arma::vec trk_Doppler_Hz = arma::zeros(nepoch, 1);
arma::vec trk_prn_delay_chips = arma::zeros(nepoch, 1);
std::vector<double> prompt;
std::vector<double> early;
std::vector<double> late;
std::vector<double> promptI;
std::vector<double> promptQ;
epoch_counter = 0;
while(trk_dump.read_binary_obs())
{
@ -486,9 +481,14 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
trk_prn_delay_chips(epoch_counter) = delay_chips;
epoch_counter++;
prompt.push_back(trk_dump.abs_P);
early.push_back(trk_dump.abs_E);
late.push_back(trk_dump.abs_L);
promptI.push_back(trk_dump.prompt_I);
promptQ.push_back(trk_dump.prompt_Q);
}
//Align initial measurements and cut the tracking pull-in transitory
// Align initial measurements and cut the tracking pull-in transitory
double pull_in_offset_s = 1.0;
arma::uvec initial_meas_point = arma::find(trk_timestamp_s >= (true_timestamp_s(0) + pull_in_offset_s), 1, "first");
@ -501,6 +501,64 @@ TEST_F(GpsL1CADllPllTrackingTest, ValidationOfResults)
check_results_codephase(true_timestamp_s, true_prn_delay_chips, trk_timestamp_s, trk_prn_delay_chips);
check_results_acc_carrier_phase(true_timestamp_s, true_acc_carrier_phase_cycles, trk_timestamp_s, trk_acc_carrier_phase_cycles);
std::cout << "Signal tracking completed in " << (end - begin) << " microseconds" << std::endl;
}
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "Signal tracking completed in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;
if(FLAGS_plot_gps_l1_tracking_test == true)
{
const std::string gnuplot_executable(FLAGS_gnuplot_executable);
if(gnuplot_executable.empty())
{
std::cout << "WARNING: Although the flag plot_gps_l1_tracking_test has been set to TRUE," << std::endl;
std::cout << "gnuplot has not been found in your system." << std::endl;
std::cout << "Test results will not be plotted." << std::endl;
}
else
{
try
{
boost::filesystem::path p(gnuplot_executable);
boost::filesystem::path dir = p.parent_path();
std::string gnuplot_path = dir.native();
Gnuplot::set_GNUPlotPath(gnuplot_path);
std::vector<double> timevec;
double t = 0.0;
for (auto it = prompt.begin(); it != prompt.end(); it++)
{
timevec.push_back(t);
t = t + GPS_L1_CA_CODE_PERIOD;
}
Gnuplot g1("linespoints");
g1.set_title("GPS L1 C/A signal tracking correlators' output (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g1.set_grid();
g1.set_xlabel("Time [s]");
g1.set_ylabel("Correlators' output");
g1.cmd("set key box opaque");
unsigned int decimate = static_cast<unsigned int>(FLAGS_plot_decimate);
g1.plot_xy( timevec, prompt, "Prompt", decimate);
g1.plot_xy( timevec, early, "Early", decimate);
g1.plot_xy( timevec, late, "Late", decimate);
g1.savetops("Correlators_outputs");
g1.savetopdf("Correlators_outputs", 18);
g1.showonscreen(); // window output
Gnuplot g2("points");
g2.set_title("Constellation diagram (satellite PRN #" + std::to_string(FLAGS_test_satellite_PRN) + ")");
g2.set_grid();
g2.set_xlabel("Inphase");
g2.set_ylabel("Quadrature");
g2.cmd("set size ratio -1");
g2.plot_xy( promptI, promptQ);
g2.savetops("Constellation");
g2.savetopdf("Constellation", 18);
g2.showonscreen(); // window output
}
catch (const GnuplotException & ge)
{
std::cout << ge.what() << std::endl;
}
}
}
}

