mirror of
https://github.com/gnss-sdr/gnss-sdr
synced 2024-12-14 04:00:34 +00:00
Merge branch 'next_fpga' of https://github.com/gnss-sdr/gnss-sdr into next
This commit is contained in:
commit
9863c680f1
@ -18,5 +18,7 @@
|
||||
|
||||
add_subdirectory(adapters)
|
||||
add_subdirectory(gnuradio_blocks)
|
||||
#add_subdirectory(libs)
|
||||
if(ENABLE_FPGA)
|
||||
add_subdirectory(libs)
|
||||
endif(ENABLE_FPGA)
|
||||
|
||||
|
@ -198,7 +198,7 @@ signed int GalileoE1Pcps8msAmbiguousAcquisition::mag()
|
||||
void GalileoE1Pcps8msAmbiguousAcquisition::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
//set_local_code();
|
||||
}
|
||||
|
||||
|
||||
|
@ -234,7 +234,7 @@ void GalileoE1PcpsAmbiguousAcquisition::init()
|
||||
acquisition_cc_->init();
|
||||
}
|
||||
|
||||
set_local_code();
|
||||
//set_local_code();
|
||||
}
|
||||
|
||||
|
||||
|
@ -200,7 +200,7 @@ signed int GalileoE1PcpsCccwsrAmbiguousAcquisition::mag()
|
||||
void GalileoE1PcpsCccwsrAmbiguousAcquisition::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
//set_local_code();
|
||||
}
|
||||
|
||||
|
||||
|
@ -240,7 +240,7 @@ void
|
||||
GalileoE1PcpsQuickSyncAmbiguousAcquisition::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
//set_local_code();
|
||||
}
|
||||
|
||||
|
||||
|
@ -204,7 +204,7 @@ signed int GalileoE1PcpsTongAmbiguousAcquisition::mag()
|
||||
void GalileoE1PcpsTongAmbiguousAcquisition::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
//set_local_code();
|
||||
}
|
||||
|
||||
|
||||
|
@ -206,7 +206,7 @@ signed int GalileoE5aNoncoherentIQAcquisitionCaf::mag()
|
||||
void GalileoE5aNoncoherentIQAcquisitionCaf::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
//set_local_code();
|
||||
}
|
||||
|
||||
|
||||
|
@ -230,7 +230,7 @@ void GpsL1CaPcpsAcquisition::init()
|
||||
acquisition_cc_->init();
|
||||
}
|
||||
|
||||
set_local_code();
|
||||
//set_local_code();
|
||||
}
|
||||
|
||||
|
||||
|
@ -136,7 +136,7 @@ signed int GpsL1CaPcpsAcquisitionFineDoppler::mag()
|
||||
void GpsL1CaPcpsAcquisitionFineDoppler::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
//set_local_code();
|
||||
}
|
||||
|
||||
|
||||
|
@ -34,18 +34,28 @@
|
||||
#include "gps_l1_ca_pcps_acquisition_fpga.h"
|
||||
#include <boost/math/distributions/exponential.hpp>
|
||||
#include <glog/logging.h>
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
#include "GPS_L1_CA.h"
|
||||
#include "configuration_interface.h"
|
||||
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams) :
|
||||
role_(role), in_streams_(in_streams), out_streams_(out_streams)
|
||||
role_(role), in_streams_(in_streams), out_streams_(out_streams)
|
||||
{
|
||||
unsigned int code_length;
|
||||
bool bit_transition_flag;
|
||||
bool use_CFAR_algorithm_flag;
|
||||
unsigned int sampled_ms;
|
||||
long fs_in;
|
||||
long ifreq;
|
||||
bool dump;
|
||||
std::string dump_filename;
|
||||
unsigned int nsamples_total;
|
||||
unsigned int select_queue_Fpga;
|
||||
std::string device_name;
|
||||
|
||||
configuration_ = configuration;
|
||||
|
||||
std::string default_item_type = "cshort";
|
||||
@ -53,59 +63,70 @@ GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
|
||||
|
||||
DLOG(INFO) << "role " << role;
|
||||
|
||||
item_type_ = configuration_->property(role + ".item_type", default_item_type);
|
||||
item_type_ = configuration_->property(role + ".item_type",
|
||||
default_item_type);
|
||||
|
||||
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
|
||||
if_ = configuration_->property(role + ".if", 0);
|
||||
dump_ = configuration_->property(role + ".dump", false);
|
||||
fs_in = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
|
||||
ifreq = configuration_->property(role + ".if", 0);
|
||||
dump = configuration_->property(role + ".dump", false);
|
||||
doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
|
||||
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
|
||||
sampled_ms = configuration_->property(
|
||||
role + ".coherent_integration_time_ms", 1);
|
||||
|
||||
// note : the FPGA is implemented according to bit transition flag = 0. Setting bit transition flag to 1 has no effect.
|
||||
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
|
||||
bit_transition_flag = configuration_->property(
|
||||
role + ".bit_transition_flag", false);
|
||||
|
||||
// note : the FPGA is implemented according to use_CFAR_algorithm = 0. Setting use_CFAR_algorithm to 1 has no effect.
|
||||
use_CFAR_algorithm_flag_=configuration_->property(role + ".use_CFAR_algorithm", false);
|
||||
use_CFAR_algorithm_flag = configuration_->property(
|
||||
role + ".use_CFAR_algorithm", false);
|
||||
|
||||
// note : the FPGA does not use the max_dwells variable.
|
||||
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
|
||||
|
||||
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
|
||||
dump_filename = configuration_->property(role + ".dump_filename",
|
||||
default_dump_filename);
|
||||
|
||||
//--- Find number of samples per spreading code -------------------------
|
||||
code_length_ = round(fs_in_ / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
code_length = round(
|
||||
fs_in / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
|
||||
// code length has the same value as d_fft_size
|
||||
float nbits;
|
||||
nbits = ceilf(log2f(code_length_));
|
||||
nsamples_total_ = pow(2,nbits);
|
||||
float nbits;
|
||||
nbits = ceilf(log2f(code_length));
|
||||
nsamples_total = pow(2, nbits);
|
||||
|
||||
//vector_length_ = code_length_ * sampled_ms_;
|
||||
vector_length_ = nsamples_total_ * sampled_ms_;
|
||||
vector_length_ = nsamples_total * sampled_ms;
|
||||
|
||||
// if( bit_transition_flag_ )
|
||||
// {
|
||||
// vector_length_ *= 2;
|
||||
// }
|
||||
|
||||
if( bit_transition_flag_ )
|
||||
{
|
||||
vector_length_ *= 2;
|
||||
}
|
||||
select_queue_Fpga = configuration_->property(role + ".select_queue_Fpga",
|
||||
0);
|
||||
|
||||
code_ = new gr_complex[vector_length_];
|
||||
std::string default_device_name = "/dev/uio0";
|
||||
device_name = configuration_->property(role + ".devicename",
|
||||
default_device_name);
|
||||
|
||||
select_queue_Fpga_ = configuration_->property(role + ".select_queue_Fpga", 0);
|
||||
|
||||
if (item_type_.compare("cshort") == 0 )
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
item_size_ = sizeof(lv_16sc_t);
|
||||
gps_acquisition_fpga_sc_ = gps_pcps_make_acquisition_fpga_sc(sampled_ms_, max_dwells_,
|
||||
doppler_max_, if_, fs_in_, code_length_, code_length_, vector_length_,
|
||||
bit_transition_flag_, use_CFAR_algorithm_flag_, select_queue_Fpga_, dump_, dump_filename_);
|
||||
DLOG(INFO) << "acquisition(" << gps_acquisition_fpga_sc_->unique_id() << ")";
|
||||
gps_acquisition_fpga_sc_ = gps_pcps_make_acquisition_fpga_sc(
|
||||
sampled_ms, max_dwells_, doppler_max_, ifreq, fs_in,
|
||||
code_length, code_length, vector_length_, nsamples_total,
|
||||
bit_transition_flag, use_CFAR_algorithm_flag,
|
||||
select_queue_Fpga, device_name, dump, dump_filename);
|
||||
DLOG(INFO) << "acquisition("
|
||||
<< gps_acquisition_fpga_sc_->unique_id() << ")";
|
||||
|
||||
}
|
||||
else{
|
||||
LOG(FATAL) << item_type_ << " FPGA only accepts chsort";
|
||||
}
|
||||
|
||||
else
|
||||
{
|
||||
LOG(FATAL) << item_type_ << " FPGA only accepts chsort";
|
||||
}
|
||||
|
||||
channel_ = 0;
|
||||
threshold_ = 0.0;
|
||||
@ -113,12 +134,10 @@ GpsL1CaPcpsAcquisitionFpga::GpsL1CaPcpsAcquisitionFpga(
|
||||
gnss_synchro_ = 0;
|
||||
}
|
||||
|
||||
|
||||
GpsL1CaPcpsAcquisitionFpga::~GpsL1CaPcpsAcquisitionFpga()
|
||||
{
|
||||
delete[] code_;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::set_channel(unsigned int channel)
|
||||
{
|
||||
@ -128,12 +147,11 @@ void GpsL1CaPcpsAcquisitionFpga::set_channel(unsigned int channel)
|
||||
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::set_threshold(float threshold)
|
||||
{
|
||||
float pfa = configuration_->property(role_ + ".pfa", 0.0);
|
||||
|
||||
if(pfa == 0.0)
|
||||
if (pfa == 0.0)
|
||||
{
|
||||
threshold_ = threshold;
|
||||
}
|
||||
@ -144,12 +162,10 @@ void GpsL1CaPcpsAcquisitionFpga::set_threshold(float threshold)
|
||||
|
||||
DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
|
||||
|
||||
|
||||
gps_acquisition_fpga_sc_->set_threshold(threshold_);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
doppler_max_ = doppler_max;
|
||||
@ -158,7 +174,6 @@ void GpsL1CaPcpsAcquisitionFpga::set_doppler_max(unsigned int doppler_max)
|
||||
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
doppler_step_ = doppler_step;
|
||||
@ -174,70 +189,46 @@ void GpsL1CaPcpsAcquisitionFpga::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
|
||||
gps_acquisition_fpga_sc_->set_gnss_synchro(gnss_synchro_);
|
||||
}
|
||||
|
||||
|
||||
signed int GpsL1CaPcpsAcquisitionFpga::mag()
|
||||
{
|
||||
|
||||
return gps_acquisition_fpga_sc_->mag();
|
||||
return gps_acquisition_fpga_sc_->mag();
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::init()
|
||||
{
|
||||
|
||||
gps_acquisition_fpga_sc_->init();
|
||||
gps_acquisition_fpga_sc_->init();
|
||||
|
||||
set_local_code();
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::set_local_code()
|
||||
{
|
||||
|
||||
std::complex<float>* code = new std::complex<float>[vector_length_];
|
||||
gps_acquisition_fpga_sc_->set_local_code();
|
||||
|
||||
|
||||
//init to zeros for the zero padding of the fft
|
||||
for (uint s=0;s<vector_length_;s++)
|
||||
{
|
||||
code[s] = std::complex<float>(0, 0);
|
||||
}
|
||||
|
||||
gps_l1_ca_code_gen_complex_sampled(code, gnss_synchro_->PRN, fs_in_ , 0);
|
||||
|
||||
for (unsigned int i = 0; i < sampled_ms_; i++)
|
||||
{
|
||||
memcpy(&(code_[i*vector_length_]), code, sizeof(gr_complex)*vector_length_);
|
||||
|
||||
}
|
||||
|
||||
gps_acquisition_fpga_sc_->set_local_code(code_);
|
||||
|
||||
delete[] code;
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::reset()
|
||||
{
|
||||
|
||||
gps_acquisition_fpga_sc_->set_active(true);
|
||||
gps_acquisition_fpga_sc_->set_active(true);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::set_state(int state)
|
||||
{
|
||||
|
||||
gps_acquisition_fpga_sc_->set_state(state);
|
||||
gps_acquisition_fpga_sc_->set_state(state);
|
||||
}
|
||||
|
||||
|
||||
|
||||
float GpsL1CaPcpsAcquisitionFpga::calculate_threshold(float pfa)
|
||||
{
|
||||
//Calculate the threshold
|
||||
unsigned int frequency_bins = 0;
|
||||
for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_)
|
||||
for (int doppler = (int) (-doppler_max_); doppler <= (int) doppler_max_;
|
||||
doppler += doppler_step_)
|
||||
{
|
||||
frequency_bins++;
|
||||
}
|
||||
@ -246,39 +237,35 @@ float GpsL1CaPcpsAcquisitionFpga::calculate_threshold(float pfa)
|
||||
double exponent = 1 / static_cast<double>(ncells);
|
||||
double val = pow(1.0 - pfa, exponent);
|
||||
double lambda = double(vector_length_);
|
||||
boost::math::exponential_distribution<double> mydist (lambda);
|
||||
float threshold = (float)quantile(mydist,val);
|
||||
boost::math::exponential_distribution<double> mydist(lambda);
|
||||
float threshold = (float) quantile(mydist, val);
|
||||
|
||||
return threshold;
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::connect(gr::top_block_sptr top_block)
|
||||
{
|
||||
|
||||
//nothing to connect
|
||||
//nothing to connect
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionFpga::disconnect(gr::top_block_sptr top_block)
|
||||
{
|
||||
|
||||
//nothing to disconnect
|
||||
//nothing to disconnect
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GpsL1CaPcpsAcquisitionFpga::get_left_block()
|
||||
{
|
||||
|
||||
return gps_acquisition_fpga_sc_;
|
||||
return gps_acquisition_fpga_sc_;
|
||||
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GpsL1CaPcpsAcquisitionFpga::get_right_block()
|
||||
{
|
||||
|
||||
return gps_acquisition_fpga_sc_;
|
||||
return gps_acquisition_fpga_sc_;
|
||||
|
||||
}
|
||||
|
||||
|
@ -43,15 +43,13 @@
|
||||
#include "complex_byte_to_float_x2.h"
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
|
||||
|
||||
|
||||
class ConfigurationInterface;
|
||||
|
||||
/*!
|
||||
* \brief This class adapts a PCPS acquisition block to an AcquisitionInterface
|
||||
* for GPS L1 C/A signals
|
||||
*/
|
||||
class GpsL1CaPcpsAcquisitionFpga: public AcquisitionInterface
|
||||
class GpsL1CaPcpsAcquisitionFpga : public AcquisitionInterface
|
||||
{
|
||||
public:
|
||||
GpsL1CaPcpsAcquisitionFpga(ConfigurationInterface* configuration,
|
||||
@ -137,35 +135,19 @@ public:
|
||||
private:
|
||||
ConfigurationInterface* configuration_;
|
||||
gps_pcps_acquisition_fpga_sc_sptr gps_acquisition_fpga_sc_;
|
||||
gr::blocks::stream_to_vector::sptr stream_to_vector_;
|
||||
gr::blocks::float_to_complex::sptr float_to_complex_;
|
||||
complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
|
||||
size_t item_size_;
|
||||
std::string item_type_;
|
||||
unsigned int vector_length_;
|
||||
unsigned int code_length_;
|
||||
bool bit_transition_flag_;
|
||||
bool use_CFAR_algorithm_flag_;
|
||||
unsigned int channel_;
|
||||
float threshold_;
|
||||
unsigned int doppler_max_;
|
||||
unsigned int doppler_step_;
|
||||
unsigned int sampled_ms_;
|
||||
unsigned int max_dwells_;
|
||||
long fs_in_;
|
||||
long if_;
|
||||
bool dump_;
|
||||
std::string dump_filename_;
|
||||
std::complex<float> * code_;
|
||||
Gnss_Synchro * gnss_synchro_;
|
||||
std::string role_;
|
||||
unsigned int in_streams_;
|
||||
unsigned int out_streams_;
|
||||
|
||||
unsigned int nsamples_total_;
|
||||
|
||||
unsigned int select_queue_Fpga_;
|
||||
|
||||
float calculate_threshold(float pfa);
|
||||
};
|
||||
|
||||
|
@ -137,7 +137,7 @@ signed int GpsL1CaPcpsAssistedAcquisition::mag()
|
||||
void GpsL1CaPcpsAssistedAcquisition::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
//set_local_code();
|
||||
}
|
||||
|
||||
void GpsL1CaPcpsAssistedAcquisition::set_local_code()
|
||||
|
@ -197,7 +197,7 @@ signed int GpsL1CaPcpsMultithreadAcquisition::mag()
|
||||
void GpsL1CaPcpsMultithreadAcquisition::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
//set_local_code();
|
||||
}
|
||||
|
||||
|
||||
|
@ -194,7 +194,7 @@ signed int GpsL1CaPcpsOpenClAcquisition::mag()
|
||||
void GpsL1CaPcpsOpenClAcquisition::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
//set_local_code();
|
||||
}
|
||||
|
||||
|
||||
|
@ -227,7 +227,7 @@ signed int GpsL1CaPcpsQuickSyncAcquisition::mag()
|
||||
void GpsL1CaPcpsQuickSyncAcquisition::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
//set_local_code();
|
||||
|
||||
}
|
||||
|
||||
|
@ -186,7 +186,7 @@ signed int GpsL1CaPcpsTongAcquisition::mag()
|
||||
void GpsL1CaPcpsTongAcquisition::init()
|
||||
{
|
||||
acquisition_cc_->init();
|
||||
set_local_code();
|
||||
//set_local_code();
|
||||
}
|
||||
|
||||
void GpsL1CaPcpsTongAcquisition::set_local_code()
|
||||
|
@ -233,7 +233,7 @@ void GpsL2MPcpsAcquisition::init()
|
||||
acquisition_cc_->init();
|
||||
}
|
||||
|
||||
set_local_code();
|
||||
//set_local_code();
|
||||
}
|
||||
|
||||
|
||||
|
@ -67,7 +67,11 @@ add_library(acq_gr_blocks ${ACQ_GR_BLOCKS_SOURCES} ${ACQ_GR_BLOCKS_HEADERS})
|
||||
source_group(Headers FILES ${ACQ_GR_BLOCKS_HEADERS})
|
||||
#target_link_libraries(acq_gr_blocks gnss_sp_libs gnss_system_parameters ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_FFT_LIBRARIES}
|
||||
#target_link_libraries(acq_gr_blocks acquisition_lib gnss_sp_libs gnss_system_parameters ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${VOLK_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${OPT_LIBRARIES} ${OPT_ACQUISITION_LIBRARIES})
|
||||
target_link_libraries(acq_gr_blocks gnss_sp_libs gnss_system_parameters ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${VOLK_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${OPT_LIBRARIES} ${OPT_ACQUISITION_LIBRARIES})
|
||||
if(ENABLE_FPGA)
|
||||
target_link_libraries(acq_gr_blocks acquisition_lib gnss_sp_libs gnss_system_parameters ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${VOLK_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${OPT_LIBRARIES} ${OPT_ACQUISITION_LIBRARIES})
|
||||
else(ENABLE_FPGA)
|
||||
target_link_libraries(acq_gr_blocks gnss_sp_libs gnss_system_parameters ${GNURADIO_RUNTIME_LIBRARIES} ${GNURADIO_FFT_LIBRARIES} ${VOLK_LIBRARIES} ${VOLK_GNSSSDR_LIBRARIES} ${OPT_LIBRARIES} ${OPT_ACQUISITION_LIBRARIES})
|
||||
endif(ENABLE_FPGA)
|
||||
if(NOT VOLK_GNSSSDR_FOUND)
|
||||
add_dependencies(acq_gr_blocks volk_gnsssdr_module)
|
||||
endif(NOT VOLK_GNSSSDR_FOUND)
|
||||
|
@ -40,209 +40,113 @@
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
#include "control_message_factory.h"
|
||||
#include "GPS_L1_CA.h" //GPS_TWO_PI
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
void wait3(int seconds)
|
||||
{
|
||||
boost::this_thread::sleep_for(boost::chrono::seconds{seconds});
|
||||
boost::this_thread::sleep_for(boost::chrono::seconds
|
||||
{ seconds });
|
||||
}
|
||||
|
||||
|
||||
gps_pcps_acquisition_fpga_sc_sptr gps_pcps_make_acquisition_fpga_sc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code, int vector_length,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
unsigned int select_queue_Fpga,
|
||||
bool dump,
|
||||
std::string dump_filename)
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in, int samples_per_ms,
|
||||
int samples_per_code, int vector_length, unsigned int nsamples_total,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
unsigned int select_queue_Fpga, std::string device_name, bool dump,
|
||||
std::string dump_filename)
|
||||
{
|
||||
|
||||
return gps_pcps_acquisition_fpga_sc_sptr(
|
||||
new gps_pcps_acquisition_fpga_sc(sampled_ms, max_dwells, doppler_max, freq, fs_in, samples_per_ms,
|
||||
samples_per_code, vector_length, bit_transition_flag, use_CFAR_algorithm_flag, select_queue_Fpga, dump, dump_filename));
|
||||
new gps_pcps_acquisition_fpga_sc(sampled_ms, max_dwells,
|
||||
doppler_max, freq, fs_in, samples_per_ms, samples_per_code,
|
||||
vector_length, nsamples_total, bit_transition_flag,
|
||||
use_CFAR_algorithm_flag, select_queue_Fpga, device_name,
|
||||
dump, dump_filename));
|
||||
}
|
||||
|
||||
gps_pcps_acquisition_fpga_sc::gps_pcps_acquisition_fpga_sc(
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code, int vector_length,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
unsigned int select_queue_Fpga,
|
||||
bool dump,
|
||||
std::string dump_filename) :
|
||||
unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in, int samples_per_ms,
|
||||
int samples_per_code, int vector_length, unsigned int nsamples_total,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
unsigned int select_queue_Fpga, std::string device_name, bool dump,
|
||||
std::string dump_filename) :
|
||||
|
||||
gr::block("pcps_acquisition_fpga_sc",gr::io_signature::make(0, 0, sizeof(lv_16sc_t)),gr::io_signature::make(0, 0, 0))
|
||||
gr::block("pcps_acquisition_fpga_sc",
|
||||
gr::io_signature::make(0, 0, sizeof(lv_16sc_t)),
|
||||
gr::io_signature::make(0, 0, 0))
|
||||
{
|
||||
this->message_port_register_out(pmt::mp("events"));
|
||||
d_sample_counter = 0; // SAMPLE COUNTER
|
||||
d_sample_counter = 0; // SAMPLE COUNTER
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
d_freq = freq;
|
||||
d_fs_in = fs_in;
|
||||
d_samples_per_ms = samples_per_ms;
|
||||
d_samples_per_code = samples_per_code;
|
||||
d_sampled_ms = sampled_ms;
|
||||
d_max_dwells = max_dwells; // Note : d_max_dwells is not used in the FPGA implementation
|
||||
d_max_dwells = max_dwells; // Note : d_max_dwells is not used in the FPGA implementation
|
||||
d_well_count = 0;
|
||||
d_doppler_max = doppler_max;
|
||||
d_fft_size = d_sampled_ms * d_samples_per_ms;
|
||||
d_fft_size = sampled_ms * samples_per_ms;
|
||||
d_mag = 0;
|
||||
d_input_power = 0.0;
|
||||
d_num_doppler_bins = 0;
|
||||
d_bit_transition_flag = bit_transition_flag; // Note : bit transition flag is ignored and assumed 0 in the FPGA implementation
|
||||
d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag; // Note : user CFAR algorithm flag is ignored and assumed 0 in the FPGA implementation
|
||||
d_bit_transition_flag = bit_transition_flag; // Note : bit transition flag is ignored and assumed 0 in the FPGA implementation
|
||||
d_use_CFAR_algorithm_flag = use_CFAR_algorithm_flag; // Note : user CFAR algorithm flag is ignored and assumed 0 in the FPGA implementation
|
||||
d_threshold = 0.0;
|
||||
d_doppler_step = 250;
|
||||
d_code_phase = 0;
|
||||
d_test_statistics = 0.0;
|
||||
d_channel = 0;
|
||||
d_doppler_freq = 0.0;
|
||||
|
||||
d_nsamples_total = vector_length;
|
||||
|
||||
//if( d_bit_transition_flag )
|
||||
// {
|
||||
// d_fft_size *= 2;
|
||||
// d_max_dwells = 1;
|
||||
// }
|
||||
|
||||
d_fft_codes = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
d_magnitude = static_cast<float*>(volk_gnsssdr_malloc(d_nsamples_total * sizeof(float), volk_gnsssdr_get_alignment()));
|
||||
//temporary storage for the input conversion from 16sc to float 32fc
|
||||
d_in_32fc = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
|
||||
d_fft_codes_padded = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_nsamples_total * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
|
||||
|
||||
// Direct FFT
|
||||
d_fft_if = new gr::fft::fft_complex(d_nsamples_total, true);
|
||||
|
||||
// Inverse FFT
|
||||
d_ifft = new gr::fft::fft_complex(d_nsamples_total, false);
|
||||
|
||||
// FPGA queue selection
|
||||
d_select_queue_Fpga = select_queue_Fpga;
|
||||
|
||||
// For dumping samples into a file
|
||||
d_dump = dump;
|
||||
d_dump_filename = dump_filename;
|
||||
|
||||
d_gnss_synchro = 0;
|
||||
d_grid_doppler_wipeoffs = 0;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// instantiate HW accelerator class
|
||||
acquisition_fpga_8sc =
|
||||
std::make_shared < gps_fpga_acquisition_8sc
|
||||
> (device_name, vector_length, d_fft_size, nsamples_total, fs_in, freq, sampled_ms, select_queue_Fpga);
|
||||
|
||||
}
|
||||
|
||||
|
||||
gps_pcps_acquisition_fpga_sc::~gps_pcps_acquisition_fpga_sc()
|
||||
{
|
||||
if (d_num_doppler_bins > 0)
|
||||
{
|
||||
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
|
||||
{
|
||||
