1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2025-01-07 07:50:32 +00:00

Merge branch 'next' of https://github.com/gnss-sdr/gnss-sdr into next

This commit is contained in:
Carles Fernandez 2018-03-26 15:08:57 +02:00
commit 975ea2232d
116 changed files with 14291 additions and 7259 deletions

View File

@ -37,8 +37,6 @@ BreakBeforeBinaryOperators: None
BreakBeforeBraces: GNU BreakBeforeBraces: GNU
BreakBeforeTernaryOperators: true BreakBeforeTernaryOperators: true
BreakConstructorInitializersBeforeComma: false BreakConstructorInitializersBeforeComma: false
BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: true
ColumnLimit: 0 ColumnLimit: 0
CommentPragmas: '^ IWYU pragma:' CommentPragmas: '^ IWYU pragma:'
ConstructorInitializerAllOnOneLineOrOnePerLine: true ConstructorInitializerAllOnOneLineOrOnePerLine: true
@ -56,12 +54,9 @@ IncludeCategories:
Priority: 2 Priority: 2
- Regex: '.*' - Regex: '.*'
Priority: 3 Priority: 3
IncludeIsMainRegex: '([-_](test|unittest))?$'
IndentCaseLabels: false IndentCaseLabels: false
IndentWidth: 4 IndentWidth: 4
IndentWrappedFunctionNames: false IndentWrappedFunctionNames: false
JavaScriptQuotes: Leave
JavaScriptWrapImports: true
KeepEmptyLinesAtTheStartOfBlocks: false KeepEmptyLinesAtTheStartOfBlocks: false
MacroBlockBegin: '' MacroBlockBegin: ''
MacroBlockEnd: '' MacroBlockEnd: ''
@ -80,7 +75,6 @@ PointerAlignment: Left
ReflowComments: true ReflowComments: true
SortIncludes: false SortIncludes: false
SpaceAfterCStyleCast: false SpaceAfterCStyleCast: false
SpaceAfterTemplateKeyword: true
SpaceBeforeAssignmentOperators: true SpaceBeforeAssignmentOperators: true
SpaceBeforeParens: ControlStatements SpaceBeforeParens: ControlStatements
SpaceInEmptyParentheses: false SpaceInEmptyParentheses: false

View File

@ -330,7 +330,7 @@ set(GNSSSDR_ARMADILLO_LOCAL_VERSION "unstable")
set(GNSSSDR_GTEST_LOCAL_VERSION "1.8.0") set(GNSSSDR_GTEST_LOCAL_VERSION "1.8.0")
set(GNSSSDR_GNSS_SIM_LOCAL_VERSION "master") set(GNSSSDR_GNSS_SIM_LOCAL_VERSION "master")
set(GNSSSDR_GPSTK_LOCAL_VERSION "2.10") set(GNSSSDR_GPSTK_LOCAL_VERSION "2.10")
set(GNSSSDR_MATIO_LOCAL_VERSION "1.5.11") set(GNSSSDR_MATIO_LOCAL_VERSION "1.5.12")
@ -449,13 +449,13 @@ if(ENABLE_UNIT_TESTING OR ENABLE_SYSTEM_TESTING)
endif(LIBGTEST_DEV_DIR) endif(LIBGTEST_DEV_DIR)
find_path(GTEST_INCLUDE_DIRS NAMES gtest/gtest.h PATHS ${GTEST_DIR}/include) find_path(GTEST_INCLUDE_DIRS NAMES gtest/gtest.h PATHS ${GTEST_DIR}/include)
else(GTEST_DIR) else(GTEST_DIR)
find_path(LIBGTEST_DEV_DIR NAMES src/gtest-all.cc PATHS /usr/src/googletest/googletest /usr/src/gtest /opt/local/src/gtest-1.7.0 ) find_path(LIBGTEST_DEV_DIR NAMES src/gtest-all.cc PATHS /usr/src/googletest/googletest /usr/src/gtest /usr/include/gtest /opt/local/src/gtest-1.7.0 )
find_path(GTEST_INCLUDE_DIRS NAMES gtest/gtest.h PATHS /usr/include /opt/local/src/gtest-1.7.0/include) find_path(GTEST_INCLUDE_DIRS NAMES gtest/gtest.h PATHS /usr/include /opt/local/src/gtest-1.7.0/include)
if(LIBGTEST_DEV_DIR) if(LIBGTEST_DEV_DIR)
message (STATUS "Googletest package has been found.") message (STATUS "Googletest package has been found.")
else(LIBGTEST_DEV_DIR) else(LIBGTEST_DEV_DIR)
message (STATUS " Googletest has not been found.") message (STATUS " Googletest has not been found.")
message (STATUS " Googletest will be downloaded and built automatically ") message (STATUS " Googletest v${GNSSSDR_GTEST_LOCAL_VERSION} will be downloaded and built automatically ")
message (STATUS " when doing '${CMAKE_MAKE_PROGRAM_PRETTY_NAME}'. ") message (STATUS " when doing '${CMAKE_MAKE_PROGRAM_PRETTY_NAME}'. ")
endif(LIBGTEST_DEV_DIR) endif(LIBGTEST_DEV_DIR)
endif(GTEST_DIR) endif(GTEST_DIR)
@ -699,7 +699,7 @@ set(LOCAL_GFLAGS false)
find_package(GFlags) find_package(GFlags)
if (NOT GFlags_FOUND) if (NOT GFlags_FOUND)
message (STATUS " gflags library has not been found.") message (STATUS " gflags library has not been found.")
message (STATUS " gflags will be downloaded and built automatically ") message (STATUS " gflags v${GNSSSDR_GFLAGS_LOCAL_VERSION} will be downloaded and built automatically ")
message (STATUS " when doing 'make'. ") message (STATUS " when doing 'make'. ")
if(CMAKE_VERSION VERSION_LESS 3.2) if(CMAKE_VERSION VERSION_LESS 3.2)
@ -767,7 +767,7 @@ if (NOT GLOG_FOUND OR ${LOCAL_GFLAGS})
if(NOT GFlags_FOUND) if(NOT GFlags_FOUND)
message(STATUS " or it is likely not linked to gflags.") message(STATUS " or it is likely not linked to gflags.")
endif(NOT GFlags_FOUND) endif(NOT GFlags_FOUND)
message (STATUS " glog will be downloaded and built automatically ") message (STATUS " glog v${GNSSSDR_GLOG_LOCAL_VERSION} will be downloaded and built automatically ")
message (STATUS " when doing 'make'. ") message (STATUS " when doing 'make'. ")
if(NOT ${LOCAL_GFLAGS}) if(NOT ${LOCAL_GFLAGS})
add_library(gflags-${GNSSSDR_GFLAGS_LOCAL_VERSION} UNKNOWN IMPORTED) add_library(gflags-${GNSSSDR_GFLAGS_LOCAL_VERSION} UNKNOWN IMPORTED)
@ -956,7 +956,7 @@ endif(ARMADILLO_FOUND)
if(NOT ARMADILLO_FOUND OR ENABLE_OWN_ARMADILLO) if(NOT ARMADILLO_FOUND OR ENABLE_OWN_ARMADILLO)
message(STATUS " Armadillo has not been found.") message(STATUS " Armadillo has not been found.")
message(STATUS " Armadillo will be downloaded and built automatically") message(STATUS " Armadillo ${GNSSSDR_ARMADILLO_LOCAL_VERSION} will be downloaded and built automatically")
message(STATUS " when doing '${CMAKE_MAKE_PROGRAM_PRETTY_NAME}'. ") message(STATUS " when doing '${CMAKE_MAKE_PROGRAM_PRETTY_NAME}'. ")
set(armadillo_BRANCH ${GNSSSDR_ARMADILLO_LOCAL_VERSION}) set(armadillo_BRANCH ${GNSSSDR_ARMADILLO_LOCAL_VERSION})
set(armadillo_RELEASE ${armadillo_BRANCH}) set(armadillo_RELEASE ${armadillo_BRANCH})
@ -1099,7 +1099,7 @@ if(NOT MATIO_FOUND OR MATIO_VERSION_STRING VERSION_LESS ${GNSSSDR_MATIO_MIN_VERS
if(MATIO_FOUND) if(MATIO_FOUND)
message(STATUS " Matio installed version (${MATIO_VERSION_STRING}) is too old (>= ${GNSSSDR_MATIO_MIN_VERSION} is required).") message(STATUS " Matio installed version (${MATIO_VERSION_STRING}) is too old (>= ${GNSSSDR_MATIO_MIN_VERSION} is required).")
endif(MATIO_FOUND) endif(MATIO_FOUND)
message(STATUS " Matio will be downloaded and built automatically") message(STATUS " Matio v${GNSSSDR_MATIO_LOCAL_VERSION} will be downloaded and built automatically")
message(STATUS " when doing '${CMAKE_MAKE_PROGRAM_PRETTY_NAME}'. ") message(STATUS " when doing '${CMAKE_MAKE_PROGRAM_PRETTY_NAME}'. ")
find_package(ZLIB) find_package(ZLIB)
if(ZLIB_FOUND) if(ZLIB_FOUND)