View File

@ -465,7 +465,7 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
{
throw std::exception();
};
})<< "Failure opening true observables file" << std::endl;
}) << "Failure opening true observables file";
top_block = gr::make_top_block("Tracking test");
std::shared_ptr<GpsL1CaDllPllCAidTrackingFpga> tracking = std::make_shared<GpsL1CaDllPllCAidTrackingFpga> (config.get(), "Tracking_1C", 1, 1);
@ -479,7 +479,7 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
{
throw std::exception();
};
})<< "Failure reading true observables file" << std::endl;
}) << "Failure reading true observables file";
//restart the epoch counter
true_obs_data.restart();
@ -497,24 +497,24 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
ASSERT_NO_THROW(
{
tracking->set_channel(gnss_synchro.Channel_ID);
})<< "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW(
{
tracking->set_gnss_synchro(&gnss_synchro);
})<< "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW(
{
tracking->connect(top_block);
})<< "Failure connecting tracking to the top_block." << std::endl;
}) << "Failure connecting tracking to the top_block.";
ASSERT_NO_THROW(
{
gr::blocks::null_sink::sptr sink = gr::blocks::null_sink::make(sizeof(Gnss_Synchro));
top_block->connect(tracking->get_right_block(), 0, sink, 0);
top_block->msg_connect(tracking->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
})<< "Failure connecting the blocks of tracking test." << std::endl;
}) << "Failure connecting the blocks of tracking test.";
tracking->start_tracking();
@ -533,7 +533,7 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
tracking->reset();// unlock the channel
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
})<< "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
// wait until child thread terminates
t.join();
@ -568,7 +568,7 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
{
throw std::exception();
};
})<< "Failure opening tracking dump file" << std::endl;
}) << "Failure opening tracking dump file";
nepoch = trk_dump.num_epochs();
std::cout << "Measured observation epochs=" << nepoch << std::endl;

View File

@ -155,9 +155,9 @@ void GpsL2MDllPllTrackingTest::init()
TEST_F(GpsL2MDllPllTrackingTest, ValidationOfResults)
{
std::chrono::time_point<std::chrono::system_clock> start, end;
std::chrono::duration<double> elapsed_seconds(0);
std::chrono::duration<double> elapsed_seconds(0.0);
int fs_in = 5000000;
int nsamples = fs_in*9;
int nsamples = fs_in * 9;
init();
queue = gr::msg_queue::make(0);
@ -171,15 +171,15 @@ TEST_F(GpsL2MDllPllTrackingTest, ValidationOfResults)
ASSERT_NO_THROW( {
tracking->set_channel(gnss_synchro.Channel_ID);
}) << "Failure setting channel." << std::endl;
}) << "Failure setting channel.";
ASSERT_NO_THROW( {
tracking->set_gnss_synchro(&gnss_synchro);
}) << "Failure setting gnss_synchro." << std::endl;
}) << "Failure setting gnss_synchro.";
ASSERT_NO_THROW( {
tracking->connect(top_block);
}) << "Failure connecting tracking to the top_block." << std::endl;
}) << "Failure connecting tracking to the top_block.";
ASSERT_NO_THROW( {
//gr::analog::sig_source_c::sptr source = gr::analog::sig_source_c::make(fs_in, gr::analog::GR_SIN_WAVE, 1000, 1, gr_complex(0));
@ -193,7 +193,7 @@ TEST_F(GpsL2MDllPllTrackingTest, ValidationOfResults)
top_block->connect(valve, 0, tracking->get_left_block(), 0);
top_block->connect(tracking->get_right_block(), 0, sink, 0);
top_block->msg_connect(tracking->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
}) << "Failure connecting the blocks of tracking test." << std::endl;
}) << "Failure connecting the blocks of tracking test.";
tracking->start_tracking();
@ -202,7 +202,7 @@ TEST_F(GpsL2MDllPllTrackingTest, ValidationOfResults)
top_block->run(); // Start threads and wait
end = std::chrono::system_clock::now();
elapsed_seconds = end - start;
}) << "Failure running the top_block." << std::endl;
}) << "Failure running the top_block.";
// TODO: Verify tracking results
std::cout << "Tracked " << nsamples << " samples in " << elapsed_seconds.count() * 1e6 << " microseconds" << std::endl;