volk_gnsssdr_free(d_grid_doppler_wipeoffs[i]);
|
||||
}
|
||||
delete[] d_grid_doppler_wipeoffs;
|
||||
}
|
||||
|
||||
volk_gnsssdr_free(d_fft_codes);
|
||||
volk_gnsssdr_free(d_magnitude);
|
||||
volk_gnsssdr_free(d_in_32fc);
|
||||
|
||||
delete d_ifft;
|
||||
delete d_fft_if;
|
||||
|
||||
if (d_dump)
|
||||
{
|
||||
d_dump_file.close();
|
||||
}
|
||||
|
||||
|
||||
|
||||
acquisition_fpga_8sc.free();
|
||||
acquisition_fpga_8sc->free();
|
||||
}
|
||||
|
||||
|
||||
void gps_pcps_acquisition_fpga_sc::set_local_code(std::complex<float> * code)
|
||||
{
|
||||
// COD
|
||||
// Here we want to create a buffer that looks like this:
|
||||
// [ 0 0 0 ... 0 c_0 c_1 ... c_L]
|
||||
// where c_i is the local code and there are L zeros and L chips
|
||||
|
||||
|
||||
|
||||
|
||||
int offset = 0;
|
||||
// if( d_bit_transition_flag )
|
||||
// {
|
||||
// std::fill_n( d_fft_if->get_inbuf(), d_nsamples_total, gr_complex( 0.0, 0.0 ) );
|
||||
// offset = d_nsamples_total;
|
||||
// }
|
||||
|
||||
|
||||
|
||||
memcpy(d_fft_if->get_inbuf() + offset, code, sizeof(gr_complex) * d_nsamples_total);
|
||||
d_fft_if->execute(); // We need the FFT of local code
|
||||
volk_32fc_conjugate_32fc(d_fft_codes_padded, d_fft_if->get_outbuf(), d_nsamples_total);
|
||||
|
||||
acquisition_fpga_8sc.set_local_code(d_fft_codes_padded);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void gps_pcps_acquisition_fpga_sc::update_local_carrier(gr_complex* carrier_vector, int correlator_length_samples, float freq)
|
||||
void gps_pcps_acquisition_fpga_sc::set_local_code()
|
||||
{
|
||||
|
||||
float phase_step_rad = GPS_TWO_PI * freq / static_cast<float>(d_fs_in);
|
||||
|
||||
float _phase[1];
|
||||
_phase[0] = 0;
|
||||
volk_gnsssdr_s32f_sincos_32fc(carrier_vector, - phase_step_rad, _phase, correlator_length_samples);
|
||||
acquisition_fpga_8sc->set_local_code(d_gnss_synchro->PRN);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void gps_pcps_acquisition_fpga_sc::init()
|
||||
{
|
||||
d_gnss_synchro->Flag_valid_acquisition = false;
|
||||
d_gnss_synchro->Flag_valid_symbol_output = false;
|
||||
d_gnss_synchro->Flag_valid_pseudorange = false;
|
||||
d_gnss_synchro->Flag_valid_word = false;
|
||||
d_gnss_synchro->Flag_preamble = false;
|
||||
|
||||
d_gnss_synchro->Acq_delay_samples = 0.0;
|
||||
d_gnss_synchro->Acq_doppler_hz = 0.0;
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
|
||||
d_num_doppler_bins = ceil( static_cast<double>(static_cast<int>(d_doppler_max) - static_cast<int>(-d_doppler_max)) / static_cast<double>(d_doppler_step));
|
||||
|
||||
// Create the carrier Doppler wipeoff signals
|
||||
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
d_grid_doppler_wipeoffs[doppler_index] = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_fft_size * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
int doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
update_local_carrier(d_grid_doppler_wipeoffs[doppler_index], d_fft_size, d_freq + doppler);
|
||||
}
|
||||
acquisition_fpga_8sc.init(d_fft_size, d_nsamples_total, d_freq, d_doppler_max, d_doppler_step, d_num_doppler_bins, d_fs_in, d_select_queue_Fpga);
|
||||
|
||||
|
||||
d_num_doppler_bins = ceil(
|
||||
static_cast<double>(static_cast<int>(d_doppler_max)
|
||||
- static_cast<int>(-d_doppler_max))
|
||||
/ static_cast<double>(d_doppler_step));
|
||||
|
||||
acquisition_fpga_8sc->open_device();
|
||||
|
||||
acquisition_fpga_8sc->init();
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
void gps_pcps_acquisition_fpga_sc::set_state(int state)
|
||||
{
|
||||
d_state = state;
|
||||
@ -253,179 +157,171 @@ void gps_pcps_acquisition_fpga_sc::set_state(int state)
|
||||
d_gnss_synchro->Acq_samplestamp_samples = 0;
|
||||
d_well_count = 0;
|
||||
d_mag = 0.0;
|
||||
d_input_power = 0.0;
|
||||
d_test_statistics = 0.0;
|
||||
}
|
||||
else if (d_state == 0)
|
||||
{}
|
||||
{
|
||||
}
|
||||
else
|
||||
{
|
||||
LOG(ERROR) << "State can only be set to 0 or 1";
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
void gps_pcps_acquisition_fpga_sc::set_active(bool active)
|
||||
{
|
||||
|
||||
float temp_peak_to_noise_level = 0.0;
|
||||
float peak_to_noise_level = 0.0;
|
||||
acquisition_fpga_8sc.block_samples(); // block the samples to run the acquisition this is only necessary for the tests
|
||||
|
||||
float temp_peak_to_noise_level = 0.0;
|
||||
float peak_to_noise_level = 0.0;
|
||||
float input_power;
|
||||
float test_statistics = 0.0;
|
||||
acquisition_fpga_8sc->block_samples(); // block the samples to run the acquisition this is only necessary for the tests
|
||||
|
||||
d_active = active;
|
||||
|
||||
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
|
||||
|
||||
// while (d_well_count < d_max_dwells)
|
||||
// {
|
||||
int acquisition_message = -1; //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
|
||||
d_state = 1;
|
||||
|
||||
d_state = 1;
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
uint32_t indext = 0;
|
||||
float magt = 0.0;
|
||||
//int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size );
|
||||
int effective_fft_size = d_fft_size;
|
||||
//float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
|
||||
|
||||
// initialize acquisition algorithm
|
||||
int doppler;
|
||||
uint32_t indext = 0;
|
||||
float magt = 0.0;
|
||||
//int effective_fft_size = ( d_bit_transition_flag ? d_fft_size/2 : d_fft_size );
|
||||
int effective_fft_size = d_fft_size;
|
||||
//float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
|
||||
d_mag = 0.0;
|
||||
|
||||
d_mag = 0.0;
|
||||
unsigned int initial_sample;
|
||||
|
||||
unsigned int initial_sample;
|
||||
d_well_count++;
|
||||
|
||||
d_well_count++;
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System
|
||||
<< " " << d_gnss_synchro->PRN << " ,sample stamp: "
|
||||
<< d_sample_counter << ", threshold: " << ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step;
|
||||
|
||||
DLOG(INFO) << "Channel: " << d_channel
|
||||
<< " , doing acquisition of satellite: " << d_gnss_synchro->System << " "<< d_gnss_synchro->PRN
|
||||
<< " ,sample stamp: " << d_sample_counter << ", threshold: "
|
||||
<< ", threshold: "
|
||||
<< d_threshold << ", doppler_max: " << d_doppler_max
|
||||
<< ", doppler_step: " << d_doppler_step;
|
||||
// Doppler frequency search loop
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins;
|
||||
doppler_index++)
|
||||
{
|
||||
|
||||
// Doppler frequency search loop
|
||||
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
|
||||
{
|
||||
doppler = -static_cast<int>(d_doppler_max)
|
||||
+ d_doppler_step * doppler_index;
|
||||
|
||||
acquisition_fpga_8sc->set_phase_step(doppler_index);
|
||||
acquisition_fpga_8sc->run_acquisition(); // runs acquisition and waits until it is finished
|
||||
|
||||
doppler = -static_cast<int>(d_doppler_max) + d_doppler_step * doppler_index;
|
||||
acquisition_fpga_8sc->read_acquisition_results(&indext, &magt,
|
||||
&initial_sample, &input_power);
|
||||
|
||||
acquisition_fpga_8sc.set_phase_step(doppler_index);
|
||||
acquisition_fpga_8sc.run_acquisition(); // runs acquisition and waits until it is finished
|
||||
d_sample_counter = initial_sample;
|
||||
|
||||
acquisition_fpga_8sc.read_acquisition_results(&indext, &magt, &initial_sample, &d_input_power);
|
||||
temp_peak_to_noise_level = (float) (magt / input_power);
|
||||
if (peak_to_noise_level < temp_peak_to_noise_level)
|
||||
{
|
||||
peak_to_noise_level = temp_peak_to_noise_level;
|
||||
d_mag = magt;
|
||||
|
||||
d_sample_counter = initial_sample;
|
||||
input_power = (input_power - d_mag)
|
||||
/ (effective_fft_size - 1);
|
||||
|
||||
temp_peak_to_noise_level = (float) (magt / d_input_power);
|
||||
if (peak_to_noise_level < temp_peak_to_noise_level)
|
||||
{
|
||||
peak_to_noise_level = temp_peak_to_noise_level;
|
||||
d_mag = magt;
|
||||
d_gnss_synchro->Acq_delay_samples =
|
||||
static_cast<double>(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz =
|
||||
static_cast<double>(doppler);
|
||||
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
|
||||
test_statistics = d_mag / input_power;
|
||||
}
|
||||
|
||||
d_input_power = (d_input_power - d_mag) / (effective_fft_size - 1);
|
||||
// Record results to file if required
|
||||
if (d_dump)
|
||||
{
|
||||
std::stringstream filename;
|
||||
//std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
|
||||
filename.str("");
|
||||
|
||||
//if (d_test_statistics < (d_mag / d_input_power) || !d_bit_transition_flag)
|
||||
// {
|
||||
d_gnss_synchro->Acq_delay_samples = static_cast<double>(indext % d_samples_per_code);
|
||||
d_gnss_synchro->Acq_doppler_hz = static_cast<double>(doppler);
|
||||
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
|
||||
d_test_statistics = d_mag / d_input_power;
|
||||
// }
|
||||
}
|
||||
boost::filesystem::path p = d_dump_filename;
|
||||
filename << p.parent_path().string()
|
||||
<< boost::filesystem::path::preferred_separator
|
||||
<< p.stem().string() << "_"
|
||||
<< d_gnss_synchro->System << "_"
|
||||
<< d_gnss_synchro->Signal << "_sat_"
|
||||
<< d_gnss_synchro->PRN << "_doppler_" << doppler
|
||||
<< p.extension().string();
|
||||
|
||||
// Record results to file if required
|
||||
if (d_dump)
|
||||
{
|
||||
std::stringstream filename;
|
||||
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
|
||||
filename.str("");
|
||||
DLOG(INFO) << "Writing ACQ out to " << filename.str();
|
||||
|
||||
boost::filesystem::path p = d_dump_filename;
|
||||
filename << p.parent_path().string()
|
||||
<< boost::filesystem::path::preferred_separator
|
||||
<< p.stem().string()
|
||||
<< "_" << d_gnss_synchro->System
|
||||
<<"_" << d_gnss_synchro->Signal << "_sat_"
|
||||
<< d_gnss_synchro->PRN << "_doppler_"
|
||||
<< doppler
|
||||
<< p.extension().string();
|
||||
d_dump_file.open(filename.str().c_str(),
|
||||
std::ios::out | std::ios::binary);
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
|
||||
DLOG(INFO) << "Writing ACQ out to " << filename.str();
|
||||
if (test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
|
||||
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
|
||||
d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin?
|
||||
d_dump_file.close();
|
||||
}
|
||||
}
|
||||
// 6.1- Declare positive acquisition using a message port
|
||||
DLOG(INFO) << "positive acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " "
|
||||
<< d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << input_power;
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
if (d_test_statistics > d_threshold)
|
||||
{
|
||||
d_state = 2; // Positive acquisition
|
||||
acquisition_message = 1;
|
||||
this->message_port_pub(pmt::mp("events"),
|
||||
pmt::from_long(acquisition_message));
|
||||
|
||||
// 6.1- Declare positive acquisition using a message port
|
||||
DLOG(INFO) << "positive acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
}
|
||||
else
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
// 6.2- Declare negative acquisition using a message port
|
||||
DLOG(INFO) << "negative acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " "
|
||||
<< d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << input_power;
|
||||
|
||||
acquisition_message = 1;
|
||||
this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message));
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
// break;
|
||||
acquisition_message = 2;
|
||||
this->message_port_pub(pmt::mp("events"),
|
||||
pmt::from_long(acquisition_message));
|
||||
|
||||
}
|
||||
else //if (d_well_count == d_max_dwells)
|
||||
{
|
||||
d_state = 3; // Negative acquisition
|
||||
}
|
||||
|
||||
// 6.2- Declare negative acquisition using a message port
|
||||
DLOG(INFO) << "negative acquisition";
|
||||
DLOG(INFO) << "satellite " << d_gnss_synchro->System << " " << d_gnss_synchro->PRN;
|
||||
DLOG(INFO) << "sample_stamp " << d_sample_counter;
|
||||
DLOG(INFO) << "test statistics value " << d_test_statistics;
|
||||
DLOG(INFO) << "test statistics threshold " << d_threshold;
|
||||
DLOG(INFO) << "code phase " << d_gnss_synchro->Acq_delay_samples;
|
||||
DLOG(INFO) << "doppler " << d_gnss_synchro->Acq_doppler_hz;
|
||||
DLOG(INFO) << "magnitude " << d_mag;
|
||||
DLOG(INFO) << "input signal power " << d_input_power;
|
||||
acquisition_fpga_8sc->unblock_samples();
|
||||
|
||||
d_active = false;
|
||||
d_state = 0;
|
||||
|
||||
acquisition_message = 2;
|
||||
this->message_port_pub(pmt::mp("events"), pmt::from_long(acquisition_message));
|
||||
|
||||
// break;
|
||||
}
|
||||
|
||||
// }
|
||||
|
||||
acquisition_fpga_8sc.unblock_samples();
|
||||
acquisition_fpga_8sc->close_device();
|
||||
|
||||
DLOG(INFO) << "Done. Consumed 1 item.";
|
||||
|
||||
}
|
||||
|
||||
|
||||
int gps_pcps_acquisition_fpga_sc::general_work(int noutput_items,
|
||||
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items __attribute__((unused)))
|
||||
{
|
||||
// general work not used with the acquisition
|
||||
// general work not used with the acquisition
|
||||
return noutput_items;
|
||||
}
|
||||
|
@ -62,13 +62,13 @@ class gps_pcps_acquisition_fpga_sc;
|
||||
typedef boost::shared_ptr<gps_pcps_acquisition_fpga_sc> gps_pcps_acquisition_fpga_sc_sptr;
|
||||
|
||||
gps_pcps_acquisition_fpga_sc_sptr
|
||||
gps_pcps_make_acquisition_fpga_sc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code, int vector_length_,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
unsigned int select_queue_Fpga,
|
||||
bool dump,
|
||||
std::string dump_filename);
|
||||
gps_pcps_make_acquisition_fpga_sc(unsigned int sampled_ms,
|
||||
unsigned int max_dwells, unsigned int doppler_max, long freq,
|
||||
long fs_in, int samples_per_ms, int samples_per_code,
|
||||
int vector_length_, unsigned int nsamples_total_,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
unsigned int select_queue_Fpga, std::string device_name, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
/*!
|
||||
* \brief This class implements a Parallel Code Phase Search Acquisition.
|
||||
@ -76,163 +76,139 @@ gps_pcps_make_acquisition_fpga_sc(unsigned int sampled_ms, unsigned int max_dwel
|
||||
* Check \ref Navitec2012 "An Open Source Galileo E1 Software Receiver",
|
||||
* Algorithm 1, for a pseudocode description of this implementation.
|
||||
*/
|
||||
class gps_pcps_acquisition_fpga_sc: public gr::block
|
||||
class gps_pcps_acquisition_fpga_sc : public gr::block
|
||||
{
|
||||
private:
|
||||
friend gps_pcps_acquisition_fpga_sc_sptr
|
||||
gps_pcps_make_acquisition_fpga_sc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code, int vector_length,
|
||||
gps_pcps_make_acquisition_fpga_sc(unsigned int sampled_ms,
|
||||
unsigned int max_dwells, unsigned int doppler_max, long freq,
|
||||
long fs_in, int samples_per_ms, int samples_per_code,
|
||||
int vector_length, unsigned int nsamples_total,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
unsigned int select_queue_Fpga,
|
||||
bool dump,
|
||||
unsigned int select_queue_Fpga, std::string device_name, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
gps_pcps_acquisition_fpga_sc(unsigned int sampled_ms, unsigned int max_dwells,
|
||||
unsigned int doppler_max, long freq, long fs_in,
|
||||
int samples_per_ms, int samples_per_code, int vector_length,
|
||||
gps_pcps_acquisition_fpga_sc(unsigned int sampled_ms,
|
||||
unsigned int max_dwells, unsigned int doppler_max, long freq,
|
||||
long fs_in, int samples_per_ms, int samples_per_code,
|
||||
int vector_length, unsigned int nsamples_total,
|
||||
bool bit_transition_flag, bool use_CFAR_algorithm_flag,
|
||||
unsigned int select_queue_Fpga,
|
||||
bool dump,
|
||||
unsigned int select_queue_Fpga, std::string device_name, bool dump,
|
||||
std::string dump_filename);
|
||||
|
||||
void update_local_carrier(gr_complex* carrier_vector,
|
||||
int correlator_length_samples,
|
||||
float freq);
|
||||
|
||||
long d_fs_in;
|
||||
long d_freq;
|
||||
int d_samples_per_ms;
|
||||
int d_samples_per_code;
|
||||
float d_threshold;
|
||||
std::string d_satellite_str;
|
||||
unsigned int d_doppler_max;
|
||||
unsigned int d_doppler_step;
|
||||
unsigned int d_sampled_ms;
|
||||
unsigned int d_max_dwells;
|
||||
unsigned int d_well_count;
|
||||
unsigned int d_fft_size;
|
||||
unsigned int d_nsamples_total; // the closest power of two approximation to d_fft_size
|
||||
unsigned long int d_sample_counter;
|
||||
gr_complex** d_grid_doppler_wipeoffs;
|
||||
unsigned int d_num_doppler_bins;
|
||||
gr_complex* d_fft_codes;
|
||||
gr_complex* d_fft_codes_padded;
|
||||
gr_complex* d_in_32fc;
|
||||
gr::fft::fft_complex* d_fft_if;
|
||||
gr::fft::fft_complex* d_ifft;
|
||||
|
||||
Gnss_Synchro *d_gnss_synchro;
|
||||
unsigned int d_code_phase;
|
||||
float d_doppler_freq;
|
||||
float d_mag;
|
||||
float* d_magnitude;
|
||||
float d_input_power;
|
||||
float d_test_statistics;
|
||||
bool d_bit_transition_flag;
|
||||
bool d_use_CFAR_algorithm_flag;
|
||||
std::ofstream d_dump_file;
|
||||
bool d_active;
|
||||
int d_state;
|
||||
bool d_dump;
|
||||
float d_mag;bool d_bit_transition_flag;bool d_use_CFAR_algorithm_flag;
|
||||
std::ofstream d_dump_file;bool d_active;
|
||||
int d_state;bool d_dump;
|
||||
unsigned int d_channel;
|
||||
unsigned int d_select_queue_Fpga;
|
||||
std::string d_dump_filename;
|
||||
|
||||
gps_fpga_acquisition_8sc acquisition_fpga_8sc;
|
||||
std::shared_ptr<gps_fpga_acquisition_8sc> acquisition_fpga_8sc;
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \brief Default destructor.
|
||||
*/
|
||||
~gps_pcps_acquisition_fpga_sc();
|
||||
~gps_pcps_acquisition_fpga_sc();
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to exchange synchronization data between acquisition and tracking blocks.
|
||||
* \param p_gnss_synchro Satellite information shared by the processing blocks.
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
d_gnss_synchro = p_gnss_synchro;
|
||||
}
|
||||
/*!
|
||||
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
|
||||
* to exchange synchronization data between acquisition and tracking blocks.
|
||||
* \param p_gnss_synchro Satellite information shared by the processing blocks.
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
d_gnss_synchro = p_gnss_synchro;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search.
|
||||
*/
|
||||
unsigned int mag()
|
||||
{
|
||||
return d_mag;
|
||||
}
|
||||
/*!
|
||||
* \brief Returns the maximum peak of grid search.
|
||||
*/
|
||||
unsigned int mag()
|
||||
{
|
||||
return d_mag;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
/*!
|
||||
* \brief Initializes acquisition algorithm.
|
||||
*/
|
||||
void init();
|
||||
|
||||
/*!
|
||||
* \brief Sets local code for PCPS acquisition algorithm.
|
||||
* \param code - Pointer to the PRN code.
|
||||
*/
|
||||
void set_local_code(std::complex<float> * code);
|
||||
/*!
|
||||
* \brief Sets local code for PCPS acquisition algorithm.
|
||||
* \param code - Pointer to the PRN code.
|
||||
*/
|
||||
void set_local_code();
|
||||
|
||||
/*!
|
||||
* \brief Starts acquisition algorithm, turning from standby mode to
|
||||
* active mode
|
||||
* \param active - bool that activates/deactivates the block.
|
||||
*/
|
||||
void set_active(bool active);
|
||||
/*!
|
||||
* \brief Starts acquisition algorithm, turning from standby mode to
|
||||
* active mode
|
||||
* \param active - bool that activates/deactivates the block.
|
||||
*/
|
||||
void set_active(bool active);
|
||||
|
||||
/*!
|
||||
* \brief If set to 1, ensures that acquisition starts at the
|
||||
* first available sample.
|
||||
* \param state - int=1 forces start of acquisition
|
||||
*/
|
||||
void set_state(int state);
|
||||
/*!
|
||||
* \brief If set to 1, ensures that acquisition starts at the
|
||||
* first available sample.
|
||||
* \param state - int=1 forces start of acquisition
|
||||
*/
|
||||
void set_state(int state);
|
||||
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
* \param channel - receiver channel.
|
||||
*/
|
||||
void set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
}
|
||||
/*!
|
||||
* \brief Set acquisition channel unique ID
|
||||
* \param channel - receiver channel.
|
||||
*/
|
||||
void set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set statistics threshold of PCPS algorithm.
|
||||
* \param threshold - Threshold for signal detection (check \ref Navitec2012,
|
||||
* Algorithm 1, for a definition of this threshold).
|
||||
*/
|
||||
void set_threshold(float threshold)
|
||||
{
|
||||
d_threshold = threshold;
|
||||
}
|
||||
/*!
|
||||
* \brief Set statistics threshold of PCPS algorithm.
|
||||
* \param threshold - Threshold for signal detection (check \ref Navitec2012,
|
||||
* Algorithm 1, for a definition of this threshold).
|
||||
*/
|
||||
void set_threshold(float threshold)
|
||||
{
|
||||
d_threshold = threshold;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set maximum Doppler grid search
|
||||
* \param doppler_max - Maximum Doppler shift considered in the grid search [Hz].
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
d_doppler_max = doppler_max;
|
||||
}
|
||||
/*!
|
||||
* \brief Set maximum Doppler grid search
|
||||
* \param doppler_max - Maximum Doppler shift considered in the grid search [Hz].
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
d_doppler_max = doppler_max;
|
||||
acquisition_fpga_8sc->set_doppler_max(doppler_max);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
* \param doppler_step - Frequency bin of the search grid [Hz].
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
d_doppler_step = doppler_step;
|
||||
}
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
* \param doppler_step - Frequency bin of the search grid [Hz].
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
d_doppler_step = doppler_step;
|
||||
acquisition_fpga_8sc->set_doppler_step(doppler_step);
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* \brief Parallel Code Phase Search Acquisition signal processing.
|
||||
*/
|
||||
int general_work(int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items);
|
||||
/*!
|
||||
* \brief Parallel Code Phase Search Acquisition signal processing.