View File

@ -13,6 +13,7 @@ In the L1 band (centered at 1575.42 MHz):
In the L2 band (centered at 1227.60 MHz): In the L2 band (centered at 1227.60 MHz):
- 🛰 GPS L2C :white_check_mark: - 🛰 GPS L2C :white_check_mark:
- 🛰 GLONASS L2 C/A :white_check_mark:
In the L5 band (centered at 1176.45 MHz): In the L5 band (centered at 1176.45 MHz):
- 🛰 GPS L5 :white_check_mark: - 🛰 GPS L5 :white_check_mark:
@ -696,7 +697,7 @@ Getting started
2. You will need a GPS active antenna, a [USRP](http://www.ettus.com/product) and a suitable USRP daughter board to receive GPS L1 C/A signals. GNSS-SDR require to have at least 2 MHz of bandwidth in 1.57542 GHz. (remember to enable the DC bias with the daughter board jumper). 2. You will need a GPS active antenna, a [USRP](http://www.ettus.com/product) and a suitable USRP daughter board to receive GPS L1 C/A signals. GNSS-SDR require to have at least 2 MHz of bandwidth in 1.57542 GHz. (remember to enable the DC bias with the daughter board jumper).
We use a [DBSRX2](https://www.ettus.com/product/details/DBSRX2) to do the task, but you can try the newer Ettus' daughter boards as well. We use a [DBSRX2](https://www.ettus.com/product/details/DBSRX2) to do the task, but you can try the newer Ettus' daughter boards as well.
3. The easiest way to capture a signal file is to use the GNU Radio Companion GUI. Only two blocks are needed: a USRP signal source connected to complex float file sink. You need to tune the USRP central frequency and decimation factor using USRP signal source properties box. We suggest using a decimation factor of 20 if you use the USRP2. This will give you 100/20 = 5 MSPS which will be enough to receive GPS L1 C/A signals. The front-end gain should also be configured. In our test with the DBSRX2 we obtained good results with ```G=50```. 3. The easiest way to capture a signal file is to use the GNU Radio Companion GUI. Only two blocks are needed: a USRP signal source connected to complex float file sink. You need to tune the USRP central frequency and decimation factor using USRP signal source properties box. We suggest using a decimation factor of 20 if you use the USRP2. This will give you 100/20 = 5 MSPS which will be enough to receive GPS L1 C/A signals. The front-end gain should also be configured. In our test with the DBSRX2 we obtained good results with ```G=50```.
4. Capture at least 80 seconds of signal in open sky conditions. During the process, be aware of USRP driver buffer underuns messages. If your hard disk is not fast enough to write data at this speed you can capture to a virtual RAM drive. 80 seconds of signal at 5 MSPS occupies less than 3 Gbytes using ```gr_complex<float>```. 4. Capture at least 80 seconds of signal in open sky conditions. During the process, be aware of USRP driver buffer underruns messages. If your hard disk is not fast enough to write data at this speed you can capture to a virtual RAM drive. 80 seconds of signal at 5 MSPS occupies less than 3 Gbytes using ```gr_complex<float>```.
5. If you have no access to a RF front-end, you can download a sample raw data file (that contains GPS and Galileo signals) from [here](http://sourceforge.net/projects/gnss-sdr/files/data/). 5. If you have no access to a RF front-end, you can download a sample raw data file (that contains GPS and Galileo signals) from [here](http://sourceforge.net/projects/gnss-sdr/files/data/).
3. You are ready to configure the receiver to use your captured file among other parameters: 3. You are ready to configure the receiver to use your captured file among other parameters:
1. The default configuration file resides at [/usr/local/share/gnss-sdr/conf/default.conf](./conf/gnss-sdr.conf). 1. The default configuration file resides at [/usr/local/share/gnss-sdr/conf/default.conf](./conf/gnss-sdr.conf).
@ -1030,7 +1031,7 @@ More documentation at the [Data Type Adapter Blocks page](http://gnss-sdr.org/do
#### Input filter #### Input filter
This block filters the input data. It can be combined with frequency translation for IF signals. The computation of the filter taps is based on parameters of GNU Radio's function [pm_remez](http://gnuradio.org/doc/doxygen/pm__remez_8h.html), that calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands. This block filters the input data. It can be combined with frequency translation for IF signals. The computation of the filter taps is based on parameters of GNU Radio's function [pm_remez](http://gnuradio.org/doc/doxygen/pm__remez_8h.html), that calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges, the desired response on those bands, and the weight given to the error in those bands.
The block can be configured like this: The block can be configured like this:
@ -1085,7 +1086,7 @@ More documentation at the [Input Filter Blocks page](http://gnss-sdr.org/docs/sp
#### Resampler #### Resampler
This block resamples the input data stream. The ```Direct_Resampler``` block implements a nearest neigbourhood interpolation: This block resamples the input data stream. The ```Direct_Resampler``` block implements a nearest neighbourhood interpolation:
~~~~~~ ~~~~~~
;######### RESAMPLER CONFIG ############ ;######### RESAMPLER CONFIG ############
@ -1113,6 +1114,7 @@ Each channel must be assigned to a GNSS signal, according to the following ident
| Galileo E1b/c | 1B | | Galileo E1b/c | 1B |
| Glonass L1 C/A | 1G | | Glonass L1 C/A | 1G |
| GPS L2 L2C(M) | 2S | | GPS L2 L2C(M) | 2S |
| Glonass L2 C/A | 2G |
| GPS L5 | L5 | | GPS L5 | L5 |
| Galileo E5a | 5X | | Galileo E5a | 5X |

View File

@ -138,4 +138,4 @@ PVT.rtcm_MT1019_rate_ms=5000
PVT.rtcm_MT1045_rate_ms=5000 PVT.rtcm_MT1045_rate_ms=5000
PVT.rtcm_MT1097_rate_ms=1000 PVT.rtcm_MT1097_rate_ms=1000
PVT.rtcm_MT1077_rate_ms=1000 PVT.rtcm_MT1077_rate_ms=1000
PVT.rinex_version=3 PVT.rinex_version=2

View File

@ -5,7 +5,7 @@ GNSS-SDR.internal_fs_sps=6625000
;######### SIGNAL_SOURCE CONFIG ############ ;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=File_Signal_Source SignalSource.implementation=File_Signal_Source
SignalSource.filename=/archive/NT1065_GLONASS_L1_20160923_fs6625e6_if0e3_schar.bin ; <- PUT YOUR FILE HERE SignalSource.filename=/media/dmiralles/Seagate Backup Plus Drive/GNSS Data/NT1065_GLONASS_L1_20160923_fs6625e6_if0e3_schar.bin ; <- PUT YOUR FILE HERE ; <- PUT YOUR FILE HERE
SignalSource.item_type=ibyte SignalSource.item_type=ibyte
SignalSource.sampling_frequency=6625000 SignalSource.sampling_frequency=6625000
SignalSource.samples=0 SignalSource.samples=0
@ -25,11 +25,11 @@ Channel.signal=1G
Channels.in_acquisition=1 Channels.in_acquisition=1
Channels_1G.count=5 Channels_1G.count=5
;Channel0.satellite=24 ; k= Channel0.satellite=24 ; k=
;Channel1.satellite=1 ; k=1 Channel1.satellite=1 ; k=1
;Channel2.satellite=2 ; k=-4 Channel2.satellite=2 ; k=-4
;Channel3.satellite=20 ; k=-5 Channel3.satellite=20 ; k=-5
;Channel4.satellite=21 ; k=4 Channel4.satellite=21 ; k=4
;######### ACQUISITION GLOBAL CONFIG ############ ;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1G.implementation=GLONASS_L1_CA_PCPS_Acquisition Acquisition_1G.implementation=GLONASS_L1_CA_PCPS_Acquisition
@ -39,7 +39,7 @@ Acquisition_1G.pfa=0.0001
Acquisition_1G.if=0 Acquisition_1G.if=0
Acquisition_1G.doppler_max=10000 Acquisition_1G.doppler_max=10000
Acquisition_1G.doppler_step=250 Acquisition_1G.doppler_step=250
Acquisition_1G.dump=false; Acquisition_1G.dump=true;
Acquisition_1G.dump_filename=/archive/glo_acquisition.dat Acquisition_1G.dump_filename=/archive/glo_acquisition.dat
;Acquisition_1G.coherent_integration_time_ms=1 ;Acquisition_1G.coherent_integration_time_ms=1
;Acquisition_1G.max_dwells = 5 ;Acquisition_1G.max_dwells = 5
@ -51,7 +51,7 @@ Tracking_1G.if=0
Tracking_1G.early_late_space_chips=0.5 Tracking_1G.early_late_space_chips=0.5
Tracking_1G.pll_bw_hz=25.0; Tracking_1G.pll_bw_hz=25.0;
Tracking_1G.dll_bw_hz=3.0; Tracking_1G.dll_bw_hz=3.0;
Tracking_1G.dump=false; Tracking_1G.dump=true;
Tracking_1G.dump_filename=/archive/glo_tracking_ch_ Tracking_1G.dump_filename=/archive/glo_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############ ;######### TELEMETRY DECODER GPS CONFIG ############
@ -59,7 +59,7 @@ TelemetryDecoder_1G.implementation=GLONASS_L1_CA_Telemetry_Decoder
;######### OBSERVABLES CONFIG ############ ;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables Observables.implementation=Hybrid_Observables
Observables.dump=false; Observables.dump=true;
Observables.dump_filename=/archive/glo_observables.dat Observables.dump_filename=/archive/glo_observables.dat
;######### PVT CONFIG ############ ;######### PVT CONFIG ############
@ -76,4 +76,4 @@ PVT.rtcm_MT1019_rate_ms=5000
PVT.rtcm_MT1045_rate_ms=5000 PVT.rtcm_MT1045_rate_ms=5000
PVT.rtcm_MT1097_rate_ms=1000 PVT.rtcm_MT1097_rate_ms=1000
PVT.rtcm_MT1077_rate_ms=1000 PVT.rtcm_MT1077_rate_ms=1000
PVT.rinex_version=3 PVT.rinex_version=2

View File

@ -0,0 +1,141 @@
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
GNSS-SDR.internal_fs_sps=6625000
Receiver.sources_count=2
;######### SIGNAL_SOURCE CONFIG ############
SignalSource0.implementation=File_Signal_Source
SignalSource0.filename=/media/dmiralles/Seagate Backup Plus Drive/GNSS Data/NT1065_L1_20160923_fs6625e6_if60e3_schar.bin ; <- PUT YOUR FILE HERE
SignalSource0.item_type=ibyte
SignalSource0.sampling_frequency=6625000
SignalSource0.samples=0
SignalSource0.dump=false;
SignalSource0.dump_filename=/archive/signal_glonass.bin
SignalSource1.implementation=File_Signal_Source
SignalSource1.filename=/media/dmiralles/Seagate Backup Plus Drive/GNSS Data/NT1065_GLONASS_L2_20160923_fs6625e6_if0e3_schar.bin ; <- PUT YOUR FILE HERE
SignalSource1.item_type=ibyte
SignalSource1.sampling_frequency=6625000
SignalSource1.samples=0
SignalSource1.dump=false;
SignalSource1.dump_filename=/archive/signal_glonass.bin
;######### SIGNAL_CONDITIONER CONFIG ############
SignalConditioner0.implementation=Signal_Conditioner
DataTypeAdapter0.implementation=Ibyte_To_Complex
InputFilter0.implementation=Freq_Xlating_Fir_Filter
InputFilter0.item_type=gr_complex
InputFilter0.output_item_type=gr_complex
InputFilter0.taps_item_type=float
InputFilter0.number_of_taps=5
InputFilter0.number_of_bands=2
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.70
InputFilter0.band2_begin=0.80
InputFilter0.band2_end=1.0
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
InputFilter0.filter_type=bandpass
InputFilter0.grid_density=16
InputFilter0.sampling_frequency=6625000
InputFilter0.IF=60000
Resampler0.implementation=Direct_Resampler
Resampler0.sample_freq_in=6625000
Resampler0.sample_freq_out=6625000
Resampler0.item_type=gr_complex
SignalConditioner1.implementation=Signal_Conditioner
DataTypeAdapter1.implementation=Ibyte_To_Complex
InputFilter1.implementation=Pass_Through
InputFilter1.item_type=gr_complex
Resampler1.implementation=Pass_Through
Resampler1.item_type=gr_complex
;######### CHANNELS GLOBAL CONFIG ############
Channels.in_acquisition=1
Channels_2G.count=5
Channels_1C.count=5
;# Defining GLONASS satellites
Channel0.RF_channel_ID=0
Channel1.RF_channel_ID=0
Channel2.RF_channel_ID=0
Channel3.RF_channel_ID=0
Channel4.RF_channel_ID=0
Channel5.RF_channel_ID=1
Channel6.RF_channel_ID=1
Channel7.RF_channel_ID=1
Channel8.RF_channel_ID=1
Channel9.RF_channel_ID=1
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition
Acquisition_1C.item_type=gr_complex
Acquisition_1C.threshold=0.0
Acquisition_1C.pfa=0.00001
Acquisition_1C.if=0
Acquisition_1C.doppler_max=10000
Acquisition_1C.doppler_step=250
Acquisition_1C.dump=false;
Acquisition_1C.dump_filename=/archive/gps_acquisition.dat
;Acquisition_1C.coherent_integration_time_ms=10
Acquisition_2G.implementation=GLONASS_L2_CA_PCPS_Acquisition
Acquisition_2G.item_type=gr_complex
Acquisition_2G.threshold=0.0
Acquisition_2G.pfa=0.00001
Acquisition_2G.if=0
Acquisition_2G.doppler_max=10000
Acquisition_2G.doppler_step=250
Acquisition_2G.dump=false;
Acquisition_2G.dump_filename=/archive/glo_acquisition.dat
;Acquisition_2G.coherent_integration_time_ms=10
;######### TRACKING GLOBAL CONFIG ############
Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
Tracking_1C.item_type=gr_complex
Tracking_1C.if=0
Tracking_1C.early_late_space_chips=0.5
Tracking_1C.pll_bw_hz=20.0;
Tracking_1C.dll_bw_hz=2.0;
Tracking_1C.dump=false;
Tracking_1C.dump_filename=/archive/gps_tracking_ch_
Tracking_2G.implementation=GLONASS_L2_CA_DLL_PLL_Tracking
Tracking_2G.item_type=gr_complex
Tracking_2G.if=0
Tracking_2G.early_late_space_chips=0.5
Tracking_2G.pll_bw_hz=25.0;
Tracking_2G.dll_bw_hz=2.0;
Tracking_2G.dump=false;
Tracking_2G.dump_filename=/archive/glo_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder
TelemetryDecoder_2G.implementation=GLONASS_L2_CA_Telemetry_Decoder
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
Observables.dump=false;
Observables.dump_filename=/archive/gnss_observables.dat
;######### PVT CONFIG ############
PVT.implementation=RTKLIB_PVT
PVT.output_rate_ms=100
PVT.display_rate_ms=500
PVT.trop_model=Saastamoinen
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
PVT.rtcm_tcp_port=2101
PVT.rtcm_MT1019_rate_ms=5000
PVT.rtcm_MT1045_rate_ms=5000
PVT.rtcm_MT1097_rate_ms=1000
PVT.rtcm_MT1077_rate_ms=1000
PVT.rinex_version=2

View File

@ -0,0 +1,142 @@
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
GNSS-SDR.internal_fs_sps=6625000
Receiver.sources_count=2
;######### SIGNAL_SOURCE CONFIG ############
SignalSource0.implementation=File_Signal_Source
SignalSource0.filename=/archive/NT1065_L2_20160923_fs6625e6_if60e3_schar.bin ; <- PUT YOUR FILE HERE
SignalSource0.item_type=ibyte
SignalSource0.sampling_frequency=6625000
SignalSource0.samples=0
SignalSource0.dump=false;
SignalSource0.dump_filename=/archive/signal_glonass.bin
SignalSource1.implementation=File_Signal_Source
SignalSource1.filename=/archive/NT1065_GLONASS_L2_20160923_fs6625e6_if0e3_schar.bin ; <- PUT YOUR FILE HERE
SignalSource1.item_type=ibyte
SignalSource1.sampling_frequency=6625000
SignalSource1.samples=0
SignalSource1.dump=false;
SignalSource1.dump_filename=/archive/signal_glonass.bin
;######### SIGNAL_CONDITIONER CONFIG ############
SignalConditioner0.implementation=Signal_Conditioner
DataTypeAdapter0.implementation=Ibyte_To_Complex
InputFilter0.implementation=Freq_Xlating_Fir_Filter
InputFilter0.item_type=gr_complex
InputFilter0.output_item_type=gr_complex
InputFilter0.taps_item_type=float
InputFilter0.number_of_taps=5
InputFilter0.number_of_bands=2
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.70
InputFilter0.band2_begin=0.80
InputFilter0.band2_end=1.0
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
InputFilter0.filter_type=bandpass
InputFilter0.grid_density=16
InputFilter0.sampling_frequency=6625000
InputFilter0.IF=60000
Resampler0.implementation=Pass_Through
Resampler0.item_type=gr_complex
SignalConditioner1.implementation=Signal_Conditioner
DataTypeAdapter1.implementation=Ibyte_To_Complex
InputFilter1.implementation=Pass_Through
InputFilter1.item_type=gr_complex
Resampler1.implementation=Pass_Through
Resampler1.item_type=gr_complex
;######### CHANNELS GLOBAL CONFIG ############
Channels.in_acquisition=5
Channels_2S.count=5
Channels_2G.count=5
;# Defining GLONASS satellites
Channel0.RF_channel_ID=0
Channel0.signal=2S
Channel1.RF_channel_ID=0
Channel1.signal=2S
Channel2.RF_channel_ID=0
Channel2.signal=2S
Channel3.RF_channel_ID=0
Channel3.signal=2S
Channel4.RF_channel_ID=0
Channel4.signal=2S
Channel5.RF_channel_ID=1
Channel6.RF_channel_ID=1
Channel7.RF_channel_ID=1
Channel8.RF_channel_ID=1
Channel9.RF_channel_ID=1
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_2S.implementation=GPS_L2_M_PCPS_Acquisition
Acquisition_2S.item_type=gr_complex
Acquisition_2S.threshold=0.0
Acquisition_2S.pfa=0.00001
Acquisition_2S.if=0
Acquisition_2S.doppler_max=10000
Acquisition_2S.doppler_step=60
Acquisition_2S.max_dwells=1
Acquisition_2G.implementation=GLONASS_L2_CA_PCPS_Acquisition
Acquisition_2G.item_type=gr_complex
Acquisition_2G.threshold=0.0
Acquisition_2G.pfa=0.00001
Acquisition_2G.if=0
Acquisition_2G.doppler_max=10000
Acquisition_2G.doppler_step=250
Acquisition_2G.dump=false;
Acquisition_2G.dump_filename=/archive/glo_acquisition.dat
;######### TRACKING GLOBAL CONFIG ############
Tracking_2S.implementation=GPS_L2_M_DLL_PLL_Tracking
Tracking_2S.item_type=gr_complex
Tracking_2S.if=0
Tracking_2S.early_late_space_chips=0.5
Tracking_2S.pll_bw_hz=2.0;
Tracking_2S.dll_bw_hz=0.250;
Tracking_2S.order=2;
Tracking_2S.dump=false;
Tracking_2S.dump_filename=/archive/gps_tracking_ch_
Tracking_2G.implementation=GLONASS_L2_CA_DLL_PLL_Tracking
Tracking_2G.item_type=gr_complex
Tracking_2G.if=0
Tracking_2G.early_late_space_chips=0.5
Tracking_2G.pll_bw_hz=25.0;
Tracking_2G.dll_bw_hz=3.0;
Tracking_2G.dump=false;
Tracking_2G.dump_filename=/archive/glo_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_2S.implementation=GPS_L2C_Telemetry_Decoder
TelemetryDecoder_2G.implementation=GLONASS_L2_CA_Telemetry_Decoder
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
Observables.dump=false;
Observables.dump_filename=/archive/gnss_observables.dat
;######### PVT CONFIG ############
PVT.implementation=RTKLIB_PVT
PVT.output_rate_ms=100
PVT.display_rate_ms=500
PVT.trop_model=Saastamoinen
PVT.flag_rtcm_server=true
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
PVT.rtcm_tcp_port=2101
PVT.rtcm_MT1019_rate_ms=5000
PVT.rtcm_MT1045_rate_ms=5000
PVT.rtcm_MT1097_rate_ms=1000
PVT.rtcm_MT1077_rate_ms=1000
PVT.rinex_version=3

View File

@ -0,0 +1,73 @@
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
GNSS-SDR.internal_fs_sps=6625000
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=File_Signal_Source
SignalSource.filename=/media/dmiralles/Seagate Backup Plus Drive/GNSS Data/NT1065_GLONASS_L2_20160831_fs6625e6_60e3_schar_1m.bin ; <- PUT YOUR FILE HERE
SignalSource.item_type=ibyte
SignalSource.sampling_frequency=6625000
SignalSource.samples=0
SignalSource.dump=false;
SignalSource.dump_filename=/archive/signal_glonass.bin
;######### SIGNAL_CONDITIONER CONFIG ############
SignalConditioner.implementation=Signal_Conditioner
DataTypeAdapter.implementation=Ibyte_To_Complex
InputFilter.implementation=Pass_Through
InputFilter.item_type=gr_complex
Resampler.implementation=Pass_Through
Resampler.item_type=gr_complex
;######### CHANNELS GLOBAL CONFIG ############
Channel.signal=2G
Channels.in_acquisition=1
Channels_2G.count=5
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_2G.implementation=GLONASS_L2_CA_PCPS_Acquisition
Acquisition_2G.item_type=gr_complex
Acquisition_2G.threshold=0.0
Acquisition_2G.pfa=0.0001
Acquisition_2G.if=0
Acquisition_2G.doppler_max=10000
Acquisition_2G.doppler_step=250
Acquisition_2G.dump=true;
Acquisition_2G.dump_filename=/archive/glo_acquisition.dat
;Acquisition_2G.coherent_integration_time_ms=1
;Acquisition_2G.max_dwells = 5
;######### TRACKING GLOBAL CONFIG ############
Tracking_2G.implementation=GLONASS_L2_CA_DLL_PLL_Tracking
Tracking_2G.item_type=gr_complex
Tracking_2G.if=0
Tracking_2G.early_late_space_chips=0.5
Tracking_2G.pll_bw_hz=20.0;
Tracking_2G.dll_bw_hz=2.0;
Tracking_2G.dump=true;
Tracking_2G.dump_filename=/archive/glo_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_2G.implementation=GLONASS_L2_CA_Telemetry_Decoder
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
Observables.dump=true;
Observables.dump_filename=/archive/glo_observables.dat
;######### PVT CONFIG ############
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=Single
PVT.output_rate_ms=100
PVT.display_rate_ms=500
PVT.trop_model=Saastamoinen
PVT.flag_rtcm_server=false
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
PVT.rtcm_tcp_port=2101
PVT.rtcm_MT1019_rate_ms=5000
PVT.rtcm_MT1045_rate_ms=5000
PVT.rtcm_MT1097_rate_ms=1000
PVT.rtcm_MT1077_rate_ms=1000
PVT.rinex_version=2

View File

@ -0,0 +1,83 @@
[GNSS-SDR]
;######### GLOBAL OPTIONS ##################
GNSS-SDR.internal_fs_sps=6625000
;######### SIGNAL_SOURCE CONFIG ############
SignalSource.implementation=File_Signal_Source
SignalSource.filename=/archive/NT1065_GLONASS_L1_20160923_fs6625e6_if0e3_schar.bin ; <- PUT YOUR FILE HERE
SignalSource.item_type=ibyte
SignalSource.sampling_frequency=6625000
SignalSource.samples=0
SignalSource.dump=false;
SignalSource.dump_filename=/archive/signal_glonass.bin
;######### SIGNAL_CONDITIONER CONFIG ############
SignalConditioner.implementation=Signal_Conditioner
DataTypeAdapter.implementation=Ibyte_To_Complex
InputFilter.implementation=Pass_Through
InputFilter.item_type=gr_complex
Resampler.implementation=Pass_Through
Resampler.item_type=gr_complex
;######### CHANNELS GLOBAL CONFIG ############
Channel.signal=1G
Channels.in_acquisition=2
Channels_1G.count=8
;Channel0.satellite=24 ; k=2
;Channel1.satellite=1 ; k=1
;Channel2.satellite=2 ; k=-4
;Channel3.satellite=20 ; k=-5
;Channel4.satellite=21 ; k=4
;######### ACQUISITION GLOBAL CONFIG ############
Acquisition_1G.implementation=GLONASS_L1_CA_PCPS_Acquisition
Acquisition_1G.item_type=gr_complex
Acquisition_1G.threshold=0.0
Acquisition_1G.pfa=0.0001
Acquisition_1G.if=0
Acquisition_1G.doppler_max=10000
Acquisition_1G.doppler_step=250
Acquisition_1G.dump=false;
Acquisition_1G.dump_filename=/archive/glo_acquisition.dat
;Acquisition_1G.coherent_integration_time_ms=1
;Acquisition_1G.max_dwells = 5
;######### TRACKING GLOBAL CONFIG ############
Tracking_1G.implementation=GLONASS_L1_CA_DLL_PLL_C_Aid_Tracking
Tracking_1G.item_type=gr_complex
Tracking_1G.if=0
Tracking_1G.early_late_space_chips=0.5
Tracking_1G.pll_bw_hz=40.0;
Tracking_1G.dll_bw_hz=3.0;
Tracking_1G.pll_bw_narrow_hz = 25.0;
Tracking_1G.dll_bw_narrow_hz = 2.0;
Tracking_1G.extend_correlation_ms = 1;
Tracking_1G.dump=false;
Tracking_1G.dump_filename=/archive/glo_tracking_ch_
;######### TELEMETRY DECODER GPS CONFIG ############
TelemetryDecoder_1G.implementation=GLONASS_L1_CA_Telemetry_Decoder
;######### OBSERVABLES CONFIG ############
Observables.implementation=Hybrid_Observables
Observables.dump=false
Observables.dump_filename=/archive/glo_observables.dat
;######### PVT CONFIG ############
PVT.implementation=RTKLIB_PVT
PVT.positioning_mode=Single
PVT.output_rate_ms=100
PVT.display_rate_ms=500
PVT.trop_model=Saastamoinen
PVT.flag_rtcm_server=true
PVT.flag_rtcm_tty_port=false
PVT.rtcm_dump_devname=/dev/pts/1
PVT.rtcm_tcp_port=2101
PVT.rtcm_MT1019_rate_ms=5000
PVT.rtcm_MT1045_rate_ms=5000
PVT.rtcm_MT1097_rate_ms=1000
PVT.rtcm_MT1077_rate_ms=1000
PVT.rinex_version=2

View File

@ -178,40 +178,44 @@ RtklibPvt::RtklibPvt(ConfigurationInterface* configuration,
int gal_E5a_count = configuration->property("Channels_5X.count", 0); int gal_E5a_count = configuration->property("Channels_5X.count", 0);
int gal_E5b_count = configuration->property("Channels_7X.count", 0); int gal_E5b_count = configuration->property("Channels_7X.count", 0);
int glo_1G_count = configuration->property("Channels_1G.count", 0); int glo_1G_count = configuration->property("Channels_1G.count", 0);
int glo_2G_count = configuration->property("Channels_2G.count", 0);
unsigned int type_of_receiver = 0; unsigned int type_of_receiver = 0;
// *******************WARNING!!!!!!!*********** // *******************WARNING!!!!!!!***********
// GPS L5 only configurable for single frequency, single system at the moment!!!!!! // GPS L5 only configurable for single frequency, single system at the moment!!!!!!
if ((gps_1C_count != 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0)) type_of_receiver = 1; if ((gps_1C_count != 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 1;
if ((gps_1C_count == 0) && (gps_2S_count != 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0)) type_of_receiver = 2; if ((gps_1C_count == 0) && (gps_2S_count != 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 2;
if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count != 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0)) type_of_receiver = 3; if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count != 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 3;
if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count != 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0)) type_of_receiver = 4; if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count != 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 4;
if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count != 0) && (gal_E5b_count == 0) && (glo_1G_count == 0)) type_of_receiver = 5; if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count != 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 5;
if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count != 0) && (glo_1G_count == 0)) type_of_receiver = 6; if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count != 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 6;
if ((gps_1C_count != 0) && (gps_2S_count != 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0)) type_of_receiver = 7; if ((gps_1C_count != 0) && (gps_2S_count != 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 7;
//if( (gps_1C_count != 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0)) type_of_receiver = 8; //if( (gps_1C_count != 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0)) type_of_receiver = 8;
if ((gps_1C_count != 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count != 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0)) type_of_receiver = 9; if ((gps_1C_count != 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count != 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 9;
if ((gps_1C_count != 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count != 0) && (gal_E5b_count == 0) && (glo_1G_count == 0)) type_of_receiver = 10; if ((gps_1C_count != 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count != 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 10;
if ((gps_1C_count != 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count != 0) && (glo_1G_count == 0)) type_of_receiver = 11; if ((gps_1C_count != 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count != 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 11;
if ((gps_1C_count == 0) && (gps_2S_count != 0) && (gps_L5_count == 0) && (gal_1B_count != 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0)) type_of_receiver = 12; if ((gps_1C_count == 0) && (gps_2S_count != 0) && (gps_L5_count == 0) && (gal_1B_count != 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 12;
//if( (gps_1C_count == 0) && (gps_2S_count == 0) && (gal_1B_count != 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0)) type_of_receiver = 13; //if( (gps_1C_count == 0) && (gps_2S_count == 0) && (gal_1B_count != 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0)) type_of_receiver = 13;
if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count != 0) && (gal_E5a_count != 0) && (gal_E5b_count == 0) && (glo_1G_count == 0)) type_of_receiver = 14; if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count != 0) && (gal_E5a_count != 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 14;
if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count != 0) && (gal_E5a_count == 0) && (gal_E5b_count != 0) && (glo_1G_count == 0)) type_of_receiver = 15; if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count != 0) && (gal_E5a_count == 0) && (gal_E5b_count != 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 15;
//if( (gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0)) type_of_receiver = 16; //if( (gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0)) type_of_receiver = 16;
if ((gps_1C_count == 0) && (gps_2S_count != 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count != 0) && (gal_E5b_count == 0) && (glo_1G_count == 0)) type_of_receiver = 17; if ((gps_1C_count == 0) && (gps_2S_count != 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count != 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 17;
if ((gps_1C_count == 0) && (gps_2S_count != 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count != 0) && (glo_1G_count == 0)) type_of_receiver = 18; if ((gps_1C_count == 0) && (gps_2S_count != 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count != 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 18;
//if( (gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0)) type_of_receiver = 19; //if( (gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0)) type_of_receiver = 19;
//if( (gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0)) type_of_receiver = 20; //if( (gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0)) type_of_receiver = 20;
if ((gps_1C_count != 0) && (gps_2S_count != 0) && (gps_L5_count == 0) && (gal_1B_count != 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0)) type_of_receiver = 21; if ((gps_1C_count != 0) && (gps_2S_count != 0) && (gps_L5_count == 0) && (gal_1B_count != 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count == 0)) type_of_receiver = 21;
//if( (gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count = 0)) type_of_receiver = 22; //if( (gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count = 0)) type_of_receiver = 22;
if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count != 0)) type_of_receiver = 23; if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count != 0)) type_of_receiver = 23;
//if( (gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2R_count != 0)) type_of_receiver = 24; if( (gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count != 0)) type_of_receiver = 24;
//if( (gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count != 0) && (glo_1G_count != 0)) type_of_receiver = 25; if( (gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count != 0) && (glo_2G_count != 0)) type_of_receiver = 25;
if ((gps_1C_count != 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count != 0)) type_of_receiver = 26; if ((gps_1C_count != 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count != 0) && (glo_2G_count == 0)) type_of_receiver = 26;
if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count != 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count != 0)) type_of_receiver = 27; if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count != 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count != 0) && (glo_2G_count == 0)) type_of_receiver = 27;
if ((gps_1C_count == 0) && (gps_2S_count != 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count != 0)) type_of_receiver = 28; if ((gps_1C_count == 0) && (gps_2S_count != 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count != 0) && (glo_2G_count == 0)) type_of_receiver = 28;
if ((gps_1C_count != 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count != 0)) type_of_receiver = 29;
if ((gps_1C_count == 0) && (gps_2S_count == 0) && (gps_L5_count == 0) && (gal_1B_count != 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count != 0)) type_of_receiver = 30;
if ((gps_1C_count == 0) && (gps_2S_count != 0) && (gps_L5_count == 0) && (gal_1B_count == 0) && (gal_E5a_count == 0) && (gal_E5b_count == 0) && (glo_1G_count == 0) && (glo_2G_count != 0)) type_of_receiver = 31;
//RTKLIB PVT solver options //RTKLIB PVT solver options
// Settings 1 // Settings 1
int positioning_mode = -1; int positioning_mode = -1;
@ -236,9 +240,9 @@ RtklibPvt::RtklibPvt(ConfigurationInterface* configuration,
int num_bands = 0; int num_bands = 0;
if ((gps_1C_count > 0) || (gal_1B_count > 0) || (glo_1G_count > 0)) num_bands = 1; if ((gps_1C_count > 0) || (gal_1B_count > 0) || (glo_1G_count > 0)) num_bands = 1;
if (((gps_1C_count > 0) || (gal_1B_count > 0) || (glo_1G_count > 0)) && (gps_2S_count > 0)) num_bands = 2; if (((gps_1C_count > 0) || (gal_1B_count > 0) || (glo_1G_count > 0)) && ((gps_2S_count > 0) || (glo_2G_count > 0))) num_bands = 2;