View File

@ -57,10 +57,10 @@ TEST(TrackingLoopFilterTest, FirstOrderLoop)
float result = 0.0;
for( unsigned int i = 0; i < sample_data.size(); ++i )
{
result = theFilter.apply( sample_data[i] );
EXPECT_FLOAT_EQ( result, sample_data[i]*g1 );
}
{
result = theFilter.apply( sample_data[i] );
EXPECT_FLOAT_EQ( result, sample_data[i]*g1 );
}
}
@ -88,10 +88,10 @@ TEST(TrackingLoopFilterTest, FirstOrderLoopWithLastIntegrator)
float result = 0.0;
for( unsigned int i = 0; i < sample_data.size(); ++i )
{
result = theFilter.apply( sample_data[i] );
EXPECT_NEAR( result, expected_out[i], 1e-4 );
}
{
result = theFilter.apply( sample_data[i] );
EXPECT_NEAR( result, expected_out[i], 1e-4 );
}
}
@ -120,10 +120,10 @@ TEST(TrackingLoopFilterTest, SecondOrderLoop)
float result = 0.0;
for( unsigned int i = 0; i < sample_data.size(); ++i )
{
result = theFilter.apply( sample_data[i] );
EXPECT_NEAR( result, expected_out[i], 1e-4 );
}
{
result = theFilter.apply( sample_data[i] );
EXPECT_NEAR( result, expected_out[i], 1e-4 );
}
}
@ -151,10 +151,10 @@ TEST(TrackingLoopFilterTest, SecondOrderLoopWithLastIntegrator)
float result = 0.0;
for( unsigned int i = 0; i < sample_data.size(); ++i )
{
result = theFilter.apply( sample_data[i] );
EXPECT_NEAR( result, expected_out[i], 1e-4 );
}
{
result = theFilter.apply( sample_data[i] );
EXPECT_NEAR( result, expected_out[i], 1e-4 );
}
}
@ -182,10 +182,10 @@ TEST(TrackingLoopFilterTest, ThirdOrderLoop)
float result = 0.0;
for( unsigned int i = 0; i < sample_data.size(); ++i )
{
result = theFilter.apply( sample_data[i] );
EXPECT_NEAR( result, expected_out[i], 1e-4 );
}
{
result = theFilter.apply( sample_data[i] );
EXPECT_NEAR( result, expected_out[i], 1e-4 );
}
}
@ -213,10 +213,10 @@ TEST(TrackingLoopFilterTest, ThirdOrderLoopWithLastIntegrator)
float result = 0.0;
for( unsigned int i = 0; i < sample_data.size(); ++i )
{
result = theFilter.apply( sample_data[i] );
EXPECT_NEAR( result, expected_out[i], 1e-4 );
}
{
result = theFilter.apply( sample_data[i] );
EXPECT_NEAR( result, expected_out[i], 1e-4 );
}
}

View File

@ -63,3 +63,75 @@ TEST(GlonassGnavEphemerisTest, ComputeGlonassTime)
ASSERT_TRUE(expected_gtime.minutes() - t.minutes() < FLT_EPSILON );
ASSERT_TRUE(expected_gtime.seconds() - t.seconds() < FLT_EPSILON );
}
/*!
* \brief Testing conversion from GLONASST to GPST
* \test Tests scenario for N_T when greater than 365 days. Possible values here from 1 to 365*4
*/
TEST(GlonassGnavEphemerisTest, ConvertGlonassT2GpsT1)
{
Glonass_Gnav_Ephemeris gnav_eph;
gnav_eph.d_yr = 2004;
gnav_eph.d_N_T = 366+28;
double tod = 70200;
double week = 0.0;
double tow = 0.0;
double true_leap_sec = 13;
double true_week = 1307;
double true_tow = 480600+true_leap_sec;
gnav_eph.glot_to_gpst(tod, 0.0, 0.0, &week, &tow);
// Perform assertions of decoded fields
ASSERT_TRUE(week - true_week < FLT_EPSILON );
ASSERT_TRUE(tow - true_week < FLT_EPSILON );
}
/*!
* \brief Testing conversion from GLONASST to GPST
* \test This version tests the conversion for offsets greater than 30 in a leap year
*/
TEST(GlonassGnavEphemerisTest, ConvertGlonassT2GpsT2)
{
Glonass_Gnav_Ephemeris gnav_eph;
gnav_eph.d_yr = 2016;
gnav_eph.d_N_T = 268;
double tod = 7560;
double week = 0.0;
double tow = 0.0;
double true_leap_sec = 13;
double true_week = 1915;
double true_tow = 480600+true_leap_sec;
gnav_eph.glot_to_gpst(tod, 0.0, 0.0, &week, &tow);
// Perform assertions of decoded fields
ASSERT_TRUE(week - true_week < FLT_EPSILON );
ASSERT_TRUE(tow - true_week < FLT_EPSILON );
}
/*!
* \brief Testing conversion from GLONASST to GPST
* \test This version tests the conversion around the vicinity of February 29 days when in leap year
*/
TEST(GlonassGnavEphemerisTest, ConvertGlonassT2GpsT3)
{
Glonass_Gnav_Ephemeris gnav_eph;
gnav_eph.d_yr = 2016;
gnav_eph.d_N_T = 62;
double tod = 7560 + 6*3600;
double week = 0.0;
double tow = 0.0;
double true_leap_sec = 13;
double true_week = 1307;
double true_tow = 480600+true_leap_sec;
gnav_eph.glot_to_gpst(tod, 0.0, 0.0, &week, &tow);
// Perform assertions of decoded fields
ASSERT_TRUE(week - true_week < FLT_EPSILON );
ASSERT_TRUE(tow - true_week < FLT_EPSILON );
}