|
||||
*/
|
||||
int general_work(int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items);
|
||||
|
||||
};
|
||||
|
||||
|
@ -55,6 +55,7 @@ include_directories(
|
||||
${CMAKE_SOURCE_DIR}/src/core/system_parameters
|
||||
${CMAKE_SOURCE_DIR}/src/core/interfaces
|
||||
${CMAKE_SOURCE_DIR}/src/core/receiver
|
||||
${CMAKE_SOURCE_DIR}/src/algorithms/libs
|
||||
${VOLK_INCLUDE_DIRS}
|
||||
${GLOG_INCLUDE_DIRS}
|
||||
${GFlags_INCLUDE_DIRS}
|
||||
|
@ -34,6 +34,7 @@
|
||||
*/
|
||||
|
||||
#include "gps_fpga_acquisition_8sc.h"
|
||||
#include "gps_sdr_signal_processing.h"
|
||||
#include <cmath>
|
||||
|
||||
// allocate memory dynamically
|
||||
@ -59,144 +60,135 @@
|
||||
// logging
|
||||
#include <glog/logging.h>
|
||||
|
||||
#include <volk/volk.h>
|
||||
|
||||
#include "GPS_L1_CA.h"
|
||||
|
||||
#define PAGE_SIZE 0x10000
|
||||
#define CODE_RESAMPLER_NUM_BITS_PRECISION 20
|
||||
#define CODE_PHASE_STEP_CHIPS_NUM_NBITS CODE_RESAMPLER_NUM_BITS_PRECISION
|
||||
#define pwrtwo(x) (1 << (x))
|
||||
#define MAX_CODE_RESAMPLER_COUNTER pwrtwo(CODE_PHASE_STEP_CHIPS_NUM_NBITS) // 2^CODE_PHASE_STEP_CHIPS_NUM_NBITS
|
||||
#define PHASE_CARR_NBITS 32
|
||||
#define PHASE_CARR_NBITS_INT 1
|
||||
#define PHASE_CARR_NBITS_FRAC PHASE_CARR_NBITS - PHASE_CARR_NBITS_INT
|
||||
|
||||
#define MAX_PHASE_STEP_RAD 0.999999999534339 // 1 - pow(2,-31);
|
||||
#define NUM_PRNs 32
|
||||
#define TEST_REGISTER_ACQ_WRITEVAL 0x55AA
|
||||
|
||||
|
||||
bool gps_fpga_acquisition_8sc::init(unsigned int fft_size, unsigned int nsamples_total, long freq, unsigned int doppler_max, unsigned int doppler_step, int num_doppler_bins, long fs_in, unsigned select_queue)
|
||||
bool gps_fpga_acquisition_8sc::init()
|
||||
{
|
||||
float phase_step_rad_fpga;
|
||||
// configure the acquisition with the main initialization values
|
||||
gps_fpga_acquisition_8sc::configure_acquisition();
|
||||
return true;
|
||||
}
|
||||
|
||||
d_phase_step_rad_vector = new float[num_doppler_bins];
|
||||
bool gps_fpga_acquisition_8sc::set_local_code(unsigned int PRN)
|
||||
{
|
||||
|
||||
for (int doppler_index = 0; doppler_index < num_doppler_bins; doppler_index++)
|
||||
{
|
||||
int doppler = -static_cast<int>(doppler_max) + doppler_step * doppler_index;
|
||||
float phase_step_rad = GPS_TWO_PI * (freq + doppler) / static_cast<float>(fs_in);
|
||||
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
|
||||
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
|
||||
// The FPGA also expects the phase to be negative since it produces cos(x) -j*sin(x)
|
||||
// while the gnss-sdr software (volk_gnsssdr_s32f_sincos_32fc) generates cos(x) + j*sin(x)
|
||||
phase_step_rad_fpga = phase_step_rad / (GPS_TWO_PI / 2);
|
||||
// avoid saturation of the fixed point representation in the fpga
|
||||
// (only the positive value can saturate due to the 2's complement representation)
|
||||
if (phase_step_rad_fpga == 1.0)
|
||||
{
|
||||
phase_step_rad_fpga = MAX_PHASE_STEP_RAD;
|
||||
}
|
||||
d_phase_step_rad_vector[doppler_index] = phase_step_rad_fpga;
|
||||
}
|
||||
// select the code with the chosen PRN
|
||||
gps_fpga_acquisition_8sc::fpga_configure_acquisition_local_code(
|
||||
&d_all_fft_codes[d_vector_length * PRN]);
|
||||
return true;
|
||||
}
|
||||
|
||||
// sanity check : check test register
|
||||
unsigned writeval = 0x55AA;
|
||||
unsigned readval;
|
||||
readval = gps_fpga_acquisition_8sc::fpga_acquisition_test_register(writeval);
|
||||
if (writeval != readval)
|
||||
{
|
||||
printf("test register fail\n");
|
||||
LOG(WARNING) << "Acquisition test register sanity check failed";
|
||||
}
|
||||
else
|
||||
{
|
||||
printf("test register success\n");
|
||||
LOG(INFO) << "Acquisition test register sanity check success !";
|
||||
}
|
||||
gps_fpga_acquisition_8sc::gps_fpga_acquisition_8sc(std::string device_name,
|
||||
unsigned int vector_length, unsigned int nsamples,
|
||||
unsigned int nsamples_total, long fs_in, long freq,
|
||||
unsigned int sampled_ms, unsigned select_queue)
|
||||
{
|
||||
|
||||
d_nsamples = fft_size;
|
||||
d_nsamples_total = nsamples_total;
|
||||
// initial values
|
||||
|
||||
d_device_name = device_name;
|
||||
d_freq = freq;
|
||||
d_fs_in = fs_in;
|
||||
d_vector_length = vector_length;
|
||||
d_nsamples = nsamples; // number of samples not including padding
|
||||
d_select_queue = select_queue;
|
||||
|
||||
gps_fpga_acquisition_8sc::configure_acquisition();
|
||||
d_doppler_max = 0;
|
||||
d_doppler_step = 0;
|
||||
d_fd = 0; // driver descriptor
|
||||
d_map_base = nullptr; // driver memory map
|
||||
|
||||
return true;
|
||||
}
|
||||
// compute all the possible code ffts
|
||||
|
||||
// Direct FFT
|
||||
d_fft_if = new gr::fft::fft_complex(vector_length, true);
|
||||
|
||||
// allocate memory to compute all the PRNs
|
||||
// and compute all the possible codes
|
||||
std::complex<float>* code = new std::complex<float>[nsamples_total]; // buffer for the local code
|
||||
std::complex<float> * code_total = new gr_complex[vector_length]; // buffer for the local code repeate every number of ms
|
||||
|
||||
bool gps_fpga_acquisition_8sc::set_local_code(gr_complex* fft_codes)
|
||||
{
|
||||
unsigned int i;
|
||||
float max = 0;
|
||||
d_fft_codes = new lv_16sc_t[d_nsamples_total];
|
||||
gr_complex* d_fft_codes_padded =
|
||||
static_cast<gr_complex*>(volk_gnsssdr_malloc(
|
||||
vector_length * sizeof(gr_complex),
|
||||
volk_gnsssdr_get_alignment()));
|
||||
|
||||
for (i=0;i<d_nsamples_total;i++)
|
||||
d_all_fft_codes = new lv_16sc_t[vector_length * NUM_PRNs]; // memory containing all the possible fft codes for PRN 0 to 32
|
||||
|
||||
float max; // temporary maxima search
|
||||
|
||||
for (unsigned int PRN = 0; PRN < NUM_PRNs; PRN++)
|
||||
{
|
||||
if(std::abs(fft_codes[i].real()) > max)
|
||||
gps_l1_ca_code_gen_complex_sampled(code, PRN, fs_in, 0); // generate PRN code
|
||||
|
||||
for (unsigned int i = 0; i < sampled_ms; i++)
|
||||
{
|
||||
max = std::abs(fft_codes[i].real());
|
||||
memcpy(&(code_total[i * nsamples_total]), code,
|
||||
sizeof(gr_complex) * nsamples_total); // repeat for each ms
|
||||
}
|
||||
if(std::abs(fft_codes[i].imag()) > max)
|
||||
|
||||
int offset = 0;
|
||||
|
||||
memcpy(d_fft_if->get_inbuf() + offset, code_total,
|
||||
sizeof(gr_complex) * vector_length); // copy to FFT buffer
|
||||
|
||||
d_fft_if->execute(); // Run the FFT of local code
|
||||
|
||||
volk_32fc_conjugate_32fc(d_fft_codes_padded, d_fft_if->get_outbuf(),
|
||||
vector_length); // conjugate values
|
||||
|
||||
max = 0; // initialize maximum value
|
||||
|
||||
for (unsigned int i = 0; i < vector_length; i++) // search for maxima
|
||||
{
|
||||
max = std::abs(fft_codes[i].imag());
|
||||
if (std::abs(d_fft_codes_padded[i].real()) > max)
|
||||
{
|
||||
max = std::abs(d_fft_codes_padded[i].real());
|
||||
}
|
||||
if (std::abs(d_fft_codes_padded[i].imag()) > max)
|
||||
{
|
||||
max = std::abs(d_fft_codes_padded[i].imag());
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i < vector_length; i++) // map the FFT to the dynamic range of the fixed point values an copy to buffer containing all FFTs
|
||||
{
|
||||
d_all_fft_codes[i + vector_length * PRN] = lv_16sc_t(
|
||||
(int) (d_fft_codes_padded[i].real()
|
||||
* (pow(2, 7) - 1) / max),
|
||||
(int) (d_fft_codes_padded[i].imag()
|
||||
* (pow(2, 7) - 1) / max));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
for (i=0;i<d_nsamples_total;i++)
|
||||
{
|
||||
d_fft_codes[i] = lv_16sc_t((int) (fft_codes[i].real()*(pow(2,7) - 1)/max), (int) (fft_codes[i].imag()*(pow(2,7) - 1)/max));
|
||||
}
|
||||
// temporary buffers that we can delete
|
||||
delete[] code;
|
||||
delete[] code_total;
|
||||
delete d_fft_if;
|
||||
delete[] d_fft_codes_padded;
|
||||
|
||||
gps_fpga_acquisition_8sc::fpga_configure_acquisition_local_code(d_fft_codes);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
gps_fpga_acquisition_8sc::gps_fpga_acquisition_8sc()
|
||||
{
|
||||
if ((d_fd = open(d_device_io_name, O_RDWR | O_SYNC )) == -1)
|
||||
{
|
||||
LOG(WARNING) << "Cannot open deviceio" << d_device_io_name;
|
||||
}
|
||||
d_map_base = (volatile unsigned *)mmap(NULL, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, d_fd,0);
|
||||
|
||||
if (d_map_base == (void *) -1)
|
||||
{
|
||||
LOG(WARNING) << "Cannot map the FPGA acquisition module into user memory";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
gps_fpga_acquisition_8sc::~gps_fpga_acquisition_8sc()
|
||||
{
|
||||
if (munmap((void*)d_map_base, PAGE_SIZE) == -1)
|
||||
{
|
||||
printf("Failed to unmap memory uio\n");
|
||||
}
|
||||
|
||||
close(d_fd);
|
||||
delete[] d_all_fft_codes;
|
||||
}
|
||||
|
||||
|
||||
bool gps_fpga_acquisition_8sc::free()
|
||||
{
|
||||
if (d_fft_codes != nullptr)
|
||||
{
|
||||
delete [] d_fft_codes;
|
||||
d_fft_codes = nullptr;
|
||||
}
|
||||
if (d_phase_step_rad_vector != nullptr)
|
||||
{
|
||||
delete [] d_phase_step_rad_vector;
|
||||
d_phase_step_rad_vector = nullptr;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
unsigned gps_fpga_acquisition_8sc::fpga_acquisition_test_register(unsigned writeval)
|
||||
unsigned gps_fpga_acquisition_8sc::fpga_acquisition_test_register(
|
||||
unsigned writeval)
|
||||
{
|
||||
unsigned readval;
|
||||
// write value to test register
|
||||
@ -207,36 +199,35 @@ unsigned gps_fpga_acquisition_8sc::fpga_acquisition_test_register(unsigned write
|
||||
return readval;
|
||||
}
|
||||
|
||||
|
||||
void gps_fpga_acquisition_8sc::fpga_configure_acquisition_local_code(lv_16sc_t fft_local_code[])
|
||||
void gps_fpga_acquisition_8sc::fpga_configure_acquisition_local_code(
|
||||
lv_16sc_t fft_local_code[])
|
||||
{
|
||||
short int local_code;
|
||||
unsigned int k, tmp, tmp2;
|
||||
|
||||
// clear memory address counter
|
||||
d_map_base[4] = 0x10000000;
|
||||
for (k = 0; k < d_nsamples_total; k++)
|
||||
for (k = 0; k < d_vector_length; k++)
|
||||
{
|
||||
tmp = fft_local_code[k].real();
|
||||
tmp2 = fft_local_code[k].imag();
|
||||
local_code = (tmp & 0xFF) | ((tmp2*256) & 0xFF00); // put together the real part and the imaginary part
|
||||
local_code = (tmp & 0xFF) | ((tmp2 * 256) & 0xFF00); // put together the real part and the imaginary part
|
||||
d_map_base[4] = 0x0C000000 | (local_code & 0xFFFF);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void gps_fpga_acquisition_8sc::run_acquisition(void)
|
||||
{
|
||||
// enable interrupts
|
||||
int reenable = 1;
|
||||
write(d_fd, (void *)&reenable, sizeof(int));
|
||||
write(d_fd, (void *) &reenable, sizeof(int));
|
||||
|
||||
d_map_base[5] = 0; // writing anything to reg 4 launches the acquisition process
|
||||
d_map_base[5] = 0; // writing anything to reg 4 launches the acquisition process
|
||||
|
||||
int irq_count;
|
||||
ssize_t nb;
|
||||
// wait for interrupt
|
||||
nb=read(d_fd, &irq_count, sizeof(irq_count));
|
||||
nb = read(d_fd, &irq_count, sizeof(irq_count));
|
||||
if (nb != sizeof(irq_count))
|
||||
{
|
||||
printf("Tracking_module Read failed to retrieve 4 bytes!\n");
|
||||
@ -244,31 +235,42 @@ void gps_fpga_acquisition_8sc::run_acquisition(void)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void gps_fpga_acquisition_8sc::configure_acquisition()
|
||||
{
|
||||
d_map_base[0] = d_select_queue;
|
||||
d_map_base[1] = d_nsamples_total;
|
||||
d_map_base[1] = d_vector_length;
|
||||
d_map_base[2] = d_nsamples;
|
||||
}
|
||||
|
||||
|
||||
void gps_fpga_acquisition_8sc::set_phase_step(unsigned int doppler_index)
|
||||
{
|
||||
float phase_step_rad_real;
|
||||
float phase_step_rad_int_temp;
|
||||
int32_t phase_step_rad_int;
|
||||
|
||||
phase_step_rad_real = d_phase_step_rad_vector[doppler_index];
|
||||
|
||||
phase_step_rad_int_temp = phase_step_rad_real*4; // * 2^2
|
||||
phase_step_rad_int = (int32_t) (phase_step_rad_int_temp*(536870912)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
|
||||
int doppler = -static_cast<int>(d_doppler_max)
|
||||
+ d_doppler_step * doppler_index;
|
||||
float phase_step_rad = GPS_TWO_PI * (d_freq + doppler)
|
||||
/ static_cast<float>(d_fs_in);
|
||||
// The doppler step can never be outside the range -pi to +pi, otherwise there would be aliasing
|
||||
// The FPGA expects phase_step_rad between -1 (-pi) to +1 (+pi)
|
||||
// The FPGA also expects the phase to be negative since it produces cos(x) -j*sin(x)
|
||||
// while the gnss-sdr software (volk_gnsssdr_s32f_sincos_32fc) generates cos(x) + j*sin(x)
|
||||
phase_step_rad_real = phase_step_rad / (GPS_TWO_PI / 2);
|
||||
// avoid saturation of the fixed point representation in the fpga
|
||||
// (only the positive value can saturate due to the 2's complement representation)
|
||||
if (phase_step_rad_real == 1.0)
|
||||
{
|
||||
phase_step_rad_real = MAX_PHASE_STEP_RAD;
|
||||
}
|
||||
phase_step_rad_int_temp = phase_step_rad_real * 4; // * 2^2
|
||||
phase_step_rad_int = (int32_t) (phase_step_rad_int_temp * (536870912)); // * 2^29 (in total it makes x2^31 in two steps to avoid the warnings
|
||||
|
||||
d_map_base[3] = phase_step_rad_int;
|
||||
}
|
||||
|
||||
|
||||
void gps_fpga_acquisition_8sc::read_acquisition_results(uint32_t* max_index, float* max_magnitude, unsigned *initial_sample, float *power_sum)
|
||||
void gps_fpga_acquisition_8sc::read_acquisition_results(uint32_t* max_index,
|
||||
float* max_magnitude, unsigned *initial_sample, float *power_sum)
|
||||
{
|
||||
unsigned readval = 0;
|
||||
readval = d_map_base[0];
|
||||
@ -280,18 +282,62 @@ void gps_fpga_acquisition_8sc::read_acquisition_results(uint32_t* max_index, flo
|
||||
*power_sum = (float) readval;
|
||||
readval = d_map_base[3];
|
||||
*max_index = readval;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void gps_fpga_acquisition_8sc::block_samples()
|
||||
{
|
||||
d_map_base[14] = 1; // block the samples
|
||||
}
|
||||
|
||||
|
||||
void gps_fpga_acquisition_8sc::unblock_samples()
|
||||
{
|
||||
d_map_base[14] = 0; // unblock the samples
|
||||
}
|
||||
|
||||
void gps_fpga_acquisition_8sc::open_device()
|
||||
{
|
||||
|
||||
if ((d_fd = open(d_device_name.c_str(), O_RDWR | O_SYNC)) == -1)
|
||||
{
|
||||
LOG(WARNING) << "Cannot open deviceio" << d_device_name;
|
||||
}
|
||||
d_map_base = (volatile unsigned *) mmap(NULL, PAGE_SIZE,
|
||||
PROT_READ | PROT_WRITE, MAP_SHARED, d_fd, 0);
|
||||
|
||||
if (d_map_base == (void *) -1)
|
||||
{
|
||||
LOG(WARNING)
|
||||
<< "Cannot map the FPGA acquisition module into user memory";
|
||||
}
|
||||
|
||||
// sanity check : check test register
|
||||
// we only nee to do this when the class is created
|
||||
// but the device is not opened yet when the class is create
|
||||
// because we need to open and close the device every time we run an acquisition
|
||||
// since the same device may be used by more than one class (gps acquisition, galileo
|
||||
// acquisition, etc ..)
|
||||
unsigned writeval = TEST_REGISTER_ACQ_WRITEVAL;
|
||||
unsigned readval;
|
||||
readval = gps_fpga_acquisition_8sc::fpga_acquisition_test_register(
|
||||
writeval);
|
||||
if (writeval != readval)
|
||||
{
|
||||
LOG(WARNING) << "Acquisition test register sanity check failed";
|
||||
}
|
||||
else
|
||||
{
|
||||
LOG(INFO) << "Acquisition test register sanity check success !";
|
||||
}
|
||||
|
||||
}
|
||||
void gps_fpga_acquisition_8sc::close_device()
|
||||
{
|
||||
if (munmap((void*) d_map_base, PAGE_SIZE) == -1)
|
||||
{
|
||||
printf("Failed to unmap memory uio\n");
|
||||
}
|
||||
close(d_fd);
|
||||
|
||||
}
|
||||
|
||||
|
@ -39,7 +39,7 @@
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
|
||||
#include <gnuradio/block.h>
|
||||
|
||||
#include <gnuradio/fft/fft.h>
|
||||
|
||||
/*!
|
||||
* \brief Class that implements carrier wipe-off and correlators.
|
||||
@ -47,35 +47,56 @@
|
||||
class gps_fpga_acquisition_8sc
|
||||
{
|
||||
public:
|
||||
gps_fpga_acquisition_8sc();
|
||||
~gps_fpga_acquisition_8sc();
|
||||
bool init(unsigned int fft_size, unsigned int nsamples_total, long d_freq, unsigned int doppler_max, unsigned int doppler_step, int num_doppler_bins, long fs_in, unsigned select_queue);
|
||||
bool set_local_code(gr_complex* fft_codes); //int code_length_chips, const lv_16sc_t* local_code_in, float *shifts_chips);
|
||||
gps_fpga_acquisition_8sc(std::string device_name,
|
||||
unsigned int vector_length, unsigned int nsamples,
|
||||
unsigned int nsamples_total, long fs_in, long freq,
|
||||
unsigned int sampled_ms, unsigned select_queue);
|
||||
~gps_fpga_acquisition_8sc();bool init();bool set_local_code(
|
||||
unsigned int PRN); //int code_length_chips, const lv_16sc_t* local_code_in, float *shifts_chips);
|
||||
bool free();
|
||||
void run_acquisition(void);
|
||||
void set_phase_step(unsigned int doppler_index);
|
||||
void read_acquisition_results(uint32_t* max_index, float* max_magnitude, unsigned *initial_sample, float *power_sum);
|
||||
void read_acquisition_results(uint32_t* max_index, float* max_magnitude,
|
||||
unsigned *initial_sample, float *power_sum);
|
||||
void block_samples();
|
||||
void unblock_samples();
|
||||
void open_device();
|
||||
void close_device();
|
||||
|
||||
/*!
|
||||
* \brief Set maximum Doppler grid search
|
||||
* \param doppler_max - Maximum Doppler shift considered in the grid search [Hz].
|
||||
*/
|
||||
void set_doppler_max(unsigned int doppler_max)
|
||||
{
|
||||
d_doppler_max = doppler_max;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Set Doppler steps for the grid search
|
||||
* \param doppler_step - Frequency bin of the search grid [Hz].
|
||||
*/
|
||||
void set_doppler_step(unsigned int doppler_step)
|
||||
{
|
||||
d_doppler_step = doppler_step;
|
||||
}
|
||||
|
||||
private:
|
||||
const lv_16sc_t *d_local_code_in;
|
||||
lv_16sc_t *d_corr_out;
|
||||
float *d_shifts_chips;
|
||||
int d_code_length_chips;
|
||||
int d_n_correlators;
|
||||
|
||||
long d_freq;
|
||||
long d_fs_in;
|
||||
gr::fft::fft_complex* d_fft_if; // function used to run the fft of the local codes
|
||||
|
||||
// data related to the hardware module and the driver
|
||||
char d_device_io_name[11] = "/dev/uio13"; // driver io name
|
||||
int d_fd; // driver descriptor
|
||||
volatile unsigned *d_map_base; // driver memory map
|
||||
|
||||
// configuration data received from the interface
|
||||
lv_16sc_t *d_fft_codes = nullptr;
|
||||
float *d_phase_step_rad_vector = nullptr;
|
||||
|
||||
unsigned int d_nsamples_total; // total number of samples in the fft including padding
|
||||
int d_fd; // driver descriptor
|
||||
volatile unsigned *d_map_base; // driver memory map
|
||||
lv_16sc_t *d_all_fft_codes; // memory that contains all the code ffts
|
||||
unsigned int d_vector_length; // number of samples incluing padding and number of ms
|
||||
unsigned int d_nsamples; // number of samples not including padding
|
||||
unsigned int d_select_queue; // queue selection
|
||||
std::string d_device_name; // HW device name
|
||||
unsigned int d_doppler_max; // max doppler
|
||||
unsigned int d_doppler_step; // doppler step
|
||||
|
||||
// FPGA private functions
|
||||
unsigned fpga_acquisition_test_register(unsigned writeval);
|
||||
@ -84,5 +105,4 @@ private:
|
||||
|
||||
};
|
||||
|
||||
|
||||
#endif /* GNSS_SDR_FPGA_MULTICORRELATOR_H_ */
|
||||
|
@ -32,20 +32,14 @@
|
||||
#include <ctime>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <random>
|
||||
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_cpu.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_common.h>
|
||||
#include <volk_gnsssdr/volk_gnsssdr_malloc.h>
|
||||
|
||||
float uniform()
|
||||
{
|
||||
// Seed with a real random value, if available
|
||||
std::random_device r;
|
||||
std::default_random_engine e1(r());
|
||||
std::uniform_real_distribution<> uniform_dist(-1, 1);
|
||||
return static_cast<float>(uniform_dist(e1));
|
||||
float uniform() {
|
||||
return 2.0f * ((float) rand() / RAND_MAX - 0.5f); // uniformly (-1, 1)
|
||||
}
|
||||
|
||||
template <class t>
|
||||
@ -57,9 +51,6 @@ void random_floats (t *buf, unsigned n)
|
||||
|
||||
void load_random_data(void *data, volk_gnsssdr_type_t type, unsigned int n)
|
||||
{
|
||||
std::random_device r;
|
||||
std::default_random_engine e1(r());
|
||||
std::uniform_real_distribution<float> uniform_dist(-1, 1);
|
||||
if(type.is_complex) n *= 2;
|
||||
if(type.is_float)
|
||||
{
|
||||
@ -72,7 +63,7 @@ void load_random_data(void *data, volk_gnsssdr_type_t type, unsigned int n)
|
||||
if(type.is_signed) int_max /= 2.0;
|
||||
for(unsigned int i = 0; i < n; i++)
|
||||
{
|
||||
float scaled_rand = static_cast<float>(uniform_dist(e1)) * int_max;
|
||||
float scaled_rand = (((float) (rand() - (RAND_MAX/2))) / static_cast<float>((RAND_MAX/2))) * int_max;
|
||||
//man i really don't know how to do this in a more clever way, you have to cast down at some point
|
||||
switch(type.size)
|
||||
{
|
||||
|
@ -36,19 +36,17 @@
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
|
||||
#include "gps_l1_ca_dll_pll_c_aid_tracking_fpga.h"
|
||||
#include <glog/logging.h>
|
||||
#include "GPS_L1_CA.h"
|
||||
#include "configuration_interface.h"
|
||||
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
GpsL1CaDllPllCAidTrackingFpga::GpsL1CaDllPllCAidTrackingFpga(
|
||||
ConfigurationInterface* configuration, std::string role,
|
||||
unsigned int in_streams, unsigned int out_streams) :
|
||||
role_(role), in_streams_(in_streams), out_streams_(out_streams)
|
||||
role_(role), in_streams_(in_streams), out_streams_(out_streams)
|
||||
{
|
||||
DLOG(INFO) << "role " << role;
|
||||
//################# CONFIGURATION PARAMETERS ########################
|
||||
@ -63,59 +61,65 @@ GpsL1CaDllPllCAidTrackingFpga::GpsL1CaDllPllCAidTrackingFpga(
|
||||
float dll_bw_hz;
|
||||
float dll_bw_narrow_hz;
|
||||
float early_late_space_chips;
|
||||
item_type_ = configuration->property(role + ".item_type", default_item_type);
|
||||
std::string device_name;
|
||||
unsigned int device_base;
|
||||
|
||||
item_type_ = configuration->property(role + ".item_type",
|
||||
default_item_type);
|
||||
fs_in = configuration->property("GNSS-SDR.internal_fs_hz", 2048000);
|
||||
f_if = configuration->property(role + ".if", 0);
|
||||
dump = configuration->property(role + ".dump", false);
|
||||
pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0);
|
||||
dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0);
|
||||
pll_bw_narrow_hz = configuration->property(role + ".pll_bw_narrow_hz", 20.0);
|
||||
pll_bw_narrow_hz = configuration->property(role + ".pll_bw_narrow_hz",
|
||||
20.0);
|
||||
dll_bw_narrow_hz = configuration->property(role + ".dll_bw_narrow_hz", 2.0);
|
||||
int extend_correlation_ms;
|
||||
extend_correlation_ms = configuration->property(role + ".extend_correlation_ms", 1);
|
||||
extend_correlation_ms = configuration->property(
|
||||
role + ".extend_correlation_ms", 1);
|
||||
|
||||
early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5);
|
||||
early_late_space_chips = configuration->property(
|
||||
role + ".early_late_space_chips", 0.5);
|
||||
std::string default_dump_filename = "./track_ch";
|
||||
dump_filename = configuration->property(role + ".dump_filename",
|
||||
default_dump_filename); //unused!
|
||||
vector_length = std::round(fs_in / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
default_dump_filename);
|
||||
std::string default_device_name = "/dev/uio";
|
||||
device_name = configuration->property(role + ".devicename",
|
||||
default_device_name);
|
||||
device_base = configuration->property(role + ".device_base", 1);
|
||||
vector_length = std::round(
|
||||
fs_in / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
|
||||
//################# MAKE TRACKING GNURadio object ###################
|
||||
|
||||
if(item_type_.compare("cshort") == 0)
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
item_size_ = sizeof(lv_16sc_t);
|
||||
tracking_fpga_sc = gps_l1_ca_dll_pll_c_aid_make_tracking_fpga_sc(
|
||||
f_if,
|
||||
fs_in,
|
||||
vector_length,
|
||||
dump,
|
||||
dump_filename,
|
||||
pll_bw_hz,
|
||||
dll_bw_hz,
|
||||
pll_bw_narrow_hz,
|
||||
dll_bw_narrow_hz,
|
||||
extend_correlation_ms,
|
||||
early_late_space_chips);
|
||||
DLOG(INFO) << "tracking(" << tracking_fpga_sc->unique_id() << ")";
|
||||
f_if, fs_in, vector_length, dump, dump_filename, pll_bw_hz,
|
||||
dll_bw_hz, pll_bw_narrow_hz, dll_bw_narrow_hz,
|
||||
extend_correlation_ms, early_late_space_chips, device_name,
|
||||
device_base);
|
||||
DLOG(INFO) << "tracking(" << tracking_fpga_sc->unique_id()
|
||||
<< ")";
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
item_size_ = sizeof(lv_16sc_t);
|
||||
// LOG(WARNING) << item_type_ << " unknown tracking item type";
|
||||
LOG(WARNING) << item_type_ << " the tracking item type for the FPGA tracking test has to be cshort";
|
||||
LOG(WARNING) << item_type_
|
||||
<< " the tracking item type for the FPGA tracking test has to be cshort";
|
||||
}
|
||||
|
||||
channel_ = 0;
|
||||
}
|
||||
|
||||
|
||||
GpsL1CaDllPllCAidTrackingFpga::~GpsL1CaDllPllCAidTrackingFpga()
|
||||
{
|
||||
LOG(INFO) << "gspl1cadllpllcaidtrackingfpga destructor called";
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaDllPllCAidTrackingFpga::start_tracking()
|
||||
{
|
||||
|
||||
@ -126,11 +130,11 @@ void GpsL1CaDllPllCAidTrackingFpga::start_tracking()
|
||||
else
|
||||
{
|
||||
// LOG(WARNING) << item_type_ << " unknown tracking item type";
|
||||
LOG(WARNING) << item_type_ << " the tracking item type for the FPGA tracking test has to be cshort";
|
||||
LOG(WARNING) << item_type_
|
||||
<< " the tracking item type for the FPGA tracking test has to be cshort";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Set tracking channel unique ID
|
||||
*/
|
||||
@ -145,12 +149,13 @@ void GpsL1CaDllPllCAidTrackingFpga::set_channel(unsigned int channel)
|
||||
else
|
||||
{
|
||||
// LOG(WARNING) << item_type_ << " unknown tracking item type";
|
||||
LOG(WARNING) << item_type_ << " the tracking item type for the FPGA tracking test has to be cshort";
|
||||
LOG(WARNING) << item_type_
|
||||
<< " the tracking item type for the FPGA tracking test has to be cshort";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaDllPllCAidTrackingFpga::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
void GpsL1CaDllPllCAidTrackingFpga::set_gnss_synchro(
|
||||
Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
{
|
||||
@ -159,25 +164,27 @@ void GpsL1CaDllPllCAidTrackingFpga::set_gnss_synchro(Gnss_Synchro* p_gnss_synchr
|
||||
else
|
||||
{
|
||||
// LOG(WARNING) << item_type_ << " unknown tracking item type";
|
||||
LOG(WARNING) << item_type_ << " the tracking item type for the FPGA tracking test has to be cshort";
|
||||
LOG(WARNING) << item_type_
|
||||
<< " the tracking item type for the FPGA tracking test has to be cshort";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaDllPllCAidTrackingFpga::connect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if(top_block) { /* top_block is not null */};
|
||||
if (top_block)
|
||||
{ /* top_block is not null */
|
||||
};
|
||||
//nothing to connect, now the tracking uses gr_sync_decimator
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaDllPllCAidTrackingFpga::disconnect(gr::top_block_sptr top_block)
|
||||
{
|
||||
if(top_block) { /* top_block is not null */};
|
||||
if (top_block)
|
||||
{ /* top_block is not null */
|
||||
};
|
||||
//nothing to disconnect, now the tracking uses gr_sync_decimator
|
||||
}
|
||||
|
||||
|
||||
// CONVERT TO SOURCE
|
||||
gr::basic_block_sptr GpsL1CaDllPllCAidTrackingFpga::get_left_block()
|
||||
{
|
||||
@ -188,12 +195,12 @@ gr::basic_block_sptr GpsL1CaDllPllCAidTrackingFpga::get_left_block()
|
||||
else
|
||||
{
|
||||
//LOG(WARNING) << item_type_ << " unknown tracking item type";
|
||||
LOG(WARNING) << item_type_ << " the tracking item type for the FPGA tracking test has to be cshort";
|
||||
LOG(WARNING) << item_type_
|
||||
<< " the tracking item type for the FPGA tracking test has to be cshort";
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
gr::basic_block_sptr GpsL1CaDllPllCAidTrackingFpga::get_right_block()
|
||||
{
|
||||
if (item_type_.compare("cshort") == 0)
|
||||
@ -203,7 +210,16 @@ gr::basic_block_sptr GpsL1CaDllPllCAidTrackingFpga::get_right_block()
|
||||
else
|
||||
{
|
||||
//LOG(WARNING) << item_type_ << " unknown tracking item type";
|
||||
LOG(WARNING) << item_type_ << " the tracking item type for the FPGA tracking test has to be cshort";
|
||||
LOG(WARNING) << item_type_
|
||||
<< " the tracking item type for the FPGA tracking test has to be cshort";
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
void GpsL1CaDllPllCAidTrackingFpga::reset(void)
|
||||
{
|
||||
|
||||
tracking_fpga_sc->reset();
|
||||
|
||||
}
|
||||
|
||||
|
@ -43,7 +43,6 @@
|
||||
#include "tracking_interface.h"
|
||||
#include "gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc.h"
|
||||
|
||||
|
||||
class ConfigurationInterface;
|
||||
|
||||
/*!