if (((gps_1C_count > 0) || (gal_1B_count > 0) || (glo_1G_count > 0)) && ((gal_E5a_count > 0) || (gal_E5b_count > 0) || (gps_L5_count > 0))) num_bands = 2; if (((gps_1C_count > 0) || (gal_1B_count > 0) || (glo_1G_count > 0)) && ((gal_E5a_count > 0) || (gal_E5b_count > 0) || (gps_L5_count > 0))) num_bands = 2;
if (((gps_1C_count > 0) || (gal_1B_count > 0) || (glo_1G_count > 0)) && (gps_2S_count > 0) && ((gal_E5a_count > 0) || (gal_E5b_count > 0) || (gps_L5_count > 0))) num_bands = 3; if (((gps_1C_count > 0) || (gal_1B_count > 0) || (glo_1G_count > 0)) && ((gps_2S_count > 0) || (glo_2G_count > 0)) && ((gal_E5a_count > 0) || (gal_E5b_count > 0) || (gps_L5_count > 0))) num_bands = 3;
int number_of_frequencies = configuration->property(role + ".num_bands", num_bands); /* (1:L1, 2:L1+L2, 3:L1+L2+L5) */ int number_of_frequencies = configuration->property(role + ".num_bands", num_bands); /* (1:L1, 2:L1+L2, 3:L1+L2+L5) */
if ((number_of_frequencies < 1) || (number_of_frequencies > 3)) if ((number_of_frequencies < 1) || (number_of_frequencies > 3))
@ -321,7 +325,7 @@ RtklibPvt::RtklibPvt(ConfigurationInterface* configuration,
int nsys = 0; int nsys = 0;
if ((gps_1C_count > 0) || (gps_2S_count > 0) || (gps_L5_count > 0)) nsys += SYS_GPS; if ((gps_1C_count > 0) || (gps_2S_count > 0) || (gps_L5_count > 0)) nsys += SYS_GPS;
if ((gal_1B_count > 0) || (gal_E5a_count > 0) || (gal_E5b_count > 0)) nsys += SYS_GAL; if ((gal_1B_count > 0) || (gal_E5a_count > 0) || (gal_E5b_count > 0)) nsys += SYS_GAL;
if ((glo_1G_count > 0)) nsys += SYS_GLO; if ((glo_1G_count > 0) || (glo_2G_count > 0)) nsys += SYS_GLO;
int navigation_system = configuration->property(role + ".navigation_system", nsys); /* (SYS_XXX) see src/algorithms/libs/rtklib/rtklib.h */ int navigation_system = configuration->property(role + ".navigation_system", nsys); /* (SYS_XXX) see src/algorithms/libs/rtklib/rtklib.h */
if ((navigation_system < 1) || (navigation_system > 255)) /* GPS: 1 SBAS: 2 GPS+SBAS: 3 Galileo: 8 Galileo+GPS: 9 GPS+SBAS+Galileo: 11 All: 255 */ if ((navigation_system < 1) || (navigation_system > 255)) /* GPS: 1 SBAS: 2 GPS+SBAS: 3 Galileo: 8 Galileo+GPS: 9 GPS+SBAS+Galileo: 11 All: 255 */
{ {

View File

@ -700,6 +700,9 @@ int rtklib_pvt_cc::work(int noutput_items, gr_vector_const_void_star& input_item
* 26 | GPS L1 C/A + GLONASS L1 C/A * 26 | GPS L1 C/A + GLONASS L1 C/A
* 27 | Galileo E1B + GLONASS L1 C/A * 27 | Galileo E1B + GLONASS L1 C/A
* 28 | GPS L2C + GLONASS L1 C/A * 28 | GPS L2C + GLONASS L1 C/A
* 29 | GPS L1 C/A + GLONASS L2 C/A
* 30 | Galileo E1B + GLONASS L2 C/A
* 31 | GPS L2C + GLONASS L2 C/A
*/ */
// ####################### RINEX FILES ################# // ####################### RINEX FILES #################
@ -901,6 +904,43 @@ int rtklib_pvt_cc::work(int noutput_items, gr_vector_const_void_star& input_item
b_rinex_header_written = true; // do not write header anymore b_rinex_header_written = true; // do not write header anymore
} }
} }
if (type_of_rx == 29) // GPS L1 C/A + GLONASS L2 C/A
{
if ((glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.cend()) && (gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.cend()))
{
std::string glo_signal("2G");
rp->rinex_obs_header(rp->obsFile, gps_ephemeris_iter->second, glonass_gnav_ephemeris_iter->second, d_rx_time, glo_signal);
if (d_rinex_version == 3)
rp->rinex_nav_header(rp->navMixFile, d_ls_pvt->gps_iono, d_ls_pvt->gps_utc_model, d_ls_pvt->glonass_gnav_utc_model, d_ls_pvt->glonass_gnav_almanac);
if (d_rinex_version == 2)
{
rp->rinex_nav_header(rp->navFile, d_ls_pvt->gps_iono, d_ls_pvt->gps_utc_model);
rp->rinex_nav_header(rp->navGloFile, d_ls_pvt->glonass_gnav_utc_model, glonass_gnav_ephemeris_iter->second);
}
b_rinex_header_written = true; // do not write header anymore
}
}
if (type_of_rx == 30) // Galileo E1B + GLONASS L2 C/A
{
if ((glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.cend()) && (galileo_ephemeris_iter != d_ls_pvt->galileo_ephemeris_map.cend()))
{
std::string glo_signal("2G");
std::string gal_signal("1B");
rp->rinex_obs_header(rp->obsFile, galileo_ephemeris_iter->second, glonass_gnav_ephemeris_iter->second, d_rx_time, glo_signal, gal_signal);
rp->rinex_nav_header(rp->navMixFile, d_ls_pvt->galileo_iono, d_ls_pvt->galileo_utc_model, d_ls_pvt->galileo_almanac, d_ls_pvt->glonass_gnav_utc_model, d_ls_pvt->glonass_gnav_almanac);
b_rinex_header_written = true; // do not write header anymore
}
}
if (type_of_rx == 31) // GPS L2C + GLONASS L2 C/A
{
if ((glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.cend()) && (gps_cnav_ephemeris_iter != d_ls_pvt->gps_cnav_ephemeris_map.cend()))
{
std::string glo_signal("2G");
rp->rinex_obs_header(rp->obsFile, gps_cnav_ephemeris_iter->second, glonass_gnav_ephemeris_iter->second, d_rx_time, glo_signal);
rp->rinex_nav_header(rp->navMixFile, d_ls_pvt->gps_cnav_iono, d_ls_pvt->gps_cnav_utc_model, d_ls_pvt->glonass_gnav_utc_model, d_ls_pvt->glonass_gnav_almanac);
b_rinex_header_written = true; // do not write header anymore
}
}
} }
if (b_rinex_header_written) // The header is already written, we can now log the navigation message data if (b_rinex_header_written) // The header is already written, we can now log the navigation message data
{ {
@ -956,6 +996,24 @@ int rtklib_pvt_cc::work(int noutput_items, gr_vector_const_void_star& input_item
{ {
rp->log_rinex_nav(rp->navMixFile, d_ls_pvt->gps_cnav_ephemeris_map, d_ls_pvt->glonass_gnav_ephemeris_map); rp->log_rinex_nav(rp->navMixFile, d_ls_pvt->gps_cnav_ephemeris_map, d_ls_pvt->glonass_gnav_ephemeris_map);
} }
if (type_of_rx == 29) // GPS L1 C/A + GLONASS L2 C/A
{
if (d_rinex_version == 3)
rp->log_rinex_nav(rp->navMixFile, d_ls_pvt->gps_ephemeris_map, d_ls_pvt->glonass_gnav_ephemeris_map);
if (d_rinex_version == 2)
{
rp->log_rinex_nav(rp->navFile, d_ls_pvt->gps_ephemeris_map);
rp->log_rinex_nav(rp->navGloFile, d_ls_pvt->glonass_gnav_ephemeris_map);
}
}
if (type_of_rx == 30) // Galileo E1B + GLONASS L2 C/A
{
rp->log_rinex_nav(rp->navMixFile, d_ls_pvt->galileo_ephemeris_map, d_ls_pvt->glonass_gnav_ephemeris_map);
}
if (type_of_rx == 31) // GPS L2C + GLONASS L2 C/A
{
rp->log_rinex_nav(rp->navMixFile, d_ls_pvt->gps_cnav_ephemeris_map, d_ls_pvt->glonass_gnav_ephemeris_map);
}
} }
galileo_ephemeris_iter = d_ls_pvt->galileo_ephemeris_map.cbegin(); galileo_ephemeris_iter = d_ls_pvt->galileo_ephemeris_map.cbegin();
gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.cbegin(); gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.cbegin();
@ -1173,6 +1231,45 @@ int rtklib_pvt_cc::work(int noutput_items, gr_vector_const_void_star& input_item
b_rinex_header_updated = true; // do not write header anymore b_rinex_header_updated = true; // do not write header anymore
} }
} }
if (type_of_rx == 29) // GPS L1 C/A + GLONASS L2 C/A
{
if ((glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.end()) && (gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.end()))
{
rp->log_rinex_obs(rp->obsFile, gps_ephemeris_iter->second, glonass_gnav_ephemeris_iter->second, d_rx_time, gnss_observables_map);
}
if (!b_rinex_header_updated && (d_ls_pvt->gps_utc_model.d_A0 != 0))
{
rp->update_obs_header(rp->obsFile, d_ls_pvt->gps_utc_model);
rp->update_nav_header(rp->navMixFile, d_ls_pvt->gps_iono, d_ls_pvt->gps_utc_model, d_ls_pvt->glonass_gnav_utc_model, d_ls_pvt->glonass_gnav_almanac);
b_rinex_header_updated = true; // do not write header anymore
}
}
if (type_of_rx == 30) // Galileo E1B + GLONASS L2 C/A
{
if ((glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.end()) && (galileo_ephemeris_iter != d_ls_pvt->galileo_ephemeris_map.end()))
{
rp->log_rinex_obs(rp->obsFile, galileo_ephemeris_iter->second, glonass_gnav_ephemeris_iter->second, d_rx_time, gnss_observables_map);
}
if (!b_rinex_header_updated && (d_ls_pvt->galileo_utc_model.A0_6 != 0))
{
rp->update_obs_header(rp->obsFile, d_ls_pvt->galileo_utc_model);
rp->update_nav_header(rp->navMixFile, d_ls_pvt->galileo_iono, d_ls_pvt->galileo_utc_model, d_ls_pvt->galileo_almanac, d_ls_pvt->glonass_gnav_utc_model, d_ls_pvt->glonass_gnav_almanac);
b_rinex_header_updated = true; // do not write header anymore
}
}
if (type_of_rx == 31) // GPS L2C + GLONASS L2 C/A
{
if ((glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.end()) && (gps_cnav_ephemeris_iter != d_ls_pvt->gps_cnav_ephemeris_map.end()))
{
rp->log_rinex_obs(rp->obsFile, gps_cnav_ephemeris_iter->second, glonass_gnav_ephemeris_iter->second, d_rx_time, gnss_observables_map);
}
if (!b_rinex_header_updated && (d_ls_pvt->gps_cnav_utc_model.d_A0 != 0))
{
rp->update_obs_header(rp->obsFile, d_ls_pvt->gps_cnav_utc_model);
rp->update_nav_header(rp->navMixFile, d_ls_pvt->gps_cnav_iono, d_ls_pvt->gps_cnav_utc_model, d_ls_pvt->glonass_gnav_utc_model, d_ls_pvt->glonass_gnav_almanac);
b_rinex_header_updated = true; // do not write header anymore
}
}
} }
} }
@ -1452,6 +1549,136 @@ int rtklib_pvt_cc::work(int noutput_items, gr_vector_const_void_star& input_item
} }
} }
} }
if (type_of_rx == 29) // GPS L1 C/A + GLONASS L2 C/A
{
if (flag_write_RTCM_1019_output == true)
{
for (gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.cbegin(); gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.cend(); gps_ephemeris_iter++)
{
d_rtcm_printer->Print_Rtcm_MT1019(gps_ephemeris_iter->second);
}
}
if (flag_write_RTCM_1020_output == true)
{
for (std::map<int, Glonass_Gnav_Ephemeris>::const_iterator glonass_gnav_ephemeris_iter = d_ls_pvt->glonass_gnav_ephemeris_map.cbegin(); glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.cend(); glonass_gnav_ephemeris_iter++)
{
d_rtcm_printer->Print_Rtcm_MT1020(glonass_gnav_ephemeris_iter->second, d_ls_pvt->glonass_gnav_utc_model);
}
}
if (flag_write_RTCM_MSM_output == true)
{
//gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.end();
//galileo_ephemeris_iter = d_ls_pvt->galileo_ephemeris_map.end();
unsigned int i = 0;
for (gnss_observables_iter = gnss_observables_map.begin(); gnss_observables_iter != gnss_observables_map.end(); gnss_observables_iter++)
{
std::string system(&gnss_observables_iter->second.System, 1);
if (gps_channel == 0)
{
if (system.compare("G") == 0)
{
// This is a channel with valid GPS signal
gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.cend())
{
gps_channel = i;
}
}
}
if (glo_channel == 0)
{
if (system.compare("R") == 0)
{
glonass_gnav_ephemeris_iter = d_ls_pvt->glonass_gnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.cend())
{
glo_channel = i;
}
}
}
i++;
}
if (flag_write_RTCM_MSM_output == true)
{
if (glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.cend())
{
d_rtcm_printer->Print_Rtcm_MSM(7, {}, {}, {}, glonass_gnav_ephemeris_iter->second, d_rx_time, gnss_observables_map, 0, 0, 0, 0, 0);
}
}
if (flag_write_RTCM_MSM_output == true)
{
if (gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.cend())
{
d_rtcm_printer->Print_Rtcm_MSM(7, gps_ephemeris_iter->second, {}, {}, {}, d_rx_time, gnss_observables_map, 0, 0, 0, 0, 0);
}
}
}
}
if (type_of_rx == 30) // GLONASS L2 C/A + Galileo E1B
{
if (flag_write_RTCM_1020_output == true)
{
for (std::map<int, Glonass_Gnav_Ephemeris>::const_iterator glonass_gnav_ephemeris_iter = d_ls_pvt->glonass_gnav_ephemeris_map.cbegin(); glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.cend(); glonass_gnav_ephemeris_iter++)
{
d_rtcm_printer->Print_Rtcm_MT1020(glonass_gnav_ephemeris_iter->second, d_ls_pvt->glonass_gnav_utc_model);
}
}
if (flag_write_RTCM_1045_output == true)
{
for (galileo_ephemeris_iter = d_ls_pvt->galileo_ephemeris_map.cbegin(); galileo_ephemeris_iter != d_ls_pvt->galileo_ephemeris_map.cend(); galileo_ephemeris_iter++)
{
d_rtcm_printer->Print_Rtcm_MT1045(galileo_ephemeris_iter->second);
}
}
if (flag_write_RTCM_MSM_output == true)
{
//gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.end();
//galileo_ephemeris_iter = d_ls_pvt->galileo_ephemeris_map.end();
unsigned int i = 0;
for (gnss_observables_iter = gnss_observables_map.cbegin(); gnss_observables_iter != gnss_observables_map.cend(); gnss_observables_iter++)
{
std::string system(&gnss_observables_iter->second.System, 1);
if (gal_channel == 0)
{
if (system.compare("E") == 0)
{
// This is a channel with valid GPS signal
galileo_ephemeris_iter = d_ls_pvt->galileo_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (galileo_ephemeris_iter != d_ls_pvt->galileo_ephemeris_map.cend())
{
gal_channel = i;
}
}
}
if (glo_channel == 0)
{
if (system.compare("R") == 0)
{
glonass_gnav_ephemeris_iter = d_ls_pvt->glonass_gnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.end())
{
glo_channel = i;
}
}
}
i++;
}
if (flag_write_RTCM_MSM_output == true)
{
if (galileo_ephemeris_iter != d_ls_pvt->galileo_ephemeris_map.end())
{
d_rtcm_printer->Print_Rtcm_MSM(7, {}, {}, galileo_ephemeris_iter->second, {}, d_rx_time, gnss_observables_map, 0, 0, 0, 0, 0);
}
}
if (flag_write_RTCM_MSM_output == true)
{
if (glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.end())
{
d_rtcm_printer->Print_Rtcm_MSM(7, {}, {}, {}, glonass_gnav_ephemeris_iter->second, d_rx_time, gnss_observables_map, 0, 0, 0, 0, 0);
}
}
}
}
} }
if (!b_rtcm_writing_started) // the first time if (!b_rtcm_writing_started) // the first time
@ -1690,6 +1917,121 @@ int rtklib_pvt_cc::work(int noutput_items, gr_vector_const_void_star& input_item
d_rtcm_printer->Print_Rtcm_MSM(7, {}, {}, {}, glonass_gnav_ephemeris_iter->second, d_rx_time, gnss_observables_map, 0, 0, 0, 0, 0); d_rtcm_printer->Print_Rtcm_MSM(7, {}, {}, {}, glonass_gnav_ephemeris_iter->second, d_rx_time, gnss_observables_map, 0, 0, 0, 0, 0);
} }
} }
if (type_of_rx == 29) // GPS L1 C/A + GLONASS L2 C/A
{
if (d_rtcm_MT1019_rate_ms != 0) // allows deactivating messages by setting rate = 0
{
for (gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.cbegin(); gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.cend(); gps_ephemeris_iter++)
{
d_rtcm_printer->Print_Rtcm_MT1019(gps_ephemeris_iter->second);
}
}
if (d_rtcm_MT1020_rate_ms != 0) // allows deactivating messages by setting rate = 0
{
for (std::map<int, Glonass_Gnav_Ephemeris>::const_iterator glonass_gnav_ephemeris_iter = d_ls_pvt->glonass_gnav_ephemeris_map.cbegin(); glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.cend(); glonass_gnav_ephemeris_iter++)
{
d_rtcm_printer->Print_Rtcm_MT1020(glonass_gnav_ephemeris_iter->second, d_ls_pvt->glonass_gnav_utc_model);
}
}
//gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.end();
//galileo_ephemeris_iter = d_ls_pvt->galileo_ephemeris_map.end();
unsigned int i = 0;
for (gnss_observables_iter = gnss_observables_map.cbegin(); gnss_observables_iter != gnss_observables_map.cend(); gnss_observables_iter++)
{
std::string system(&gnss_observables_iter->second.System, 1);
if (gps_channel == 0)
{
if (system.compare("G") == 0)
{
// This is a channel with valid GPS signal
gps_ephemeris_iter = d_ls_pvt->gps_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.cend())
{
gps_channel = i;
}
}
}
if (glo_channel == 0)
{
if (system.compare("R") == 0)
{
glonass_gnav_ephemeris_iter = d_ls_pvt->glonass_gnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.cend())
{
glo_channel = i;
}
}
}
i++;
}
if (glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.cend())
{
d_rtcm_printer->Print_Rtcm_MSM(7, {}, {}, {}, glonass_gnav_ephemeris_iter->second, d_rx_time, gnss_observables_map, 0, 0, 0, 0, 0);
}
if (gps_ephemeris_iter != d_ls_pvt->gps_ephemeris_map.cend())
{
d_rtcm_printer->Print_Rtcm_MSM(7, gps_ephemeris_iter->second, {}, {}, {}, d_rx_time, gnss_observables_map, 0, 0, 0, 0, 0);
}
b_rtcm_writing_started = true;
}
if (type_of_rx == 30) // GLONASS L2 C/A + Galileo E1B
{
if (d_rtcm_MT1020_rate_ms != 0) // allows deactivating messages by setting rate = 0
{
for (std::map<int, Glonass_Gnav_Ephemeris>::const_iterator glonass_gnav_ephemeris_iter = d_ls_pvt->glonass_gnav_ephemeris_map.cbegin(); glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.cend(); glonass_gnav_ephemeris_iter++)
{
d_rtcm_printer->Print_Rtcm_MT1020(glonass_gnav_ephemeris_iter->second, d_ls_pvt->glonass_gnav_utc_model);
}
}
if (d_rtcm_MT1045_rate_ms != 0) // allows deactivating messages by setting rate = 0
{
for (galileo_ephemeris_iter = d_ls_pvt->galileo_ephemeris_map.cbegin(); galileo_ephemeris_iter != d_ls_pvt->galileo_ephemeris_map.cend(); galileo_ephemeris_iter++)
{
d_rtcm_printer->Print_Rtcm_MT1045(galileo_ephemeris_iter->second);
}
}
unsigned int i = 0;
for (gnss_observables_iter = gnss_observables_map.cbegin(); gnss_observables_iter != gnss_observables_map.cend(); gnss_observables_iter++)
{
std::string system(&gnss_observables_iter->second.System, 1);
if (gal_channel == 0)
{
if (system.compare("E") == 0)
{
// This is a channel with valid GPS signal
galileo_ephemeris_iter = d_ls_pvt->galileo_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (galileo_ephemeris_iter != d_ls_pvt->galileo_ephemeris_map.cend())
{
gal_channel = i;
}
}
}
if (glo_channel == 0)
{
if (system.compare("R") == 0)
{
glonass_gnav_ephemeris_iter = d_ls_pvt->glonass_gnav_ephemeris_map.find(gnss_observables_iter->second.PRN);
if (glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.end())
{
glo_channel = i;
}
}
}
i++;
}
if (galileo_ephemeris_iter != d_ls_pvt->galileo_ephemeris_map.end())
{
d_rtcm_printer->Print_Rtcm_MSM(7, {}, {}, galileo_ephemeris_iter->second, {}, d_rx_time, gnss_observables_map, 0, 0, 0, 0, 0);
}
if (glonass_gnav_ephemeris_iter != d_ls_pvt->glonass_gnav_ephemeris_map.end())
{
d_rtcm_printer->Print_Rtcm_MSM(7, {}, {}, {}, glonass_gnav_ephemeris_iter->second, d_rx_time, gnss_observables_map, 0, 0, 0, 0, 0);
}
}
} }
} }
} }

View File

@ -3958,6 +3958,13 @@ void Rinex_Printer::rinex_obs_header(std::fstream& out, const Gps_CNAV_Ephemeris
out << line << std::endl; out << line << std::endl;
// -------- Line MARKER NAME // -------- Line MARKER NAME
line.clear();
line += Rinex_Printer::leftJustify("DEFAULT MARKER NAME", 60); // put a flag or a property,
line += Rinex_Printer::leftJustify("MARKER NAME", 20);
Rinex_Printer::lengthCheck(line);
out << line << std::endl;
// -------- Line MARKER NUMBER / TYPE
if (version == 2) if (version == 2)
{ {
line.clear(); line.clear();
@ -3977,14 +3984,6 @@ void Rinex_Printer::rinex_obs_header(std::fstream& out, const Gps_CNAV_Ephemeris
out << line << std::endl; out << line << std::endl;
} }
// -------- Line MARKER TYPE
line.clear();
line += Rinex_Printer::leftJustify("NON_GEODETIC", 20); // put a flag or a property
line += std::string(40, ' ');
line += Rinex_Printer::leftJustify("MARKER TYPE", 20);
Rinex_Printer::lengthCheck(line);
out << line << std::endl;
// -------- Line OBSERVER / AGENCY // -------- Line OBSERVER / AGENCY
line.clear(); line.clear();
std::string username; std::string username;
@ -4279,7 +4278,7 @@ void Rinex_Printer::rinex_obs_header(std::fstream& out, const Galileo_Ephemeris&
// -------- Line MARKER NAME // -------- Line MARKER NAME
line.clear(); line.clear();
line += Rinex_Printer::leftJustify("DEFAULT MARKER NAME", 60); // put a flag or a property, line += Rinex_Printer::leftJustify("DEFAULT MARKER NAME", 60); // put a flag or a property,
line += Rinex_Printer::leftJustify("MARKER TYPE", 20); line += Rinex_Printer::leftJustify("MARKER NAME", 20);
Rinex_Printer::lengthCheck(line); Rinex_Printer::lengthCheck(line);
out << line << std::endl; out << line << std::endl;
@ -5998,6 +5997,7 @@ void Rinex_Printer::log_rinex_obs(std::fstream& out, const Glonass_Gnav_Ephemeri
{ {
// RINEX observations timestamps are GPS timestamps. // RINEX observations timestamps are GPS timestamps.
std::string line; std::string line;
double int_sec = 0;
// Avoid compiler warning // Avoid compiler warning
if (glonass_band.size()) if (glonass_band.size())
@ -6008,12 +6008,12 @@ void Rinex_Printer::log_rinex_obs(std::fstream& out, const Glonass_Gnav_Ephemeri
std::string timestring = boost::posix_time::to_iso_string(p_glonass_time); std::string timestring = boost::posix_time::to_iso_string(p_glonass_time);
//double utc_t = nav_msg.utc_time(nav_msg.sv_clock_correction(obs_time)); //double utc_t = nav_msg.utc_time(nav_msg.sv_clock_correction(obs_time));
//double gps_t = eph.sv_clock_correction(obs_time); //double gps_t = eph.sv_clock_correction(obs_time);
double glonass_t = obs_time;
std::string month(timestring, 4, 2); std::string month(timestring, 4, 2);
std::string day(timestring, 6, 2); std::string day(timestring, 6, 2);
std::string hour(timestring, 9, 2); std::string hour(timestring, 9, 2);
std::string minutes(timestring, 11, 2); std::string minutes(timestring, 11, 2);
double utc_sec = modf(obs_time, &int_sec) + p_glonass_time.time_of_day().seconds();
if (version == 2) if (version == 2)
{ {
@ -6046,12 +6046,11 @@ void Rinex_Printer::log_rinex_obs(std::fstream& out, const Glonass_Gnav_Ephemeri
line += std::string(1, ' '); line += std::string(1, ' ');
line += minutes; line += minutes;
line += std::string(1, ' '); line += std::string(1, ' ');
double second_ = fmod(glonass_t, 60); if (utc_sec < 10)
if (second_ < 10)
{ {
line += std::string(1, ' '); line += std::string(1, ' ');
} }
line += Rinex_Printer::asString(second_, 7); line += Rinex_Printer::asString(utc_sec, 7);
line += std::string(2, ' '); line += std::string(2, ' ');
// Epoch flag 0: OK 1: power failure between previous and current epoch <1: Special event // Epoch flag 0: OK 1: power failure between previous and current epoch <1: Special event
line += std::string(1, '0'); line += std::string(1, '0');
@ -6149,13 +6148,12 @@ void Rinex_Printer::log_rinex_obs(std::fstream& out, const Glonass_Gnav_Ephemeri
line += minutes; line += minutes;
line += std::string(1, ' '); line += std::string(1, ' ');
double seconds = fmod(glonass_t, 60);
// Add extra 0 if seconds are < 10 // Add extra 0 if seconds are < 10
if (seconds < 10) if (utc_sec < 10)
{ {
line += std::string(1, '0'); line += std::string(1, '0');
} }
line += Rinex_Printer::asString(seconds, 7); line += Rinex_Printer::asString(utc_sec, 7);
line += std::string(2, ' '); line += std::string(2, ' ');
// Epoch flag 0: OK 1: power failure between previous and current epoch <1: Special event // Epoch flag 0: OK 1: power failure between previous and current epoch <1: Special event
line += std::string(1, '0'); line += std::string(1, '0');
@ -8324,8 +8322,8 @@ boost::posix_time::ptime Rinex_Printer::compute_UTC_time(const Glonass_Gnav_Ephe
boost::posix_time::ptime ls_time(d3, t3); boost::posix_time::ptime ls_time(d3, t3);
if (utc_time >= ls_time) if (utc_time >= ls_time)
{ {
// We subtract the leap second when going from gpst to utc // We subtract the leap second when going from gpst to utc, values store as negatives
utc_time = utc_time - boost::posix_time::time_duration(0, 0, fabs(GLONASS_LEAP_SECONDS[i][6])); utc_time = utc_time + boost::posix_time::time_duration(0, 0, GLONASS_LEAP_SECONDS[i][6]);
break; break;
} }
} }
@ -8333,7 +8331,6 @@ boost::posix_time::ptime Rinex_Printer::compute_UTC_time(const Glonass_Gnav_Ephe
return utc_time; return utc_time;
} }
double Rinex_Printer::get_leap_second(const Glonass_Gnav_Ephemeris& eph, const double gps_obs_time) double Rinex_Printer::get_leap_second(const Glonass_Gnav_Ephemeris& eph, const double gps_obs_time)
{ {
double tod = 0.0; double tod = 0.0;

View File

@ -57,7 +57,7 @@
#include "glonass_gnav_navigation_message.h" #include "glonass_gnav_navigation_message.h"
#include "GPS_L1_CA.h" #include "GPS_L1_CA.h"
#include "Galileo_E1.h" #include "Galileo_E1.h"
#include "GLONASS_L1_CA.h" #include "GLONASS_L1_L2_CA.h"
#include "gnss_synchro.h" #include "gnss_synchro.h"
#include <boost/date_time/posix_time/posix_time.hpp> #include <boost/date_time/posix_time/posix_time.hpp>
#include <string> #include <string>

View File

@ -55,7 +55,7 @@
#include "rtklib_conversions.h" #include "rtklib_conversions.h"
#include "GPS_L1_CA.h" #include "GPS_L1_CA.h"
#include "Galileo_E1.h" #include "Galileo_E1.h"
#include "GLONASS_L1_CA.h" #include "GLONASS_L1_L2_CA.h"
#include <glog/logging.h> #include <glog/logging.h>

View File

@ -33,6 +33,7 @@ set(ACQ_ADAPTER_SOURCES
galileo_e5a_noncoherent_iq_acquisition_caf.cc galileo_e5a_noncoherent_iq_acquisition_caf.cc
galileo_e5a_pcps_acquisition.cc galileo_e5a_pcps_acquisition.cc
glonass_l1_ca_pcps_acquisition.cc glonass_l1_ca_pcps_acquisition.cc
glonass_l2_ca_pcps_acquisition.cc
) )
if(ENABLE_FPGA) if(ENABLE_FPGA)

View File

@ -34,8 +34,8 @@
#include "glonass_l1_ca_pcps_acquisition.h" #include "glonass_l1_ca_pcps_acquisition.h"
#include "configuration_interface.h" #include "configuration_interface.h"
#include "glonass_l1_signal_processing.h" #include "glonass_l1_signal_processing.h"
#include "GLONASS_L1_CA.h"
#include "gnss_sdr_flags.h" #include "gnss_sdr_flags.h"
#include "GLONASS_L1_L2_CA.h"
#include <boost/math/distributions/exponential.hpp> #include <boost/math/distributions/exponential.hpp>
#include <glog/logging.h> #include <glog/logging.h>

View File

@ -0,0 +1,312 @@
/*!
* \file glonass_l2_ca_pcps_acquisition.cc
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface for
* Glonass L2 C/A signals
* \author Damian Miralles, 2018, dmiralles2009@gmail.com
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "glonass_l2_ca_pcps_acquisition.h"
#include "configuration_interface.h"
#include "glonass_l2_signal_processing.h"
#include "GLONASS_L1_L2_CA.h"
#include "gnss_sdr_flags.h"
#include <boost/math/distributions/exponential.hpp>
#include <glog/logging.h>
using google::LogMessage;
GlonassL2CaPcpsAcquisition::GlonassL2CaPcpsAcquisition(
ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
{
configuration_ = configuration;
std::string default_item_type = "gr_complex";
std::string default_dump_filename = "./data/acquisition.dat";
DLOG(INFO) << "role " << role;
item_type_ = configuration_->property(role + ".item_type", default_item_type);
long fs_in_deprecated = configuration_->property("GNSS-SDR.internal_fs_hz", 2048000);
fs_in_ = configuration_->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
if_ = configuration_->property(role + ".if", 0);
dump_ = configuration_->property(role + ".dump", false);
blocking_ = configuration_->property(role + ".blocking", true);
doppler_max_ = configuration_->property(role + ".doppler_max", 5000);
if (FLAGS_doppler_max != 0) doppler_max_ = FLAGS_doppler_max;
sampled_ms_ = configuration_->property(role + ".coherent_integration_time_ms", 1);
bit_transition_flag_ = configuration_->property(role + ".bit_transition_flag", false);
use_CFAR_algorithm_flag_ = configuration_->property(role + ".use_CFAR_algorithm", true); //will be false in future versions
max_dwells_ = configuration_->property(role + ".max_dwells", 1);
dump_filename_ = configuration_->property(role + ".dump_filename", default_dump_filename);
//--- Find number of samples per spreading code -------------------------
code_length_ = round(fs_in_ / (GLONASS_L2_CA_CODE_RATE_HZ / GLONASS_L2_CA_CODE_LENGTH_CHIPS));
vector_length_ = code_length_ * sampled_ms_;
if (bit_transition_flag_)
{
vector_length_ *= 2;
}
code_ = new gr_complex[vector_length_];
if (item_type_.compare("cshort") == 0)
{
item_size_ = sizeof(lv_16sc_t);
}
else
{
item_size_ = sizeof(gr_complex);
}
acquisition_ = pcps_make_acquisition(sampled_ms_, max_dwells_,
doppler_max_, if_, fs_in_, code_length_, code_length_,
bit_transition_flag_, use_CFAR_algorithm_flag_, dump_, blocking_, dump_filename_, item_size_);
DLOG(INFO) << "acquisition(" << acquisition_->unique_id() << ")";
stream_to_vector_ = gr::blocks::stream_to_vector::make(item_size_, vector_length_);
DLOG(INFO) << "stream_to_vector(" << stream_to_vector_->unique_id() << ")";
if (item_type_.compare("cbyte") == 0)
{
cbyte_to_float_x2_ = make_complex_byte_to_float_x2();
float_to_complex_ = gr::blocks::float_to_complex::make();
}
channel_ = 0;
threshold_ = 0.0;
doppler_step_ = 0;
gnss_synchro_ = 0;
}
GlonassL2CaPcpsAcquisition::~GlonassL2CaPcpsAcquisition()
{
delete[] code_;
}
void GlonassL2CaPcpsAcquisition::set_channel(unsigned int channel)
{
channel_ = channel;
acquisition_->set_channel(channel_);
}
void GlonassL2CaPcpsAcquisition::set_threshold(float threshold)
{
float pfa = configuration_->property(role_ + ".pfa", 0.0);
if (pfa == 0.0)
{
threshold_ = threshold;
}
else
{
threshold_ = calculate_threshold(pfa);
}
DLOG(INFO) << "Channel " << channel_ << " Threshold = " << threshold_;
acquisition_->set_threshold(threshold_);
}
void GlonassL2CaPcpsAcquisition::set_doppler_max(unsigned int doppler_max)
{
doppler_max_ = doppler_max;
acquisition_->set_doppler_max(doppler_max_);
}
void GlonassL2CaPcpsAcquisition::set_doppler_step(unsigned int doppler_step)
{
doppler_step_ = doppler_step;
acquisition_->set_doppler_step(doppler_step_);
}
void GlonassL2CaPcpsAcquisition::set_gnss_synchro(Gnss_Synchro* gnss_synchro)
{
gnss_synchro_ = gnss_synchro;
acquisition_->set_gnss_synchro(gnss_synchro_);
}
signed int GlonassL2CaPcpsAcquisition::mag()
{
return acquisition_->mag();
}
void GlonassL2CaPcpsAcquisition::init()
{
acquisition_->init();
set_local_code();
}
void GlonassL2CaPcpsAcquisition::set_local_code()
{
std::complex<float>* code = new std::complex<float>[code_length_];
glonass_l2_ca_code_gen_complex_sampled(code, /* gnss_synchro_->PRN,*/ fs_in_, 0);
for (unsigned int i = 0; i < sampled_ms_; i++)
{
memcpy(&(code_[i * code_length_]), code,
sizeof(gr_complex) * code_length_);
}
acquisition_->set_local_code(code_);
delete[] code;
}
void GlonassL2CaPcpsAcquisition::reset()
{
acquisition_->set_active(true);
}
void GlonassL2CaPcpsAcquisition::set_state(int state)
{
acquisition_->set_state(state);
}
float GlonassL2CaPcpsAcquisition::calculate_threshold(float pfa)
{
//Calculate the threshold
unsigned int frequency_bins = 0;
/*
for (int doppler = (int)(-doppler_max_); doppler <= (int)doppler_max_; doppler += doppler_step_)
{
frequency_bins++;
}
*/
frequency_bins = (2 * doppler_max_ + doppler_step_) / doppler_step_;
DLOG(INFO) << "Channel " << channel_ << " Pfa = " << pfa;
unsigned int ncells = vector_length_ * frequency_bins;
double exponent = 1 / static_cast<double>(ncells);
double val = pow(1.0 - pfa, exponent);
double lambda = static_cast<double>(vector_length_);
boost::math::exponential_distribution<double> mydist(lambda);
float threshold = static_cast<float>(quantile(mydist, val));
return threshold;
}
void GlonassL2CaPcpsAcquisition::connect(gr::top_block_sptr top_block)
{
if (item_type_.compare("gr_complex") == 0)
{
top_block->connect(stream_to_vector_, 0, acquisition_, 0);
}
else if (item_type_.compare("cshort") == 0)
{
top_block->connect(stream_to_vector_, 0, acquisition_, 0);
}
else if (item_type_.compare("cbyte") == 0)
{
top_block->connect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
top_block->connect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
top_block->connect(float_to_complex_, 0, stream_to_vector_, 0);
top_block->connect(stream_to_vector_, 0, acquisition_, 0);
}
else
{
LOG(WARNING) << item_type_ << " unknown acquisition item type";
}
}
void GlonassL2CaPcpsAcquisition::disconnect(gr::top_block_sptr top_block)
{
if (item_type_.compare("gr_complex") == 0)
{
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
}
else if (item_type_.compare("cshort") == 0)
{
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
}
else if (item_type_.compare("cbyte") == 0)
{
// Since a byte-based acq implementation is not available,
// we just convert cshorts to gr_complex
top_block->disconnect(cbyte_to_float_x2_, 0, float_to_complex_, 0);
top_block->disconnect(cbyte_to_float_x2_, 1, float_to_complex_, 1);
top_block->disconnect(float_to_complex_, 0, stream_to_vector_, 0);
top_block->disconnect(stream_to_vector_, 0, acquisition_, 0);
}
else
{
LOG(WARNING) << item_type_ << " unknown acquisition item type";
}
}