View File

@ -41,76 +41,76 @@ title('Doppler frequency')
xlabel('TOW [s]')
ylabel('[Hz]');
%read true obs from simulator (optional)
GPS_STARTOFFSET_s = 68.802e-3;
true_observables_log_path='/home/javier/git/gnss-sdr/build/obs_out.bin';
GNSS_true_observables= read_true_sim_observables_dump(true_observables_log_path);
%correct the clock error using true values (it is not possible for a receiver to correct
%the receiver clock offset error at the observables level because it is required the
%decoding of the ephemeris data and solve the PVT equations)
SPEED_OF_LIGHT_M_S = 299792458.0;
%find the reference satellite
[~,ref_sat_ch]=min(GNSS_observables.Pseudorange_m(:,min_idx+1));
shift_time_s=GNSS_true_observables.Pseudorange_m(ref_sat_ch,:)/SPEED_OF_LIGHT_M_S-GPS_STARTOFFSET_s;
%Compute deltas if required and interpolate to measurement time
delta_true_psudorange_m=GNSS_true_observables.Pseudorange_m(1,:)-GNSS_true_observables.Pseudorange_m(2,:);
delta_true_interp_psudorange_m=interp1(GNSS_true_observables.RX_time(1,:)-shift_time_s, ...
delta_true_psudorange_m,GNSS_observables.RX_time(1,min_idx+1:end),'lineal','extrap');
true_interp_acc_carrier_phase_ch1_hz=interp1(GNSS_true_observables.RX_time(1,:)-shift_time_s, ...
GNSS_true_observables.Carrier_phase_hz(1,:),GNSS_observables.RX_time(1,min_idx+1:end),'lineal','extrap');
true_interp_acc_carrier_phase_ch2_hz=interp1(GNSS_true_observables.RX_time(1,:)-shift_time_s, ...
GNSS_true_observables.Carrier_phase_hz(2,:),GNSS_observables.RX_time(2,min_idx+1:end),'lineal','extrap');
%Compute measurement errors
delta_measured_psudorange_m=GNSS_observables.Pseudorange_m(1,min_idx+1:end)-GNSS_observables.Pseudorange_m(2,min_idx+1:end);
psudorange_error_m=delta_measured_psudorange_m-delta_true_interp_psudorange_m;
psudorange_rms_m=sqrt(sum(psudorange_error_m.^2)/length(psudorange_error_m))
acc_carrier_error_ch1_hz=GNSS_observables.Carrier_phase_hz(1,min_idx+1:end)-true_interp_acc_carrier_phase_ch1_hz...
-GNSS_observables.Carrier_phase_hz(1,min_idx+1)+true_interp_acc_carrier_phase_ch1_hz(1);
acc_phase_rms_ch1_hz=sqrt(sum(acc_carrier_error_ch1_hz.^2)/length(acc_carrier_error_ch1_hz))
acc_carrier_error_ch2_hz=GNSS_observables.Carrier_phase_hz(2,min_idx+1:end)-true_interp_acc_carrier_phase_ch2_hz...
-GNSS_observables.Carrier_phase_hz(2,min_idx+1)+true_interp_acc_carrier_phase_ch2_hz(1);
acc_phase_rms_ch2_hz=sqrt(sum(acc_carrier_error_ch2_hz.^2)/length(acc_carrier_error_ch2_hz))
%plot results
figure;
plot(GNSS_true_observables.RX_time(1,:),delta_true_psudorange_m,'g');
hold on;
plot(GNSS_observables.RX_time(1,min_idx+1:end),delta_measured_psudorange_m,'b');
title('TRUE vs. measured Pseudoranges [m]')
xlabel('TOW [s]')
ylabel('[m]');
figure;
plot(GNSS_observables.RX_time(1,min_idx+1:end),psudorange_error_m)
title('Pseudoranges error [m]')
xlabel('TOW [s]')
ylabel('[m]');
figure;
plot(GNSS_observables.RX_time(1,min_idx+1:end),acc_carrier_error_ch1_hz)
title('Accumulated carrier phase error CH1 [hz]')
xlabel('TOW [s]')
ylabel('[hz]');
figure;
plot(GNSS_observables.RX_time(1,min_idx+1:end),acc_carrier_error_ch2_hz)
title('Accumulated carrier phase error CH2 [hz]')
xlabel('TOW [s]')
ylabel('[hz]');
%
% %read true obs from simulator (optional)