|
||||
@ -53,8 +52,7 @@ class GpsL1CaDllPllCAidTrackingFpga : public TrackingInterface
|
||||
{
|
||||
public:
|
||||
GpsL1CaDllPllCAidTrackingFpga(ConfigurationInterface* configuration,
|
||||
std::string role,
|
||||
unsigned int in_streams,
|
||||
std::string role, unsigned int in_streams,
|
||||
unsigned int out_streams);
|
||||
|
||||
virtual ~GpsL1CaDllPllCAidTrackingFpga();
|
||||
@ -80,7 +78,6 @@ public:
|
||||
gr::basic_block_sptr get_left_block();
|
||||
gr::basic_block_sptr get_right_block();
|
||||
|
||||
|
||||
/*!
|
||||
* \brief Set tracking channel unique ID
|
||||
*/
|
||||
@ -92,9 +89,10 @@ public:
|
||||
*/
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
|
||||
|
||||
|
||||
void start_tracking();
|
||||
|
||||
void reset(void);
|
||||
|
||||
private:
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc_sptr tracking_fpga_sc;
|
||||
size_t item_size_;
|
||||
|
@ -47,7 +47,6 @@
|
||||
#include "GPS_L1_CA.h"
|
||||
#include "control_message_factory.h"
|
||||
|
||||
|
||||
/*!
|
||||
* \todo Include in definition header file
|
||||
*/
|
||||
@ -56,32 +55,28 @@
|
||||
#define MAXIMUM_LOCK_FAIL_COUNTER 50
|
||||
#define CARRIER_LOCK_THRESHOLD 0.85
|
||||
|
||||
|
||||
using google::LogMessage;
|
||||
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc_sptr
|
||||
gps_l1_ca_dll_pll_c_aid_make_tracking_fpga_sc(
|
||||
long if_freq,
|
||||
long fs_in,
|
||||
unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
int extend_correlation_ms,
|
||||
float early_late_space_chips)
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc_sptr gps_l1_ca_dll_pll_c_aid_make_tracking_fpga_sc(
|
||||
long if_freq, long fs_in, unsigned int vector_length, bool dump,
|
||||
std::string dump_filename, float pll_bw_hz, float dll_bw_hz,
|
||||
float pll_bw_narrow_hz, float dll_bw_narrow_hz,
|
||||
int extend_correlation_ms, float early_late_space_chips,
|
||||
std::string device_name, unsigned int device_base)
|
||||
{
|
||||
return gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc_sptr(new gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc(if_freq,
|
||||
fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, pll_bw_narrow_hz, dll_bw_narrow_hz, extend_correlation_ms, early_late_space_chips));
|
||||
return gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc_sptr(
|
||||
new gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc(if_freq, fs_in,
|
||||
vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz,
|
||||
pll_bw_narrow_hz, dll_bw_narrow_hz, extend_correlation_ms,
|
||||
early_late_space_chips, device_name, device_base));
|
||||
}
|
||||
|
||||
|
||||
void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::msg_handler_preamble_index(pmt::pmt_t msg)
|
||||
void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::msg_handler_preamble_index(
|
||||
pmt::pmt_t msg)
|
||||
{
|
||||
//pmt::print(msg);
|
||||
DLOG(INFO) << "Extended correlation enabled for Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN);
|
||||
DLOG(INFO) << "Extended correlation enabled for Tracking CH "
|
||||
<< d_channel << ": Satellite "
|
||||
<< Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN);
|
||||
if (d_enable_extended_integration == false) //avoid re-setting preamble indicator
|
||||
{
|
||||
d_preamble_timestamp_s = pmt::to_double(msg);
|
||||
@ -91,25 +86,23 @@ void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::msg_handler_preamble_index(pmt::p
|
||||
}
|
||||
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc(
|
||||
long if_freq,
|
||||
long fs_in,
|
||||
unsigned int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
int extend_correlation_ms,
|
||||
float early_late_space_chips) :
|
||||
gr::block("gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc", gr::io_signature::make(0, 0, sizeof(lv_16sc_t)),
|
||||
long if_freq, long fs_in, unsigned int vector_length, bool dump,
|
||||
std::string dump_filename, float pll_bw_hz, float dll_bw_hz,
|
||||
float pll_bw_narrow_hz, float dll_bw_narrow_hz,
|
||||
int extend_correlation_ms, float early_late_space_chips,
|
||||
std::string device_name, unsigned int device_base) :
|
||||
gr::block("gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc",
|
||||
gr::io_signature::make(0, 0, sizeof(lv_16sc_t)),
|
||||
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
|
||||
|
||||
{
|
||||
|
||||
// Telemetry bit synchronization message port input
|
||||
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
|
||||
this->set_msg_handler(pmt::mp("preamble_timestamp_s"),
|
||||
boost::bind(&gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::msg_handler_preamble_index, this, _1));
|
||||
boost::bind(
|
||||
&gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::msg_handler_preamble_index,
|
||||
this, _1));
|
||||
this->message_port_register_out(pmt::mp("events"));
|
||||
// initialize internal vars
|
||||
d_dump = dump;
|
||||
@ -133,25 +126,34 @@ gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::gps_l1_ca_dll_pll_c_aid_tracking_fpga_
|
||||
|
||||
// Initialization of local code replica
|
||||
// Get space for a vector with the C/A code replica sampled 1x/chip
|
||||
d_ca_code = static_cast<gr_complex*>(volk_gnsssdr_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
|
||||
d_ca_code_16sc = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(lv_16sc_t), volk_gnsssdr_get_alignment()));
|
||||
d_ca_code = static_cast<gr_complex*>(volk_gnsssdr_malloc(
|
||||
static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex),
|
||||
volk_gnsssdr_get_alignment()));
|
||||
d_ca_code_16sc = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(
|
||||
static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(lv_16sc_t),
|
||||
volk_gnsssdr_get_alignment()));
|
||||
|
||||
// correlator outputs (scalar)
|
||||
d_n_correlator_taps = 3; // Early, Prompt, and Late
|
||||
|
||||
d_correlator_outs_16sc = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(d_n_correlator_taps*sizeof(lv_16sc_t), volk_gnsssdr_get_alignment()));
|
||||
d_correlator_outs_16sc = static_cast<lv_16sc_t*>(volk_gnsssdr_malloc(
|
||||
d_n_correlator_taps * sizeof(lv_16sc_t),
|
||||
volk_gnsssdr_get_alignment()));
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs_16sc[n] = lv_cmake(0,0);
|
||||
d_correlator_outs_16sc[n] = lv_cmake(0, 0);
|
||||
}
|
||||
|
||||
d_local_code_shift_chips = static_cast<float*>(volk_gnsssdr_malloc(d_n_correlator_taps*sizeof(float), volk_gnsssdr_get_alignment()));
|
||||
d_local_code_shift_chips = static_cast<float*>(volk_gnsssdr_malloc(
|
||||
d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
|
||||
// Set TAPs delay values [chips]
|
||||
d_local_code_shift_chips[0] = - d_early_late_spc_chips;
|
||||
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
|
||||
d_local_code_shift_chips[1] = 0.0;
|
||||
d_local_code_shift_chips[2] = d_early_late_spc_chips;
|
||||
|
||||
multicorrelator_fpga_8sc.init(d_n_correlator_taps);
|
||||
// create multicorrelator class
|
||||
multicorrelator_fpga_8sc = std::make_shared < fpga_multicorrelator_8sc
|
||||
> (d_n_correlator_taps, device_name, device_base);
|
||||
|
||||
//--- Perform initializations ------------------------------
|
||||
// define initial code frequency basis of NCO
|
||||
@ -200,8 +202,8 @@ gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::gps_l1_ca_dll_pll_c_aid_tracking_fpga_
|
||||
d_preamble_timestamp_s = 0.0;
|
||||
d_carr_phase_error_secs_Ti = 0.0;
|
||||
//set_min_output_buffer((long int)300);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::start_tracking()
|
||||
{
|
||||
@ -214,54 +216,71 @@ void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::start_tracking()
|
||||
|
||||
long int acq_trk_diff_samples;
|
||||
double acq_trk_diff_seconds;
|
||||
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp);//-d_vector_length;
|
||||
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
|
||||
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / static_cast<double>(d_fs_in);
|
||||
acq_trk_diff_samples = static_cast<long int>(d_sample_counter)
|
||||
- static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
|
||||
DLOG(INFO) << "Number of samples between Acquisition and Tracking ="
|
||||
<< acq_trk_diff_samples;
|
||||
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples)
|
||||
/ static_cast<double>(d_fs_in);
|
||||
// Doppler effect
|
||||
// Fd=(C/(C+Vr))*F
|
||||
double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz) / GPS_L1_FREQ_HZ;
|
||||
double radial_velocity = (GPS_L1_FREQ_HZ + d_acq_carrier_doppler_hz)
|
||||
/ GPS_L1_FREQ_HZ;
|
||||
// new chip and prn sequence periods based on acq Doppler
|
||||
double T_chip_mod_seconds;
|
||||
double T_prn_mod_seconds;
|
||||
double T_prn_mod_samples;
|
||||
d_code_freq_chips = radial_velocity * GPS_L1_CA_CODE_RATE_HZ;
|
||||
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
|
||||
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips)
|
||||
/ static_cast<double>(d_fs_in);
|
||||
T_chip_mod_seconds = 1.0 / d_code_freq_chips;
|
||||
T_prn_mod_seconds = T_chip_mod_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
|
||||
|
||||
d_correlation_length_samples = round(T_prn_mod_samples);
|
||||
|
||||
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS / GPS_L1_CA_CODE_RATE_HZ;
|
||||
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
|
||||
double T_prn_true_seconds = GPS_L1_CA_CODE_LENGTH_CHIPS
|
||||
/ GPS_L1_CA_CODE_RATE_HZ;
|
||||
double T_prn_true_samples = T_prn_true_seconds
|
||||
* static_cast<double>(d_fs_in);
|
||||
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
|
||||
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
|
||||
double corrected_acq_phase_samples, delay_correction_samples;
|
||||
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
|
||||
corrected_acq_phase_samples = fmod(
|
||||
(d_acq_code_phase_samples
|
||||
+ T_prn_diff_seconds * N_prn_diff
|
||||
* static_cast<double>(d_fs_in)),
|
||||
T_prn_true_samples);
|
||||
if (corrected_acq_phase_samples < 0)
|
||||
{
|
||||
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
|
||||
corrected_acq_phase_samples = T_prn_mod_samples
|
||||
+ corrected_acq_phase_samples;
|
||||
}
|
||||
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
|
||||
delay_correction_samples = d_acq_code_phase_samples
|
||||
- corrected_acq_phase_samples;
|
||||
|
||||
d_acq_code_phase_samples = corrected_acq_phase_samples;
|
||||
|
||||
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
|
||||
|
||||
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
||||
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz
|
||||
/ static_cast<double>(d_fs_in);
|
||||
|
||||
// DLL/PLL filter initialization
|
||||
d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz); // The carrier loop filter implements the Doppler accumulator
|
||||
d_code_loop_filter.initialize(); // initialize the code filter
|
||||
d_code_loop_filter.initialize(); // initialize the code filter
|
||||
|
||||
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
|
||||
gps_l1_ca_code_gen_complex(d_ca_code, d_acquisition_gnss_synchro->PRN, 0);
|
||||
volk_gnsssdr_32fc_convert_16ic(d_ca_code_16sc, d_ca_code, static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
volk_gnsssdr_32fc_convert_16ic(d_ca_code_16sc, d_ca_code,
|
||||
static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS));
|
||||
|
||||
multicorrelator_fpga_8sc.set_local_code_and_taps(static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code_16sc, d_local_code_shift_chips);
|
||||
multicorrelator_fpga_8sc->set_local_code_and_taps(
|
||||
static_cast<int>(GPS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code_16sc,
|
||||
d_local_code_shift_chips);
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs_16sc[n] = lv_16sc_t(0,0);
|
||||
d_correlator_outs_16sc[n] = lv_16sc_t(0, 0);
|
||||
}
|
||||
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
@ -273,11 +292,15 @@ void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::start_tracking()
|
||||
d_code_phase_samples = d_acq_code_phase_samples;
|
||||
|
||||
std::string sys_ = &d_acquisition_gnss_synchro->System;
|
||||
sys = sys_.substr(0,1);
|
||||
sys = sys_.substr(0, 1);
|
||||
|
||||
// DEBUG OUTPUT
|
||||
std::cout << "Tracking of GPS L1 C/A signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
|
||||
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
|
||||
std::cout << "Tracking start on channel " << d_channel << " for satellite "
|
||||
<< Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||
<< std::endl;
|
||||
LOG(INFO) << "Starting tracking of satellite "
|
||||
<< Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||
<< " on channel " << d_channel;
|
||||
|
||||
// enable tracking
|
||||
d_pull_in = true;
|
||||
@ -285,12 +308,14 @@ void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::start_tracking()
|
||||
d_enable_extended_integration = false;
|
||||
d_preamble_synchronized = false;
|
||||
|
||||
// lock the channel
|
||||
multicorrelator_fpga_8sc->lock_channel();
|
||||
|
||||
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
|
||||
<< " Code Phase correction [samples]=" << delay_correction_samples
|
||||
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
|
||||
}
|
||||
|
||||
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::~gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc()
|
||||
{
|
||||
d_dump_file.close();
|
||||
@ -301,14 +326,19 @@ gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::~gps_l1_ca_dll_pll_c_aid_tracking_fpga
|
||||
volk_gnsssdr_free(d_correlator_outs_16sc);
|
||||
|
||||
delete[] d_Prompt_buffer;
|
||||
multicorrelator_fpga_8sc.free();
|
||||
multicorrelator_fpga_8sc->free();
|
||||
}
|
||||
|
||||
|
||||
|
||||
int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
|
||||
int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
|
||||
int noutput_items __attribute__((unused)),
|
||||
gr_vector_int &ninput_items __attribute__((unused)),
|
||||
gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items)
|
||||
{
|
||||
|
||||
// samples offset
|
||||
int samples_offset;
|
||||
|
||||
// Block input data and block output stream pointers
|
||||
Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0];
|
||||
|
||||
@ -326,35 +356,45 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work (int noutput_items __
|
||||
// Receiver signal alignment
|
||||
if (d_pull_in == true)
|
||||
{
|
||||
int samples_offset;
|
||||
double acq_trk_shif_correction_samples;
|
||||
int acq_to_trk_delay_samples;
|
||||
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples = d_correlation_length_samples - fmod(static_cast<double>(acq_to_trk_delay_samples), static_cast<double>(d_correlation_length_samples));
|
||||
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter + samples_offset;
|
||||
acq_to_trk_delay_samples = d_sample_counter
|
||||
- d_acq_sample_stamp;
|
||||
acq_trk_shif_correction_samples =
|
||||
d_correlation_length_samples
|
||||
- fmod(
|
||||
static_cast<double>(acq_to_trk_delay_samples),
|
||||
static_cast<double>(d_correlation_length_samples));
|
||||
samples_offset = round(
|
||||
d_acq_code_phase_samples
|
||||
+ acq_trk_shif_correction_samples);
|
||||
current_synchro_data.Tracking_sample_counter =
|
||||
d_sample_counter + samples_offset;
|
||||
d_sample_counter += samples_offset; // count for the processed samples
|
||||
d_pull_in = false;
|
||||
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * samples_offset / GPS_TWO_PI;
|
||||
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_cycles * GPS_TWO_PI;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad
|
||||
* samples_offset / GPS_TWO_PI;
|
||||
current_synchro_data.Carrier_phase_rads =
|
||||
d_acc_carrier_phase_cycles * GPS_TWO_PI;
|
||||
current_synchro_data.Carrier_Doppler_hz =
|
||||
d_carrier_doppler_hz;
|
||||
current_synchro_data.fs = d_fs_in;
|
||||
*out[0] = current_synchro_data;
|
||||
consume_each(samples_offset); // shift input to perform alignment with local replica
|
||||
multicorrelator_fpga_8sc.set_initial_sample(samples_offset);
|
||||
//consume_each(samples_offset); // shift input to perform alignment with local replica
|
||||
multicorrelator_fpga_8sc->set_initial_sample(
|
||||
samples_offset);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
|
||||
// perform carrier wipe-off and compute Early, Prompt and Late correlation
|
||||
//multicorrelator_fpga_8sc.set_input_output_vectors(d_correlator_outs_16sc, in);
|
||||
multicorrelator_fpga_8sc.set_output_vectors(d_correlator_outs_16sc);
|
||||
multicorrelator_fpga_8sc.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad,
|
||||
d_carrier_phase_step_rad,
|
||||
d_rem_code_phase_chips,
|
||||
d_code_phase_step_chips,
|
||||
d_correlation_length_samples);
|
||||
multicorrelator_fpga_8sc->set_output_vectors(
|
||||
d_correlator_outs_16sc);
|
||||
multicorrelator_fpga_8sc->Carrier_wipeoff_multicorrelator_resampler(
|
||||
d_rem_carrier_phase_rad, d_carrier_phase_step_rad,
|
||||
d_rem_code_phase_chips, d_code_phase_step_chips,
|
||||
d_correlation_length_samples);
|
||||
|
||||
// ####### coherent intergration extension
|
||||
// keep the last symbols
|
||||
@ -372,60 +412,108 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work (int noutput_items __
|
||||
bool enable_dll_pll;
|
||||
if (d_enable_extended_integration == true)
|
||||
{
|
||||
long int symbol_diff = round(1000.0 * ((static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in) - d_preamble_timestamp_s));
|
||||
if (symbol_diff > 0 and symbol_diff % d_extend_correlation_ms == 0)
|
||||
long int symbol_diff = round(
|
||||
1000.0
|
||||
* ((static_cast<double>(d_sample_counter)
|
||||
+ d_rem_code_phase_samples)
|
||||
/ static_cast<double>(d_fs_in)
|
||||
- d_preamble_timestamp_s));
|
||||
if (symbol_diff > 0
|
||||
and symbol_diff % d_extend_correlation_ms == 0)
|
||||
{
|
||||
// compute coherent integration and enable tracking loop
|
||||
// perform coherent integration using correlator output history
|
||||
// std::cout<<"##### RESET COHERENT INTEGRATION ####"<<std::endl;
|
||||
d_correlator_outs_16sc[0] = lv_cmake(0,0);
|
||||
d_correlator_outs_16sc[1] = lv_cmake(0,0);
|
||||
d_correlator_outs_16sc[2] = lv_cmake(0,0);
|
||||
d_correlator_outs_16sc[0] = lv_cmake(0, 0);
|
||||
d_correlator_outs_16sc[1] = lv_cmake(0, 0);
|
||||
d_correlator_outs_16sc[2] = lv_cmake(0, 0);
|
||||
for (int n = 0; n < d_extend_correlation_ms; n++)
|
||||
{
|
||||
d_correlator_outs_16sc[0] += d_E_history.at(n);
|
||||
d_correlator_outs_16sc[1] += d_P_history.at(n);
|
||||
d_correlator_outs_16sc[2] += d_L_history.at(n);
|
||||
d_correlator_outs_16sc[0] += d_E_history.at(
|
||||
n);
|
||||
d_correlator_outs_16sc[1] += d_P_history.at(
|
||||
n);
|
||||
d_correlator_outs_16sc[2] += d_L_history.at(
|
||||
n);
|
||||
}
|
||||
|
||||
if (d_preamble_synchronized == false)
|
||||
{
|
||||
d_code_loop_filter.set_DLL_BW(d_dll_bw_narrow_hz);
|
||||
d_carrier_loop_filter.set_params(10.0, d_pll_bw_narrow_hz,2);
|
||||
d_code_loop_filter.set_DLL_BW(
|
||||
d_dll_bw_narrow_hz);
|
||||
d_carrier_loop_filter.set_params(10.0,
|
||||
d_pll_bw_narrow_hz, 2);
|
||||
d_preamble_synchronized = true;
|
||||
std::cout << "Enabled " << d_extend_correlation_ms << " [ms] extended correlator for CH "<< d_channel << " : Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
|
||||
<< " pll_bw = " << d_pll_bw_hz << " [Hz], pll_narrow_bw = " << d_pll_bw_narrow_hz << " [Hz]" << std::endl
|
||||
<< " dll_bw = " << d_dll_bw_hz << " [Hz], dll_narrow_bw = " << d_dll_bw_narrow_hz << " [Hz]" << std::endl;
|
||||
std::cout << "Enabled "
|
||||
<< d_extend_correlation_ms
|
||||
<< " [ms] extended correlator for CH "
|
||||
<< d_channel << " : Satellite "
|
||||
<< Gnss_Satellite(systemName[sys],
|
||||
d_acquisition_gnss_synchro->PRN)
|
||||
<< " pll_bw = " << d_pll_bw_hz
|
||||
<< " [Hz], pll_narrow_bw = "
|
||||
<< d_pll_bw_narrow_hz << " [Hz]"
|
||||
<< std::endl << " dll_bw = "
|
||||
<< d_dll_bw_hz
|
||||
<< " [Hz], dll_narrow_bw = "
|
||||
<< d_dll_bw_narrow_hz << " [Hz]"
|
||||
<< std::endl;
|
||||
}
|
||||
// UPDATE INTEGRATION TIME
|
||||
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_extend_correlation_ms) * GPS_L1_CA_CODE_PERIOD;
|
||||
CURRENT_INTEGRATION_TIME_S =
|
||||
static_cast<double>(d_extend_correlation_ms)
|
||||
* GPS_L1_CA_CODE_PERIOD;
|
||||
enable_dll_pll = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
if(d_preamble_synchronized == true)
|
||||
if (d_preamble_synchronized == true)
|
||||
{
|
||||
// continue extended coherent correlation
|
||||
// Compute the next buffer length based on the period of the PRN sequence and the code phase error estimation
|
||||
double T_chip_seconds = 1.0 / d_code_freq_chips;
|
||||
double T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
double T_chip_seconds = 1.0
|
||||
/ d_code_freq_chips;
|
||||
double T_prn_seconds = T_chip_seconds
|
||||
* GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
double T_prn_samples = T_prn_seconds
|
||||
* static_cast<double>(d_fs_in);
|
||||
int K_prn_samples = round(T_prn_samples);
|
||||
double K_T_prn_error_samples = K_prn_samples - T_prn_samples;
|
||||
double K_T_prn_error_samples = K_prn_samples
|
||||
- T_prn_samples;
|
||||
|
||||
d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples;
|
||||
d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples
|
||||
d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples;
|
||||
d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples;
|
||||
d_rem_code_phase_samples =
|
||||
d_rem_code_phase_samples
|
||||
- K_T_prn_error_samples;
|
||||
d_rem_code_phase_integer_samples = round(
|
||||
d_rem_code_phase_samples); // round to a discrete number of samples
|
||||
d_correlation_length_samples = K_prn_samples
|
||||
+ d_rem_code_phase_integer_samples;
|
||||
d_rem_code_phase_samples =
|
||||
d_rem_code_phase_samples
|
||||
- d_rem_code_phase_integer_samples;
|
||||
// code phase step (Code resampler phase increment per sample) [chips/sample]
|
||||
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||
d_code_phase_step_chips = d_code_freq_chips
|
||||
/ static_cast<double>(d_fs_in);
|
||||
// remnant code phase [chips]
|