gr::basic_block_sptr GlonassL2CaPcpsAcquisition::get_left_block()
{
if (item_type_.compare("gr_complex") == 0)
{
return stream_to_vector_;
}
else if (item_type_.compare("cshort") == 0)
{
return stream_to_vector_;
}
else if (item_type_.compare("cbyte") == 0)
{
return cbyte_to_float_x2_;
}
else
{
LOG(WARNING) << item_type_ << " unknown acquisition item type";
return nullptr;
}
}
gr::basic_block_sptr GlonassL2CaPcpsAcquisition::get_right_block()
{
return acquisition_;
}

View File

@ -0,0 +1,166 @@
/*!
* \file glonass_l2_ca_pcps_acquisition.h
* \brief Adapts a PCPS acquisition block to an AcquisitionInterface for
* Glonass L2 C/A signals
* \author Damian Miralles, 2018, dmiralles2009@gmail.com
*
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GLONASS_L2_CA_PCPS_ACQUISITION_H_
#define GNSS_SDR_GLONASS_L2_CA_PCPS_ACQUISITION_H_
#include "acquisition_interface.h"
#include "gnss_synchro.h"
#include "pcps_acquisition.h"
#include "complex_byte_to_float_x2.h"
#include <gnuradio/blocks/stream_to_vector.h>
#include <gnuradio/blocks/float_to_complex.h>
#include <string>
class ConfigurationInterface;
/*!
* \brief This class adapts a PCPS acquisition block to an AcquisitionInterface
* for GLONASS L2 C/A signals
*/
class GlonassL2CaPcpsAcquisition : public AcquisitionInterface
{
public:
GlonassL2CaPcpsAcquisition(ConfigurationInterface* configuration,
std::string role, unsigned int in_streams,
unsigned int out_streams);
virtual ~GlonassL2CaPcpsAcquisition();
inline std::string role() override
{
return role_;
}
/*!
* \brief Returns "GLONASS_L2_CA_PCPS_Acquisition"
*/
inline std::string implementation() override
{
return "GLONASS_L2_CA_PCPS_Acquisition";
}
inline size_t item_size() override
{
return item_size_;
}
void connect(gr::top_block_sptr top_block) override;
void disconnect(gr::top_block_sptr top_block) override;
gr::basic_block_sptr get_left_block() override;
gr::basic_block_sptr get_right_block() override;
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to efficiently exchange synchronization data between acquisition and
* tracking blocks
*/
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) override;
/*!
* \brief Set acquisition channel unique ID
*/
void set_channel(unsigned int channel) override;
/*!
* \brief Set statistics threshold of PCPS algorithm
*/
void set_threshold(float threshold) override;
/*!
* \brief Set maximum Doppler off grid search
*/
void set_doppler_max(unsigned int doppler_max) override;
/*!
* \brief Set Doppler steps for the grid search
*/
void set_doppler_step(unsigned int doppler_step) override;
/*!
* \brief Initializes acquisition algorithm.
*/
void init() override;
/*!
* \brief Sets local code for GLONASS L2/CA PCPS acquisition algorithm.
*/
void set_local_code() override;
/*!
* \brief Returns the maximum peak of grid search
*/
signed int mag() override;
/*!
* \brief Restart acquisition algorithm
*/
void reset() override;
/*!
* \brief If state = 1, it forces the block to start acquiring from the first sample
*/
void set_state(int state);
private:
ConfigurationInterface* configuration_;
pcps_acquisition_sptr acquisition_;
gr::blocks::stream_to_vector::sptr stream_to_vector_;
gr::blocks::float_to_complex::sptr float_to_complex_;
complex_byte_to_float_x2_sptr cbyte_to_float_x2_;
size_t item_size_;
std::string item_type_;
unsigned int vector_length_;
unsigned int code_length_;
bool bit_transition_flag_;
bool use_CFAR_algorithm_flag_;
unsigned int channel_;
float threshold_;
unsigned int doppler_max_;
unsigned int doppler_step_;
unsigned int sampled_ms_;
unsigned int max_dwells_;
long fs_in_;
long if_;
bool dump_;
bool blocking_;
std::string dump_filename_;
std::complex<float>* code_;
Gnss_Synchro* gnss_synchro_;
std::string role_;
unsigned int in_streams_;
unsigned int out_streams_;
float calculate_threshold(float pfa);
};
#endif /* GNSS_SDR_GLONASS_L2_CA_PCPS_ACQUISITION_H_ */

View File

@ -35,7 +35,7 @@
#include "pcps_acquisition.h" #include "pcps_acquisition.h"
#include "GPS_L1_CA.h" // for GPS_TWO_PI #include "GPS_L1_CA.h" // for GPS_TWO_PI
#include "GLONASS_L1_CA.h" // for GLONASS_TWO_PI #include "GLONASS_L1_L2_CA.h" // for GLONASS_TWO_PI"
#include <glog/logging.h> #include <glog/logging.h>
#include <gnuradio/io_signature.h> #include <gnuradio/io_signature.h>
#include <matio.h> #include <matio.h>
@ -210,6 +210,12 @@ bool pcps_acquisition::is_fdma()
LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << d_freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl; LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << d_freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl;
return true; return true;
} }
else if (strcmp(d_gnss_synchro->Signal, "2G") == 0)
{
d_freq += DFRQ2_GLO * GLONASS_PRN.at(d_gnss_synchro->PRN);
LOG(INFO) << "Trying to acquire SV PRN " << d_gnss_synchro->PRN << " with freq " << d_freq << " in Glonass Channel " << GLONASS_PRN.at(d_gnss_synchro->PRN) << std::endl;
return true;
}
else else
{ {
return false; return false;

View File

@ -316,7 +316,7 @@ int pcps_quicksync_acquisition_cc::general_work(int noutput_items,
gr_complex* corr_output = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_samples_per_code * sizeof(gr_complex), volk_gnsssdr_get_alignment())); gr_complex* corr_output = static_cast<gr_complex*>(volk_gnsssdr_malloc(d_samples_per_code * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
/*Stores a copy of the folded version of the signal.This is used for /*Stores a copy of the folded version of the signal.This is used for
the FFT operations in future steps of excecution*/ the FFT operations in future steps of execution*/
// gr_complex in_folded[d_fft_size]; // gr_complex in_folded[d_fft_size];
float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size); float fft_normalization_factor = static_cast<float>(d_fft_size) * static_cast<float>(d_fft_size);
@ -468,7 +468,7 @@ int pcps_quicksync_acquisition_cc::general_work(int noutput_items,
if (d_dump) if (d_dump)
{ {
/*Since QuickSYnc performs a folded correlation in frequency by means /*Since QuickSYnc performs a folded correlation in frequency by means
of the FFT, it is esential to also keep the values obtained from the of the FFT, it is essential to also keep the values obtained from the
possible delay to show how it is maximize*/ possible delay to show how it is maximize*/
std::stringstream filename; std::stringstream filename;
std::streamsize n = sizeof(float) * (d_fft_size); // complex file write std::streamsize n = sizeof(float) * (d_fft_size); // complex file write

View File

@ -92,7 +92,7 @@ private:
int d_fd; // driver descriptor int d_fd; // driver descriptor
volatile unsigned *d_map_base; // driver memory map volatile unsigned *d_map_base; // driver memory map
lv_16sc_t *d_all_fft_codes; // memory that contains all the code ffts lv_16sc_t *d_all_fft_codes; // memory that contains all the code ffts
unsigned int d_vector_length; // number of samples incluing padding and number of ms unsigned int d_vector_length; // number of samples including padding and number of ms
unsigned int d_nsamples; // number of samples not including padding unsigned int d_nsamples; // number of samples not including padding
unsigned int d_select_queue; // queue selection unsigned int d_select_queue; // queue selection
std::string d_device_name; // HW device name std::string d_device_name; // HW device name

View File

@ -1,6 +1,6 @@
/*! /*!
* \file notch_filter_lite.h * \file notch_filter_lite.h
* \brief Adapts a ligth version of a multistate notch filter * \brief Adapts a light version of a multistate notch filter
* \author Antonio Ramos, 2017. antonio.ramosdet(at)gmail.com * \author Antonio Ramos, 2017. antonio.ramosdet(at)gmail.com
* *
* Detailed description of the file here if needed. * Detailed description of the file here if needed.

View File

@ -1,6 +1,6 @@
/*! /*!
* \file notch_lite_cc.h * \file notch_lite_cc.h
* \brief Implements a notch filter ligth algorithm * \brief Implements a notch filter light algorithm
* \author Antonio Ramos (antonio.ramosdet(at)gmail.com) * \author Antonio Ramos (antonio.ramosdet(at)gmail.com)
* *
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
@ -43,7 +43,7 @@ typedef boost::shared_ptr<NotchLite> notch_lite_sptr;
notch_lite_sptr make_notch_filter_lite(float p_c_factor, float pfa, int length_, int n_segments_est, int n_segments_reset, int n_segments_coeff); notch_lite_sptr make_notch_filter_lite(float p_c_factor, float pfa, int length_, int n_segments_est, int n_segments_reset, int n_segments_coeff);
/*! /*!
* \brief This class implements a real-time software-defined multi state notch filter ligth version * \brief This class implements a real-time software-defined multi state notch filter light version
*/ */
class NotchLite : public gr::block class NotchLite : public gr::block

View File

@ -27,6 +27,7 @@ set(GNSS_SPLIBS_SOURCES
gnss_signal_processing.cc gnss_signal_processing.cc
gps_sdr_signal_processing.cc gps_sdr_signal_processing.cc
glonass_l1_signal_processing.cc glonass_l1_signal_processing.cc
glonass_l2_signal_processing.cc
pass_through.cc pass_through.cc
galileo_e5_signal_processing.cc galileo_e5_signal_processing.cc
complex_byte_to_float_x2.cc complex_byte_to_float_x2.cc

View File

@ -0,0 +1,152 @@
/*!
* \file glonass_l2_signal_processing.cc
* \brief This class implements various functions for GLONASS L2 CA signals
* \author Damian Miralles, 2018, dmiralles2009(at)gmail.com
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "glonass_l2_signal_processing.h"
auto auxCeil = [](float x) { return static_cast<int>(static_cast<long>((x) + 1)); };
void glonass_l2_ca_code_gen_complex(std::complex<float>* _dest, /* signed int _prn,*/ unsigned int _chip_shift)
{
const unsigned int _code_length = 511;
bool G1[_code_length];
bool G1_register[9];
bool feedback1;
bool aux;
unsigned int delay;
unsigned int lcv, lcv2;
for (lcv = 0; lcv < 9; lcv++)
{
G1_register[lcv] = 1;
}
/* Generate G1 Register */
for (lcv = 0; lcv < _code_length; lcv++)
{
G1[lcv] = G1_register[2];
feedback1 = G1_register[4] ^ G1_register[0];
for (lcv2 = 0; lcv2 < 8; lcv2++)
{
G1_register[lcv2] = G1_register[lcv2 + 1];
}
G1_register[8] = feedback1;
}
/* Generate PRN from G1 Register */
for (lcv = 0; lcv < _code_length; lcv++)
{
aux = G1[lcv];
if (aux == true)
{
_dest[lcv] = std::complex<float>(1, 0);
}
else
{
_dest[lcv] = std::complex<float>(-1, 0);
}
}
/* Set the delay */
delay = _code_length;
delay += _chip_shift;
delay %= _code_length;
/* Generate PRN from G1 and G2 Registers */
for (lcv = 0; lcv < _code_length; lcv++)
{
aux = G1[(lcv + _chip_shift) % _code_length];
if (aux == true)
{
_dest[lcv] = std::complex<float>(1, 0);
}
else
{
_dest[lcv] = std::complex<float>(-1, 0);
}
delay++;
delay %= _code_length;
}
}
/*
* Generates complex GLONASS L2 C/A code for the desired SV ID and sampled to specific sampling frequency
*/
void glonass_l2_ca_code_gen_complex_sampled(std::complex<float>* _dest, /* unsigned int _prn,*/ signed int _fs, unsigned int _chip_shift)
{
// This function is based on the GNU software GPS for MATLAB in the Kay Borre book
std::complex<float> _code[511];
signed int _samplesPerCode, _codeValueIndex;
float _ts;
float _tc;
float aux;
const signed int _codeFreqBasis = 511000; //Hz
const signed int _codeLength = 511;
//--- Find number of samples per spreading code ----------------------------
_samplesPerCode = static_cast<signed int>(static_cast<double>(_fs) / static_cast<double>(_codeFreqBasis / _codeLength));
//--- Find time constants --------------------------------------------------
_ts = 1.0 / static_cast<float>(_fs); // Sampling period in sec
_tc = 1.0 / static_cast<float>(_codeFreqBasis); // C/A chip period in sec
glonass_l2_ca_code_gen_complex(_code, _chip_shift); //generate C/A code 1 sample per chip
for (signed int i = 0; i < _samplesPerCode; i++)
{
//=== Digitizing =======================================================
//--- Make index array to read C/A code values -------------------------
// The length of the index array depends on the sampling frequency -
// number of samples per millisecond (because one C/A code period is one
// millisecond).
// _codeValueIndex = ceil((_ts * ((float)i + 1)) / _tc) - 1;
aux = (_ts * (i + 1)) / _tc;
_codeValueIndex = auxCeil(aux) - 1;
//--- Make the digitized version of the C/A code -----------------------
// The "upsampled" code is made by selecting values form the CA code
// chip array (caCode) for the time instances of each sample.
if (i == _samplesPerCode - 1)
{
//--- Correct the last index (due to number rounding issues) -----------
_dest[i] = _code[_codeLength - 1];
}
else
{
_dest[i] = _code[_codeValueIndex]; //repeat the chip -> upsample
}
}
}

View File

@ -0,0 +1,47 @@
/*!
* \file glonass_l2_signal_processing.h
* \brief This class implements various functions for GLONASS L2 CA signals
* \author Damian Miralles, 2018, dmiralles2009(at)gmail.com
*
* Detailed description of the file here if needed.
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GLONASS_L2_SIGNAL_PROCESSING_H_
#define GNSS_SDR_GLONASS_L2_SIGNAL_PROCESSING_H_
#include <complex>
//!Generates complex GLONASS L2 C/A code for the desired SV ID and code shift, and sampled to specific sampling frequency
void glonass_l2_ca_code_gen_complex(std::complex<float>* _dest, /*signed int _prn,*/ unsigned int _chip_shift);
//! Generates N complex GLONASS L2 C/A codes for the desired SV ID and code shift
void glonass_l2_ca_code_gen_complex_sampled(std::complex<float>* _dest, /* unsigned int _prn,*/ signed int _fs, unsigned int _chip_shift, unsigned int _ncodes);
//! Generates complex GLONASS L2 C/A code for the desired SV ID and code shift
void glonass_l2_ca_code_gen_complex_sampled(std::complex<float>* _dest, /* unsigned int _prn,*/ signed int _fs, unsigned int _chip_shift);
#endif /* GNSS_SDR_GLONASS_L2_SIGNAL_PROCESSING_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -663,7 +663,7 @@ int satpos_sbas(gtime_t time, gtime_t teph, int sat, const nav_t *nav,
*svh = -1; *svh = -1;
return 0; return 0;
} }
/* satellite postion and clock by broadcast ephemeris */ /* satellite position and clock by broadcast ephemeris */
if (!ephpos(time, teph, sat, nav, sbs->lcorr.iode, rs, dts, var, svh)) return 0; if (!ephpos(time, teph, sat, nav, sbs->lcorr.iode, rs, dts, var, svh)) return 0;
/* sbas satellite correction (long term and fast) */ /* sbas satellite correction (long term and fast) */
@ -734,7 +734,7 @@ int satpos_ssr(gtime_t time, gtime_t teph, int sat, const nav_t *nav,
*svh = -1; *svh = -1;
return 0; return 0;
} }
/* satellite postion and clock by broadcast ephemeris */ /* satellite position and clock by broadcast ephemeris */
if (!ephpos(time, teph, sat, nav, ssr->iode, rs, dts, var, svh)) return 0; if (!ephpos(time, teph, sat, nav, ssr->iode, rs, dts, var, svh)) return 0;
/* satellite clock for gps, galileo and qzss */ /* satellite clock for gps, galileo and qzss */

View File

@ -768,7 +768,7 @@ int pntpos(const obsd_t *obs, int n, const nav_t *nav,
opt_.ionoopt = IONOOPT_BRDC; opt_.ionoopt = IONOOPT_BRDC;
opt_.tropopt = TROPOPT_SAAS; opt_.tropopt = TROPOPT_SAAS;
} }
/* satellite positons, velocities and clocks */ /* satellite positions, velocities and clocks */
satposs(sol->time, obs, n, nav, opt_.sateph, rs, dts, var, svh); satposs(sol->time, obs, n, nav, opt_.sateph, rs, dts, var, svh);
/* estimate receiver position with pseudorange */ /* estimate receiver position with pseudorange */

View File

@ -425,7 +425,7 @@ int fix_amb_ROUND(rtk_t *rtk, int *sat1, int *sat2, const int *NW, int n)
sat2[m] = sat2[i]; sat2[m] = sat2[i];
NC[m++] = BC; NC[m++] = BC;
} }
/* select fixed ambiguities by dependancy check */ /* select fixed ambiguities by dependency check */
m = sel_amb(sat1, sat2, NC, var, m); m = sel_amb(sat1, sat2, NC, var, m);
/* fixed solution */ /* fixed solution */

View File

@ -79,7 +79,7 @@
const double MIN_ARC_GAP = 300.0; /* min arc gap (s) */ const double MIN_ARC_GAP = 300.0; /* min arc gap (s) */
const double CONST_AMB = 0.001; /* constraint to fixed ambiguity */ const double CONST_AMB = 0.001; /* constraint to fixed ambiguity */
const double THRES_RES = 0.3; /* threashold of residuals test (m) */ const double THRES_RES = 0.3; /* threshold of residuals test (m) */
const double LOG_PI = 1.14472988584940017; /* log(pi) */ const double LOG_PI = 1.14472988584940017; /* log(pi) */
const double SQRT2 = 1.41421356237309510; /* sqrt(2) */ const double SQRT2 = 1.41421356237309510; /* sqrt(2) */

View File

@ -843,7 +843,7 @@ void satantoff(gtime_t time, const double *rs, int sat, const nav_t *nav,
* args : gtime_t time I time (gpst) * args : gtime_t time I time (gpst)
* int sat I satellite number * int sat I satellite number
* nav_t *nav I navigation data * nav_t *nav I navigation data
* int opt I sat postion option * int opt I sat position option
* (0: center of mass, 1: antenna phase center) * (0: center of mass, 1: antenna phase center)
* double *rs O sat position and velocity (ecef) * double *rs O sat position and velocity (ecef)
* {x,y,z,vx,vy,vz} (m|m/s) * {x,y,z,vx,vy,vz} (m|m/s)

View File

@ -315,7 +315,7 @@ int input_rtcm3(rtcm_t *rtcm, unsigned char data)
/* input rtcm 2 message from file ---------------------------------------------- /* input rtcm 2 message from file ----------------------------------------------
* fetch next rtcm 2 message and input a messsage from file * fetch next rtcm 2 message and input a message from file
* args : rtcm_t *rtcm IO rtcm control struct * args : rtcm_t *rtcm IO rtcm control struct
* FILE *fp I file pointer * FILE *fp I file pointer
* return : status (-2: end of file, -1...10: same as above) * return : status (-2: end of file, -1...10: same as above)
@ -337,7 +337,7 @@ int input_rtcm2f(rtcm_t *rtcm, FILE *fp)
/* input rtcm 3 message from file ---------------------------------------------- /* input rtcm 3 message from file ----------------------------------------------
* fetch next rtcm 3 message and input a messsage from file * fetch next rtcm 3 message and input a message from file
* args : rtcm_t *rtcm IO rtcm control struct * args : rtcm_t *rtcm IO rtcm control struct
* FILE *fp I file pointer * FILE *fp I file pointer
* return : status (-2: end of file, -1...10: same as above) * return : status (-2: end of file, -1...10: same as above)

View File

@ -1056,7 +1056,7 @@ int decode_type1021(rtcm_t *rtcm __attribute__((unused)))
} }
/* decode type 1022: moledenski-badekas transfromation -----------------------*/ /* decode type 1022: moledenski-badekas transformation -----------------------*/
int decode_type1022(rtcm_t *rtcm __attribute__((unused))) int decode_type1022(rtcm_t *rtcm __attribute__((unused)))
{ {
trace(2, "rtcm3 1022: not supported message\n"); trace(2, "rtcm3 1022: not supported message\n");
@ -2699,7 +2699,7 @@ void save_msm_obs(rtcm_t *rtcm, int sys, msm_h_t *h, const double *r,
/* signal to rinex obs type */ /* signal to rinex obs type */
code[i] = obs2code(sig[i], freq + i); code[i] = obs2code(sig[i], freq + i);
/* freqency index for beidou */ /* frequency index for beidou */
if (sys == SYS_BDS) if (sys == SYS_BDS)
{ {
if (freq[i] == 5) if (freq[i] == 5)

View File

@ -1819,7 +1819,7 @@ unsigned int tickget(void)
/* sleep ms -------------------------------------------------------------------- /* sleep ms --------------------------------------------------------------------
* sleep ms * sleep ms
* args : int ms I miliseconds to sleep (<0:no sleep) * args : int ms I milliseconds to sleep (<0:no sleep)
* return : none * return : none
*-----------------------------------------------------------------------------*/ *-----------------------------------------------------------------------------*/
void sleepms(int ms) void sleepms(int ms)
@ -1884,7 +1884,7 @@ double dms2deg(const double *dms)
} }
/* transform ecef to geodetic postion ------------------------------------------ /* transform ecef to geodetic position ------------------------------------------
* transform ecef position to geodetic position * transform ecef position to geodetic position
* args : double *r I ecef position {x,y,z} (m) * args : double *r I ecef position {x,y,z} (m)
* double *pos O geodetic position {lat,lon,h} (rad,m) * double *pos O geodetic position {lat,lon,h} (rad,m)
@ -1926,8 +1926,8 @@ void pos2ecef(const double *pos, double *r)
} }
/* ecef to local coordinate transfromation matrix ------------------------------ /* ecef to local coordinate transformation matrix ------------------------------
* compute ecef to local coordinate transfromation matrix * compute ecef to local coordinate transformation matrix
* args : double *pos I geodetic position {lat,lon} (rad) * args : double *pos I geodetic position {lat,lon} (rad)
* double *E O ecef to local coord transformation matrix (3x3) * double *E O ecef to local coord transformation matrix (3x3)
* return : none * return : none
@ -2223,7 +2223,7 @@ void eci2ecef(gtime_t tutc, const double *erpv, double *U, double *gmst)
matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, R); matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, R);
matmul("NN", 3, 3, 3, 1.0, R, R3, 0.0, N); /* N=Rx(-eps)*Rz(-dspi)*Rx(eps) */ matmul("NN", 3, 3, 3, 1.0, R, R3, 0.0, N); /* N=Rx(-eps)*Rz(-dspi)*Rx(eps) */
/* greenwich aparent sidereal time (rad) */ /* greenwich apparent sidereal time (rad) */
gmst_ = utc2gmst(tutc_, erpv[2]); gmst_ = utc2gmst(tutc_, erpv[2]);
gast = gmst_ + dpsi * cos(eps); gast = gmst_ + dpsi * cos(eps);
gast += (0.00264 * sin(f[4]) + 0.000063 * sin(2.0 * f[4])) * AS2R; gast += (0.00264 * sin(f[4]) + 0.000063 * sin(2.0 * f[4])) * AS2R;
@ -4166,7 +4166,7 @@ void sunmoonpos(gtime_t tutc, const double *erpv, double *rsun,
/* eci to ecef transformation matrix */ /* eci to ecef transformation matrix */
eci2ecef(tutc, erpv, U, &gmst_); eci2ecef(tutc, erpv, U, &gmst_);
/* sun and moon postion in ecef */ /* sun and moon position in ecef */
if (rsun) matmul("NN", 3, 1, 3, 1.0, U, rs, 0.0, rsun); if (rsun) matmul("NN", 3, 1, 3, 1.0, U, rs, 0.0, rsun);
if (rmoon) matmul("NN", 3, 1, 3, 1.0, U, rm, 0.0, rmoon); if (rmoon) matmul("NN", 3, 1, 3, 1.0, U, rm, 0.0, rmoon);
if (gmst) *gmst = gmst_; if (gmst) *gmst = gmst_;

View File

@ -599,7 +599,7 @@ void udpos(rtk_t *rtk, double tt)
for (i = 0; i < 3; i++) initx_rtk(rtk, rtk->sol.rr[i], VAR_POS, i); for (i = 0; i < 3; i++) initx_rtk(rtk, rtk->sol.rr[i], VAR_POS, i);
return; return;
} }
/* check variance of estimated postion */ /* check variance of estimated position */
for (i = 0; i < 3; i++) for (i = 0; i < 3; i++)
{ {
var += rtk->P[i + i * rtk->nx]; var += rtk->P[i + i * rtk->nx];
@ -2223,7 +2223,7 @@ void rtkfree(rtk_t *rtk)
* .vs [r] O data valid single (r=0:rover,1:base) * .vs [r] O data valid single (r=0:rover,1:base)
* .resp [f] O freq(f+1) pseudorange residual (m) * .resp [f] O freq(f+1) pseudorange residual (m)
* .resc [f] O freq(f+1) carrier-phase residual (m) * .resc [f] O freq(f+1) carrier-phase residual (m)
* .vsat [f] O freq(f+1) data vaild (0:invalid,1:valid) * .vsat [f] O freq(f+1) data valid (0:invalid,1:valid)
* .fix [f] O freq(f+1) ambiguity flag * .fix [f] O freq(f+1) ambiguity flag
* (0:nodata,1:float,2:fix,3:hold) * (0:nodata,1:float,2:fix,3:hold)
* .slip [f] O freq(f+1) slip flag * .slip [f] O freq(f+1) slip flag
@ -2262,7 +2262,7 @@ int rtkpos(rtk_t *rtk, const obsd_t *obs, int n, const nav_t *nav)
traceobs(4, obs, n); traceobs(4, obs, n);
/*trace(5,"nav=\n"); tracenav(5,nav);*/ /*trace(5,"nav=\n"); tracenav(5,nav);*/
/* set base staion position */ /* set base station position */
if (opt->refpos <= POSOPT_RINEX && opt->mode != PMODE_SINGLE && if (opt->refpos <= POSOPT_RINEX && opt->mode != PMODE_SINGLE &&
opt->mode != PMODE_MOVEB) opt->mode != PMODE_MOVEB)
{ {

View File

@ -210,7 +210,7 @@ void updatesvr(rtksvr_t *svr, int ret, obs_t *obs, nav_t *nav, int sat,
svr->nmsg[index][2]++; svr->nmsg[index][2]++;
} }
else if (ret == 5) else if (ret == 5)
{ /* antenna postion parameters */ { /* antenna position parameters */
if (svr->rtk.opt.refpos == 4 && index == 1) if (svr->rtk.opt.refpos == 4 && index == 1)
{ {
for (i = 0; i < 3; i++) for (i = 0; i < 3; i++)

View File

@ -616,10 +616,10 @@ int cmpmsgs(const void *p1, const void *p2)
* (gtime_t te I end time ) * (gtime_t te I end time )
* sbs_t *sbs IO sbas messages * sbs_t *sbs IO sbas messages
* return : number of sbas messages * return : number of sbas messages
* notes : sbas message are appended and sorted. before calling the funciton, * notes : sbas message are appended and sorted. before calling the function,
* sbs->n, sbs->nmax and sbs->msgs must be set properly. (initially * sbs->n, sbs->nmax and sbs->msgs must be set properly. (initially
* sbs->n=sbs->nmax=0, sbs->msgs=NULL) * sbs->n=sbs->nmax=0, sbs->msgs=NULL)
* only the following file extentions after wild card expanded are valid * only the following file extensions after wild card expanded are valid
* to read. others are skipped * to read. others are skipped
* .sbs, .SBS, .ems, .EMS * .sbs, .SBS, .ems, .EMS
*-----------------------------------------------------------------------------*/ *-----------------------------------------------------------------------------*/

View File

@ -150,7 +150,7 @@ void covtosol(const double *P, sol_t *sol)
} }
/* decode nmea gprmc: recommended minumum data for gps -----------------------*/ /* decode nmea gprmc: recommended minimum data for gps -----------------------*/
int decode_nmearmc(char **val, int n, sol_t *sol) int decode_nmearmc(char **val, int n, sol_t *sol)
{ {
double tod = 0.0, lat = 0.0, lon = 0.0, vel = 0.0, dir = 0.0, date = 0.0, ang = 0.0, ep[6]; double tod = 0.0, lat = 0.0, lon = 0.0, vel = 0.0, dir = 0.0, date = 0.0, ang = 0.0, ep[6];
@ -219,7 +219,7 @@ int decode_nmearmc(char **val, int n, sol_t *sol)
sol->stat = mode == 'D' ? SOLQ_DGPS : SOLQ_SINGLE; sol->stat = mode == 'D' ? SOLQ_DGPS : SOLQ_SINGLE;
sol->ns = 0; sol->ns = 0;
sol->type = 0; /* postion type = xyz */ sol->type = 0; /* position type = xyz */
trace(5, "decode_nmearmc: %s rr=%.3f %.3f %.3f stat=%d ns=%d vel=%.2f dir=%.0f ang=%.0f mew=%c mode=%c\n", trace(5, "decode_nmearmc: %s rr=%.3f %.3f %.3f stat=%d ns=%d vel=%.2f dir=%.0f ang=%.0f mew=%c mode=%c\n",
time_str(sol->time, 0), sol->rr[0], sol->rr[1], sol->rr[2], sol->stat, sol->ns, time_str(sol->time, 0), sol->rr[0], sol->rr[1], sol->rr[2], sol->stat, sol->ns,
@ -310,7 +310,7 @@ int decode_nmeagga(char **val, int n, sol_t *sol)
sol->stat = 0 <= solq && solq <= 8 ? solq_nmea[solq] : SOLQ_NONE; sol->stat = 0 <= solq && solq <= 8 ? solq_nmea[solq] : SOLQ_NONE;
sol->ns = nrcv; sol->ns = nrcv;
sol->type = 0; /* postion type = xyz */ sol->type = 0; /* position type = xyz */
trace(5, "decode_nmeagga: %s rr=%.3f %.3f %.3f stat=%d ns=%d hdop=%.1f ua=%c um=%c\n", trace(5, "decode_nmeagga: %s rr=%.3f %.3f %.3f stat=%d ns=%d hdop=%.1f ua=%c um=%c\n",
time_str(sol->time, 0), sol->rr[0], sol->rr[1], sol->rr[2], sol->stat, sol->ns, time_str(sol->time, 0), sol->rr[0], sol->rr[1], sol->rr[2], sol->stat, sol->ns,
@ -453,7 +453,7 @@ int decode_solxyz(char *buff, const solopt_t *opt, sol_t *sol)
if (i < n) sol->age = (float)val[i++]; if (i < n) sol->age = (float)val[i++];
if (i < n) sol->ratio = (float)val[i]; if (i < n) sol->ratio = (float)val[i];
sol->type = 0; /* postion type = xyz */ sol->type = 0; /* position type = xyz */
if (MAXSOLQ < sol->stat) sol->stat = SOLQ_NONE; if (MAXSOLQ < sol->stat) sol->stat = SOLQ_NONE;
return 1; return 1;
@ -512,7 +512,7 @@ int decode_solllh(char *buff, const solopt_t *opt, sol_t *sol)
if (i < n) sol->age = (float)val[i++]; if (i < n) sol->age = (float)val[i++];
if (i < n) sol->ratio = (float)val[i]; if (i < n) sol->ratio = (float)val[i];
sol->type = 0; /* postion type = xyz */ sol->type = 0; /* position type = xyz */
if (MAXSOLQ < sol->stat) sol->stat = SOLQ_NONE; if (MAXSOLQ < sol->stat) sol->stat = SOLQ_NONE;
return 1; return 1;
@ -558,7 +558,7 @@ int decode_solenu(char *buff, const solopt_t *opt, sol_t *sol)
if (i < n) sol->age = (float)val[i++]; if (i < n) sol->age = (float)val[i++];
if (i < n) sol->ratio = (float)val[i]; if (i < n) sol->ratio = (float)val[i];
sol->type = 1; /* postion type = enu */ sol->type = 1; /* position type = enu */
if (MAXSOLQ < sol->stat) sol->stat = SOLQ_NONE; if (MAXSOLQ < sol->stat) sol->stat = SOLQ_NONE;
return 1; return 1;
@ -1798,7 +1798,7 @@ int outsols(unsigned char *buff, const sol_t *sol, const double *rb,
/* output solution extended ---------------------------------------------------- /* output solution extended ----------------------------------------------------
* output solution exteneded infomation * output solution exteneded information
* args : unsigned char *buff IO output buffer * args : unsigned char *buff IO output buffer
* sol_t *sol I solution * sol_t *sol I solution
* ssat_t *ssat I satellite status * ssat_t *ssat I satellite status
@ -1892,7 +1892,7 @@ void outsol(FILE *fp, const sol_t *sol, const double *rb,
/* output solution extended ---------------------------------------------------- /* output solution extended ----------------------------------------------------
* output solution exteneded infomation to file * output solution exteneded information to file
* args : FILE *fp I output file pointer * args : FILE *fp I output file pointer
* sol_t *sol I solution * sol_t *sol I solution
* ssat_t *ssat I satellite status * ssat_t *ssat I satellite status

View File

@ -1916,7 +1916,7 @@ void strunlock(stream_t *stream) { rtk_unlock(&stream->lock); }
/* read stream ----------------------------------------------------------------- /* read stream -----------------------------------------------------------------
* read data from stream (unblocked) * read data from stream (unblocked)
* args : stream_t *stream I stream * args : stream_t *stream I stream
* unsinged char *buff O data buffer * unsigned char *buff O data buffer
* int n I maximum data length * int n I maximum data length
* return : read data length * return : read data length
* notes : if no data, return immediately with no data * notes : if no data, return immediately with no data
@ -1978,7 +1978,7 @@ int strread(stream_t *stream, unsigned char *buff, int n)
/* write stream ---------------------------------------------------------------- /* write stream ----------------------------------------------------------------
* write data to stream (unblocked) * write data to stream (unblocked)
* args : stream_t *stream I stream * args : stream_t *stream I stream
* unsinged char *buff I data buffer * unsigned char *buff I data buffer
* int n I data length * int n I data length
* return : status (0:error, 1:ok) * return : status (0:error, 1:ok)
* notes : write data to buffer and return immediately * notes : write data to buffer and return immediately

View File

@ -8,7 +8,7 @@ and contact information about the original VOLK library.
The boilerplate of this code was initially generated with The boilerplate of this code was initially generated with
```volk_modtool```, an application provided by VOLK that creates the ```volk_modtool```, an application provided by VOLK that creates the
skeleton than can then be filled with custom kernels. Some modifications skeleton than can then be filled with custom kernels. Some modifications
were added to accomodate the specificities of Global Navigation were added to accommodate the specificities of Global Navigation
Satellite Systems (GNSS) signal processing. Those changes are clearly Satellite Systems (GNSS) signal processing. Those changes are clearly
indicated in the source code, and do not break compatibility. indicated in the source code, and do not break compatibility.