% GPS_STARTOFFSET_s = 68.802e-3;
%
% true_observables_log_path='/home/javier/git/gnss-sdr/build/obs_out.bin';
% GNSS_true_observables= read_true_sim_observables_dump(true_observables_log_path);
%
% %correct the clock error using true values (it is not possible for a receiver to correct
% %the receiver clock offset error at the observables level because it is required the
% %decoding of the ephemeris data and solve the PVT equations)
%
% SPEED_OF_LIGHT_M_S = 299792458.0;
%
% %find the reference satellite
% [~,ref_sat_ch]=min(GNSS_observables.Pseudorange_m(:,min_idx+1));
% shift_time_s=GNSS_true_observables.Pseudorange_m(ref_sat_ch,:)/SPEED_OF_LIGHT_M_S-GPS_STARTOFFSET_s;
%
%
% %Compute deltas if required and interpolate to measurement time
% delta_true_psudorange_m=GNSS_true_observables.Pseudorange_m(1,:)-GNSS_true_observables.Pseudorange_m(2,:);
% delta_true_interp_psudorange_m=interp1(GNSS_true_observables.RX_time(1,:)-shift_time_s, ...
% delta_true_psudorange_m,GNSS_observables.RX_time(1,min_idx+1:end),'lineal','extrap');
% true_interp_acc_carrier_phase_ch1_hz=interp1(GNSS_true_observables.RX_time(1,:)-shift_time_s, ...
% GNSS_true_observables.Carrier_phase_hz(1,:),GNSS_observables.RX_time(1,min_idx+1:end),'lineal','extrap');
% true_interp_acc_carrier_phase_ch2_hz=interp1(GNSS_true_observables.RX_time(1,:)-shift_time_s, ...
% GNSS_true_observables.Carrier_phase_hz(2,:),GNSS_observables.RX_time(2,min_idx+1:end),'lineal','extrap');
%
% %Compute measurement errors
%
% delta_measured_psudorange_m=GNSS_observables.Pseudorange_m(1,min_idx+1:end)-GNSS_observables.Pseudorange_m(2,min_idx+1:end);
% psudorange_error_m=delta_measured_psudorange_m-delta_true_interp_psudorange_m;
% psudorange_rms_m=sqrt(sum(psudorange_error_m.^2)/length(psudorange_error_m))
%
% acc_carrier_error_ch1_hz=GNSS_observables.Carrier_phase_hz(1,min_idx+1:end)-true_interp_acc_carrier_phase_ch1_hz...
% -GNSS_observables.Carrier_phase_hz(1,min_idx+1)+true_interp_acc_carrier_phase_ch1_hz(1);
%
% acc_phase_rms_ch1_hz=sqrt(sum(acc_carrier_error_ch1_hz.^2)/length(acc_carrier_error_ch1_hz))
%
% acc_carrier_error_ch2_hz=GNSS_observables.Carrier_phase_hz(2,min_idx+1:end)-true_interp_acc_carrier_phase_ch2_hz...
% -GNSS_observables.Carrier_phase_hz(2,min_idx+1)+true_interp_acc_carrier_phase_ch2_hz(1);
% acc_phase_rms_ch2_hz=sqrt(sum(acc_carrier_error_ch2_hz.^2)/length(acc_carrier_error_ch2_hz))
%
%
% %plot results
% figure;
% plot(GNSS_true_observables.RX_time(1,:),delta_true_psudorange_m,'g');
% hold on;
% plot(GNSS_observables.RX_time(1,min_idx+1:end),delta_measured_psudorange_m,'b');
% title('TRUE vs. measured Pseudoranges [m]')
% xlabel('TOW [s]')
% ylabel('[m]');
%
% figure;
% plot(GNSS_observables.RX_time(1,min_idx+1:end),psudorange_error_m)
% title('Pseudoranges error [m]')
% xlabel('TOW [s]')
% ylabel('[m]');
%
% figure;
% plot(GNSS_observables.RX_time(1,min_idx+1:end),acc_carrier_error_ch1_hz)
% title('Accumulated carrier phase error CH1 [hz]')
% xlabel('TOW [s]')
% ylabel('[hz]');
%
% figure;
% plot(GNSS_observables.RX_time(1,min_idx+1:end),acc_carrier_error_ch2_hz)
% title('Accumulated carrier phase error CH2 [hz]')
% xlabel('TOW [s]')
% ylabel('[hz]');
%
%
%
%