||||
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
|
||||
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + d_carrier_phase_step_rad * static_cast<double>(d_correlation_length_samples), GPS_TWO_PI);
|
||||
d_rem_code_phase_chips =
|
||||
d_rem_code_phase_samples
|
||||
* (d_code_freq_chips
|
||||
/ static_cast<double>(d_fs_in));
|
||||
d_rem_carrier_phase_rad =
|
||||
fmod(
|
||||
d_rem_carrier_phase_rad
|
||||
+ d_carrier_phase_step_rad
|
||||
* static_cast<double>(d_correlation_length_samples),
|
||||
GPS_TWO_PI);
|
||||
|
||||
// UPDATE ACCUMULATED CARRIER PHASE
|
||||
CORRECTED_INTEGRATION_TIME_S = (static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in));
|
||||
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GPS_TWO_PI;
|
||||
CORRECTED_INTEGRATION_TIME_S =
|
||||
(static_cast<double>(d_correlation_length_samples)
|
||||
/ static_cast<double>(d_fs_in));
|
||||
d_acc_carrier_phase_cycles -=
|
||||
d_carrier_phase_step_rad
|
||||
* d_correlation_length_samples
|
||||
/ GPS_TWO_PI;
|
||||
|
||||
// disable tracking loop and inform telemetry decoder
|
||||
enable_dll_pll = false;
|
||||
@ -434,7 +522,9 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work (int noutput_items __
|
||||
{
|
||||
// perform basic (1ms) correlation
|
||||
// UPDATE INTEGRATION TIME
|
||||
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
|
||||
CURRENT_INTEGRATION_TIME_S =
|
||||
static_cast<double>(d_correlation_length_samples)
|
||||
/ static_cast<double>(d_fs_in);
|
||||
enable_dll_pll = true;
|
||||
}
|
||||
}
|
||||
@ -442,7 +532,9 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work (int noutput_items __
|
||||
else
|
||||
{
|
||||
// UPDATE INTEGRATION TIME
|
||||
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
|
||||
CURRENT_INTEGRATION_TIME_S =
|
||||
static_cast<double>(d_correlation_length_samples)
|
||||
/ static_cast<double>(d_fs_in);
|
||||
enable_dll_pll = true;
|
||||
}
|
||||
|
||||
@ -450,98 +542,160 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work (int noutput_items __
|
||||
{
|
||||
// ################## PLL ##########################################################
|
||||
// Update PLL discriminator [rads/Ti -> Secs/Ti]
|
||||
d_carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(std::complex<float>(d_correlator_outs_16sc[1].real(),d_correlator_outs_16sc[1].imag())) / GPS_TWO_PI; //prompt output
|
||||
d_carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(
|
||||
std::complex<float>(
|
||||
d_correlator_outs_16sc[1].real(),
|
||||
d_correlator_outs_16sc[1].imag()))
|
||||
/ GPS_TWO_PI; //prompt output
|
||||
|
||||
// Carrier discriminator filter
|
||||
// NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
|
||||
// Input [s/Ti] -> output [Hz]
|
||||
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, d_carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
|
||||
d_carrier_doppler_hz =
|
||||
d_carrier_loop_filter.get_carrier_error(0.0,
|
||||
d_carr_phase_error_secs_Ti,
|
||||
CURRENT_INTEGRATION_TIME_S);
|
||||
// PLL to DLL assistance [Secs/Ti]
|
||||
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ;
|
||||
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz
|
||||
* CURRENT_INTEGRATION_TIME_S) / GPS_L1_FREQ_HZ;
|
||||
// code Doppler frequency update
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ) / GPS_L1_FREQ_HZ);
|
||||
d_code_freq_chips = GPS_L1_CA_CODE_RATE_HZ
|
||||
+ ((d_carrier_doppler_hz * GPS_L1_CA_CODE_RATE_HZ)
|
||||
/ GPS_L1_FREQ_HZ);
|
||||
|
||||
// ################## DLL ##########################################################
|
||||
// DLL discriminator
|
||||
d_code_error_chips_Ti = dll_nc_e_minus_l_normalized(std::complex<float>(d_correlator_outs_16sc[0].real(),d_correlator_outs_16sc[0].imag()), std::complex<float>(d_correlator_outs_16sc[2].real(),d_correlator_outs_16sc[2].imag())); // [chips/Ti] //early and late
|
||||
d_code_error_chips_Ti = dll_nc_e_minus_l_normalized(
|
||||
std::complex<float>(
|
||||
d_correlator_outs_16sc[0].real(),
|
||||
d_correlator_outs_16sc[0].imag()),
|
||||
std::complex<float>(
|
||||
d_correlator_outs_16sc[2].real(),
|
||||
d_correlator_outs_16sc[2].imag())); // [chips/Ti] //early and late
|
||||
// Code discriminator filter
|
||||
d_code_error_filt_chips_s = d_code_loop_filter.get_code_nco(d_code_error_chips_Ti); // input [chips/Ti] -> output [chips/second]
|
||||
d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S;
|
||||
code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti]
|
||||
d_code_error_filt_chips_s = d_code_loop_filter.get_code_nco(
|
||||
d_code_error_chips_Ti); // input [chips/Ti] -> output [chips/second]
|
||||
d_code_error_filt_chips_Ti = d_code_error_filt_chips_s
|
||||
* CURRENT_INTEGRATION_TIME_S;
|
||||
code_error_filt_secs_Ti = d_code_error_filt_chips_Ti
|
||||
/ d_code_freq_chips; // [s/Ti]
|
||||
|
||||
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
|
||||
// keep alignment parameters for the next input buffer
|
||||
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
|
||||
double T_chip_seconds = 1.0 / d_code_freq_chips;
|
||||
double T_prn_seconds = T_chip_seconds * GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
|
||||
double T_prn_seconds = T_chip_seconds
|
||||
* GPS_L1_CA_CODE_LENGTH_CHIPS;
|
||||
double T_prn_samples = T_prn_seconds
|
||||
* static_cast<double>(d_fs_in);
|
||||
double K_prn_samples = round(T_prn_samples);
|
||||
double K_T_prn_error_samples = K_prn_samples - T_prn_samples;
|
||||
double K_T_prn_error_samples = K_prn_samples
|
||||
- T_prn_samples;
|
||||
|
||||
d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples + code_error_filt_secs_Ti * static_cast<double>(d_fs_in); //(code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti) * static_cast<double>(d_fs_in);
|
||||
d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples
|
||||
d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples;
|
||||
d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples;
|
||||
d_rem_code_phase_samples = d_rem_code_phase_samples
|
||||
- K_T_prn_error_samples
|
||||
+ code_error_filt_secs_Ti
|
||||
* static_cast<double>(d_fs_in); //(code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti) * static_cast<double>(d_fs_in);
|
||||
d_rem_code_phase_integer_samples = round(
|
||||
d_rem_code_phase_samples); // round to a discrete number of samples
|
||||
d_correlation_length_samples = K_prn_samples
|
||||
+ d_rem_code_phase_integer_samples;
|
||||
d_rem_code_phase_samples = d_rem_code_phase_samples
|
||||
- d_rem_code_phase_integer_samples;
|
||||
|
||||
//################### PLL COMMANDS #################################################
|
||||
//################### PLL COMMANDS #################################################
|
||||
//carrier phase step (NCO phase increment per sample) [rads/sample]
|
||||
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
|
||||
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GPS_TWO_PI;
|
||||
d_carrier_phase_step_rad = GPS_TWO_PI * d_carrier_doppler_hz
|
||||
/ static_cast<double>(d_fs_in);
|
||||
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad
|
||||
* d_correlation_length_samples / GPS_TWO_PI;
|
||||
// UPDATE ACCUMULATED CARRIER PHASE
|
||||
CORRECTED_INTEGRATION_TIME_S = (static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in));
|
||||
CORRECTED_INTEGRATION_TIME_S =
|
||||
(static_cast<double>(d_correlation_length_samples)
|
||||
/ static_cast<double>(d_fs_in));
|
||||
//remnant carrier phase [rad]
|
||||
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GPS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, GPS_TWO_PI);
|
||||
d_rem_carrier_phase_rad = fmod(
|
||||
d_rem_carrier_phase_rad
|
||||
+ GPS_TWO_PI * d_carrier_doppler_hz
|
||||
* CORRECTED_INTEGRATION_TIME_S,
|
||||
GPS_TWO_PI);
|
||||
|
||||
//################### DLL COMMANDS #################################################
|
||||
//code phase step (Code resampler phase increment per sample) [chips/sample]
|
||||
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
|
||||
d_code_phase_step_chips = d_code_freq_chips
|
||||
/ static_cast<double>(d_fs_in);
|
||||
//remnant code phase [chips]
|
||||
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
|
||||
d_rem_code_phase_chips =
|
||||
d_rem_code_phase_samples
|
||||
* (d_code_freq_chips
|
||||
/ static_cast<double>(d_fs_in));
|
||||
|
||||
// ####### CN0 ESTIMATION AND LOCK DETECTORS #######################################
|
||||
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
|
||||
{
|
||||
// fill buffer with prompt correlator output values
|
||||
d_Prompt_buffer[d_cn0_estimation_counter] = lv_cmake(static_cast<float>(d_correlator_outs_16sc[1].real()), static_cast<float>(d_correlator_outs_16sc[1].imag()) ); // prompt
|
||||
d_Prompt_buffer[d_cn0_estimation_counter] =
|
||||
lv_cmake(
|
||||
static_cast<float>(d_correlator_outs_16sc[1].real()),
|
||||
static_cast<float>(d_correlator_outs_16sc[1].imag())); // prompt
|
||||
d_cn0_estimation_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
d_cn0_estimation_counter = 0;
|
||||
// Code lock indicator
|
||||
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GPS_L1_CA_CODE_LENGTH_CHIPS);
|
||||
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer,
|
||||
CN0_ESTIMATION_SAMPLES, d_fs_in,
|
||||
GPS_L1_CA_CODE_LENGTH_CHIPS);
|
||||
// Carrier lock indicator
|
||||
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
|
||||
d_carrier_lock_test = carrier_lock_detector(
|
||||
d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
|
||||
// Loss of lock detection
|
||||
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
|
||||
if (d_carrier_lock_test
|
||||
< d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0)
|
||||
{
|
||||
d_carrier_lock_fail_counter++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
|
||||
if (d_carrier_lock_fail_counter > 0)
|
||||
{
|
||||
d_carrier_lock_fail_counter--;
|
||||
}
|
||||
}
|
||||
if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER)
|
||||
if (d_carrier_lock_fail_counter
|
||||
> MAXIMUM_LOCK_FAIL_COUNTER)
|
||||
{
|
||||
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
|
||||
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
|
||||
this->message_port_pub(pmt::mp("events"), pmt::from_long(3));//3 -> loss of lock
|
||||
std::cout << "Loss of lock in channel "
|
||||
<< d_channel << "!" << std::endl;
|
||||
LOG(INFO) << "Loss of lock in channel "
|
||||
<< d_channel << "!";
|
||||
this->message_port_pub(pmt::mp("events"),
|
||||
pmt::from_long(3)); //3 -> loss of lock
|
||||
d_carrier_lock_fail_counter = 0;
|
||||
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
|
||||
multicorrelator_fpga_8sc->unlock_channel();
|
||||
}
|
||||
}
|
||||
// ########### Output the tracking data to navigation and PVT ##########
|
||||
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs_16sc[1]).real());
|
||||
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs_16sc[1]).imag());
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples;
|
||||
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
|
||||
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI * d_acc_carrier_phase_cycles;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
|
||||
current_synchro_data.Prompt_I =
|
||||
static_cast<double>((d_correlator_outs_16sc[1]).real());
|
||||
current_synchro_data.Prompt_Q =
|
||||
static_cast<double>((d_correlator_outs_16sc[1]).imag());
|
||||
current_synchro_data.Tracking_sample_counter =
|
||||
d_sample_counter + d_correlation_length_samples;
|
||||
current_synchro_data.Code_phase_samples =
|
||||
d_rem_code_phase_samples;
|
||||
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI
|
||||
* d_acc_carrier_phase_cycles;
|
||||
current_synchro_data.Carrier_Doppler_hz =
|
||||
d_carrier_doppler_hz;
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
current_synchro_data.Flag_valid_symbol_output = true;
|
||||
if (d_preamble_synchronized == true)
|
||||
{
|
||||
current_synchro_data.correlation_length_ms = d_extend_correlation_ms;
|
||||
current_synchro_data.correlation_length_ms =
|
||||
d_extend_correlation_ms;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -550,12 +704,18 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work (int noutput_items __
|
||||
}
|
||||
else
|
||||
{
|
||||
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs_16sc[1]).real());
|
||||
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs_16sc[1]).imag());
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples;
|
||||
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
|
||||
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI * d_acc_carrier_phase_cycles;
|
||||
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;// todo: project the carrier doppler
|
||||
current_synchro_data.Prompt_I =
|
||||
static_cast<double>((d_correlator_outs_16sc[1]).real());
|
||||
current_synchro_data.Prompt_Q =
|
||||
static_cast<double>((d_correlator_outs_16sc[1]).imag());
|
||||
current_synchro_data.Tracking_sample_counter =
|
||||
d_sample_counter + d_correlation_length_samples;
|
||||
current_synchro_data.Code_phase_samples =
|
||||
d_rem_code_phase_samples;
|
||||
current_synchro_data.Carrier_phase_rads = GPS_TWO_PI
|
||||
* d_acc_carrier_phase_cycles;
|
||||
current_synchro_data.Carrier_Doppler_hz =
|
||||
d_carrier_doppler_hz; // todo: project the carrier doppler
|
||||
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
|
||||
}
|
||||
}
|
||||
@ -563,15 +723,17 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work (int noutput_items __
|
||||
{
|
||||
for (int n = 0; n < d_n_correlator_taps; n++)
|
||||
{
|
||||
d_correlator_outs_16sc[n] = lv_cmake(0,0);
|
||||
d_correlator_outs_16sc[n] = lv_cmake(0, 0);
|
||||
}
|
||||
|
||||
current_synchro_data.System = {'G'};
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples;
|
||||
current_synchro_data.System =
|
||||
{ 'G'};
|
||||
current_synchro_data.Tracking_sample_counter = d_sample_counter
|
||||
+ d_correlation_length_samples;
|
||||
}
|
||||
current_synchro_data.fs = d_fs_in;
|
||||
*out[0] = current_synchro_data;
|
||||
if(d_dump)
|
||||
if (d_dump)
|
||||
{
|
||||
// MULTIPLEXED FILE RECORDING - Record results to file
|
||||
float prompt_I;
|
||||
@ -580,64 +742,97 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work (int noutput_items __
|
||||
double tmp_double;
|
||||
prompt_I = d_correlator_outs_16sc[1].real();
|
||||
prompt_Q = d_correlator_outs_16sc[1].imag();
|
||||
tmp_E = std::abs<float>(std::complex<float>(d_correlator_outs_16sc[0].real(),d_correlator_outs_16sc[0].imag()));
|
||||
tmp_P = std::abs<float>(std::complex<float>(d_correlator_outs_16sc[1].real(),d_correlator_outs_16sc[1].imag()));
|
||||
tmp_L = std::abs<float>(std::complex<float>(d_correlator_outs_16sc[2].real(),d_correlator_outs_16sc[2].imag()));
|
||||
tmp_E = std::abs<float>(
|
||||
std::complex<float>(d_correlator_outs_16sc[0].real(),
|
||||
d_correlator_outs_16sc[0].imag()));
|
||||
tmp_P = std::abs<float>(
|
||||
std::complex<float>(d_correlator_outs_16sc[1].real(),
|
||||
d_correlator_outs_16sc[1].imag()));
|
||||
tmp_L = std::abs<float>(
|
||||
std::complex<float>(d_correlator_outs_16sc[2].real(),
|
||||
d_correlator_outs_16sc[2].imag()));
|
||||
try
|
||||
{
|
||||
{
|
||||
// EPR
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_E), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_P), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_L), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_E),
|
||||
sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_P),
|
||||
sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_L),
|
||||
sizeof(float));
|
||||
// PROMPT I and Q (to analyze navigation symbols)
|
||||
d_dump_file.write(reinterpret_cast<char*>(&prompt_I), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&prompt_Q), sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&prompt_I),
|
||||
sizeof(float));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&prompt_Q),
|
||||
sizeof(float));
|
||||
// PRN start sample stamp
|
||||
//tmp_float=(float)d_sample_counter;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_sample_counter), sizeof(unsigned long int));
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_sample_counter),
|
||||
sizeof(unsigned long int));
|
||||
// accumulated carrier phase
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_acc_carrier_phase_cycles), sizeof(double));
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_acc_carrier_phase_cycles),
|
||||
sizeof(double));
|
||||
|
||||
// carrier and code frequency
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_freq_chips), sizeof(double));
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_carrier_doppler_hz),
|
||||
sizeof(double));
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_code_freq_chips),
|
||||
sizeof(double));
|
||||
|
||||
//PLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carr_phase_error_secs_Ti), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_doppler_hz), sizeof(double));
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_carr_phase_error_secs_Ti),
|
||||
sizeof(double));
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_carrier_doppler_hz),
|
||||
sizeof(double));
|
||||
|
||||
//DLL commands
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_error_chips_Ti), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_code_error_filt_chips_Ti), sizeof(double));
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_code_error_chips_Ti),
|
||||
sizeof(double));
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_code_error_filt_chips_Ti),
|
||||
sizeof(double));
|
||||
|
||||
// CN0 and carrier lock test
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_carrier_lock_test), sizeof(double));
|
||||
d_dump_file.write(reinterpret_cast<char*>(&d_CN0_SNV_dB_Hz),
|
||||
sizeof(double));
|
||||
d_dump_file.write(
|
||||
reinterpret_cast<char*>(&d_carrier_lock_test),
|
||||
sizeof(double));
|
||||
|
||||
// AUX vars (for debug purposes)
|
||||
tmp_double = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double), sizeof(double));
|
||||
}
|
||||
tmp_double = d_code_error_chips_Ti
|
||||
* CURRENT_INTEGRATION_TIME_S;
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double),
|
||||
sizeof(double));
|
||||
tmp_double = static_cast<double>(d_sample_counter
|
||||
+ d_correlation_length_samples);
|
||||
d_dump_file.write(reinterpret_cast<char*>(&tmp_double),
|
||||
sizeof(double));
|
||||
}
|
||||
catch (const std::ifstream::failure* e)
|
||||
{
|
||||
LOG(WARNING) << "Exception writing trk dump file " << e->what();
|
||||
}
|
||||
{
|
||||
LOG(WARNING) << "Exception writing trk dump file "
|
||||
<< e->what();
|
||||
}
|
||||
}
|
||||
|
||||
consume_each(d_correlation_length_samples); // this is necessary in gr::block derivates
|
||||
//consume_each(d_correlation_length_samples); // this is necessary in gr::block derivates
|
||||
d_sample_counter += d_correlation_length_samples; //count for the processed samples
|
||||
|
||||
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
|
||||
}
|
||||
|
||||
|
||||
void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::set_channel(unsigned int channel)
|
||||
{
|
||||
d_channel = channel;
|
||||
multicorrelator_fpga_8sc.set_channel(d_channel);
|
||||
|
||||
multicorrelator_fpga_8sc->set_channel(d_channel);
|
||||
LOG(INFO) << "Tracking Channel set to " << d_channel;
|
||||
// ############# ENABLE DATA FILE LOG #################
|
||||
if (d_dump == true)
|
||||
@ -645,23 +840,37 @@ void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::set_channel(unsigned int channel)
|
||||
if (d_dump_file.is_open() == false)
|
||||
{
|
||||
try
|
||||
{
|
||||
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
|
||||
{
|
||||
d_dump_filename.append(
|
||||
boost::lexical_cast<std::string>(
|
||||
d_channel));
|
||||
d_dump_filename.append(".dat");
|
||||
d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit);
|
||||
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
|
||||
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
|
||||
}
|
||||
d_dump_file.exceptions(
|
||||
std::ifstream::failbit
|
||||
| std::ifstream::badbit);
|
||||
d_dump_file.open(d_dump_filename.c_str(),
|
||||
std::ios::out | std::ios::binary);
|
||||
LOG(INFO) << "Tracking dump enabled on channel "
|
||||
<< d_channel << " Log file: "
|
||||
<< d_dump_filename.c_str();
|
||||
}
|
||||
catch (const std::ifstream::failure* e)
|
||||
{
|
||||
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e->what();
|
||||
}
|
||||
{
|
||||
LOG(WARNING) << "channel " << d_channel
|
||||
<< " Exception opening trk dump file "
|
||||
<< e->what();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
|
||||
void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::set_gnss_synchro(
|
||||
Gnss_Synchro* p_gnss_synchro)
|
||||
{
|
||||
d_acquisition_gnss_synchro = p_gnss_synchro;
|
||||
}
|
||||
|
||||
void gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::reset(void)
|
||||
{
|
||||
multicorrelator_fpga_8sc->unlock_channel();
|
||||
}
|
||||
|
@ -53,28 +53,19 @@
|
||||
|
||||
class gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc;
|
||||
|
||||
typedef boost::shared_ptr<gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc>
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc_sptr;
|
||||
typedef boost::shared_ptr<gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc> gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc_sptr;
|
||||
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc_sptr
|
||||
gps_l1_ca_dll_pll_c_aid_make_tracking_fpga_sc(long if_freq,
|
||||
long fs_in, unsigned
|
||||
int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
int extend_correlation_ms,
|
||||
float early_late_space_chips);
|
||||
|
||||
|
||||
gps_l1_ca_dll_pll_c_aid_make_tracking_fpga_sc(long if_freq, long fs_in, unsigned
|
||||
int vector_length, bool dump, std::string dump_filename, float pll_bw_hz,
|
||||
float dll_bw_hz, float pll_bw_narrow_hz, float dll_bw_narrow_hz,
|
||||
int extend_correlation_ms, float early_late_space_chips,
|
||||
std::string device_name, unsigned int device_base);
|
||||
|
||||
/*!