View File

@ -22,24 +22,40 @@ if(DEFINED __INCLUDED_VOLK_ADD_TEST)
endif() endif()
set(__INCLUDED_VOLK_ADD_TEST TRUE) set(__INCLUDED_VOLK_ADD_TEST TRUE)
########################################################################
# Generate a test executable which can be used in ADD_TEST to call
# various subtests.
#
# SOURCES - sources for the test
# TARGET_DEPS - build target dependencies (e.g., libraries)
########################################################################
function(VOLK_GEN_TEST executable_name)
include(CMakeParseArgumentsCopy)
CMAKE_PARSE_ARGUMENTS(VOLK_TEST "" "" "SOURCES;TARGET_DEPS;EXTRA_LIB_DIRS;ENVIRONS;ARGS" ${ARGN})
add_executable(${executable_name} ${VOLK_TEST_SOURCES})
target_link_libraries(${executable_name} ${VOLK_TEST_TARGET_DEPS})
endfunction()
######################################################################## ########################################################################
# Add a unit test and setup the environment for it. # Add a unit test and setup the environment for it.
# Encloses ADD_TEST, with additional functionality to create a shell # Encloses ADD_TEST, with additional functionality to create a shell
# script that sets the environment to gain access to in-build binaries # script that sets the environment to gain access to in-build binaries
# properly. The following variables are used to pass in settings: # properly. The following variables are used to pass in settings:
# A test executable has to be generated with VOLK_GEN_TEST beforehand.
# The executable name has to be passed as argument.
# #
# NAME - the test name # NAME - the test name
# SOURCES - sources for the test
# TARGET_DEPS - build target dependencies (e.g., libraries) # TARGET_DEPS - build target dependencies (e.g., libraries)
# EXTRA_LIB_DIRS - other directories for the library path # EXTRA_LIB_DIRS - other directories for the library path
# ENVIRONS - other environment key/value pairs # ENVIRONS - other environment key/value pairs
# ARGS - arguments for the test # ARGS - arguments for the test
######################################################################## ########################################################################
function(VOLK_ADD_TEST test_name) function(VOLK_ADD_TEST test_name executable_name)
#parse the arguments for component names #parse the arguments for component names
include(CMakeParseArgumentsCopy) include(CMakeParseArgumentsCopy)
CMAKE_PARSE_ARGUMENTS(VOLK_TEST "" "" "SOURCES;TARGET_DEPS;EXTRA_LIB_DIRS;ENVIRONS;ARGS" ${ARGN}) CMAKE_PARSE_ARGUMENTS(VOLK_TEST "" "" "TARGET_DEPS;EXTRA_LIB_DIRS;ENVIRONS;ARGS" ${ARGN})
#set the initial environs to use #set the initial environs to use
set(environs ${VOLK_TEST_ENVIRONS}) set(environs ${VOLK_TEST_ENVIRONS})
@ -65,7 +81,7 @@ function(VOLK_ADD_TEST test_name)
#"add_test" command, via the $<FOO:BAR> operator; make sure the #"add_test" command, via the $<FOO:BAR> operator; make sure the
#test's directory is first, since it ($1) is prepended to PATH. #test's directory is first, since it ($1) is prepended to PATH.
unset(TARGET_DIR_LIST) unset(TARGET_DIR_LIST)
foreach(target ${test_name} ${VOLK_TEST_TARGET_DEPS}) foreach(target ${executable_name} ${VOLK_TEST_TARGET_DEPS})
list(APPEND TARGET_DIR_LIST "\$<TARGET_FILE_DIR:${target}>") list(APPEND TARGET_DIR_LIST "\$<TARGET_FILE_DIR:${target}>")
endforeach() endforeach()
@ -134,18 +150,17 @@ function(VOLK_ADD_TEST test_name)
file(APPEND ${sh_file} "export ${environ}\n") file(APPEND ${sh_file} "export ${environ}\n")
endforeach(environ) endforeach(environ)
set(VOLK_TEST_ARGS "${test_name}")
#redo the test args to have a space between each #redo the test args to have a space between each
string(REPLACE ";" " " VOLK_TEST_ARGS "${VOLK_TEST_ARGS}") string(REPLACE ";" " " VOLK_TEST_ARGS "${VOLK_TEST_ARGS}")
#finally: append the test name to execute #finally: append the test name to execute
file(APPEND ${sh_file} ${test_name} " " ${VOLK_TEST_ARGS} "\n") file(APPEND ${sh_file} "${CMAKE_CROSSCOMPILING_EMULATOR} ${executable_name} ${VOLK_TEST_ARGS}\n")
#make the shell file executable #make the shell file executable
execute_process(COMMAND chmod +x ${sh_file}) execute_process(COMMAND chmod +x ${sh_file})
add_executable(${test_name} ${VOLK_TEST_SOURCES})
target_link_libraries(${test_name} ${VOLK_TEST_TARGET_DEPS})
#add the shell file as the test to execute; #add the shell file as the test to execute;
#use the form that allows for $<FOO:BAR> substitutions, #use the form that allows for $<FOO:BAR> substitutions,
#then combine the script arguments inside the script. #then combine the script arguments inside the script.
@ -196,10 +211,8 @@ function(VOLK_ADD_TEST test_name)
file(APPEND ${bat_file} ${test_name} " " ${VOLK_TEST_ARGS} "\n") file(APPEND ${bat_file} ${test_name} " " ${VOLK_TEST_ARGS} "\n")
file(APPEND ${bat_file} "\n") file(APPEND ${bat_file} "\n")
add_executable(${test_name} ${VOLK_TEST_SOURCES})
target_link_libraries(${test_name} ${VOLK_TEST_TARGET_DEPS})
add_test(${test_name} ${bat_file}) add_test(${test_name} ${bat_file})
endif(WIN32) endif(WIN32)
endfunction(VOLK_ADD_TEST) endfunction(VOLK_ADD_TEST)

View File

@ -187,7 +187,7 @@ static inline void volk_gnsssdr_16ic_x2_dot_prod_16ic_u_sse2(lv_16sc_t* out, con
for (number = 0; number < sse_iters; number++) for (number = 0; number < sse_iters; number++)
{ {
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i] //std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1] //imaginary part -> reinterpret_cast<cv T*>(a)[2*i + 1]
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r] // a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
__VOLK_GNSSSDR_PREFETCH(_in_a + 8); __VOLK_GNSSSDR_PREFETCH(_in_a + 8);

View File

@ -94,7 +94,7 @@ static inline void volk_gnsssdr_16ic_x2_multiply_16ic_a_sse2(lv_16sc_t* out, con
for (number = 0; number < sse_iters; number++) for (number = 0; number < sse_iters; number++)
{ {
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i] //std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1] //imaginary part -> reinterpret_cast<cv T*>(a)[2*i + 1]
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r] // a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
a = _mm_load_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg a = _mm_load_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
b = _mm_load_si128((__m128i*)_in_b); b = _mm_load_si128((__m128i*)_in_b);
@ -148,7 +148,7 @@ static inline void volk_gnsssdr_16ic_x2_multiply_16ic_u_sse2(lv_16sc_t* out, con
for (number = 0; number < sse_iters; number++) for (number = 0; number < sse_iters; number++)
{ {
//std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i] //std::complex<T> memory structure: real part -> reinterpret_cast<cv T*>(a)[2*i]
//imaginery part -> reinterpret_cast<cv T*>(a)[2*i + 1] //imaginary part -> reinterpret_cast<cv T*>(a)[2*i + 1]
// a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r] // a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
b = _mm_loadu_si128((__m128i*)_in_b); b = _mm_loadu_si128((__m128i*)_in_b);

View File

@ -6,7 +6,7 @@
* </ul> * </ul>
* *
* VOLK_GNSSSDR kernel that esamples N 16 bits integer short complex vectors using zero hold resample algorithm. * VOLK_GNSSSDR kernel that esamples N 16 bits integer short complex vectors using zero hold resample algorithm.
* It is optimized to resample a sigle GNSS local code signal replica into N vectors fractional-resampled and fractional-delayed * It is optimized to resample a single GNSS local code signal replica into N vectors fractional-resampled and fractional-delayed
* (i.e. it creates the Early, Prompt, and Late code replicas) * (i.e. it creates the Early, Prompt, and Late code replicas)
* *
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
@ -145,7 +145,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler_fast_16ic_xn_a_sse2(lv_16sc_t*
//common to all outputs //common to all outputs
_code_phase_out = _mm_mul_ps(_code_phase_step_chips, _4output_index); //compute the code phase point with the phase step _code_phase_out = _mm_mul_ps(_code_phase_step_chips, _4output_index); //compute the code phase point with the phase step
//output vector dependant (different code phase offset) //output vector dependent (different code phase offset)
for (current_vector = 0; current_vector < num_out_vectors; current_vector++) for (current_vector = 0; current_vector < num_out_vectors; current_vector++)
{ {
tmp_rem_code_phase_chips = rem_code_phase_chips[current_vector] - 0.5f; // adjust offset to perform correct rounding (chip transition at 0) tmp_rem_code_phase_chips = rem_code_phase_chips[current_vector] - 0.5f; // adjust offset to perform correct rounding (chip transition at 0)
@ -241,7 +241,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler_fast_16ic_xn_u_sse2(lv_16sc_t*
//common to all outputs //common to all outputs
_code_phase_out = _mm_mul_ps(_code_phase_step_chips, _4output_index); //compute the code phase point with the phase step _code_phase_out = _mm_mul_ps(_code_phase_step_chips, _4output_index); //compute the code phase point with the phase step
//output vector dependant (different code phase offset) //output vector dependent (different code phase offset)
for (current_vector = 0; current_vector < num_out_vectors; current_vector++) for (current_vector = 0; current_vector < num_out_vectors; current_vector++)
{ {
tmp_rem_code_phase_chips = rem_code_phase_chips[current_vector] - 0.5f; // adjust offset to perform correct rounding (chip transition at 0) tmp_rem_code_phase_chips = rem_code_phase_chips[current_vector] - 0.5f; // adjust offset to perform correct rounding (chip transition at 0)
@ -339,7 +339,7 @@ static inline void volk_gnsssdr_16ic_xn_resampler_fast_16ic_xn_neon(lv_16sc_t**
//common to all outputs //common to all outputs
_code_phase_out = vmulq_f32(_code_phase_step_chips, _4output_index); //compute the code phase point with the phase step _code_phase_out = vmulq_f32(_code_phase_step_chips, _4output_index); //compute the code phase point with the phase step
//output vector dependant (different code phase offset) //output vector dependent (different code phase offset)
for (current_vector = 0; current_vector < num_out_vectors; current_vector++) for (current_vector = 0; current_vector < num_out_vectors; current_vector++)
{ {
tmp_rem_code_phase_chips = rem_code_phase_chips[current_vector] - 0.5f; // adjust offset to perform correct rounding (chip transition at 0) tmp_rem_code_phase_chips = rem_code_phase_chips[current_vector] - 0.5f; // adjust offset to perform correct rounding (chip transition at 0)

View File

@ -345,7 +345,7 @@ macro(gen_template tmpl output)
) )
endmacro(gen_template) endmacro(gen_template)
make_directory(${PROJECT_BINARY_DIR}/include/volk_gnsssdr) file(MAKE_DIRECTORY ${PROJECT_BINARY_DIR}/include/volk_gnsssdr)
gen_template(${PROJECT_SOURCE_DIR}/tmpl/volk_gnsssdr.tmpl.h ${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr.h) gen_template(${PROJECT_SOURCE_DIR}/tmpl/volk_gnsssdr.tmpl.h ${PROJECT_BINARY_DIR}/include/volk_gnsssdr/volk_gnsssdr.h)
gen_template(${PROJECT_SOURCE_DIR}/tmpl/volk_gnsssdr.tmpl.c ${PROJECT_BINARY_DIR}/lib/volk_gnsssdr.c) gen_template(${PROJECT_SOURCE_DIR}/tmpl/volk_gnsssdr.tmpl.c ${PROJECT_BINARY_DIR}/lib/volk_gnsssdr.c)
@ -604,18 +604,24 @@ if(ENABLE_TESTING)
#include Boost headers #include Boost headers
include_directories(${Boost_INCLUDE_DIRS}) include_directories(${Boost_INCLUDE_DIRS})
link_directories(${Boost_LIBRARY_DIRS}) file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/.unittest)
make_directory(${CMAKE_CURRENT_BINARY_DIR}/.unittest)
set_source_files_properties( set_source_files_properties(
${CMAKE_CURRENT_SOURCE_DIR}/testqa.cc PROPERTIES ${CMAKE_CURRENT_SOURCE_DIR}/testqa.cc PROPERTIES
COMPILE_DEFINITIONS "BOOST_TEST_DYN_LINK;BOOST_TEST_MAIN" COMPILE_DEFINITIONS "BOOST_TEST_DYN_LINK;BOOST_TEST_MAIN"
) )
include(VolkAddTest) include(VolkAddTest)
VOLK_ADD_TEST(test_all VOLK_GEN_TEST("volk_gnsssdr_test_all"
SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/testqa.cc SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/testqa.cc
${CMAKE_CURRENT_SOURCE_DIR}/qa_utils.cc ${CMAKE_CURRENT_SOURCE_DIR}/qa_utils.cc
TARGET_DEPS volk_gnsssdr TARGET_DEPS volk_gnsssdr
) )
foreach(kernel ${h_files})
get_filename_component(kernel ${kernel} NAME)
string(REPLACE ".h" "" kernel ${kernel})
if(NOT ${kernel} MATCHES puppet*)
VOLK_ADD_TEST(${kernel} "volk_gnsssdr_test_all")
endif(NOT ${kernel} MATCHES puppet*)
endforeach()
endif(ENABLE_TESTING) endif(ENABLE_TESTING)

View File

@ -31,7 +31,7 @@
void print_qa_xml(std::vector<volk_gnsssdr_test_results_t> results, unsigned int nfails); void print_qa_xml(std::vector<volk_gnsssdr_test_results_t> results, unsigned int nfails);
int main() int main(int argc, char* argv[])
{ {
bool qa_ret_val = 0; bool qa_ret_val = 0;
@ -45,9 +45,33 @@ int main()
volk_gnsssdr_test_params_t test_params(def_tol, def_scalar, def_vlen, def_iter, volk_gnsssdr_test_params_t test_params(def_tol, def_scalar, def_vlen, def_iter,
def_benchmark_mode, def_kernel_regex); def_benchmark_mode, def_kernel_regex);
std::vector<volk_gnsssdr_test_case_t> test_cases = init_test_list(test_params); std::vector<volk_gnsssdr_test_case_t> test_cases = init_test_list(test_params);
std::vector<std::string> qa_failures;
std::vector<volk_gnsssdr_test_results_t> results; std::vector<volk_gnsssdr_test_results_t> results;
if (argc > 1)
{
for (unsigned int ii = 0; ii < test_cases.size(); ++ii)
{
if (std::string(argv[1]) == test_cases[ii].name())
{
volk_gnsssdr_test_case_t test_case = test_cases[ii];
if (run_volk_gnsssdr_tests(test_case.desc(), test_case.kernel_ptr(),
test_case.name(),
test_case.test_parameters(), &results,
test_case.puppet_master_name()))
{
return 1;
}
else
{
return 0;
}
}
}
std::cerr << "Did not run a test for kernel: " << std::string(argv[1]) << " !" << std::endl;
return 0;
}
else
{
std::vector<std::string> qa_failures;
// Test every kernel reporting failures when they occur // Test every kernel reporting failures when they occur
for (unsigned int ii = 0; ii < test_cases.size(); ++ii) for (unsigned int ii = 0; ii < test_cases.size(); ++ii)
{ {
@ -87,6 +111,7 @@ int main()
} }
qa_ret_val = 1; qa_ret_val = 1;
} }
}
return qa_ret_val; return qa_ret_val;
} }
@ -128,7 +153,6 @@ void print_qa_xml(std::vector<volk_gnsssdr_test_results_t> results, unsigned int
qa_file << " </testsuite>" << std::endl; qa_file << " </testsuite>" << std::endl;
} }
qa_file << "</testsuites>" << std::endl; qa_file << "</testsuites>" << std::endl;
qa_file.close(); qa_file.close();
} }

View File

@ -35,7 +35,7 @@ typedef struct volk_gnsssdr_func_desc
const char **impl_names; const char **impl_names;
const int *impl_deps; const int *impl_deps;
const bool *impl_alignment; const bool *impl_alignment;
const size_t n_impls; size_t n_impls;
} volk_gnsssdr_func_desc_t; } volk_gnsssdr_func_desc_t;
//! Prints a list of machines available //! Prints a list of machines available
@ -68,12 +68,12 @@ VOLK_API size_t volk_gnsssdr_get_alignment(void);
*/ */
VOLK_API bool volk_gnsssdr_is_aligned(const void *ptr); VOLK_API bool volk_gnsssdr_is_aligned(const void *ptr);
// clang-format off
%for kern in kernels: %for kern in kernels:
//! A function pointer to the dispatcher implementation //! A function pointer to the dispatcher implementation
extern VOLK_API ${kern.pname} ${kern.name}; extern VOLK_API ${kern.pname} ${kern.name};
// clang-format off
//! A function pointer to the fastest aligned implementation //! A function pointer to the fastest aligned implementation
extern VOLK_API ${kern.pname} ${kern.name}_a; extern VOLK_API ${kern.pname} ${kern.name}_a;
@ -86,9 +86,7 @@ extern VOLK_API void ${kern.name}_manual(${kern.arglist_full}, const char* impl_
//! Get description parameters for this kernel //! Get description parameters for this kernel
extern VOLK_API volk_gnsssdr_func_desc_t ${kern.name}_get_func_desc(void); extern VOLK_API volk_gnsssdr_func_desc_t ${kern.name}_get_func_desc(void);
%endfor %endfor
// clang-format off
__VOLK_DECL_END __VOLK_DECL_END
// clang-format on
#endif /*INCLUDED_VOLK_GNSSSDR_RUNTIME*/ #endif /*INCLUDED_VOLK_GNSSSDR_RUNTIME*/

View File

@ -35,7 +35,7 @@
#include "Galileo_E1.h" #include "Galileo_E1.h"
#include "GPS_L1_CA.h" #include "GPS_L1_CA.h"
#include "Galileo_E5a.h" #include "Galileo_E5a.h"
#include "GLONASS_L1_CA.h" #include "GLONASS_L1_L2_CA.h"
#include <glog/logging.h> #include <glog/logging.h>
@ -99,9 +99,16 @@ SignalGenerator::SignalGenerator(ConfigurationInterface* configuration,
vector_length = round(static_cast<float>(fs_in) / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS)); vector_length = round(static_cast<float>(fs_in) / (GPS_L1_CA_CODE_RATE_HZ / GPS_L1_CA_CODE_LENGTH_CHIPS));
} }
else if (std::find(system.begin(), system.end(), "R") != system.end()) else if (std::find(system.begin(), system.end(), "R") != system.end())
{
if (signal1[0].at(0) == '1')
{ {
vector_length = round((float)fs_in / (GLONASS_L1_CA_CODE_RATE_HZ / GLONASS_L1_CA_CODE_LENGTH_CHIPS)); vector_length = round((float)fs_in / (GLONASS_L1_CA_CODE_RATE_HZ / GLONASS_L1_CA_CODE_LENGTH_CHIPS));
} }
else
{
vector_length = round((float)fs_in / (GLONASS_L2_CA_CODE_RATE_HZ / GLONASS_L2_CA_CODE_LENGTH_CHIPS));
}
}
if (item_type_.compare("gr_complex") == 0) if (item_type_.compare("gr_complex") == 0)
{ {

View File

@ -36,11 +36,12 @@
#include "Galileo_E1.h" #include "Galileo_E1.h"
#include "Galileo_E5a.h" #include "Galileo_E5a.h"
#include "GPS_L1_CA.h" #include "GPS_L1_CA.h"
#include "GLONASS_L1_CA.h" #include "GLONASS_L1_L2_CA.h"
#include <gnuradio/io_signature.h> #include <gnuradio/io_signature.h>
#include <volk_gnsssdr/volk_gnsssdr.h> #include <volk_gnsssdr/volk_gnsssdr.h>
#include <fstream> #include <fstream>
/* /*
* Create a new instance of signal_generator_c and return * Create a new instance of signal_generator_c and return
* a boost shared_ptr. This is effectively the public constructor. * a boost shared_ptr. This is effectively the public constructor.

View File

@ -55,7 +55,7 @@ RtlTcpSignalSource::RtlTcpSignalSource(ConfigurationInterface* configuration,
dump_filename_ = configuration->property(role + ".dump_filename", dump_filename_ = configuration->property(role + ".dump_filename",
default_dump_file); default_dump_file);
// rtl_tcp PARAMTERS // rtl_tcp PARAMETERS
std::string default_address = "127.0.0.1"; std::string default_address = "127.0.0.1";
short default_port = 1234; short default_port = 1234;
AGC_enabled_ = configuration->property(role + ".AGC_enabled", true); AGC_enabled_ = configuration->property(role + ".AGC_enabled", true);

View File

@ -121,7 +121,7 @@ unpack_2bit_samples::unpack_2bit_samples(bool big_endian_bytes,
bool big_endian_system = systemIsBigEndian(); bool big_endian_system = systemIsBigEndian();
// Only swap the item bytes if the item size > 1 byte and the system // Only swap the item bytes if the item size > 1 byte and the system
// endianess is not the same as the item endianness: // endianness is not the same as the item endianness:
swap_endian_items_ = (item_size_ > 1) && swap_endian_items_ = (item_size_ > 1) &&
(big_endian_system != big_endian_items); (big_endian_system != big_endian_items);

View File

@ -25,6 +25,7 @@ set(TELEMETRY_DECODER_ADAPTER_SOURCES
sbas_l1_telemetry_decoder.cc sbas_l1_telemetry_decoder.cc
galileo_e5a_telemetry_decoder.cc galileo_e5a_telemetry_decoder.cc
glonass_l1_ca_telemetry_decoder.cc glonass_l1_ca_telemetry_decoder.cc
glonass_l2_ca_telemetry_decoder.cc
) )
include_directories( include_directories(

View File

@ -0,0 +1,103 @@
/*!
* \file glonass_l2_ca_telemetry_decoder.cc
* \brief Implementation of an adapter of a GLONASS L2 C/A NAV data decoder block
* to a TelemetryDecoderInterface
* \author Damian Miralles, 2018. dmiralles2009(at)gmail.com
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "glonass_l2_ca_telemetry_decoder.h"
#include "configuration_interface.h"
#include "glonass_gnav_ephemeris.h"
#include "glonass_gnav_almanac.h"
#include "glonass_gnav_utc_model.h"
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
using google::LogMessage;
GlonassL2CaTelemetryDecoder::GlonassL2CaTelemetryDecoder(ConfigurationInterface* configuration,
std::string role,
unsigned int in_streams,
unsigned int out_streams) : role_(role),
in_streams_(in_streams),
out_streams_(out_streams)
{
std::string default_dump_filename = "./navigation.dat";
DLOG(INFO) << "role " << role;
dump_ = configuration->property(role + ".dump", false);
dump_filename_ = configuration->property(role + ".dump_filename", default_dump_filename);
// make telemetry decoder object
telemetry_decoder_ = glonass_l2_ca_make_telemetry_decoder_cc(satellite_, dump_);
DLOG(INFO) << "telemetry_decoder(" << telemetry_decoder_->unique_id() << ")";
channel_ = 0;
}
GlonassL2CaTelemetryDecoder::~GlonassL2CaTelemetryDecoder()
{
}
void GlonassL2CaTelemetryDecoder::set_satellite(const Gnss_Satellite& satellite)
{
satellite_ = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
telemetry_decoder_->set_satellite(satellite_);
DLOG(INFO) << "TELEMETRY DECODER: satellite set to " << satellite_;
}
void GlonassL2CaTelemetryDecoder::connect(gr::top_block_sptr top_block)
{
if (top_block)
{ /* top_block is not null */
};
// Nothing to connect internally
DLOG(INFO) << "nothing to connect internally";
}
void GlonassL2CaTelemetryDecoder::disconnect(gr::top_block_sptr top_block)
{
if (top_block)
{ /* top_block is not null */
};
// Nothing to disconnect
}
gr::basic_block_sptr GlonassL2CaTelemetryDecoder::get_left_block()
{
return telemetry_decoder_;
}
gr::basic_block_sptr GlonassL2CaTelemetryDecoder::get_right_block()
{
return telemetry_decoder_;
}

View File

@ -0,0 +1,90 @@
/*!
* \file glonass_l2_ca_telemetry_decoder.h
* \brief Interface of an adapter of a GLONASS L2 C/A NAV data decoder block
* to a TelemetryDecoderInterface
* \author Damian Miralles, 2018. dmiralles2009(at)gmail.com
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GLONASS_L2_CA_TELEMETRY_DECODER_H_
#define GNSS_SDR_GLONASS_L2_CA_TELEMETRY_DECODER_H_
#include "telemetry_decoder_interface.h"
#include "glonass_l2_ca_telemetry_decoder_cc.h"
#include <string>
class ConfigurationInterface;
/*!
* \brief This class implements a NAV data decoder for GLONASS L2 C/A
*/
class GlonassL2CaTelemetryDecoder : public TelemetryDecoderInterface
{
public:
GlonassL2CaTelemetryDecoder(ConfigurationInterface* configuration,
std::string role,
unsigned int in_streams,
unsigned int out_streams);
virtual ~GlonassL2CaTelemetryDecoder();
std::string role() override
{
return role_;
}
//! Returns "GLONASS_L2_CA_Telemetry_Decoder"
std::string implementation() override
{
return "GLONASS_L2_CA_Telemetry_Decoder";
}
void connect(gr::top_block_sptr top_block) override;
void disconnect(gr::top_block_sptr top_block) override;
gr::basic_block_sptr get_left_block() override;
gr::basic_block_sptr get_right_block() override;
void set_satellite(const Gnss_Satellite& satellite) override;
void set_channel(int channel) override { telemetry_decoder_->set_channel(channel); }
void reset() override
{
return;
}
size_t item_size() override
{
return 0;
}
private:
glonass_l2_ca_telemetry_decoder_cc_sptr telemetry_decoder_;
Gnss_Satellite satellite_;
int channel_;
bool dump_;
std::string dump_filename_;
std::string role_;
unsigned int in_streams_;
unsigned int out_streams_;
};
#endif

View File

@ -24,6 +24,7 @@ set(TELEMETRY_DECODER_GR_BLOCKS_SOURCES
sbas_l1_telemetry_decoder_cc.cc sbas_l1_telemetry_decoder_cc.cc
galileo_e5a_telemetry_decoder_cc.cc galileo_e5a_telemetry_decoder_cc.cc
glonass_l1_ca_telemetry_decoder_cc.cc glonass_l1_ca_telemetry_decoder_cc.cc
glonass_l2_ca_telemetry_decoder_cc.cc
) )
include_directories( include_directories(

View File

@ -320,7 +320,7 @@ int galileo_e1b_telemetry_decoder_cc::general_work(int noutput_items __attribute
d_stat = 1; // enter into frame pre-detection status d_stat = 1; // enter into frame pre-detection status
} }
} }
else if (d_stat == 1) // posible preamble lock else if (d_stat == 1) // possible preamble lock
{ {
if (abs(corr_value) >= d_symbols_per_preamble) if (abs(corr_value) >= d_symbols_per_preamble)
{ {

View File

@ -338,7 +338,7 @@ int galileo_e5a_telemetry_decoder_cc::general_work(int noutput_items __attribute
d_stat = 1; // enter into frame pre-detection status d_stat = 1; // enter into frame pre-detection status
} }
} }
else if ((d_stat == 1) && new_symbol) // posible preamble lock else if ((d_stat == 1) && new_symbol) // possible preamble lock
{ {
if (abs(corr_value) >= GALILEO_FNAV_PREAMBLE_LENGTH_BITS) if (abs(corr_value) >= GALILEO_FNAV_PREAMBLE_LENGTH_BITS)
{ {

View File

@ -271,7 +271,7 @@ int glonass_l1_ca_telemetry_decoder_cc::general_work(int noutput_items __attribu
d_preamble_time_samples = d_symbol_history.at(0).Tracking_sample_counter; // record the preamble sample stamp d_preamble_time_samples = d_symbol_history.at(0).Tracking_sample_counter; // record the preamble sample stamp
} }
} }
else if (d_stat == 1) // posible preamble lock else if (d_stat == 1) // possible preamble lock
{ {
if (abs(corr_value) >= d_symbols_per_preamble) if (abs(corr_value) >= d_symbols_per_preamble)
{ {

View File

@ -34,13 +34,13 @@
#define GNSS_SDR_GLONASS_L1_CA_TELEMETRY_DECODER_CC_H #define GNSS_SDR_GLONASS_L1_CA_TELEMETRY_DECODER_CC_H
#include "GLONASS_L1_CA.h"
#include "glonass_gnav_navigation_message.h" #include "glonass_gnav_navigation_message.h"
#include "glonass_gnav_ephemeris.h" #include "glonass_gnav_ephemeris.h"
#include "glonass_gnav_almanac.h" #include "glonass_gnav_almanac.h"
#include "glonass_gnav_utc_model.h" #include "glonass_gnav_utc_model.h"
#include "gnss_satellite.h" #include "gnss_satellite.h"
#include "gnss_synchro.h" #include "gnss_synchro.h"
#include "GLONASS_L1_L2_CA.h"
#include <gnuradio/block.h> #include <gnuradio/block.h>
#include <fstream> #include <fstream>
#include <string> #include <string>