|
||||
* \brief This class implements a DLL + PLL tracking loop block
|
||||
*/
|
||||
class gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc: public gr::block
|
||||
class gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc : public gr::block
|
||||
{
|
||||
public:
|
||||
~gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc();
|
||||
@ -83,38 +74,30 @@ public:
|
||||
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
|
||||
void start_tracking();
|
||||
|
||||
int general_work (int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
|
||||
int general_work(int noutput_items, gr_vector_int &ninput_items,
|
||||
gr_vector_const_void_star &input_items,
|
||||
gr_vector_void_star &output_items);
|
||||
|
||||
void reset(void);
|
||||
|
||||
private:
|
||||
friend gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc_sptr
|
||||
gps_l1_ca_dll_pll_c_aid_make_tracking_fpga_sc(long if_freq,
|
||||
long fs_in, unsigned
|
||||
int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
int extend_correlation_ms,
|
||||
float early_late_space_chips);
|
||||
gps_l1_ca_dll_pll_c_aid_make_tracking_fpga_sc(long if_freq, long fs_in,
|
||||
unsigned
|
||||
int vector_length, bool dump, std::string dump_filename,
|
||||
float pll_bw_hz, float dll_bw_hz, float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz, int extend_correlation_ms,
|
||||
float early_late_space_chips, std::string device_name,
|
||||
unsigned int device_base);
|
||||
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc(long if_freq,
|
||||
long fs_in, unsigned
|
||||
int vector_length,
|
||||
bool dump,
|
||||
std::string dump_filename,
|
||||
float pll_bw_hz,
|
||||
float dll_bw_hz,
|
||||
float pll_bw_narrow_hz,
|
||||
float dll_bw_narrow_hz,
|
||||
int extend_correlation_ms,
|
||||
float early_late_space_chips);
|
||||
gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc(long if_freq, long fs_in, unsigned
|
||||
int vector_length, bool dump, std::string dump_filename, float pll_bw_hz,
|
||||
float dll_bw_hz, float pll_bw_narrow_hz, float dll_bw_narrow_hz,
|
||||
int extend_correlation_ms, float early_late_space_chips,
|
||||
std::string device_name, unsigned int device_base);
|
||||
|
||||
// tracking configuration vars
|
||||
unsigned int d_vector_length;
|
||||
bool d_dump;
|
||||
unsigned int d_vector_length;bool d_dump;
|
||||
|
||||
Gnss_Synchro* d_acquisition_gnss_synchro;
|
||||
unsigned int d_channel;
|
||||
@ -128,9 +111,9 @@ private:
|
||||
gr_complex* d_ca_code;
|
||||
lv_16sc_t* d_ca_code_16sc;
|
||||
float* d_local_code_shift_chips;
|
||||
//gr_complex* d_correlator_outs;
|
||||
lv_16sc_t* d_correlator_outs_16sc;
|
||||
fpga_multicorrelator_8sc multicorrelator_fpga_8sc;
|
||||
//fpga_multicorrelator_8sc multicorrelator_fpga_8sc;
|
||||
std::shared_ptr<fpga_multicorrelator_8sc> multicorrelator_fpga_8sc;
|
||||
|
||||
// remaining code phase and carrier phase between tracking loops
|
||||
double d_rem_code_phase_samples;
|
||||
@ -161,9 +144,7 @@ private:
|
||||
double d_carr_phase_error_secs_Ti;
|
||||
double d_code_error_chips_Ti;
|
||||
double d_preamble_timestamp_s;
|
||||
int d_extend_correlation_ms;
|
||||
bool d_enable_extended_integration;
|
||||
bool d_preamble_synchronized;
|
||||
int d_extend_correlation_ms;bool d_enable_extended_integration;bool d_preamble_synchronized;
|
||||
double d_code_error_filt_chips_s;
|
||||
double d_code_error_filt_chips_Ti;
|
||||
void msg_handler_preamble_index(pmt::pmt_t msg);
|
||||
@ -189,8 +170,7 @@ private:
|
||||
int d_carrier_lock_fail_counter;
|
||||
|
||||
// control vars
|
||||
bool d_enable_tracking;
|
||||
bool d_pull_in;
|
||||
bool d_enable_tracking;bool d_pull_in;
|
||||
|
||||
// file dump
|
||||
std::string d_dump_filename;
|
||||
|
@ -60,6 +60,9 @@
|
||||
// logging
|
||||
#include <glog/logging.h>
|
||||
|
||||
// string manipulation
|
||||
#include <string>
|
||||
|
||||
#define PAGE_SIZE 0x10000
|
||||
#define MAX_LENGTH_DEVICEIO_NAME 50
|
||||
#define CODE_RESAMPLER_NUM_BITS_PRECISION 20
|
||||
@ -69,31 +72,18 @@
|
||||
#define PHASE_CARR_NBITS 32
|
||||
#define PHASE_CARR_NBITS_INT 1
|
||||
#define PHASE_CARR_NBITS_FRAC PHASE_CARR_NBITS - PHASE_CARR_NBITS_INT
|
||||
|
||||
|
||||
|
||||
bool fpga_multicorrelator_8sc::init(int n_correlators)
|
||||
{
|
||||
d_n_correlators = n_correlators;
|
||||
|
||||
// instantiate variable length vectors
|
||||
d_initial_index = static_cast<unsigned*>(volk_gnsssdr_malloc(n_correlators * sizeof(unsigned), volk_gnsssdr_get_alignment()));
|
||||
d_initial_interp_counter = static_cast<unsigned*>(volk_gnsssdr_malloc(n_correlators * sizeof(unsigned), volk_gnsssdr_get_alignment()));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#define LOCAL_CODE_FPGA_CORRELATOR_SELECT_COUNT 0x20000000
|
||||
#define LOCAL_CODE_FPGA_CLEAR_ADDRESS_COUNTER 0x10000000
|
||||
#define LOCAL_CODE_FPGA_ENABLE_WRITE_MEMORY 0x0C000000
|
||||
#define TEST_REGISTER_TRACK_WRITEVAL 0x55AA
|
||||
|
||||
void fpga_multicorrelator_8sc::set_initial_sample(int samples_offset)
|
||||
{
|
||||
d_initial_sample_counter = samples_offset;
|
||||
}
|
||||
|
||||
|
||||
bool fpga_multicorrelator_8sc::set_local_code_and_taps(
|
||||
int code_length_chips,
|
||||
const lv_16sc_t* local_code_in,
|
||||
float *shifts_chips)
|
||||
bool fpga_multicorrelator_8sc::set_local_code_and_taps(int code_length_chips,
|
||||
const lv_16sc_t* local_code_in, float *shifts_chips)
|
||||
{
|
||||
d_local_code_in = local_code_in;
|
||||
d_shifts_chips = shifts_chips;
|
||||
@ -104,7 +94,6 @@ bool fpga_multicorrelator_8sc::set_local_code_and_taps(
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool fpga_multicorrelator_8sc::set_output_vectors(lv_16sc_t* corr_out)
|
||||
{
|
||||
// Save CPU pointers
|
||||
@ -113,7 +102,6 @@ bool fpga_multicorrelator_8sc::set_output_vectors(lv_16sc_t* corr_out)
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
void fpga_multicorrelator_8sc::update_local_code(float rem_code_phase_chips)
|
||||
{
|
||||
d_rem_code_phase_chips = rem_code_phase_chips;
|
||||
@ -122,12 +110,9 @@ void fpga_multicorrelator_8sc::update_local_code(float rem_code_phase_chips)
|
||||
fpga_multicorrelator_8sc::fpga_configure_code_parameters_in_fpga();
|
||||
}
|
||||
|
||||
|
||||
bool fpga_multicorrelator_8sc::Carrier_wipeoff_multicorrelator_resampler(
|
||||
float rem_carrier_phase_in_rad,
|
||||
float phase_step_rad,
|
||||
float rem_code_phase_chips,
|
||||
float code_phase_step_chips,
|
||||
float rem_carrier_phase_in_rad, float phase_step_rad,
|
||||
float rem_code_phase_chips, float code_phase_step_chips,
|
||||
int signal_length_samples)
|
||||
{
|
||||
update_local_code(rem_code_phase_chips);
|
||||
@ -144,7 +129,7 @@ bool fpga_multicorrelator_8sc::Carrier_wipeoff_multicorrelator_resampler(
|
||||
int irq_count;
|
||||
ssize_t nb;
|
||||
// wait for interrupt
|
||||
nb=read(d_fd, &irq_count, sizeof(irq_count));
|
||||
nb = read(d_device_descriptor, &irq_count, sizeof(irq_count));
|
||||
if (nb != sizeof(irq_count))
|
||||
{
|
||||
printf("Tracking_module Read failed to retrive 4 bytes!\n");
|
||||
@ -156,26 +141,47 @@ bool fpga_multicorrelator_8sc::Carrier_wipeoff_multicorrelator_resampler(
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
fpga_multicorrelator_8sc::fpga_multicorrelator_8sc()
|
||||
fpga_multicorrelator_8sc::fpga_multicorrelator_8sc(int n_correlators,
|
||||
std::string device_name, unsigned int device_base)
|
||||
{
|
||||
|
||||
d_n_correlators = n_correlators;
|
||||
d_device_name = device_name;
|
||||
d_device_base = device_base;
|
||||
d_device_descriptor = 0;
|
||||
d_map_base = nullptr;
|
||||
|
||||
// instantiate variable length vectors
|
||||
d_initial_index = static_cast<unsigned*>(volk_gnsssdr_malloc(
|
||||
n_correlators * sizeof(unsigned), volk_gnsssdr_get_alignment()));
|
||||
d_initial_interp_counter = static_cast<unsigned*>(volk_gnsssdr_malloc(
|
||||
n_correlators * sizeof(unsigned), volk_gnsssdr_get_alignment()));
|
||||
|
||||
d_local_code_in = nullptr;
|
||||
d_shifts_chips = nullptr;
|
||||
d_corr_out = nullptr;
|
||||
d_code_length_chips = 0;
|
||||
d_n_correlators = 0;
|
||||
}
|
||||
d_rem_code_phase_chips = 0;
|
||||
d_code_phase_step_chips = 0;
|
||||
d_rem_carrier_phase_in_rad = 0;
|
||||
d_phase_step_rad = 0;
|
||||
d_rem_carr_phase_rad_int = 0;
|
||||
d_phase_step_rad_int = 0;
|
||||
d_initial_sample_counter = 0;
|
||||
|
||||
d_channel = 0;
|
||||
d_correlator_length_samples = 0;
|
||||
}
|
||||
|
||||
fpga_multicorrelator_8sc::~fpga_multicorrelator_8sc()
|
||||
{
|
||||
close(d_fd);
|
||||
close(d_device_descriptor);
|
||||
}
|
||||
|
||||
|
||||
bool fpga_multicorrelator_8sc::free()
|
||||
{
|
||||
// unlock the hardware
|
||||
|
||||
fpga_multicorrelator_8sc::unlock_channel(); // unlock the channel
|
||||
|
||||
// free the FPGA dynamically created variables
|
||||
@ -194,29 +200,40 @@ bool fpga_multicorrelator_8sc::free()
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
void fpga_multicorrelator_8sc::set_channel(unsigned int channel)
|
||||
{
|
||||
char device_io_name[MAX_LENGTH_DEVICEIO_NAME]; // driver io name
|
||||
|
||||
d_channel = channel;
|
||||
|
||||
snprintf(d_device_io_name, MAX_LENGTH_DEVICEIO_NAME, "/dev/uio%d",d_channel);
|
||||
printf("Opening Device Name : %s\n", d_device_io_name);
|
||||
// open the device corresponding to the assigned channel
|
||||
std::string mergedname;
|
||||
std::stringstream devicebasetemp;
|
||||
|
||||
if ((d_fd = open(d_device_io_name, O_RDWR | O_SYNC )) == -1)
|
||||
int numdevice = d_device_base + d_channel;
|
||||
devicebasetemp << numdevice;
|
||||
mergedname = d_device_name + devicebasetemp.str();
|
||||
strcpy(device_io_name, mergedname.c_str());
|
||||
printf("Opening Device Name : %s\n", device_io_name);
|
||||
if ((d_device_descriptor = open(device_io_name, O_RDWR | O_SYNC)) == -1)
|
||||
{
|
||||
LOG(WARNING) << "Cannot open deviceio" << d_device_io_name;
|
||||
LOG(WARNING) << "Cannot open deviceio" << device_io_name;
|
||||
}
|
||||
d_map_base = (volatile unsigned *)mmap(NULL, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, d_fd,0);
|
||||
|
||||
d_map_base = (volatile unsigned *) mmap(NULL, PAGE_SIZE,
|
||||
PROT_READ | PROT_WRITE, MAP_SHARED, d_device_descriptor, 0);
|
||||
|
||||
if (d_map_base == (void *) -1)
|
||||
{
|
||||
LOG(WARNING) << "Cannot map the FPGA tracking module " << d_channel << "into user memory";
|
||||
LOG(WARNING) << "Cannot map the FPGA tracking module "
|
||||
<< d_channel << "into user memory";
|
||||
}
|
||||
|
||||
// sanity check : check test register
|
||||
unsigned writeval = 0x55AA;
|
||||
unsigned writeval = TEST_REGISTER_TRACK_WRITEVAL;
|
||||
unsigned readval;
|
||||
readval = fpga_multicorrelator_8sc::fpga_acquisition_test_register(writeval);
|
||||
readval = fpga_multicorrelator_8sc::fpga_acquisition_test_register(
|
||||
writeval);
|
||||
if (writeval != readval)
|
||||
{
|
||||
LOG(WARNING) << "Test register sanity check failed";
|
||||
@ -228,8 +245,8 @@ void fpga_multicorrelator_8sc::set_channel(unsigned int channel)
|
||||
|
||||
}
|
||||
|
||||
|
||||
unsigned fpga_multicorrelator_8sc::fpga_acquisition_test_register(unsigned writeval)
|
||||
unsigned fpga_multicorrelator_8sc::fpga_acquisition_test_register(
|
||||
unsigned writeval)
|
||||
{
|
||||
unsigned readval;
|
||||
// write value to test register
|
||||
@ -240,113 +257,110 @@ unsigned fpga_multicorrelator_8sc::fpga_acquisition_test_register(unsigned write
|
||||
return readval;
|
||||
}
|
||||
|
||||
|
||||
void fpga_multicorrelator_8sc::fpga_configure_tracking_gps_local_code(void)
|
||||
{
|
||||
int k,s;
|
||||
unsigned temp;
|
||||
unsigned *ena_write_signals;
|
||||
ena_write_signals = new unsigned[d_n_correlators];
|
||||
ena_write_signals[0] = 0x00000000;
|
||||
ena_write_signals[1] = 0x20000000;
|
||||
for (s = 2; s < d_n_correlators; s++)
|
||||
{
|
||||
ena_write_signals[s]= ena_write_signals[s-1]*2; //0x40000000;
|
||||
}
|
||||
|
||||
int k, s;
|
||||
unsigned code_chip;
|
||||
unsigned select_fpga_correlator;
|
||||
|
||||
select_fpga_correlator = 0;
|
||||
|
||||
for (s = 0; s < d_n_correlators; s++)
|
||||
{
|
||||
// clear memory address counter
|
||||
d_map_base[11] = 0x10000000;
|
||||
// write correlator 0
|
||||
|
||||
d_map_base[11] = LOCAL_CODE_FPGA_CLEAR_ADDRESS_COUNTER;
|
||||
for (k = 0; k < d_code_length_chips; k++)
|
||||
{
|
||||
if (lv_creal(d_local_code_in[k]) == 1)
|
||||
{
|
||||
temp = 1;
|
||||
code_chip = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
temp = 0;
|
||||
code_chip = 0;
|
||||
}
|
||||
d_map_base[11] = 0x0C000000 | (temp & 0xFFFF) | ena_write_signals[s];
|
||||
// copy the local code to the FPGA memory one by one
|
||||
d_map_base[11] = LOCAL_CODE_FPGA_ENABLE_WRITE_MEMORY
|
||||
| code_chip | select_fpga_correlator;
|
||||
}
|
||||
select_fpga_correlator = select_fpga_correlator
|
||||
+ LOCAL_CODE_FPGA_CORRELATOR_SELECT_COUNT;
|
||||
}
|
||||
|
||||
delete [] ena_write_signals;
|
||||
}
|
||||
|
||||
|
||||
void fpga_multicorrelator_8sc::fpga_compute_code_shift_parameters(void)
|
||||
{
|
||||
float tempvalues[3];
|
||||
float tempvalues2[3];
|
||||
float tempvalues3[3];
|
||||
float temp_calculation;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < d_n_correlators; i++)
|
||||
{
|
||||
// initial index calculation
|
||||
tempvalues[i] = floor(d_shifts_chips[i] + d_rem_code_phase_chips);
|
||||
if (tempvalues[i] < 0)
|
||||
temp_calculation = floor(
|
||||
d_shifts_chips[i] + d_rem_code_phase_chips);
|
||||
if (temp_calculation < 0)
|
||||
{
|
||||
tempvalues2[i] = tempvalues[i] + d_code_length_chips; // % operator does not work as in Matlab with negative numbers
|
||||
temp_calculation = temp_calculation + d_code_length_chips; // % operator does not work as in Matlab with negative numbers
|
||||
}
|
||||
else
|
||||
{
|
||||
tempvalues2[i] = tempvalues[i];
|
||||
}
|
||||
d_initial_index[i] = (unsigned) ((int) tempvalues2[i]) % d_code_length_chips;
|
||||
d_initial_index[i] = (unsigned) ((int) temp_calculation)
|
||||
% d_code_length_chips;
|
||||
|
||||
// initial interpolator counter calculation
|
||||
tempvalues3[i] = fmod(d_shifts_chips[i]+ d_rem_code_phase_chips,1.0);
|
||||
if (tempvalues3[i] < 0)
|
||||
temp_calculation = fmod(d_shifts_chips[i] + d_rem_code_phase_chips,
|
||||
1.0);
|
||||
if (temp_calculation < 0)
|
||||
{
|
||||
tempvalues3[i] = tempvalues3[i] + 1.0; // fmod operator does not work as in Matlab with negative numbers
|
||||
temp_calculation = temp_calculation + 1.0; // fmod operator does not work as in Matlab with negative numbers
|
||||
}
|
||||
d_initial_interp_counter[i] = (unsigned) floor(MAX_CODE_RESAMPLER_COUNTER * tempvalues3[i]);
|
||||
d_initial_interp_counter[i] = (unsigned) floor(
|
||||
MAX_CODE_RESAMPLER_COUNTER * temp_calculation);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void fpga_multicorrelator_8sc::fpga_configure_code_parameters_in_fpga(void)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < d_n_correlators; i++)
|
||||
{
|
||||
d_map_base[1+i] = d_initial_index[i];
|
||||
d_map_base[1 + i] = d_initial_index[i];
|
||||
d_map_base[1 + d_n_correlators + i] = d_initial_interp_counter[i];
|
||||
}
|
||||
d_map_base[8] = d_code_length_chips - 1; // number of samples - 1
|
||||
}
|
||||
|
||||
|
||||
void fpga_multicorrelator_8sc::fpga_compute_signal_parameters_in_fpga(void)
|
||||
{
|
||||
float d_rem_carrier_phase_in_rad_temp;
|
||||
|
||||
d_code_phase_step_chips_num = (unsigned) roundf(MAX_CODE_RESAMPLER_COUNTER * d_code_phase_step_chips);
|
||||
d_code_phase_step_chips_num = (unsigned) roundf(
|
||||
MAX_CODE_RESAMPLER_COUNTER * d_code_phase_step_chips);
|
||||
|
||||
if (d_rem_carrier_phase_in_rad > M_PI)
|
||||
{
|
||||
d_rem_carrier_phase_in_rad_temp = -2*M_PI + d_rem_carrier_phase_in_rad;
|
||||
d_rem_carrier_phase_in_rad_temp = -2 * M_PI
|
||||
+ d_rem_carrier_phase_in_rad;
|
||||
}
|
||||
else if (d_rem_carrier_phase_in_rad < - M_PI)
|
||||
else if (d_rem_carrier_phase_in_rad < -M_PI)
|
||||
{
|
||||
d_rem_carrier_phase_in_rad_temp = 2*M_PI + d_rem_carrier_phase_in_rad;
|
||||
d_rem_carrier_phase_in_rad_temp = 2 * M_PI
|
||||
+ d_rem_carrier_phase_in_rad;
|
||||
}
|
||||
else
|
||||
{
|
||||
d_rem_carrier_phase_in_rad_temp = d_rem_carrier_phase_in_rad;
|
||||
}
|
||||
|
||||
d_rem_carr_phase_rad_int = (int) roundf((fabs(d_rem_carrier_phase_in_rad_temp)/M_PI)*pow(2, PHASE_CARR_NBITS_FRAC));
|
||||
d_rem_carr_phase_rad_int = (int) roundf(
|
||||
(fabs(d_rem_carrier_phase_in_rad_temp) / M_PI)
|
||||
* pow(2, PHASE_CARR_NBITS_FRAC));
|
||||
|
||||
if (d_rem_carrier_phase_in_rad_temp < 0)
|
||||
{
|
||||
d_rem_carr_phase_rad_int = -d_rem_carr_phase_rad_int;
|
||||
}
|
||||
d_phase_step_rad_int = (int) roundf((fabs(d_phase_step_rad)/M_PI)*pow(2, PHASE_CARR_NBITS_FRAC)); // the FPGA accepts a range for the phase step between -pi and +pi
|
||||
d_phase_step_rad_int = (int) roundf(
|
||||
(fabs(d_phase_step_rad) / M_PI) * pow(2, PHASE_CARR_NBITS_FRAC)); // the FPGA accepts a range for the phase step between -pi and +pi
|
||||
|
||||
if (d_phase_step_rad < 0)
|
||||
{
|
||||
@ -354,68 +368,60 @@ void fpga_multicorrelator_8sc::fpga_compute_signal_parameters_in_fpga(void)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void fpga_multicorrelator_8sc::fpga_configure_signal_parameters_in_fpga(void)
|
||||
{
|
||||
d_map_base[0] = d_code_phase_step_chips_num;
|
||||
d_map_base[7] = d_correlator_length_samples - 1;
|
||||
d_map_base[9] = d_rem_carr_phase_rad_int;
|
||||
d_map_base[10] = d_phase_step_rad_int;
|
||||
d_map_base[12] = 0; // lock the channel
|
||||
d_map_base[13] = d_initial_sample_counter;
|
||||
}
|
||||
|
||||
|
||||
void fpga_multicorrelator_8sc::fpga_launch_multicorrelator_fpga(void)
|
||||
{
|
||||
// enable interrupts
|
||||
int reenable = 1;
|
||||
write(d_fd, (void *)&reenable, sizeof(int));
|
||||
write(d_device_descriptor, (void *) &reenable, sizeof(int));
|
||||
|
||||
d_map_base[14] = 0; // writing anything to reg 14 launches the tracking
|
||||
}
|
||||
|
||||
|
||||
void fpga_multicorrelator_8sc::read_tracking_gps_results(void)
|
||||
{
|
||||
int *readval_real;
|
||||
int *readval_imag;
|
||||
int readval_real;
|
||||
int readval_imag;
|
||||
int k;
|
||||
readval_real = new int[d_n_correlators];
|
||||
readval_imag = new int[d_n_correlators];
|
||||
|
||||
for (k =0 ; k < d_n_correlators; k++)
|
||||
{
|
||||
readval_real[k] = d_map_base[1 + k];
|
||||
if (readval_real[k] >= 1048576) // 0x100000 (21 bits two's complement)
|
||||
{
|
||||
readval_real[k] = -2097152 + readval_real[k];
|
||||
}
|
||||
readval_real[k] = readval_real[k] * 2; // the results are shifted two bits to the left due to the complex multiplier in the FPGA
|
||||
|
||||
}
|
||||
for (k = 0; k < d_n_correlators; k++)
|
||||
{
|
||||
readval_imag[k] = d_map_base[1 + d_n_correlators + k];
|
||||
if (readval_imag[k] >= 1048576) // 0x100000 (21 bits two's complement)
|
||||
{
|
||||
readval_imag[k] = -2097152 + readval_imag[k];
|
||||
}
|
||||
readval_imag[k] = readval_imag[k] * 2; // the results are shifted two bits to the left due to the complex multiplier in the FPGA
|
||||
}
|
||||
|
||||
for (k = 0; k < d_n_correlators; k++)
|
||||
{
|
||||
d_corr_out[k] = lv_cmake(readval_real[k], readval_imag[k]);
|
||||
readval_real = d_map_base[1 + k];
|
||||
if (readval_real >= 1048576) // 0x100000 (21 bits two's complement)
|
||||
{
|
||||
readval_real = -2097152 + readval_real;
|
||||
}
|
||||
readval_real = readval_real * 2; // the results are shifted two bits to the left due to the complex multiplier in the FPGA
|
||||
|
||||
readval_imag = d_map_base[1 + d_n_correlators + k];
|
||||
if (readval_imag >= 1048576) // 0x100000 (21 bits two's complement)
|
||||
{
|
||||
readval_imag = -2097152 + readval_imag;
|
||||
}
|
||||
readval_imag = readval_imag * 2; // the results are shifted two bits to the left due to the complex multiplier in the FPGA
|
||||
|
||||
d_corr_out[k] = lv_cmake(readval_real, readval_imag);
|
||||
}
|
||||
|
||||
delete[] readval_real;
|
||||
delete[] readval_imag;
|
||||
}
|
||||
|
||||
|
||||
void fpga_multicorrelator_8sc::unlock_channel(void)
|
||||
{
|
||||
// unlock the channel to let the next samples go through
|
||||
d_map_base[12] = 1; // unlock the channel
|
||||
}
|
||||
|
||||
void fpga_multicorrelator_8sc::lock_channel(void)
|
||||
{
|
||||
// lock the channel for processing
|
||||
d_map_base[12] = 0; // lock the channel
|
||||
}
|
||||
|
||||
|
@ -39,7 +39,6 @@
|
||||
|
||||
#include <volk_gnsssdr/volk_gnsssdr.h>
|
||||
|
||||
|
||||
#define MAX_LENGTH_DEVICEIO_NAME 50
|
||||
|
||||
/*!
|
||||
@ -48,17 +47,20 @@
|
||||
class fpga_multicorrelator_8sc
|
||||
{
|
||||
public:
|
||||
fpga_multicorrelator_8sc();
|
||||
~fpga_multicorrelator_8sc();
|
||||
bool init(int n_correlators);
|
||||
bool set_local_code_and_taps(int code_length_chips, const lv_16sc_t* local_code_in, float *shifts_chips);
|
||||
bool set_output_vectors(lv_16sc_t* corr_out);
|
||||
void update_local_code(float rem_code_phase_chips);
|
||||
bool Carrier_wipeoff_multicorrelator_resampler(float rem_carrier_phase_in_rad, float phase_step_rad, float rem_code_phase_chips, float code_phase_step_chips, int signal_length_samples);
|
||||
bool free();
|
||||
fpga_multicorrelator_8sc(int n_correlators, std::string device_name,
|
||||
unsigned int device_base);
|
||||
~fpga_multicorrelator_8sc();bool set_local_code_and_taps(
|
||||
int code_length_chips, const lv_16sc_t* local_code_in,
|
||||
float *shifts_chips);bool set_output_vectors(lv_16sc_t* corr_out);
|
||||
void update_local_code(float rem_code_phase_chips);bool Carrier_wipeoff_multicorrelator_resampler(
|
||||
float rem_carrier_phase_in_rad, float phase_step_rad,
|
||||
float rem_code_phase_chips, float code_phase_step_chips,
|
||||
int signal_length_samples);bool free();
|
||||
|
||||
void set_channel(unsigned int channel);
|
||||
void set_initial_sample(int samples_offset);
|
||||
void lock_channel(void);
|
||||
void unlock_channel(void);
|
||||
|
||||
private:
|
||||
const lv_16sc_t *d_local_code_in;
|
||||
@ -68,38 +70,45 @@ private:
|
||||
int d_n_correlators;
|
||||
|
||||
// data related to the hardware module and the driver
|
||||
char d_device_io_name[MAX_LENGTH_DEVICEIO_NAME]; // driver io name
|
||||
int d_fd; // driver descriptor
|
||||
volatile unsigned *d_map_base; // driver memory map
|
||||
int d_device_descriptor; // driver descriptor
|
||||
volatile unsigned *d_map_base; // driver memory map
|
||||
|
||||
// configuration data received from the interface
|
||||
unsigned int d_channel; // channel number
|
||||
unsigned d_ncorrelators; // number of correlators
|
||||
unsigned int d_channel; // channel number
|
||||
unsigned d_ncorrelators; // number of correlators
|
||||
unsigned d_correlator_length_samples;
|
||||
float d_rem_code_phase_chips;
|
||||
float d_code_phase_step_chips;
|
||||
float d_rem_carrier_phase_in_rad;
|
||||
float d_phase_step_rad;
|
||||
|
||||
|
||||
// configuration data computed in the format that the FPGA expects
|
||||
unsigned *d_initial_index;
|
||||
unsigned *d_initial_interp_counter;
|
||||
unsigned *d_initial_index;
|
||||
unsigned *d_initial_interp_counter;
|
||||
unsigned d_code_phase_step_chips_num;
|
||||
int d_rem_carr_phase_rad_int;
|
||||
int d_phase_step_rad_int;
|
||||
unsigned d_initial_sample_counter;
|
||||
|
||||
// driver
|
||||
std::string d_device_name;
|
||||
unsigned int d_device_base;
|
||||
|
||||
// results
|
||||
//int *d_readval_real;
|
||||
//int *d_readval_imag;
|
||||
// FPGA private functions
|
||||
unsigned fpga_acquisition_test_register(unsigned writeval);
|
||||
void fpga_configure_tracking_gps_local_code(void);
|
||||
void fpga_configure_tracking_gps_local_code(void);
|
||||
void fpga_compute_code_shift_parameters(void);
|
||||
void fpga_configure_code_parameters_in_fpga(void);
|
||||
void fpga_compute_signal_parameters_in_fpga(void);
|
||||
void fpga_configure_signal_parameters_in_fpga(void);
|
||||
void fpga_launch_multicorrelator_fpga(void);
|
||||
void read_tracking_gps_results(void);
|
||||
void unlock_channel(void);
|
||||
|
||||
//void unlock_channel(void);
|
||||
|
||||
};
|
||||
|
||||
|
||||
#endif /* GNSS_SDR_FPGA_MULTICORRELATOR_H_ */
|
||||
|
@ -29,9 +29,6 @@
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
#include <cstdlib>
|
||||
#include <iostream>
|
||||
#include <boost/make_shared.hpp>
|
||||
@ -54,21 +51,21 @@
|
||||
|
||||
#include <unistd.h>
|
||||
|
||||
#define DMA_ACQ_TRANSFER_SIZE 4000
|
||||
#define DMA_ACQ_TRANSFER_SIZE 2046 // DMA transfer size for the acquisition
|
||||
#define RX_SIGNAL_MAX_VALUE 127 // 2^7 - 1 for 8-bit signed values
|
||||
#define NTIMES_CYCLE_THROUGH_RX_SAMPLES_FILE 50 // number of times we cycle through the file containing the received samples
|
||||
#define ONE_SECOND 1000000 // one second in microseconds
|
||||
#define FLOAT_SIZE (sizeof(float)) // size of the float variable in characters
|
||||
|
||||
|
||||
// thread that reads the file containing the received samples, scales the samples to the dynamic range of the fixed point values, sends
|
||||
// the samples to the DMA and finally it stops the top block
|
||||
void thread_acquisition_send_rx_samples(gr::top_block_sptr top_block, const char * file_name)
|
||||
void thread_acquisition_send_rx_samples(gr::top_block_sptr top_block,
|
||||
const char * file_name)
|
||||
{
|
||||
|
||||
FILE *ptr_myfile; // file descriptor
|
||||
int fileLen; // length of the file containing the received samples
|
||||
int tx_fd; // DMA descriptor
|
||||
FILE *rx_signal_file; // file descriptor
|
||||
int file_length; // length of the file containing the received samples
|
||||
int dma_descr; // DMA descriptor
|
||||
|
||||
// sleep for 1 second to give some time to GNSS-SDR to activate the acquisition module.
|
||||
// the acquisition module does not block the RX buffer before activation.