View File

@ -0,0 +1,449 @@
/*!
* \file glonass_l2_ca_telemetry_decoder_cc.cc
* \brief Implementation of an adapter of a GLONASS L1 C/A NAV data decoder block
* to a TelemetryDecoderInterface
* \author Damian Miralles, 2018. dmiralles2009(at)gmail.com
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "glonass_l2_ca_telemetry_decoder_cc.h"
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#define CRC_ERROR_LIMIT 6
using google::LogMessage;
glonass_l2_ca_telemetry_decoder_cc_sptr
glonass_l2_ca_make_telemetry_decoder_cc(const Gnss_Satellite &satellite, bool dump)
{
return glonass_l2_ca_telemetry_decoder_cc_sptr(new glonass_l2_ca_telemetry_decoder_cc(satellite, dump));
}
glonass_l2_ca_telemetry_decoder_cc::glonass_l2_ca_telemetry_decoder_cc(
const Gnss_Satellite &satellite,
bool dump) : gr::block("glonass_l2_ca_telemetry_decoder_cc", gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Telemetry Bit transition synchronization port out
this->message_port_register_out(pmt::mp("preamble_timestamp_s"));
// Ephemeris data port out
this->message_port_register_out(pmt::mp("telemetry"));
// initialize internal vars
d_dump = dump;
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
LOG(INFO) << "Initializing GLONASS L2 CA TELEMETRY DECODING";
// Define the number of sampes per symbol. Notice that GLONASS has 2 rates,
//one for the navigation data and the other for the preamble information
d_samples_per_symbol = (GLONASS_L2_CA_CODE_RATE_HZ / GLONASS_L2_CA_CODE_LENGTH_CHIPS) / GLONASS_L2_CA_SYMBOL_RATE_BPS;
// Set the preamble information
unsigned short int preambles_bits[GLONASS_GNAV_PREAMBLE_LENGTH_BITS] = GLONASS_GNAV_PREAMBLE;
// Since preamble rate is different than navigation data rate we use a constant
d_symbols_per_preamble = GLONASS_GNAV_PREAMBLE_LENGTH_SYMBOLS;
memcpy(static_cast<unsigned short int *>(this->d_preambles_bits), static_cast<unsigned short int *>(preambles_bits), GLONASS_GNAV_PREAMBLE_LENGTH_BITS * sizeof(unsigned short int));
// preamble bits to sampled symbols
d_preambles_symbols = static_cast<signed int *>(malloc(sizeof(signed int) * d_symbols_per_preamble));
int n = 0;
for (int i = 0; i < GLONASS_GNAV_PREAMBLE_LENGTH_BITS; i++)
{
for (unsigned int j = 0; j < GLONASS_GNAV_TELEMETRY_SYMBOLS_PER_PREAMBLE_BIT; j++)
{
if (d_preambles_bits[i] == 1)
{
d_preambles_symbols[n] = 1;
}
else
{
d_preambles_symbols[n] = -1;
}
n++;
}
}
d_sample_counter = 0;
d_stat = 0;
d_preamble_index = 0;
d_flag_frame_sync = false;
d_flag_parity = false;
d_TOW_at_current_symbol = 0;
Flag_valid_word = false;
delta_t = 0;
d_CRC_error_counter = 0;
d_flag_preamble = false;
d_channel = 0;
flag_TOW_set = false;
d_preamble_time_samples = 0;
}
glonass_l2_ca_telemetry_decoder_cc::~glonass_l2_ca_telemetry_decoder_cc()
{
delete d_preambles_symbols;
if (d_dump_file.is_open() == true)
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor closing the dump file " << ex.what();
}
}
}
void glonass_l2_ca_telemetry_decoder_cc::decode_string(double *frame_symbols, int frame_length)
{
double chip_acc = 0.0;
int chip_acc_counter = 0;
// 1. Transform from symbols to bits
std::string bi_binary_code;
std::string relative_code;
std::string data_bits;
// Group samples into bi-binary code
for (int i = 0; i < (frame_length); i++)
{
chip_acc += frame_symbols[i];
chip_acc_counter += 1;
if (chip_acc_counter == (GLONASS_GNAV_TELEMETRY_SYMBOLS_PER_BIT))
{
if (chip_acc > 0)
{
bi_binary_code.push_back('1');
chip_acc_counter = 0;
chip_acc = 0;
}
else
{
bi_binary_code.push_back('0');
chip_acc_counter = 0;
chip_acc = 0;
}
}
}
// Convert from bi-binary code to relative code
for (int i = 0; i < (GLONASS_GNAV_STRING_BITS); i++)
{
if (bi_binary_code[2 * i] == '1' && bi_binary_code[2 * i + 1] == '0')
{
relative_code.push_back('1');
}
else
{
relative_code.push_back('0');
}
}
// Convert from relative code to data bits
data_bits.push_back('0');
for (int i = 1; i < (GLONASS_GNAV_STRING_BITS); i++)
{
data_bits.push_back(((relative_code[i - 1] - '0') ^ (relative_code[i] - '0')) + '0');
}
// 2. Call the GLONASS GNAV string decoder
d_nav.string_decoder(data_bits);
// 3. Check operation executed correctly
if (d_nav.flag_CRC_test == true)
{
LOG(INFO) << "GLONASS GNAV CRC correct on channel " << d_channel << " from satellite " << d_satellite;
}
else
{
LOG(INFO) << "GLONASS GNAV CRC error on channel " << d_channel << " from satellite " << d_satellite;
}
// 4. Push the new navigation data to the queues
if (d_nav.have_new_ephemeris() == true)
{
// get object for this SV (mandatory)
d_nav.gnav_ephemeris.i_satellite_freq_channel = d_satellite.get_rf_link();
std::shared_ptr<Glonass_Gnav_Ephemeris> tmp_obj = std::make_shared<Glonass_Gnav_Ephemeris>(d_nav.get_ephemeris());
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
LOG(INFO) << "GLONASS GNAV Ephemeris have been received on channel" << d_channel << " from satellite " << d_satellite;
}
if (d_nav.have_new_utc_model() == true)
{
// get object for this SV (mandatory)
std::shared_ptr<Glonass_Gnav_Utc_Model> tmp_obj = std::make_shared<Glonass_Gnav_Utc_Model>(d_nav.get_utc_model());
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
LOG(INFO) << "GLONASS GNAV UTC Model have been received on channel" << d_channel << " from satellite " << d_satellite;
}
if (d_nav.have_new_almanac() == true)
{
unsigned int slot_nbr = d_nav.i_alm_satellite_slot_number;
std::shared_ptr<Glonass_Gnav_Almanac> tmp_obj = std::make_shared<Glonass_Gnav_Almanac>(d_nav.get_almanac(slot_nbr));
this->message_port_pub(pmt::mp("telemetry"), pmt::make_any(tmp_obj));
LOG(INFO) << "GLONASS GNAV Almanac have been received on channel" << d_channel << " in slot number " << slot_nbr;
}
// 5. Update satellite information on system
if (d_nav.flag_update_slot_number == true)
{
LOG(INFO) << "GLONASS GNAV Slot Number Identified on channel " << d_channel;
d_satellite.update_PRN(d_nav.gnav_ephemeris.d_n);
d_satellite.what_block(d_satellite.get_system(), d_nav.gnav_ephemeris.d_n);
d_nav.flag_update_slot_number = false;
}
}
int glonass_l2_ca_telemetry_decoder_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
int corr_value = 0;
int preamble_diff = 0;
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]); // Get the output buffer pointer
const Gnss_Synchro **in = reinterpret_cast<const Gnss_Synchro **>(&input_items[0]); // Get the input buffer pointer
Gnss_Synchro current_symbol; //structure to save the synchronization information and send the output object to the next block
//1. Copy the current tracking output
current_symbol = in[0][0];
d_symbol_history.push_back(current_symbol); //add new symbol to the symbol queue
d_sample_counter++; //count for the processed samples
consume_each(1);
d_flag_preamble = false;
unsigned int required_symbols = GLONASS_GNAV_STRING_SYMBOLS;
if (d_symbol_history.size() > required_symbols)
{
//******* preamble correlation ********
for (int i = 0; i < d_symbols_per_preamble; i++)
{
if (d_symbol_history.at(i).Prompt_I < 0) // symbols clipping
{
corr_value -= d_preambles_symbols[i];
}
else
{
corr_value += d_preambles_symbols[i];
}
}
}
//******* frame sync ******************
if (d_stat == 0) //no preamble information
{
if (abs(corr_value) >= d_symbols_per_preamble)
{
// Record the preamble sample stamp
d_preamble_index = d_sample_counter;
LOG(INFO) << "Preamble detection for GLONASS L2 C/A SAT " << this->d_satellite;
// Enter into frame pre-detection status
d_stat = 1;
d_preamble_time_samples = d_symbol_history.at(0).Tracking_sample_counter; // record the preamble sample stamp
}
}
else if (d_stat == 1) // possible preamble lock
{
if (abs(corr_value) >= d_symbols_per_preamble)
{
//check preamble separation
preamble_diff = d_sample_counter - d_preamble_index;
// Record the PRN start sample index associated to the preamble
d_preamble_time_samples = d_symbol_history.at(0).Tracking_sample_counter;
if (abs(preamble_diff - GLONASS_GNAV_PREAMBLE_PERIOD_SYMBOLS) == 0)
{
//try to decode frame
LOG(INFO) << "Starting string decoder for GLONASS L2 C/A SAT " << this->d_satellite;
d_preamble_index = d_sample_counter; //record the preamble sample stamp
d_stat = 2;
// send asynchronous message to tracking to inform of frame sync and extend correlation time
pmt::pmt_t value = pmt::from_double(static_cast<double>(d_preamble_time_samples) / static_cast<double>(d_symbol_history.at(0).fs) - 0.001);
this->message_port_pub(pmt::mp("preamble_timestamp_s"), value);
}
else
{
if (preamble_diff > GLONASS_GNAV_PREAMBLE_PERIOD_SYMBOLS)
{
d_stat = 0; // start again
}
DLOG(INFO) << "Failed string decoder for GLONASS L2 C/A SAT " << this->d_satellite;
}
}
}
else if (d_stat == 2)
{
// FIXME: The preamble index marks the first symbol of the string count. Here I just wait for another full string to be received before processing
if (d_sample_counter == d_preamble_index + GLONASS_GNAV_STRING_SYMBOLS)
{
// NEW GLONASS string received
// 0. fetch the symbols into an array
int string_length = GLONASS_GNAV_STRING_SYMBOLS - d_symbols_per_preamble;
double string_symbols[GLONASS_GNAV_DATA_SYMBOLS] = {0};
//******* SYMBOL TO BIT *******
for (int i = 0; i < string_length; i++)
{
if (corr_value > 0)
{
string_symbols[i] = d_symbol_history.at(i + d_symbols_per_preamble).Prompt_I; // because last symbol of the preamble is just received now!
}
else
{
string_symbols[i] = -d_symbol_history.at(i + d_symbols_per_preamble).Prompt_I; // because last symbol of the preamble is just received now!
}
}
//call the decoder
decode_string(string_symbols, string_length);
if (d_nav.flag_CRC_test == true)
{
d_CRC_error_counter = 0;
d_flag_preamble = true; //valid preamble indicator (initialized to false every work())
d_preamble_index = d_sample_counter; //record the preamble sample stamp (t_P)
if (!d_flag_frame_sync)
{
d_flag_frame_sync = true;
DLOG(INFO) << " Frame sync SAT " << this->d_satellite << " with preamble start at "
<< d_symbol_history.at(0).Tracking_sample_counter << " [samples]";
}
}
else
{
d_CRC_error_counter++;
d_preamble_index = d_sample_counter; //record the preamble sample stamp
if (d_CRC_error_counter > CRC_ERROR_LIMIT)
{
LOG(INFO) << "Lost of frame sync SAT " << this->d_satellite;
d_flag_frame_sync = false;
d_stat = 0;
}
}
}
}
// UPDATE GNSS SYNCHRO DATA
//2. Add the telemetry decoder information
if (this->d_flag_preamble == true and d_nav.flag_TOW_new == true)
//update TOW at the preamble instant
{
d_TOW_at_current_symbol = floor((d_nav.gnav_ephemeris.d_TOW - GLONASS_GNAV_PREAMBLE_DURATION_S) * 1000) / 1000;
d_nav.flag_TOW_new = false;
}
else //if there is not a new preamble, we define the TOW of the current symbol
{
d_TOW_at_current_symbol = d_TOW_at_current_symbol + GLONASS_L2_CA_CODE_PERIOD;
}
//if (d_flag_frame_sync == true and d_nav.flag_TOW_set==true and d_nav.flag_CRC_test == true)
// if(d_nav.flag_GGTO_1 == true and d_nav.flag_GGTO_2 == true and d_nav.flag_GGTO_3 == true and d_nav.flag_GGTO_4 == true) //all GGTO parameters arrived
// {
// delta_t = d_nav.A_0G_10 + d_nav.A_1G_10 * (d_TOW_at_current_symbol - d_nav.t_0G_10 + 604800.0 * (fmod((d_nav.WN_0 - d_nav.WN_0G_10), 64)));
// }
if (d_flag_frame_sync == true and d_nav.flag_TOW_set == true)
{
current_symbol.Flag_valid_word = true;
}
else
{
current_symbol.Flag_valid_word = false;
}
current_symbol.PRN = this->d_satellite.get_PRN();
current_symbol.TOW_at_current_symbol_s = d_TOW_at_current_symbol;
current_symbol.TOW_at_current_symbol_s -= delta_t; // Galileo to GPS TOW
if (d_dump == true)
{
// MULTIPLEXED FILE RECORDING - Record results to file
try
{
double tmp_double;
unsigned long int tmp_ulong_int;
tmp_double = d_TOW_at_current_symbol;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_ulong_int = current_symbol.Tracking_sample_counter;
d_dump_file.write(reinterpret_cast<char *>(&tmp_ulong_int), sizeof(unsigned long int));
tmp_double = 0;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception writing observables dump file " << e.what();
}
}
// remove used symbols from history
if (d_symbol_history.size() > required_symbols)
{
d_symbol_history.pop_front();
}
//3. Make the output (copy the object contents to the GNURadio reserved memory)
*out[0] = current_symbol;
return 1;
}
void glonass_l2_ca_telemetry_decoder_cc::set_satellite(const Gnss_Satellite &satellite)
{
d_satellite = Gnss_Satellite(satellite.get_system(), satellite.get_PRN());
DLOG(INFO) << "Setting decoder Finite State Machine to satellite " << d_satellite;
DLOG(INFO) << "Navigation Satellite set to " << d_satellite;
}
void glonass_l2_ca_telemetry_decoder_cc::set_channel(int channel)
{
d_channel = channel;
LOG(INFO) << "Navigation channel set to " << channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename = "telemetry";
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Telemetry decoder dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "channel " << d_channel << ": exception opening Glonass TLM dump file. " << e.what();
}
}
}
}

View File

@ -0,0 +1,117 @@
/*!
* \file glonass_l2_ca_telemetry_decoder_cc.h
* \brief Implementation of an adapter of a GLONASS L2 C/A NAV data decoder block
* to a TelemetryDecoderInterface
* \author Damian Miralles, 2018. dmiralles2009(at)gmail.com
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2015 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GLONASS_L2_CA_TELEMETRY_DECODER_CC_H
#define GNSS_SDR_GLONASS_L2_CA_TELEMETRY_DECODER_CC_H
#include "GLONASS_L1_L2_CA.h"
#include "glonass_gnav_navigation_message.h"
#include "glonass_gnav_ephemeris.h"
#include "glonass_gnav_almanac.h"
#include "glonass_gnav_utc_model.h"
#include "gnss_satellite.h"
#include "gnss_synchro.h"
#include <gnuradio/block.h>
#include <fstream>
#include <string>
class glonass_l2_ca_telemetry_decoder_cc;
typedef boost::shared_ptr<glonass_l2_ca_telemetry_decoder_cc> glonass_l2_ca_telemetry_decoder_cc_sptr;
glonass_l2_ca_telemetry_decoder_cc_sptr glonass_l2_ca_make_telemetry_decoder_cc(const Gnss_Satellite &satellite, bool dump);
/*!
* \brief This class implements a block that decodes the GNAV data defined in GLONASS ICD v5.1
* \see <a href="http://russianspacesystems.ru/wp-content/uploads/2016/08/ICD_GLONASS_eng_v5.1.pdf">GLONASS ICD</a>
*
*/
class glonass_l2_ca_telemetry_decoder_cc : public gr::block
{
public:
~glonass_l2_ca_telemetry_decoder_cc(); //!< Class destructor
void set_satellite(const Gnss_Satellite &satellite); //!< Set satellite PRN
void set_channel(int channel); //!< Set receiver's channel
/*!
* \brief This is where all signal processing takes place
*/
int general_work(int noutput_items, gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items);
private:
friend glonass_l2_ca_telemetry_decoder_cc_sptr
glonass_l2_ca_make_telemetry_decoder_cc(const Gnss_Satellite &satellite, bool dump);
glonass_l2_ca_telemetry_decoder_cc(const Gnss_Satellite &satellite, bool dump);
void decode_string(double *symbols, int frame_length);
//!< Help with coherent tracking
double d_preamble_time_samples;
//!< Preamble decoding
unsigned short int d_preambles_bits[GLONASS_GNAV_PREAMBLE_LENGTH_BITS];
int *d_preambles_symbols;
unsigned int d_samples_per_symbol;
int d_symbols_per_preamble;
//!< Storage for incoming data
std::deque<Gnss_Synchro> d_symbol_history;
//!< Variables for internal functionality
long unsigned int d_sample_counter; //!< Sample counter as an index (1,2,3,..etc) indicating number of samples processed
long unsigned int d_preamble_index; //!< Index of sample number where preamble was found
unsigned int d_stat; //!< Status of decoder
bool d_flag_frame_sync; //!< Indicate when a frame sync is achieved
bool d_flag_parity; //!< Flag indicating when parity check was achieved (crc check)
bool d_flag_preamble; //!< Flag indicating when preamble was found
int d_CRC_error_counter; //!< Number of failed CRC operations
bool flag_TOW_set; //!< Indicates when time of week is set
double delta_t; //!< GPS-GLONASS time offset
//!< Navigation Message variable
Glonass_Gnav_Navigation_Message d_nav;
//!< Values to populate gnss synchronization structure
double d_TOW_at_current_symbol;
bool Flag_valid_word;
//!< Satellite Information and logging capacity
Gnss_Satellite d_satellite;
int d_channel;
bool d_dump;
std::string d_dump_filename;
std::ofstream d_dump_file;
};
#endif

View File

@ -36,6 +36,8 @@ set(TRACKING_ADAPTER_SOURCES
glonass_l1_ca_dll_pll_tracking.cc glonass_l1_ca_dll_pll_tracking.cc
glonass_l1_ca_dll_pll_c_aid_tracking.cc glonass_l1_ca_dll_pll_c_aid_tracking.cc
gps_l5i_dll_pll_tracking.cc gps_l5i_dll_pll_tracking.cc
glonass_l2_ca_dll_pll_tracking.cc
glonass_l2_ca_dll_pll_c_aid_tracking.cc
${OPT_TRACKING_ADAPTERS} ${OPT_TRACKING_ADAPTERS}
) )

View File

@ -39,8 +39,8 @@
#include "glonass_l1_ca_dll_pll_c_aid_tracking.h" #include "glonass_l1_ca_dll_pll_c_aid_tracking.h"
#include "configuration_interface.h" #include "configuration_interface.h"
#include "GLONASS_L1_CA.h"
#include "gnss_sdr_flags.h" #include "gnss_sdr_flags.h"
#include "GLONASS_L1_L2_CA.h"
#include <glog/logging.h> #include <glog/logging.h>

View File

@ -38,8 +38,8 @@
#include "glonass_l1_ca_dll_pll_tracking.h" #include "glonass_l1_ca_dll_pll_tracking.h"
#include "configuration_interface.h" #include "configuration_interface.h"
#include "GLONASS_L1_CA.h"
#include "gnss_sdr_flags.h" #include "gnss_sdr_flags.h"
#include "GLONASS_L1_L2_CA.h"
#include <glog/logging.h> #include <glog/logging.h>

View File

@ -0,0 +1,241 @@
/*!
* \file glonass_l2_ca_dll_pll_c_aid_tracking.cc
* \brief Interface of an adapter of a DLL+PLL tracking loop block
* for Glonass L2 C/A to a TrackingInterface
* \author Damian Miralles, 2018. dmiralles2009(at)gmail.com
*
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "glonass_l2_ca_dll_pll_c_aid_tracking.h"
#include "configuration_interface.h"
#include "GLONASS_L1_L2_CA.h"
#include "gnss_sdr_flags.h"
#include <glog/logging.h>
using google::LogMessage;
GlonassL2CaDllPllCAidTracking::GlonassL2CaDllPllCAidTracking(
ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
{
DLOG(INFO) << "role " << role;
//################# CONFIGURATION PARAMETERS ########################
int fs_in;
int vector_length;
int f_if;
bool dump;
std::string dump_filename;
std::string default_item_type = "gr_complex";
float pll_bw_hz;
float pll_bw_narrow_hz;
float dll_bw_hz;
float dll_bw_narrow_hz;
float early_late_space_chips;
item_type_ = configuration->property(role + ".item_type", default_item_type);
//vector_length = configuration->property(role + ".vector_length", 2048);
int fs_in_deprecated = configuration->property("GNSS-SDR.internal_fs_hz", 2048000);
fs_in = configuration->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
f_if = configuration->property(role + ".if", 0);
dump = configuration->property(role + ".dump", false);
pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0);
if (FLAGS_pll_bw_hz != 0.0) pll_bw_hz = static_cast<float>(FLAGS_pll_bw_hz);
dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0);
if (FLAGS_dll_bw_hz != 0.0) dll_bw_hz = static_cast<float>(FLAGS_dll_bw_hz);
pll_bw_narrow_hz = configuration->property(role + ".pll_bw_narrow_hz", 20.0);
dll_bw_narrow_hz = configuration->property(role + ".dll_bw_narrow_hz", 2.0);
int extend_correlation_ms;
extend_correlation_ms = configuration->property(role + ".extend_correlation_ms", 1);
early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5);
std::string default_dump_filename = "./track_ch";
dump_filename = configuration->property(role + ".dump_filename",
default_dump_filename); //unused!
vector_length = std::round(fs_in / (GLONASS_L2_CA_CODE_RATE_HZ / GLONASS_L2_CA_CODE_LENGTH_CHIPS));
//################# MAKE TRACKING GNURadio object ###################
if (item_type_.compare("gr_complex") == 0)
{
item_size_ = sizeof(gr_complex);
tracking_cc = glonass_l2_ca_dll_pll_c_aid_make_tracking_cc(
f_if,
fs_in,
vector_length,
dump,
dump_filename,
pll_bw_hz,
dll_bw_hz,
pll_bw_narrow_hz,
dll_bw_narrow_hz,
extend_correlation_ms,
early_late_space_chips);
DLOG(INFO) << "tracking(" << tracking_cc->unique_id() << ")";
}
else if (item_type_.compare("cshort") == 0)
{
item_size_ = sizeof(lv_16sc_t);
tracking_sc = glonass_l2_ca_dll_pll_c_aid_make_tracking_sc(
f_if,
fs_in,
vector_length,
dump,
dump_filename,
pll_bw_hz,
dll_bw_hz,
pll_bw_narrow_hz,
dll_bw_narrow_hz,
extend_correlation_ms,
early_late_space_chips);
DLOG(INFO) << "tracking(" << tracking_sc->unique_id() << ")";
}
else
{
item_size_ = sizeof(gr_complex);
LOG(WARNING) << item_type_ << " unknown tracking item type.";
}
channel_ = 0;
}
GlonassL2CaDllPllCAidTracking::~GlonassL2CaDllPllCAidTracking()
{
}
void GlonassL2CaDllPllCAidTracking::start_tracking()
{
if (item_type_.compare("gr_complex") == 0)
{
tracking_cc->start_tracking();
}
else if (item_type_.compare("cshort") == 0)
{
tracking_sc->start_tracking();
}
else
{
LOG(WARNING) << item_type_ << " unknown tracking item type";
}
}
/*
* Set tracking channel unique ID
*/
void GlonassL2CaDllPllCAidTracking::set_channel(unsigned int channel)
{
channel_ = channel;
if (item_type_.compare("gr_complex") == 0)
{
tracking_cc->set_channel(channel);
}
else if (item_type_.compare("cshort") == 0)
{
tracking_sc->set_channel(channel);
}
else
{
LOG(WARNING) << item_type_ << " unknown tracking item type";
}
}
void GlonassL2CaDllPllCAidTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
if (item_type_.compare("gr_complex") == 0)
{
tracking_cc->set_gnss_synchro(p_gnss_synchro);
}
else if (item_type_.compare("cshort") == 0)
{
tracking_sc->set_gnss_synchro(p_gnss_synchro);
}
else
{
LOG(WARNING) << item_type_ << " unknown tracking item type";
}
}
void GlonassL2CaDllPllCAidTracking::connect(gr::top_block_sptr top_block)
{
if (top_block)
{ /* top_block is not null */
};
//nothing to connect, now the tracking uses gr_sync_decimator
}
void GlonassL2CaDllPllCAidTracking::disconnect(gr::top_block_sptr top_block)
{
if (top_block)
{ /* top_block is not null */
};
//nothing to disconnect, now the tracking uses gr_sync_decimator
}
gr::basic_block_sptr GlonassL2CaDllPllCAidTracking::get_left_block()
{
if (item_type_.compare("gr_complex") == 0)
{
return tracking_cc;
}
else if (item_type_.compare("cshort") == 0)
{
return tracking_sc;
}
else
{
LOG(WARNING) << item_type_ << " unknown tracking item type";
return nullptr;
}
}
gr::basic_block_sptr GlonassL2CaDllPllCAidTracking::get_right_block()
{
if (item_type_.compare("gr_complex") == 0)
{
return tracking_cc;
}
else if (item_type_.compare("cshort") == 0)
{
return tracking_sc;
}
else
{
LOG(WARNING) << item_type_ << " unknown tracking item type";
return nullptr;
}
}

View File

@ -0,0 +1,106 @@
/*!
* \file glonass_l2_ca_dll_pll_c_aid_tracking.h
* \brief Interface of an adapter of a DLL+PLL tracking loop block
* for Glonass L2 C/A to a TrackingInterface
* \author Damian Miralles, 2018. dmiralles2009(at)gmail.com
*
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GLONASS_L2_CA_DLL_PLL_C_AID_TRACKING_H_
#define GNSS_SDR_GLONASS_L2_CA_DLL_PLL_C_AID_TRACKING_H_
#include "tracking_interface.h"
#include "glonass_l2_ca_dll_pll_c_aid_tracking_cc.h"
#include "glonass_l2_ca_dll_pll_c_aid_tracking_sc.h"
#include <string>
class ConfigurationInterface;
/*!
* \brief This class implements a code DLL + carrier PLL tracking loop
*/
class GlonassL2CaDllPllCAidTracking : public TrackingInterface
{
public:
GlonassL2CaDllPllCAidTracking(ConfigurationInterface* configuration,
std::string role,
unsigned int in_streams,
unsigned int out_streams);
virtual ~GlonassL2CaDllPllCAidTracking();
inline std::string role() override
{
return role_;
}
//! Returns "GLONASS_L2_CA_DLL_PLL_C_Aid_Tracking"
inline std::string implementation() override
{
return "GLONASS_L2_CA_DLL_PLL_C_Aid_Tracking";
}
inline size_t item_size() override
{
return item_size_;
}
void connect(gr::top_block_sptr top_block) override;
void disconnect(gr::top_block_sptr top_block) override;
gr::basic_block_sptr get_left_block() override;
gr::basic_block_sptr get_right_block() override;
/*!
* \brief Set tracking channel unique ID
*/
void set_channel(unsigned int channel) override;
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to efficiently exchange synchronization data between acquisition and tracking blocks
*/
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) override;
void start_tracking() override;
private:
glonass_l2_ca_dll_pll_c_aid_tracking_cc_sptr tracking_cc;
glonass_l2_ca_dll_pll_c_aid_tracking_sc_sptr tracking_sc;
size_t item_size_;
std::string item_type_;
unsigned int channel_;
std::string role_;
unsigned int in_streams_;
unsigned int out_streams_;
};
#endif // GNSS_SDR_GLONASS_L2_CA_DLL_PLL_C_AID_TRACKING_H_