|
||||
@ -77,113 +74,112 @@ void thread_acquisition_send_rx_samples(gr::top_block_sptr top_block, const char
|
||||
// we want for the test
|
||||
usleep(ONE_SECOND);
|
||||
|
||||
char *buffer_temp; // temporary buffer to convert from binary char to float and from float to char
|
||||
signed char *buffer_char; // temporary buffer to store the samples to be sent to the DMA
|
||||
buffer_temp = (char *)malloc(FLOAT_SIZE); // allocate space for the temporary buffer
|
||||
if (!buffer_temp)
|
||||
{
|
||||
fprintf(stderr, "Memory error!");
|
||||
}
|
||||
char *buffer_float; // temporary buffer to convert from binary char to float and from float to char
|
||||
signed char *buffer_DMA; // temporary buffer to store the samples to be sent to the DMA
|
||||
buffer_float = (char *) malloc(FLOAT_SIZE); // allocate space for the temporary buffer
|
||||
if (!buffer_float)
|
||||
{
|
||||
fprintf(stderr, "Memory error!");
|
||||
}
|
||||
|
||||
ptr_myfile = fopen(file_name,"rb"); // file containing the received signal
|
||||
if (!ptr_myfile)
|
||||
{
|
||||
printf("Unable to open file!");
|
||||
}
|
||||
rx_signal_file = fopen(file_name, "rb"); // file containing the received signal
|
||||
if (!rx_signal_file)
|
||||
{
|
||||
printf("Unable to open file!");
|
||||
}
|
||||
|
||||
// determine the length of the file that contains the received signal
|
||||
fseek(ptr_myfile, 0, SEEK_END);
|
||||
fileLen = ftell(ptr_myfile);
|
||||
fseek(ptr_myfile, 0, SEEK_SET);
|
||||
// determine the length of the file that contains the received signal
|
||||
fseek(rx_signal_file, 0, SEEK_END);
|
||||
file_length = ftell(rx_signal_file);
|
||||
fseek(rx_signal_file, 0, SEEK_SET);
|
||||
|
||||
// first step: check for the maximum value of the received signal
|
||||
|
||||
float max = 0;
|
||||
float *pointer_float;
|
||||
pointer_float = (float *) &buffer_temp[0];
|
||||
for (int k=0;k<fileLen;k=k+FLOAT_SIZE)
|
||||
{
|
||||
fread(buffer_temp, FLOAT_SIZE, 1, ptr_myfile);
|
||||
float max = 0;
|
||||
float *pointer_float;
|
||||
pointer_float = (float *) &buffer_float[0];
|
||||
for (int k = 0; k < file_length; k = k + FLOAT_SIZE)
|
||||
{
|
||||
fread(buffer_float, FLOAT_SIZE, 1, rx_signal_file);
|
||||
|
||||
if (fabs(pointer_float[0]) > max)
|
||||
{
|
||||
max = (pointer_float[0]);
|
||||
}
|
||||
if (fabs(pointer_float[0]) > max)
|
||||
{
|
||||
max = (pointer_float[0]);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// go back to the beginning of the file containing the received samples
|
||||
fseek(ptr_myfile, 0, SEEK_SET);
|
||||
// go back to the beginning of the file containing the received samples
|
||||
fseek(rx_signal_file, 0, SEEK_SET);
|
||||
|
||||
// allocate memory for the samples to be transferred to the DMA
|
||||
// allocate memory for the samples to be transferred to the DMA
|
||||
|
||||
buffer_char = (signed char *)malloc(DMA_ACQ_TRANSFER_SIZE);
|
||||
if (!buffer_char)
|
||||
{
|
||||
fprintf(stderr, "Memory error!");
|
||||
}
|
||||
buffer_DMA = (signed char *) malloc(DMA_ACQ_TRANSFER_SIZE);
|
||||
if (!buffer_DMA)
|
||||
{
|
||||
fprintf(stderr, "Memory error!");
|
||||
}
|
||||
|
||||
// open the DMA descriptor
|
||||
tx_fd = open("/dev/loop_tx", O_WRONLY);
|
||||
if ( tx_fd < 0 )
|
||||
{
|
||||
printf("can't open loop device\n");
|
||||
exit(1);
|
||||
}
|
||||
// open the DMA descriptor
|
||||
dma_descr = open("/dev/loop_tx", O_WRONLY);
|
||||
if (dma_descr < 0)
|
||||
{
|
||||
printf("can't open loop device\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// cycle through the file containing the received samples
|
||||
|
||||
// cycle through the file containing the received samples
|
||||
for (int k = 0; k < NTIMES_CYCLE_THROUGH_RX_SAMPLES_FILE; k++)
|
||||
{
|
||||
|
||||
for (int k=0;k<NTIMES_CYCLE_THROUGH_RX_SAMPLES_FILE;k++)
|
||||
{
|
||||
fseek(rx_signal_file, 0, SEEK_SET);
|
||||
|
||||
int transfer_size;
|
||||
int num_transferred_samples = 0;
|
||||
while (num_transferred_samples < (int) (file_length / FLOAT_SIZE))
|
||||
{
|
||||
if (((file_length / FLOAT_SIZE) - num_transferred_samples)
|
||||
> DMA_ACQ_TRANSFER_SIZE)
|
||||
{
|
||||
|
||||
fseek(ptr_myfile, 0, SEEK_SET);
|
||||
transfer_size = DMA_ACQ_TRANSFER_SIZE;
|
||||
num_transferred_samples = num_transferred_samples
|
||||
+ DMA_ACQ_TRANSFER_SIZE;
|
||||
|
||||
int transfer_size;
|
||||
int num_transferred_samples = 0;
|
||||
while (num_transferred_samples < (int) (fileLen/FLOAT_SIZE))
|
||||
{
|
||||
if (((fileLen/FLOAT_SIZE) - num_transferred_samples) > DMA_ACQ_TRANSFER_SIZE)
|
||||
{
|
||||
}
|
||||
else
|
||||
{
|
||||
transfer_size = file_length / FLOAT_SIZE
|
||||
- num_transferred_samples;
|
||||
num_transferred_samples = file_length / FLOAT_SIZE;
|
||||
}
|
||||
|
||||
for (int t = 0; t < transfer_size; t++)
|
||||
{
|
||||
fread(buffer_float, FLOAT_SIZE, 1, rx_signal_file);
|
||||
|
||||
transfer_size = DMA_ACQ_TRANSFER_SIZE;
|
||||
num_transferred_samples = num_transferred_samples + DMA_ACQ_TRANSFER_SIZE;
|
||||
// specify (float) (int) for a quantization maximizing the dynamic range
|
||||
buffer_DMA[t] = (signed char) ((pointer_float[0]
|
||||
* (RX_SIGNAL_MAX_VALUE - 1)) / max);
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
transfer_size = fileLen/FLOAT_SIZE - num_transferred_samples;
|
||||
num_transferred_samples = fileLen/FLOAT_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
//send_acquisition_gps_input_samples(buffer_DMA, transfer_size, dma_descr);
|
||||
assert(
|
||||
transfer_size == write(dma_descr, &buffer_DMA[0], transfer_size));
|
||||
}
|
||||
|
||||
for (int t=0;t<transfer_size;t++)
|
||||
{
|
||||
fread(buffer_temp, FLOAT_SIZE, 1, ptr_myfile);
|
||||
}
|
||||
fclose(rx_signal_file);
|
||||
free(buffer_float);
|
||||
free(buffer_DMA);
|
||||
close(dma_descr);
|
||||
|
||||
// specify (float) (int) for a quantization maximizing the dynamic range
|
||||
buffer_char[t] = (signed char) ((pointer_float[0]*(RX_SIGNAL_MAX_VALUE - 1))/max);
|
||||
|
||||
}
|
||||
|
||||
//send_acquisition_gps_input_samples(buffer_char, transfer_size, tx_fd);
|
||||
assert( transfer_size == write(tx_fd, &buffer_char[0], transfer_size) );
|
||||
}
|
||||
|
||||
}
|
||||
fclose(ptr_myfile);
|
||||
free(buffer_temp);
|
||||
free(buffer_char);
|
||||
close(tx_fd);
|
||||
|
||||
// when all the samples are sent stop the top block
|
||||
// when all the samples are sent stop the top block
|
||||
|
||||
top_block->stop();
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
// ######## GNURADIO BLOCK MESSAGE RECEVER #########
|
||||
@ -204,44 +200,44 @@ public:
|
||||
~GpsL1CaPcpsAcquisitionTestFpga_msg_rx(); //!< Default destructor
|
||||
};
|
||||
|
||||
|
||||
GpsL1CaPcpsAcquisitionTest_msg_fpga_rx_sptr GpsL1CaPcpsAcquisitionTestFpga_msg_rx_make()
|
||||
{
|
||||
return GpsL1CaPcpsAcquisitionTest_msg_fpga_rx_sptr(new GpsL1CaPcpsAcquisitionTestFpga_msg_rx());
|
||||
return GpsL1CaPcpsAcquisitionTest_msg_fpga_rx_sptr(
|
||||
new GpsL1CaPcpsAcquisitionTestFpga_msg_rx());
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionTestFpga_msg_rx::msg_handler_events(pmt::pmt_t msg)
|
||||
{
|
||||
try
|
||||
{
|
||||
{
|
||||
long int message = pmt::to_long(msg);
|
||||
rx_message = message;
|
||||
}
|
||||
catch(boost::bad_any_cast& e)
|
||||
{
|
||||
}
|
||||
catch (boost::bad_any_cast& e)
|
||||
{
|
||||
LOG(WARNING) << "msg_handler_telemetry Bad any cast!";
|
||||
rx_message = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
GpsL1CaPcpsAcquisitionTestFpga_msg_rx::GpsL1CaPcpsAcquisitionTestFpga_msg_rx() :
|
||||
gr::block("GpsL1CaPcpsAcquisitionTestFpga_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
|
||||
gr::block("GpsL1CaPcpsAcquisitionTestFpga_msg_rx",
|
||||
gr::io_signature::make(0, 0, 0),
|
||||
gr::io_signature::make(0, 0, 0))
|
||||
{
|
||||
this->message_port_register_in(pmt::mp("events"));
|
||||
this->set_msg_handler(pmt::mp("events"), boost::bind(&GpsL1CaPcpsAcquisitionTestFpga_msg_rx::msg_handler_events, this, _1));
|
||||
this->set_msg_handler(pmt::mp("events"),
|
||||
boost::bind(
|
||||
&GpsL1CaPcpsAcquisitionTestFpga_msg_rx::msg_handler_events,
|
||||
this, _1));
|
||||
rx_message = 0;
|
||||
}
|
||||
|
||||
|
||||
GpsL1CaPcpsAcquisitionTestFpga_msg_rx::~GpsL1CaPcpsAcquisitionTestFpga_msg_rx()
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
// ###########################################################
|
||||
|
||||
class GpsL1CaPcpsAcquisitionTestFpga: public ::testing::Test
|
||||
class GpsL1CaPcpsAcquisitionTestFpga : public ::testing::Test
|
||||
{
|
||||
protected:
|
||||
GpsL1CaPcpsAcquisitionTestFpga()
|
||||
@ -253,7 +249,8 @@ protected:
|
||||
}
|
||||
|
||||
~GpsL1CaPcpsAcquisitionTestFpga()
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
void init();
|
||||
|
||||
@ -264,7 +261,6 @@ protected:
|
||||
size_t item_size;
|
||||
};
|
||||
|
||||
|
||||
void GpsL1CaPcpsAcquisitionTestFpga::init()
|
||||
{
|
||||
gnss_synchro.Channel_ID = 0;
|
||||
@ -277,21 +273,24 @@ void GpsL1CaPcpsAcquisitionTestFpga::init()
|
||||
config->set_property("Acquisition.if", "0");
|
||||
config->set_property("Acquisition.coherent_integration_time_ms", "1");
|
||||
config->set_property("Acquisition.dump", "false");
|
||||
config->set_property("Acquisition.implementation", "GPS_L1_CA_PCPS_Acquisition");
|
||||
config->set_property("Acquisition.implementation",
|
||||
"GPS_L1_CA_PCPS_Acquisition");
|
||||
config->set_property("Acquisition.threshold", "0.001");
|
||||
config->set_property("Acquisition.doppler_max", "5000");
|
||||
config->set_property("Acquisition.doppler_step", "500");
|
||||
config->set_property("Acquisition.repeat_satellite", "false");
|
||||
config->set_property("Acquisition.pfa", "0.0");
|
||||
config->set_property("Acquisition.select_queue_Fpga", "0");
|
||||
config->set_property("Acquisition.devicename", "/dev/uio0");
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
TEST_F(GpsL1CaPcpsAcquisitionTestFpga, Instantiate)
|
||||
{
|
||||
init();
|
||||
boost::shared_ptr<GpsL1CaPcpsAcquisitionFpga> acquisition = boost::make_shared<GpsL1CaPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 1);
|
||||
boost::shared_ptr<GpsL1CaPcpsAcquisitionFpga> acquisition =
|
||||
boost::make_shared<GpsL1CaPcpsAcquisitionFpga>(config.get(),
|
||||
"Acquisition", 0, 1);
|
||||
}
|
||||
|
||||
TEST_F(GpsL1CaPcpsAcquisitionTestFpga, ValidationOfResults)
|
||||
@ -305,84 +304,102 @@ TEST_F(GpsL1CaPcpsAcquisitionTestFpga, ValidationOfResults)
|
||||
double expected_doppler_hz = 1680;
|
||||
init();
|
||||
|
||||
std::shared_ptr<GpsL1CaPcpsAcquisitionFpga> acquisition = std::make_shared<GpsL1CaPcpsAcquisitionFpga>(config.get(), "Acquisition", 0, 1);
|
||||
std::shared_ptr < GpsL1CaPcpsAcquisitionFpga > acquisition =
|
||||
std::make_shared < GpsL1CaPcpsAcquisitionFpga
|
||||
> (config.get(), "Acquisition", 0, 1);
|
||||
|
||||
boost::shared_ptr<GpsL1CaPcpsAcquisitionTestFpga_msg_rx> msg_rx = GpsL1CaPcpsAcquisitionTestFpga_msg_rx_make();
|
||||
boost::shared_ptr<GpsL1CaPcpsAcquisitionTestFpga_msg_rx> msg_rx =
|
||||
GpsL1CaPcpsAcquisitionTestFpga_msg_rx_make();
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_channel(1);
|
||||
}) << "Failure setting channel." << std::endl;
|
||||
ASSERT_NO_THROW(
|
||||
{
|
||||
acquisition->set_channel(1);
|
||||
})<< "Failure setting channel." << std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_gnss_synchro(&gnss_synchro);
|
||||
}) << "Failure setting gnss_synchro." << std::endl;
|
||||
ASSERT_NO_THROW(
|
||||
{
|
||||
acquisition->set_gnss_synchro(&gnss_synchro);
|
||||
})<< "Failure setting gnss_synchro." << std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_threshold(0.1);
|
||||
}) << "Failure setting threshold." << std::endl;
|
||||
ASSERT_NO_THROW(
|
||||
{
|
||||
acquisition->set_threshold(0.1);
|
||||
})<< "Failure setting threshold." << std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_doppler_max(10000);
|
||||
}) << "Failure setting doppler_max." << std::endl;
|
||||
ASSERT_NO_THROW(
|
||||
{
|
||||
acquisition->set_doppler_max(10000);
|
||||
})<< "Failure setting doppler_max." << std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->set_doppler_step(250);
|
||||
}) << "Failure setting doppler_step." << std::endl;
|
||||
ASSERT_NO_THROW(
|
||||
{
|
||||
acquisition->set_doppler_step(250);
|
||||
})<< "Failure setting doppler_step." << std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
acquisition->connect(top_block);
|
||||
}) << "Failure connecting acquisition to the top_block." << std::endl;
|
||||
ASSERT_NO_THROW(
|
||||
{
|
||||
acquisition->connect(top_block);
|
||||
})<< "Failure connecting acquisition to the top_block." << std::endl;
|
||||
|
||||
// uncomment the next line to load the file from the current directory
|
||||
std::string file = "./GPS_L1_CA_ID_1_Fs_4Msps_2ms.dat";
|
||||
|
||||
// uncomment the next two lines to load the file from the signal samples subdirectory
|
||||
// uncomment the next two lines to load the file from the signal samples subdirectory
|
||||
//std::string path = std::string(TEST_PATH);
|
||||
//std::string file = path + "signal_samples/GPS_L1_CA_ID_1_Fs_4Msps_2ms.dat";
|
||||
|
||||
const char * file_name = file.c_str();
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
// for the unit test use dummy blocks to make the flowgraph work and allow the acquisition message to be sent.
|
||||
// in the actual system there is a flowchart running in parallel so this is not needed
|
||||
ASSERT_NO_THROW(
|
||||
{
|
||||
// for the unit test use dummy blocks to make the flowgraph work and allow the acquisition message to be sent.
|
||||
// in the actual system there is a flowchart running in parallel so this is not needed
|
||||
|
||||
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex), file_name, false);
|
||||
gr::blocks::null_sink::sptr null_sink = gr::blocks::null_sink::make(sizeof(gr_complex));
|
||||
gr::blocks::throttle::sptr throttle_block = gr::blocks::throttle::make(sizeof(gr_complex),1000);
|
||||
gr::blocks::file_source::sptr file_source = gr::blocks::file_source::make(sizeof(gr_complex), file_name, false);
|
||||
gr::blocks::null_sink::sptr null_sink = gr::blocks::null_sink::make(sizeof(gr_complex));
|
||||
gr::blocks::throttle::sptr throttle_block = gr::blocks::throttle::make(sizeof(gr_complex),1000);
|
||||
|
||||
top_block->connect(file_source, 0, throttle_block, 0);
|
||||
top_block->connect(throttle_block, 0, null_sink, 0);
|
||||
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
|
||||
}) << "Failure connecting the blocks of acquisition test." << std::endl;
|
||||
top_block->connect(file_source, 0, throttle_block, 0);
|
||||
top_block->connect(throttle_block, 0, null_sink, 0);
|
||||
top_block->msg_connect(acquisition->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
|
||||
})<< "Failure connecting the blocks of acquisition test." << std::endl;
|
||||
|
||||
acquisition->set_state(1); // Ensure that acquisition starts at the first state
|
||||
acquisition->set_state(1); // Ensure that acquisition starts at the first state
|
||||
acquisition->init();
|
||||
top_block->start(); // Start the top block
|
||||
top_block->start(); // Start the top block
|
||||
|
||||
// start thread that sends the DMA samples to the FPGA
|
||||
boost::thread t3{thread_acquisition_send_rx_samples, top_block, file_name};
|
||||
boost::thread t3
|
||||
{ thread_acquisition_send_rx_samples, top_block, file_name };
|
||||
|
||||
EXPECT_NO_THROW( {
|
||||
gettimeofday(&tv, NULL);
|
||||
begin = tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
acquisition->reset(); // launch the tracking process
|
||||
top_block->wait();
|
||||
gettimeofday(&tv, NULL);
|
||||
end = tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
}) << "Failure running the top_block." << std::endl;
|
||||
EXPECT_NO_THROW(
|
||||
{
|
||||
gettimeofday(&tv, NULL);
|
||||
begin = tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
acquisition->reset(); // launch the tracking process
|
||||
top_block->wait();
|
||||
gettimeofday(&tv, NULL);
|
||||
end = tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
})<< "Failure running the top_block." << std::endl;
|
||||
|
||||
t3.join();
|
||||
|
||||
std::cout << "Ran GpsL1CaPcpsAcquisitionTestFpga in " << (end - begin) << " microseconds" << std::endl;
|
||||
std::cout << "Ran GpsL1CaPcpsAcquisitionTestFpga in " << (end - begin)
|
||||
<< " microseconds" << std::endl;
|
||||
|
||||
ASSERT_EQ(1, msg_rx->rx_message) << "Acquisition failure. Expected message: 1=ACQ SUCCESS.";
|
||||
ASSERT_EQ(1, msg_rx->rx_message)
|
||||
<< "Acquisition failure. Expected message: 1=ACQ SUCCESS.";
|
||||
|
||||
double delay_error_samples = std::abs(expected_delay_samples - gnss_synchro.Acq_delay_samples);
|
||||
float delay_error_chips = (float)(delay_error_samples * 1023 / 4000);
|
||||
double doppler_error_hz = std::abs(expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
|
||||
double delay_error_samples = std::abs(
|
||||
expected_delay_samples - gnss_synchro.Acq_delay_samples);
|
||||
float delay_error_chips = (float) (delay_error_samples * 1023 / 4000);
|
||||
double doppler_error_hz = std::abs(
|
||||
expected_doppler_hz - gnss_synchro.Acq_doppler_hz);
|
||||
|
||||
EXPECT_LE(doppler_error_hz, 666) << "Doppler error exceeds the expected value: 666 Hz = 2/(3*integration period)";
|
||||
EXPECT_LT(delay_error_chips, 0.5) << "Delay error exceeds the expected value: 0.5 chips";
|
||||
EXPECT_LE(doppler_error_hz, 666)
|
||||
<< "Doppler error exceeds the expected value: 666 Hz = 2/(3*integration period)";
|
||||
EXPECT_LT(delay_error_chips, 0.5)
|
||||
<< "Delay error exceeds the expected value: 0.5 chips";
|
||||
|
||||
}
|
||||
|
||||
|
@ -31,7 +31,6 @@
|
||||
* -------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
|
||||
#include <ctime>
|
||||
#include <fcntl.h>
|
||||
#include <iostream>
|
||||
@ -63,43 +62,33 @@
|
||||
#include "signal_generator_flags.h"
|
||||
#include "interleaved_byte_to_complex_short.h"
|
||||
|
||||
#define DMA_TRACK_TRANSFER_SIZE 2046 // DMA transfer size for tracking
|
||||
#define MIN_SAMPLES_REMAINING 20000 // number of remaining samples in the DMA that causes the CPU to stop the flowgraph (it has to be a bit alrger than 2x max packet size)
|
||||
#define FIVE_SECONDS 5000000 // five seconds in microseconds
|
||||
|
||||
#define MAX_NUM_TEST_CASES 20
|
||||
#define MAX_INPUT_SAMPLES_PER_TEST_CASE (8184)
|
||||
#define MAX_INPUT_SAMPLES_TOTAL MAX_INPUT_SAMPLES_PER_TEST_CASE*MAX_NUM_TEST_CASES
|
||||
#define DMA_TRANSFER_SIZE 2046
|
||||
#define MIN_SAMPLES_REMAINING 20000 // number of remaining samples in the DMA that causes the CPU to stop the flowgraph (it has to be a bit alrger than 2x max packet size)
|
||||
|
||||
|
||||
void wait(int seconds)
|
||||
void send_tracking_gps_input_samples(FILE *rx_signal_file,
|
||||
int num_remaining_samples, gr::top_block_sptr top_block)
|
||||
{
|
||||
boost::this_thread::sleep_for(boost::chrono::seconds{seconds});
|
||||
}
|
||||
|
||||
void send_tracking_gps_input_samples(FILE *ptr_myfile, int num_remaining_samples, gr::top_block_sptr top_block)
|
||||
{
|
||||
int num_samples_transferred = 0;
|
||||
static int flowgraph_stopped = 0;
|
||||
|
||||
char *buffer;
|
||||
|
||||
// DMA descriptor
|
||||
int tx_fd;
|
||||
tx_fd = open("/dev/loop_tx", O_WRONLY);
|
||||
if ( tx_fd < 0 )
|
||||
int num_samples_transferred = 0; // number of samples that have been transferred to the DMA so far
|
||||
static int flowgraph_stopped = 0; // flag to indicate if the flowgraph is stopped already
|
||||
char *buffer_DMA; // temporary buffer to store the samples to be sent to the DMA
|
||||
int dma_descr; // DMA descriptor
|
||||
dma_descr = open("/dev/loop_tx", O_WRONLY);
|
||||
if (dma_descr < 0)
|
||||
{
|
||||
printf("can't open loop device\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
buffer = (char *)malloc(DMA_TRANSFER_SIZE);
|
||||
if (!buffer)
|
||||
buffer_DMA = (char *) malloc(DMA_TRACK_TRANSFER_SIZE);
|
||||
if (!buffer_DMA)
|
||||
{
|
||||
fprintf(stderr, "Memory error!");
|
||||
}
|
||||
|
||||
while(num_remaining_samples > 0)
|
||||
while (num_remaining_samples > 0)
|
||||
{
|
||||
|
||||
if (num_remaining_samples < MIN_SAMPLES_REMAINING)
|
||||
{
|
||||
if (flowgraph_stopped == 0)
|
||||
@ -109,66 +98,67 @@ void send_tracking_gps_input_samples(FILE *ptr_myfile, int num_remaining_samples
|
||||
flowgraph_stopped = 1;
|
||||
}
|
||||
}
|
||||
if (num_remaining_samples > DMA_TRANSFER_SIZE)
|
||||
if (num_remaining_samples > DMA_TRACK_TRANSFER_SIZE)
|
||||
{
|
||||
|
||||
fread(buffer, DMA_TRANSFER_SIZE, 1, ptr_myfile);
|
||||
fread(buffer_DMA, DMA_TRACK_TRANSFER_SIZE, 1,
|
||||
rx_signal_file);
|
||||
|
||||
assert( DMA_TRANSFER_SIZE == write(tx_fd, &buffer[0], DMA_TRANSFER_SIZE) );
|
||||
num_remaining_samples = num_remaining_samples - DMA_TRANSFER_SIZE;
|
||||
num_samples_transferred = num_samples_transferred + DMA_TRANSFER_SIZE;
|
||||
assert(
|
||||
DMA_TRACK_TRANSFER_SIZE == write(dma_descr, &buffer_DMA[0], DMA_TRACK_TRANSFER_SIZE));
|
||||
num_remaining_samples = num_remaining_samples
|
||||
- DMA_TRACK_TRANSFER_SIZE;
|
||||
num_samples_transferred = num_samples_transferred
|
||||
+ DMA_TRACK_TRANSFER_SIZE;
|
||||
}
|
||||
else
|
||||
{
|
||||
fread(buffer, num_remaining_samples, 1, ptr_myfile);
|
||||
fread(buffer_DMA, num_remaining_samples, 1, rx_signal_file);
|
||||
|
||||
assert( num_remaining_samples == write(tx_fd, &buffer[0], num_remaining_samples) );
|
||||
num_samples_transferred = num_samples_transferred + num_remaining_samples;
|
||||
assert(
|
||||
num_remaining_samples == write(dma_descr, &buffer_DMA[0], num_remaining_samples));
|
||||
num_samples_transferred = num_samples_transferred
|
||||
+ num_remaining_samples;
|
||||
num_remaining_samples = 0;
|
||||
}
|
||||
}
|
||||
|
||||
free(buffer);
|
||||
close(tx_fd);
|
||||
free(buffer_DMA);
|
||||
close(dma_descr);
|
||||
}
|
||||
|
||||
|
||||
// thread that sends the samples to the FPGA
|
||||
void thread(gr::top_block_sptr top_block, const char * file_name)
|
||||
{
|
||||
// file descriptor
|
||||
FILE *ptr_myfile;
|
||||
int fileLen;
|
||||
FILE *rx_signal_file; // file descriptor
|
||||
int file_length; // length of the file containing the received samples
|
||||
|
||||
ptr_myfile = fopen(file_name,"rb");
|
||||
if (!ptr_myfile)
|
||||
rx_signal_file = fopen(file_name, "rb");
|
||||
if (!rx_signal_file)
|
||||
{
|
||||
printf("Unable to open file!");
|
||||
}
|
||||
|
||||
fseek(ptr_myfile, 0, SEEK_END);
|
||||
fileLen = ftell(ptr_myfile);
|
||||
fseek(ptr_myfile, 0, SEEK_SET);
|
||||
fseek(rx_signal_file, 0, SEEK_END);
|
||||
file_length = ftell(rx_signal_file);
|
||||
fseek(rx_signal_file, 0, SEEK_SET);
|
||||
|
||||
wait(20); // wait for some time to give time to the other thread to program the device
|
||||
usleep(FIVE_SECONDS); // wait for some time to give time to the other thread to program the device
|
||||
|
||||
//send_tracking_gps_input_samples(tx_fd, ptr_myfile, fileLen);
|
||||
send_tracking_gps_input_samples(ptr_myfile, fileLen, top_block);
|
||||
//send_tracking_gps_input_samples(dma_descr, rx_signal_file, file_length);
|
||||
send_tracking_gps_input_samples(rx_signal_file, file_length, top_block);
|
||||
|
||||
fclose(ptr_myfile);
|
||||
fclose(rx_signal_file);
|
||||
}
|
||||
|
||||
|
||||
// ######## GNURADIO BLOCK MESSAGE RECEVER #########
|
||||
class GpsL1CADllPllTrackingTestFpga_msg_rx;
|
||||
|
||||
|
||||
typedef boost::shared_ptr<GpsL1CADllPllTrackingTestFpga_msg_rx> GpsL1CADllPllTrackingTestFpga_msg_rx_sptr;
|
||||
|
||||
|
||||
GpsL1CADllPllTrackingTestFpga_msg_rx_sptr GpsL1CADllPllTrackingTestFpga_msg_rx_make();
|
||||
|
||||
|
||||
class GpsL1CADllPllTrackingTestFpga_msg_rx : public gr::block
|
||||
{
|
||||
private:
|
||||
@ -181,44 +171,46 @@ public:
|
||||
~GpsL1CADllPllTrackingTestFpga_msg_rx(); //!< Default destructor
|
||||
};
|
||||
|
||||
|
||||
GpsL1CADllPllTrackingTestFpga_msg_rx_sptr GpsL1CADllPllTrackingTestFpga_msg_rx_make()
|
||||
{
|
||||
return GpsL1CADllPllTrackingTestFpga_msg_rx_sptr(new GpsL1CADllPllTrackingTestFpga_msg_rx());
|
||||
return GpsL1CADllPllTrackingTestFpga_msg_rx_sptr(
|
||||
new GpsL1CADllPllTrackingTestFpga_msg_rx());
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CADllPllTrackingTestFpga_msg_rx::msg_handler_events(pmt::pmt_t msg)
|
||||
{
|
||||
try
|
||||
{
|
||||
{
|
||||
long int message = pmt::to_long(msg);
|
||||
rx_message = message;
|
||||
}
|
||||
catch(boost::bad_any_cast& e)
|
||||
{
|
||||
}
|
||||
catch (boost::bad_any_cast& e)
|
||||
{
|
||||
LOG(WARNING) << "msg_handler_telemetry Bad any cast!";
|
||||
rx_message = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
GpsL1CADllPllTrackingTestFpga_msg_rx::GpsL1CADllPllTrackingTestFpga_msg_rx() :
|
||||
gr::block("GpsL1CADllPllTrackingTestFpga_msg_rx", gr::io_signature::make(0, 0, 0), gr::io_signature::make(0, 0, 0))
|
||||
gr::block("GpsL1CADllPllTrackingTestFpga_msg_rx",
|
||||
gr::io_signature::make(0, 0, 0),
|
||||
gr::io_signature::make(0, 0, 0))
|
||||
{
|
||||
this->message_port_register_in(pmt::mp("events"));
|
||||
this->set_msg_handler(pmt::mp("events"), boost::bind(&GpsL1CADllPllTrackingTestFpga_msg_rx::msg_handler_events, this, _1));
|
||||
this->set_msg_handler(pmt::mp("events"),
|
||||
boost::bind(
|
||||
&GpsL1CADllPllTrackingTestFpga_msg_rx::msg_handler_events,
|
||||
this, _1));
|
||||
rx_message = 0;
|
||||
}
|
||||
|
||||
|
||||
GpsL1CADllPllTrackingTestFpga_msg_rx::~GpsL1CADllPllTrackingTestFpga_msg_rx()
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
// ###########################################################
|
||||
|
||||
|
||||
class GpsL1CADllPllTrackingTestFpga: public ::testing::Test
|
||||
class GpsL1CADllPllTrackingTestFpga : public ::testing::Test
|
||||
{
|
||||
public:
|
||||
std::string generator_binary;
|
||||
@ -235,18 +227,12 @@ public:
|
||||
|
||||
int configure_generator();
|
||||
int generate_signal();
|
||||
void check_results_doppler(arma::vec true_time_s,
|
||||
arma::vec true_value,
|
||||
arma::vec meas_time_s,
|
||||
arma::vec meas_value);
|
||||
void check_results_doppler(arma::vec true_time_s, arma::vec true_value,
|
||||
arma::vec meas_time_s, arma::vec meas_value);
|
||||
void check_results_acc_carrier_phase(arma::vec true_time_s,
|
||||
arma::vec true_value,
|
||||
arma::vec meas_time_s,
|
||||
arma::vec meas_value);
|
||||
void check_results_codephase(arma::vec true_time_s,
|
||||
arma::vec true_value,
|
||||
arma::vec meas_time_s,
|
||||
arma::vec meas_value);
|
||||
arma::vec true_value, arma::vec meas_time_s, arma::vec meas_value);
|
||||
void check_results_codephase(arma::vec true_time_s, arma::vec true_value,
|
||||
arma::vec meas_time_s, arma::vec meas_value);
|
||||
|
||||
GpsL1CADllPllTrackingTestFpga()
|
||||
{
|
||||
@ -257,7 +243,8 @@ public:
|
||||
}
|
||||
|
||||
~GpsL1CADllPllTrackingTestFpga()
|
||||
{}
|
||||
{
|
||||
}
|
||||
|
||||
void configure_receiver();
|
||||
|
||||
@ -268,33 +255,36 @@ public:
|
||||
size_t item_size;
|
||||
};
|
||||
|
||||
|
||||
int GpsL1CADllPllTrackingTestFpga::configure_generator()
|
||||
{
|
||||
// Configure signal generator
|
||||
generator_binary = FLAGS_generator_binary;
|
||||
|
||||
p1 = std::string("-rinex_nav_file=") + FLAGS_rinex_nav_file;
|
||||
if(FLAGS_dynamic_position.empty())
|
||||
if (FLAGS_dynamic_position.empty())
|
||||
{
|
||||
p2 = std::string("-static_position=") + FLAGS_static_position + std::string(",") + std::to_string(FLAGS_duration * 10);
|
||||
p2 = std::string("-static_position=") + FLAGS_static_position
|
||||
+ std::string(",") + std::to_string(FLAGS_duration * 10);
|
||||
}
|
||||
else
|
||||
{
|
||||
p2 = std::string("-obs_pos_file=") + std::string(FLAGS_dynamic_position);
|
||||
p2 = std::string("-obs_pos_file=")
|
||||
+ std::string(FLAGS_dynamic_position);
|
||||
}
|
||||
p3 = std::string("-rinex_obs_file=") + FLAGS_filename_rinex_obs; // RINEX 2.10 observation file output
|
||||
p4 = std::string("-sig_out_file=") + FLAGS_filename_raw_data; // Baseband signal output file. Will be stored in int8_t IQ multiplexed samples
|
||||
p5 = std::string("-sampling_freq=") + std::to_string(baseband_sampling_freq); //Baseband sampling frequency [MSps]
|
||||
p5 = std::string("-sampling_freq=")
|
||||
+ std::to_string(baseband_sampling_freq); //Baseband sampling frequency [MSps]
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int GpsL1CADllPllTrackingTestFpga::generate_signal()
|
||||
{
|
||||
int child_status;
|
||||
|
||||
char *const parmList[] = { &generator_binary[0], &generator_binary[0], &p1[0], &p2[0], &p3[0], &p4[0], &p5[0], NULL };
|
||||
char * const parmList[] =
|
||||
{ &generator_binary[0], &generator_binary[0], &p1[0], &p2[0], &p3[0],
|
||||
&p4[0], &p5[0], NULL };
|
||||
|
||||
int pid;
|
||||
if ((pid = fork()) == -1)
|
||||
@ -302,17 +292,18 @@ int GpsL1CADllPllTrackingTestFpga::generate_signal()
|
||||
else if (pid == 0)
|
||||
{
|
||||
execv(&generator_binary[0], parmList);
|
||||
std::cout << "Return not expected. Must be an execv err." << std::endl;
|
||||
std::cout << "Return not expected. Must be an execv err."
|
||||
<< std::endl;
|
||||
std::terminate();
|
||||
}
|
||||
|
||||
waitpid(pid, &child_status, 0);
|
||||
|
||||
std::cout << "Signal and Observables RINEX and RAW files created." << std::endl;
|
||||
std::cout << "Signal and Observables RINEX and RAW files created."
|
||||
<< std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CADllPllTrackingTestFpga::configure_receiver()
|
||||
{
|
||||
gnss_synchro.Channel_ID = 0;
|
||||
@ -321,9 +312,11 @@ void GpsL1CADllPllTrackingTestFpga::configure_receiver()
|
||||
signal.copy(gnss_synchro.Signal, 2, 0);
|
||||
gnss_synchro.PRN = FLAGS_test_satellite_PRN;
|
||||
|
||||
config->set_property("GNSS-SDR.internal_fs_hz", std::to_string(baseband_sampling_freq));
|
||||
config->set_property("GNSS-SDR.internal_fs_hz",
|
||||
std::to_string(baseband_sampling_freq));
|
||||
// Set Tracking
|
||||
config->set_property("Tracking_1C.implementation", "GPS_L1_CA_DLL_PLL_C_Aid_Tracking_Fpga");
|
||||
config->set_property("Tracking_1C.implementation",
|
||||
"GPS_L1_CA_DLL_PLL_C_Aid_Tracking_Fpga");
|
||||
config->set_property("Tracking_1C.item_type", "cshort");
|
||||
config->set_property("Tracking_1C.if", "0");
|
||||
config->set_property("Tracking_1C.dump", "true");
|
||||
@ -331,13 +324,12 @@ void GpsL1CADllPllTrackingTestFpga::configure_receiver()
|
||||
config->set_property("Tracking_1C.pll_bw_hz", "30.0");
|
||||
config->set_property("Tracking_1C.dll_bw_hz", "2.0");
|
||||
config->set_property("Tracking_1C.early_late_space_chips", "0.5");
|
||||
config->set_property("Tracking_1C.devicename", "/dev/uio");
|
||||
config->set_property("Tracking_1C.device_base", "1");
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CADllPllTrackingTestFpga::check_results_doppler(arma::vec true_time_s,
|
||||
arma::vec true_value,
|
||||
arma::vec meas_time_s,
|
||||
arma::vec meas_value)
|
||||
arma::vec true_value, arma::vec meas_time_s, arma::vec meas_value)
|
||||
{
|
||||
//1. True value interpolation to match the measurement times
|
||||
arma::vec true_value_interp;
|
||||
@ -360,14 +352,13 @@ void GpsL1CADllPllTrackingTestFpga::check_results_doppler(arma::vec true_time_s,
|
||||
|
||||
//5. report
|
||||
std::cout << std::setprecision(10) << "TRK Doppler RMSE=" << rmse
|
||||
<< ", mean=" << error_mean
|
||||
<< ", stdev="<< sqrt(error_var) << " (max,min)=" << max_error << "," << min_error << " [Hz]" << std::endl;
|
||||
<< ", mean=" << error_mean << ", stdev=" << sqrt(error_var)
|
||||
<< " (max,min)=" << max_error << "," << min_error << " [Hz]"
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CADllPllTrackingTestFpga::check_results_acc_carrier_phase(arma::vec true_time_s,
|
||||
arma::vec true_value,
|
||||
arma::vec meas_time_s,
|
||||
void GpsL1CADllPllTrackingTestFpga::check_results_acc_carrier_phase(
|
||||
arma::vec true_time_s, arma::vec true_value, arma::vec meas_time_s,
|
||||
arma::vec meas_value)
|
||||
{
|
||||
//1. True value interpolation to match the measurement times
|
||||
@ -391,15 +382,14 @@ void GpsL1CADllPllTrackingTestFpga::check_results_acc_carrier_phase(arma::vec tr
|
||||
|
||||
//5. report
|
||||
std::cout << std::setprecision(10) << "TRK acc carrier phase RMSE=" << rmse
|
||||
<< ", mean=" << error_mean
|
||||
<< ", stdev=" << sqrt(error_var) << " (max,min)=" << max_error << "," << min_error << " [Hz]" << std::endl;
|
||||
<< ", mean=" << error_mean << ", stdev=" << sqrt(error_var)
|
||||
<< " (max,min)=" << max_error << "," << min_error << " [Hz]"
|
||||
<< std::endl;
|
||||
|
||||
}
|
||||
|
||||
|
||||
void GpsL1CADllPllTrackingTestFpga::check_results_codephase(arma::vec true_time_s,
|
||||
arma::vec true_value,
|
||||
arma::vec meas_time_s,
|
||||
void GpsL1CADllPllTrackingTestFpga::check_results_codephase(
|
||||
arma::vec true_time_s, arma::vec true_value, arma::vec meas_time_s,
|
||||
arma::vec meas_value)
|
||||
{
|
||||
//1. True value interpolation to match the measurement times
|
||||
@ -422,11 +412,11 @@ void GpsL1CADllPllTrackingTestFpga::check_results_codephase(arma::vec true_time_
|
||||
|
||||
//5. report
|
||||
std::cout << std::setprecision(10) << "TRK code phase RMSE=" << rmse
|
||||
<< ", mean=" << error_mean
|
||||
<< ", stdev=" << sqrt(error_var) << " (max,min)=" << max_error << "," << min_error << " [Chips]" << std::endl;
|
||||
<< ", mean=" << error_mean << ", stdev=" << sqrt(error_var)
|
||||
<< " (max,min)=" << max_error << "," << min_error << " [Chips]"
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
|
||||
TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
|
||||
{
|
||||
configure_generator();
|
||||
@ -447,69 +437,84 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
|
||||
std::string true_obs_file = std::string("./gps_l1_ca_obs_prn");
|
||||
true_obs_file.append(std::to_string(test_satellite_PRN));
|
||||
true_obs_file.append(".dat");
|
||||
ASSERT_NO_THROW({
|
||||
if (true_obs_data.open_obs_file(true_obs_file) == false)
|
||||
{
|
||||
throw std::exception();
|
||||
};
|
||||
}) << "Failure opening true observables file" << std::endl;
|
||||
ASSERT_NO_THROW(
|
||||
{
|
||||
if (true_obs_data.open_obs_file(true_obs_file) == false)
|
||||
{
|
||||
throw std::exception();
|
||||
};
|
||||
})<< "Failure opening true observables file" << std::endl;
|
||||
|
||||
top_block = gr::make_top_block("Tracking test");
|
||||
std::shared_ptr<TrackingInterface> tracking = std::make_shared<GpsL1CaDllPllCAidTrackingFpga>(config.get(), "Tracking_1C", 1, 1);
|
||||
std::shared_ptr<GpsL1CaDllPllCAidTrackingFpga> tracking = std::make_shared
|
||||
< GpsL1CaDllPllCAidTrackingFpga
|
||||
> (config.get(), "Tracking_1C", 1, 1);
|
||||
|
||||
boost::shared_ptr<GpsL1CADllPllTrackingTestFpga_msg_rx> msg_rx = GpsL1CADllPllTrackingTestFpga_msg_rx_make();
|
||||
boost::shared_ptr<GpsL1CADllPllTrackingTestFpga_msg_rx> msg_rx =
|
||||
GpsL1CADllPllTrackingTestFpga_msg_rx_make();
|
||||
|
||||
// load acquisition data based on the first epoch of the true observations
|
||||
ASSERT_NO_THROW({
|
||||
if (true_obs_data.read_binary_obs() == false)
|
||||
{
|
||||
throw std::exception();
|
||||
};
|
||||
}) << "Failure reading true observables file" << std::endl;
|
||||
ASSERT_NO_THROW(
|
||||
{
|
||||
if (true_obs_data.read_binary_obs() == false)
|
||||
{
|
||||
throw std::exception();
|
||||
};
|
||||
})<< "Failure reading true observables file" << std::endl;
|
||||
|
||||
//restart the epoch counter
|
||||
true_obs_data.restart();
|
||||
|
||||
std::cout << "Initial Doppler [Hz]=" << true_obs_data.doppler_l1_hz << " Initial code delay [Chips]=" << true_obs_data.prn_delay_chips << std::endl;
|
||||
gnss_synchro.Acq_delay_samples = (GPS_L1_CA_CODE_LENGTH_CHIPS - true_obs_data.prn_delay_chips / GPS_L1_CA_CODE_LENGTH_CHIPS) * baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD;
|
||||
std::cout << "Initial Doppler [Hz]=" << true_obs_data.doppler_l1_hz
|
||||
<< " Initial code delay [Chips]=" << true_obs_data.prn_delay_chips
|
||||
<< std::endl;
|
||||
gnss_synchro.Acq_delay_samples = (GPS_L1_CA_CODE_LENGTH_CHIPS
|
||||
- true_obs_data.prn_delay_chips / GPS_L1_CA_CODE_LENGTH_CHIPS)
|
||||
* baseband_sampling_freq * GPS_L1_CA_CODE_PERIOD;
|
||||
gnss_synchro.Acq_doppler_hz = true_obs_data.doppler_l1_hz;
|
||||
gnss_synchro.Acq_samplestamp_samples = 0;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
tracking->set_channel(gnss_synchro.Channel_ID);
|
||||
}) << "Failure setting channel." << std::endl;
|
||||
ASSERT_NO_THROW(
|
||||
{
|
||||
tracking->set_channel(gnss_synchro.Channel_ID);
|
||||
})<< "Failure setting channel." << std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
tracking->set_gnss_synchro(&gnss_synchro);
|
||||
}) << "Failure setting gnss_synchro." << std::endl;
|
||||
ASSERT_NO_THROW(
|
||||
{
|
||||
tracking->set_gnss_synchro(&gnss_synchro);
|
||||
})<< "Failure setting gnss_synchro." << std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
tracking->connect(top_block);
|
||||
}) << "Failure connecting tracking to the top_block." << std::endl;
|
||||
ASSERT_NO_THROW(
|
||||
{
|
||||
tracking->connect(top_block);
|
||||
})<< "Failure connecting tracking to the top_block." << std::endl;
|
||||
|
||||
ASSERT_NO_THROW( {
|
||||
gr::blocks::null_sink::sptr sink = gr::blocks::null_sink::make(sizeof(Gnss_Synchro));
|
||||
top_block->connect(tracking->get_right_block(), 0, sink, 0);
|
||||
top_block->msg_connect(tracking->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
|
||||
}) << "Failure connecting the blocks of tracking test." << std::endl;
|
||||
ASSERT_NO_THROW(
|
||||
{
|
||||
gr::blocks::null_sink::sptr sink = gr::blocks::null_sink::make(sizeof(Gnss_Synchro));
|
||||
top_block->connect(tracking->get_right_block(), 0, sink, 0);
|
||||
top_block->msg_connect(tracking->get_right_block(), pmt::mp("events"), msg_rx, pmt::mp("events"));
|
||||
})<< "Failure connecting the blocks of tracking test." << std::endl;
|
||||
|
||||
tracking->start_tracking();
|
||||
|
||||
// assemble again the file name in a null terminated string (not available by default in the main program flow)
|
||||
std::string file = "./" + filename_raw_data;
|
||||
std::string file = "./" + filename_raw_data;
|
||||
const char * file_name = file.c_str();
|
||||
|
||||
// start thread that sends the DMA samples to the FPGA
|
||||
boost::thread t{thread, top_block, file_name};
|
||||
boost::thread t
|
||||
{ thread, top_block, file_name };
|
||||
|
||||
EXPECT_NO_THROW( {
|
||||
gettimeofday(&tv, NULL);
|
||||
begin = tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
top_block->run(); // Start threads and wait
|
||||
tracking.reset();
|
||||
gettimeofday(&tv, NULL);
|
||||
end = tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
}) << "Failure running the top_block." << std::endl;
|
||||
EXPECT_NO_THROW(
|
||||
{
|
||||
gettimeofday(&tv, NULL);
|
||||
begin = tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
top_block->run(); // Start threads and wait
|
||||
tracking->reset();// unlock the channel
|
||||
gettimeofday(&tv, NULL);
|
||||
end = tv.tv_sec * 1000000 + tv.tv_usec;
|
||||
})<< "Failure running the top_block." << std::endl;
|
||||
|
||||
// wait until child thread terminates
|
||||
t.join();
|
||||
@ -526,10 +531,11 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
|
||||
arma::vec true_tow_s = arma::zeros(nepoch, 1);
|
||||
|
||||
long int epoch_counter = 0;
|
||||
while(true_obs_data.read_binary_obs())
|
||||
while (true_obs_data.read_binary_obs())
|
||||
{
|
||||
true_timestamp_s(epoch_counter) = true_obs_data.signal_timestamp_s;
|
||||
true_acc_carrier_phase_cycles(epoch_counter) = true_obs_data.acc_carrier_phase_cycles;
|
||||
true_acc_carrier_phase_cycles(epoch_counter) =
|
||||
true_obs_data.acc_carrier_phase_cycles;
|
||||
true_Doppler_Hz(epoch_counter) = true_obs_data.doppler_l1_hz;
|
||||
true_prn_delay_chips(epoch_counter) = true_obs_data.prn_delay_chips;
|
||||
true_tow_s(epoch_counter) = true_obs_data.tow;
|
||||
@ -538,12 +544,13 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
|
||||
|
||||
//load the measured values
|
||||
tracking_dump_reader trk_dump;
|
||||
ASSERT_NO_THROW({
|
||||
if (trk_dump.open_obs_file(std::string("./tracking_ch_0.dat")) == false)
|
||||
{
|
||||
throw std::exception();
|
||||
};
|
||||
}) << "Failure opening tracking dump file" << std::endl;
|
||||
ASSERT_NO_THROW(
|
||||
{
|
||||
if (trk_dump.open_obs_file(std::string("./tracking_ch_0.dat")) == false)
|
||||
{
|
||||
throw std::exception();
|
||||
};
|
||||
})<< "Failure opening tracking dump file" << std::endl;
|
||||
|
||||
nepoch = trk_dump.num_epochs();
|
||||
std::cout << "Measured observation epochs=" << nepoch << std::endl;
|
||||
@ -554,15 +561,23 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
|
||||
arma::vec trk_prn_delay_chips = arma::zeros(nepoch, 1);
|
||||
|
||||
epoch_counter = 0;
|
||||
while(trk_dump.read_binary_obs())
|
||||
while (trk_dump.read_binary_obs())
|
||||
{
|
||||
trk_timestamp_s(epoch_counter) = static_cast<double>(trk_dump.PRN_start_sample_count) / static_cast<double>(baseband_sampling_freq);
|
||||
trk_acc_carrier_phase_cycles(epoch_counter) = trk_dump.acc_carrier_phase_rad / GPS_TWO_PI;
|
||||
trk_timestamp_s(epoch_counter) =
|
||||
static_cast<double>(trk_dump.PRN_start_sample_count)
|
||||
/ static_cast<double>(baseband_sampling_freq);
|
||||
trk_acc_carrier_phase_cycles(epoch_counter) =
|
||||
trk_dump.acc_carrier_phase_rad / GPS_TWO_PI;
|
||||
trk_Doppler_Hz(epoch_counter) = trk_dump.carrier_doppler_hz;
|
||||
|
||||
double delay_chips = GPS_L1_CA_CODE_LENGTH_CHIPS
|
||||
- GPS_L1_CA_CODE_LENGTH_CHIPS
|
||||
* (fmod((static_cast<double>(trk_dump.PRN_start_sample_count) + trk_dump.aux1) / static_cast<double>(baseband_sampling_freq), 1.0e-3) /1.0e-3);
|
||||
double delay_chips =
|
||||
GPS_L1_CA_CODE_LENGTH_CHIPS
|
||||
- GPS_L1_CA_CODE_LENGTH_CHIPS
|
||||
* (fmod(
|
||||
(static_cast<double>(trk_dump.PRN_start_sample_count)
|
||||
+ trk_dump.aux1)
|
||||
/ static_cast<double>(baseband_sampling_freq),
|
||||
1.0e-3) / 1.0e-3);
|
||||
|
||||
trk_prn_delay_chips(epoch_counter) = delay_chips;
|
||||
epoch_counter++;
|
||||
@ -570,16 +585,27 @@ TEST_F(GpsL1CADllPllTrackingTestFpga, ValidationOfResultsFpga)
|
||||
|
||||
//Align initial measurements and cut the tracking pull-in transitory
|
||||
double pull_in_offset_s = 1.0;
|
||||
arma::uvec initial_meas_point = arma::find(trk_timestamp_s >= (true_timestamp_s(0) + pull_in_offset_s), 1, "first");
|
||||
arma::uvec initial_meas_point = arma::find(
|
||||
trk_timestamp_s >= (true_timestamp_s(0) + pull_in_offset_s), 1,
|
||||
"first");
|
||||
|
||||
trk_timestamp_s = trk_timestamp_s.subvec(initial_meas_point(0), trk_timestamp_s.size() - 1);
|
||||
trk_acc_carrier_phase_cycles = trk_acc_carrier_phase_cycles.subvec(initial_meas_point(0), trk_acc_carrier_phase_cycles.size() - 1);
|
||||
trk_Doppler_Hz = trk_Doppler_Hz.subvec(initial_meas_point(0), trk_Doppler_Hz.size() - 1);
|
||||
trk_prn_delay_chips = trk_prn_delay_chips.subvec(initial_meas_point(0), trk_prn_delay_chips.size() - 1);
|
||||
trk_timestamp_s = trk_timestamp_s.subvec(initial_meas_point(0),
|
||||
trk_timestamp_s.size() - 1);
|
||||
trk_acc_carrier_phase_cycles = trk_acc_carrier_phase_cycles.subvec(
|
||||
initial_meas_point(0), trk_acc_carrier_phase_cycles.size() - 1);
|
||||
trk_Doppler_Hz = trk_Doppler_Hz.subvec(initial_meas_point(0),
|
||||
trk_Doppler_Hz.size() - 1);
|
||||
trk_prn_delay_chips = trk_prn_delay_chips.subvec(initial_meas_point(0),
|
||||
trk_prn_delay_chips.size() - 1);
|
||||
|
||||
check_results_doppler(true_timestamp_s, true_Doppler_Hz, trk_timestamp_s, trk_Doppler_Hz);
|
||||
check_results_codephase(true_timestamp_s, true_prn_delay_chips, trk_timestamp_s, trk_prn_delay_chips);
|
||||
check_results_acc_carrier_phase(true_timestamp_s, true_acc_carrier_phase_cycles, trk_timestamp_s, trk_acc_carrier_phase_cycles);
|
||||
check_results_doppler(true_timestamp_s, true_Doppler_Hz, trk_timestamp_s,
|
||||
trk_Doppler_Hz);
|
||||
check_results_codephase(true_timestamp_s, true_prn_delay_chips,
|
||||
trk_timestamp_s, trk_prn_delay_chips);
|
||||
check_results_acc_carrier_phase(true_timestamp_s,
|
||||
true_acc_carrier_phase_cycles, trk_timestamp_s,
|
||||
trk_acc_carrier_phase_cycles);
|
||||
|
||||
std::cout << "Signal tracking completed in " << (end - begin) << " microseconds" << std::endl;
|
||||
std::cout << "Signal tracking completed in " << (end - begin)
|
||||
<< " microseconds" << std::endl;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user