View File

@ -0,0 +1,154 @@
/*!
* \file glonass_l2_ca_dll_pll_tracking.cc
* \brief Interface of an adapter of a DLL+PLL tracking loop block
* for Glonass L2 C/A to a TrackingInterface
* \author Damian Miralles, 2018, dmiralles2009(at)gmail.com *
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "glonass_l2_ca_dll_pll_tracking.h"
#include "configuration_interface.h"
#include "GLONASS_L1_L2_CA.h"
#include "gnss_sdr_flags.h"
#include <glog/logging.h>
using google::LogMessage;
GlonassL2CaDllPllTracking::GlonassL2CaDllPllTracking(
ConfigurationInterface* configuration, std::string role,
unsigned int in_streams, unsigned int out_streams) : role_(role), in_streams_(in_streams), out_streams_(out_streams)
{
DLOG(INFO) << "role " << role;
//################# CONFIGURATION PARAMETERS ########################
int fs_in;
int vector_length;
int f_if;
bool dump;
std::string dump_filename;
std::string item_type;
std::string default_item_type = "gr_complex";
float pll_bw_hz;
float dll_bw_hz;
float early_late_space_chips;
item_type = configuration->property(role + ".item_type", default_item_type);
int fs_in_deprecated = configuration->property("GNSS-SDR.internal_fs_hz", 2048000);
fs_in = configuration->property("GNSS-SDR.internal_fs_sps", fs_in_deprecated);
f_if = configuration->property(role + ".if", 0);
dump = configuration->property(role + ".dump", false);
pll_bw_hz = configuration->property(role + ".pll_bw_hz", 50.0);
if (FLAGS_pll_bw_hz != 0.0) pll_bw_hz = static_cast<float>(FLAGS_pll_bw_hz);
dll_bw_hz = configuration->property(role + ".dll_bw_hz", 2.0);
if (FLAGS_dll_bw_hz != 0.0) dll_bw_hz = static_cast<float>(FLAGS_dll_bw_hz);
early_late_space_chips = configuration->property(role + ".early_late_space_chips", 0.5);
std::string default_dump_filename = "./track_ch";
dump_filename = configuration->property(role + ".dump_filename", default_dump_filename); //unused!
vector_length = std::round(fs_in / (GLONASS_L2_CA_CODE_RATE_HZ / GLONASS_L2_CA_CODE_LENGTH_CHIPS));
//################# MAKE TRACKING GNURadio object ###################
if (item_type.compare("gr_complex") == 0)
{
item_size_ = sizeof(gr_complex);
tracking_ = glonass_l2_ca_dll_pll_make_tracking_cc(
f_if,
fs_in,
vector_length,
dump,
dump_filename,
pll_bw_hz,
dll_bw_hz,
early_late_space_chips);
}
else
{
item_size_ = sizeof(gr_complex);
LOG(WARNING) << item_type << " unknown tracking item type.";
}
channel_ = 0;
DLOG(INFO) << "tracking(" << tracking_->unique_id() << ")";
}
GlonassL2CaDllPllTracking::~GlonassL2CaDllPllTracking()
{
}
void GlonassL2CaDllPllTracking::start_tracking()
{
tracking_->start_tracking();
}
/*
* Set tracking channel unique ID
*/
void GlonassL2CaDllPllTracking::set_channel(unsigned int channel)
{
channel_ = channel;
tracking_->set_channel(channel);
}
void GlonassL2CaDllPllTracking::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro)
{
tracking_->set_gnss_synchro(p_gnss_synchro);
}
void GlonassL2CaDllPllTracking::connect(gr::top_block_sptr top_block)
{
if (top_block)
{ /* top_block is not null */
};
//nothing to connect, now the tracking uses gr_sync_decimator
}
void GlonassL2CaDllPllTracking::disconnect(gr::top_block_sptr top_block)
{
if (top_block)
{ /* top_block is not null */
};
//nothing to disconnect, now the tracking uses gr_sync_decimator
}
gr::basic_block_sptr GlonassL2CaDllPllTracking::get_left_block()
{
return tracking_;
}
gr::basic_block_sptr GlonassL2CaDllPllTracking::get_right_block()
{
return tracking_;
}

View File

@ -0,0 +1,103 @@
/*!
* \file glonass_l2_ca_dll_pll_tracking.h
* \brief Interface of an adapter of a DLL+PLL tracking loop block
* for Glonass L2 C/A to a TrackingInterface
* \author Damian Miralles, 2018, dmiralles2009(at)gmail.com
*
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GLONASS_L2_CA_DLL_PLL_TRACKING_H_
#define GNSS_SDR_GLONASS_L2_CA_DLL_PLL_TRACKING_H_
#include "tracking_interface.h"
#include "glonass_l2_ca_dll_pll_tracking_cc.h"
#include <string>
class ConfigurationInterface;
/*!
* \brief This class implements a code DLL + carrier PLL tracking loop
*/
class GlonassL2CaDllPllTracking : public TrackingInterface
{
public:
GlonassL2CaDllPllTracking(ConfigurationInterface* configuration,
std::string role,
unsigned int in_streams,
unsigned int out_streams);
virtual ~GlonassL2CaDllPllTracking();
inline std::string role() override
{
return role_;
}
//! Returns "GLONASS_L1_CA_DLL_PLL_Tracking"
inline std::string implementation() override
{
return "GLONASS_L2_CA_DLL_PLL_Tracking";
}
inline size_t item_size() override
{
return item_size_;
}
void connect(gr::top_block_sptr top_block) override;
void disconnect(gr::top_block_sptr top_block) override;
gr::basic_block_sptr get_left_block() override;
gr::basic_block_sptr get_right_block() override;
/*!
* \brief Set tracking channel unique ID
*/
void set_channel(unsigned int channel) override;
/*!
* \brief Set acquisition/tracking common Gnss_Synchro object pointer
* to efficiently exchange synchronization data between acquisition and tracking blocks
*/
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) override;
void start_tracking() override;
private:
glonass_l2_ca_dll_pll_tracking_cc_sptr tracking_;
size_t item_size_;
unsigned int channel_;
std::string role_;
unsigned int in_streams_;
unsigned int out_streams_;
};
#endif // GNSS_SDR_GLONASS_L2_CA_DLL_PLL_TRACKING_H_

View File

@ -39,6 +39,9 @@ set(TRACKING_GR_BLOCKS_SOURCES
glonass_l1_ca_dll_pll_tracking_cc.cc glonass_l1_ca_dll_pll_tracking_cc.cc
glonass_l1_ca_dll_pll_c_aid_tracking_cc.cc glonass_l1_ca_dll_pll_c_aid_tracking_cc.cc
glonass_l1_ca_dll_pll_c_aid_tracking_sc.cc glonass_l1_ca_dll_pll_c_aid_tracking_sc.cc
glonass_l2_ca_dll_pll_tracking_cc.cc
glonass_l2_ca_dll_pll_c_aid_tracking_cc.cc
glonass_l2_ca_dll_pll_c_aid_tracking_sc.cc
${OPT_TRACKING_BLOCKS} ${OPT_TRACKING_BLOCKS}
) )

View File

@ -715,7 +715,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work(int noutput_items __attrib
double code_error_filt_secs; double code_error_filt_secs;
code_error_filt_secs = (Galileo_E1_CODE_PERIOD * d_code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; // [seconds] code_error_filt_secs = (Galileo_E1_CODE_PERIOD * d_code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; // [seconds]
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer // keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips; double T_chip_seconds = 1.0 / d_code_freq_chips;
@ -841,7 +841,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work(int noutput_items __attrib
d_rem_carr_phase_rad = d_rem_carr_phase_rad + GALILEO_TWO_PI * d_carrier_doppler_hz * static_cast<double>(d_current_prn_length_samples) / static_cast<double>(d_fs_in); d_rem_carr_phase_rad = d_rem_carr_phase_rad + GALILEO_TWO_PI * d_carrier_doppler_hz * static_cast<double>(d_current_prn_length_samples) / static_cast<double>(d_fs_in);
d_rem_carr_phase_rad = std::fmod(d_rem_carr_phase_rad, GALILEO_TWO_PI); d_rem_carr_phase_rad = std::fmod(d_rem_carr_phase_rad, GALILEO_TWO_PI);
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer // keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips; double T_chip_seconds = 1.0 / d_code_freq_chips;
@ -921,7 +921,7 @@ int galileo_e1_dll_pll_veml_tracking_cc::general_work(int noutput_items __attrib
double code_error_filt_secs; double code_error_filt_secs;
code_error_filt_secs = (Galileo_E1_CODE_PERIOD * d_code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds] code_error_filt_secs = (Galileo_E1_CODE_PERIOD * d_code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds]
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer // keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips; double T_chip_seconds = 1.0 / d_code_freq_chips;

View File

@ -355,13 +355,13 @@ int Galileo_E1_Tcp_Connector_Tracking_cc::general_work(int noutput_items __attri
code_error_filt_secs = (Galileo_E1_CODE_PERIOD * code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds] code_error_filt_secs = (Galileo_E1_CODE_PERIOD * code_error_filt_chips) / Galileo_E1_CODE_CHIP_RATE_HZ; //[seconds]
d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs; d_acc_code_phase_secs = d_acc_code_phase_secs + code_error_filt_secs;
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer // keep alignment parameters for the next input buffer
double T_chip_seconds; double T_chip_seconds;
double T_prn_seconds; double T_prn_seconds;
double T_prn_samples; double T_prn_samples;
double K_blk_samples; double K_blk_samples;
// Compute the next buffer lenght based in the new period of the PRN sequence and the code phase error estimation // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips); T_chip_seconds = 1 / static_cast<double>(d_code_freq_chips);
T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS; T_prn_seconds = T_chip_seconds * Galileo_E1_B_CODE_LENGTH_CHIPS;
T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in); T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);

View File

@ -38,9 +38,9 @@
#include "glonass_l1_ca_dll_pll_c_aid_tracking_cc.h" #include "glonass_l1_ca_dll_pll_c_aid_tracking_cc.h"
#include "glonass_l1_signal_processing.h" #include "glonass_l1_signal_processing.h"
#include "GLONASS_L1_L2_CA.h"
#include "tracking_discriminators.h" #include "tracking_discriminators.h"
#include "lock_detectors.h" #include "lock_detectors.h"
#include "GLONASS_L1_CA.h"
#include "gnss_sdr_flags.h" #include "gnss_sdr_flags.h"
#include "control_message_factory.h" #include "control_message_factory.h"
#include <boost/lexical_cast.hpp> #include <boost/lexical_cast.hpp>
@ -56,6 +56,8 @@
#include <sstream> #include <sstream>
#define CN0_ESTIMATION_SAMPLES 10
using google::LogMessage; using google::LogMessage;
glonass_l1_ca_dll_pll_c_aid_tracking_cc_sptr glonass_l1_ca_dll_pll_c_aid_tracking_cc_sptr
@ -605,7 +607,7 @@ int glonass_l1_ca_dll_pll_c_aid_tracking_cc::general_work(int noutput_items __at
d_code_phase_step_chips, d_code_phase_step_chips,
d_correlation_length_samples); d_correlation_length_samples);
// ####### coherent intergration extension // ####### coherent integration extension
// keep the last symbols // keep the last symbols
d_E_history.push_back(d_correlator_outs[0]); // save early output d_E_history.push_back(d_correlator_outs[0]); // save early output
d_P_history.push_back(d_correlator_outs[1]); // save prompt output d_P_history.push_back(d_correlator_outs[1]); // save prompt output
@ -720,7 +722,7 @@ int glonass_l1_ca_dll_pll_c_aid_tracking_cc::general_work(int noutput_items __at
d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S; d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S;
code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti] code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti]
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer // keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips; double T_chip_seconds = 1.0 / d_code_freq_chips;
@ -750,7 +752,7 @@ int glonass_l1_ca_dll_pll_c_aid_tracking_cc::general_work(int noutput_items __at
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in)); d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
// ####### CN0 ESTIMATION AND LOCK DETECTORS ####################################### // ####### CN0 ESTIMATION AND LOCK DETECTORS #######################################
if (d_cn0_estimation_counter < FLAGS_cn0_samples) if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
{ {
// fill buffer with prompt correlator output values // fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; // prompt d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; // prompt
@ -760,9 +762,9 @@ int glonass_l1_ca_dll_pll_c_aid_tracking_cc::general_work(int noutput_items __at
{ {
d_cn0_estimation_counter = 0; d_cn0_estimation_counter = 0;
// Code lock indicator // Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, FLAGS_cn0_samples, d_fs_in, GLONASS_L1_CA_CODE_LENGTH_CHIPS); d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GLONASS_L1_CA_CODE_LENGTH_CHIPS);
// Carrier lock indicator // Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, FLAGS_cn0_samples); d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
// Loss of lock detection // Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min) if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
{ {

View File

@ -39,9 +39,9 @@
#include "glonass_l1_ca_dll_pll_c_aid_tracking_sc.h" #include "glonass_l1_ca_dll_pll_c_aid_tracking_sc.h"
#include "gnss_synchro.h" #include "gnss_synchro.h"
#include "glonass_l1_signal_processing.h" #include "glonass_l1_signal_processing.h"
#include "GLONASS_L1_L2_CA.h"
#include "tracking_discriminators.h" #include "tracking_discriminators.h"
#include "lock_detectors.h" #include "lock_detectors.h"
#include "GLONASS_L1_CA.h"
#include "gnss_sdr_flags.h" #include "gnss_sdr_flags.h"
#include "control_message_factory.h" #include "control_message_factory.h"
#include <boost/bind.hpp> #include <boost/bind.hpp>
@ -57,6 +57,7 @@
#include <sstream> #include <sstream>
#define CN0_ESTIMATION_SAMPLES 10
using google::LogMessage; using google::LogMessage;
glonass_l1_ca_dll_pll_c_aid_tracking_sc_sptr glonass_l1_ca_dll_pll_c_aid_tracking_sc_sptr
@ -599,7 +600,7 @@ int glonass_l1_ca_dll_pll_c_aid_tracking_sc::general_work(int noutput_items __at
d_code_phase_step_chips, d_code_phase_step_chips,
d_correlation_length_samples); d_correlation_length_samples);
// ####### coherent intergration extension // ####### coherent integration extension
// keep the last symbols // keep the last symbols
d_E_history.push_back(d_correlator_outs_16sc[0]); // save early output d_E_history.push_back(d_correlator_outs_16sc[0]); // save early output
d_P_history.push_back(d_correlator_outs_16sc[1]); // save prompt output d_P_history.push_back(d_correlator_outs_16sc[1]); // save prompt output
@ -712,7 +713,7 @@ int glonass_l1_ca_dll_pll_c_aid_tracking_sc::general_work(int noutput_items __at
d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S; d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S;
code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti] code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti]
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer // keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips; double T_chip_seconds = 1.0 / d_code_freq_chips;
@ -742,7 +743,7 @@ int glonass_l1_ca_dll_pll_c_aid_tracking_sc::general_work(int noutput_items __at
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in)); d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
// ####### CN0 ESTIMATION AND LOCK DETECTORS ####################################### // ####### CN0 ESTIMATION AND LOCK DETECTORS #######################################
if (d_cn0_estimation_counter < FLAGS_cn0_samples) if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
{ {
// fill buffer with prompt correlator output values // fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = lv_cmake(static_cast<float>(d_correlator_outs_16sc[1].real()), static_cast<float>(d_correlator_outs_16sc[1].imag())); // prompt d_Prompt_buffer[d_cn0_estimation_counter] = lv_cmake(static_cast<float>(d_correlator_outs_16sc[1].real()), static_cast<float>(d_correlator_outs_16sc[1].imag())); // prompt
@ -752,9 +753,9 @@ int glonass_l1_ca_dll_pll_c_aid_tracking_sc::general_work(int noutput_items __at
{ {
d_cn0_estimation_counter = 0; d_cn0_estimation_counter = 0;
// Code lock indicator // Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, FLAGS_cn0_samples, d_fs_in, GLONASS_L1_CA_CODE_LENGTH_CHIPS); d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GLONASS_L1_CA_CODE_LENGTH_CHIPS);
// Carrier lock indicator // Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, FLAGS_cn0_samples); d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
// Loss of lock detection // Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min) if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
{ {

View File

@ -38,9 +38,9 @@
#include "glonass_l1_ca_dll_pll_tracking_cc.h" #include "glonass_l1_ca_dll_pll_tracking_cc.h"
#include "glonass_l1_signal_processing.h" #include "glonass_l1_signal_processing.h"
#include "GLONASS_L1_L2_CA.h"
#include "tracking_discriminators.h" #include "tracking_discriminators.h"
#include "lock_detectors.h" #include "lock_detectors.h"
#include "GLONASS_L1_CA.h"
#include "gnss_sdr_flags.h" #include "gnss_sdr_flags.h"
#include "control_message_factory.h" #include "control_message_factory.h"
#include <boost/lexical_cast.hpp> #include <boost/lexical_cast.hpp>
@ -54,6 +54,7 @@
#include <sstream> #include <sstream>
#define CN0_ESTIMATION_SAMPLES 10
using google::LogMessage; using google::LogMessage;
glonass_l1_ca_dll_pll_tracking_cc_sptr glonass_l1_ca_dll_pll_tracking_cc_sptr
@ -584,7 +585,7 @@ int Glonass_L1_Ca_Dll_Pll_Tracking_cc::general_work(int noutput_items __attribut
double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); //[seconds] double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); //[seconds]
//double code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GLONASS_L1_CA_CODE_RATE_HZ; // [seconds] //double code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GLONASS_L1_CA_CODE_RATE_HZ; // [seconds]
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer // keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
//double T_chip_seconds = 1.0 / static_cast<double>(d_code_freq_chips); //double T_chip_seconds = 1.0 / static_cast<double>(d_code_freq_chips);
@ -611,7 +612,7 @@ int Glonass_L1_Ca_Dll_Pll_Tracking_cc::general_work(int noutput_items __attribut
d_rem_code_phase_chips = d_code_freq_chips * (d_rem_code_phase_samples / static_cast<double>(d_fs_in)); d_rem_code_phase_chips = d_code_freq_chips * (d_rem_code_phase_samples / static_cast<double>(d_fs_in));
// ####### CN0 ESTIMATION AND LOCK DETECTORS ###### // ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < FLAGS_cn0_samples) if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
{ {
// fill buffer with prompt correlator output values // fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; //prompt d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; //prompt
@ -621,9 +622,9 @@ int Glonass_L1_Ca_Dll_Pll_Tracking_cc::general_work(int noutput_items __attribut
{ {
d_cn0_estimation_counter = 0; d_cn0_estimation_counter = 0;
// Code lock indicator // Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, FLAGS_cn0_samples, d_fs_in, GLONASS_L1_CA_CODE_LENGTH_CHIPS); d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GLONASS_L1_CA_CODE_LENGTH_CHIPS);
// Carrier lock indicator // Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, FLAGS_cn0_samples); d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
// Loss of lock detection // Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min) if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
{ {

View File

@ -0,0 +1,921 @@
/*!
* \file glonass_l2_ca_dll_pll_c_aid_tracking_cc.h
* \brief Implementation of a code DLL + carrier PLL tracking block
* \author Damian Miralles, 2018. dmiralles2009(at)gmail.com
*
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "glonass_l2_ca_dll_pll_c_aid_tracking_cc.h"
#include "glonass_l2_signal_processing.h"
#include "tracking_discriminators.h"
#include "lock_detectors.h"
#include "GLONASS_L1_L2_CA.h"
#include "gnss_sdr_flags.h"
#include "control_message_factory.h"
#include <boost/lexical_cast.hpp>
#include <boost/bind.hpp>
#include <gnuradio/io_signature.h>
#include <matio.h>
#include <pmt/pmt.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <glog/logging.h>
#include <cmath>
#include <iostream>
#include <memory>
#include <sstream>
#define CN0_ESTIMATION_SAMPLES 10
using google::LogMessage;
glonass_l2_ca_dll_pll_c_aid_tracking_cc_sptr
glonass_l2_ca_dll_pll_c_aid_make_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int extend_correlation_ms,
float early_late_space_chips)
{
return glonass_l2_ca_dll_pll_c_aid_tracking_cc_sptr(new glonass_l2_ca_dll_pll_c_aid_tracking_cc(if_freq,
fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, pll_bw_narrow_hz, dll_bw_narrow_hz, extend_correlation_ms, early_late_space_chips));
}
void glonass_l2_ca_dll_pll_c_aid_tracking_cc::forecast(int noutput_items,
gr_vector_int &ninput_items_required)
{
if (noutput_items != 0)
{
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
}
}
void glonass_l2_ca_dll_pll_c_aid_tracking_cc::msg_handler_preamble_index(pmt::pmt_t msg)
{
//pmt::print(msg);
DLOG(INFO) << "Extended correlation enabled for Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN);
if (d_enable_extended_integration == false) //avoid re-setting preamble indicator
{
d_preamble_timestamp_s = pmt::to_double(msg);
d_enable_extended_integration = true;
d_preamble_synchronized = false;
}
}
glonass_l2_ca_dll_pll_c_aid_tracking_cc::glonass_l2_ca_dll_pll_c_aid_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int extend_correlation_ms,
float early_late_space_chips) : gr::block("glonass_l2_ca_dll_pll_c_aid_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->set_msg_handler(pmt::mp("preamble_timestamp_s"),
boost::bind(&glonass_l2_ca_dll_pll_c_aid_tracking_cc::msg_handler_preamble_index, this, _1));
this->message_port_register_out(pmt::mp("events"));
// initialize internal vars
d_dump = dump;
d_if_freq = if_freq;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
d_correlation_length_samples = static_cast<int>(d_vector_length);
// Initialize tracking ==========================================
d_pll_bw_hz = pll_bw_hz;
d_dll_bw_hz = dll_bw_hz;
d_pll_bw_narrow_hz = pll_bw_narrow_hz;
d_dll_bw_narrow_hz = dll_bw_narrow_hz;
d_extend_correlation_ms = extend_correlation_ms;
d_code_loop_filter.set_DLL_BW(d_dll_bw_hz);
d_carrier_loop_filter.set_params(10.0, d_pll_bw_hz, 2);
// --- DLL variables --------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(static_cast<int>(GLONASS_L2_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
// correlator outputs (scalar)
d_n_correlator_taps = 3; // Early, Prompt, and Late
d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
// Set TAPs delay values [chips]
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = d_early_late_spc_chips;
multicorrelator_cpu.init(2 * d_correlation_length_samples, d_n_correlator_taps);
//--- Perform initializations ------------------------------
// define initial code frequency basis of NCO
d_code_freq_chips = GLONASS_L2_CA_CODE_RATE_HZ;
// define residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
d_rem_carrier_phase_rad = 0.0;
// sample synchronization
d_sample_counter = 0; //(from trk to tlm)
d_acq_sample_stamp = 0;
d_enable_tracking = false;
d_pull_in = false;
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[FLAGS_cn0_samples];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = FLAGS_carrier_lock_th;
systemName["R"] = std::string("Glonass");
set_relative_rate(1.0 / static_cast<double>(d_vector_length));
d_acquisition_gnss_synchro = 0;
d_channel = 0;
d_acq_code_phase_samples = 0.0;
d_acq_carrier_doppler_hz = 0.0;
d_carrier_doppler_hz = 0.0;
d_code_error_filt_chips_Ti = 0.0;
d_acc_carrier_phase_cycles = 0.0;
d_code_phase_samples = 0.0;
d_pll_to_dll_assist_secs_Ti = 0.0;
d_rem_code_phase_chips = 0.0;
d_code_phase_step_chips = 0.0;
d_carrier_phase_step_rad = 0.0;
d_enable_extended_integration = false;
d_preamble_synchronized = false;
d_rem_code_phase_integer_samples = 0;
d_code_error_chips_Ti = 0.0;
d_code_error_filt_chips_s = 0.0;
d_carr_phase_error_secs_Ti = 0.0;
d_preamble_timestamp_s = 0.0;
d_carrier_frequency_hz = 0.0;
d_carrier_doppler_old_hz = 0.0;
d_glonass_freq_ch = 0;
//set_min_output_buffer((long int)300);
}
void glonass_l2_ca_dll_pll_c_aid_tracking_cc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / static_cast<double>(d_fs_in);
// Doppler effect
// Fd=(C/(C+Vr))*F
d_glonass_freq_ch = GLONASS_L2_CA_FREQ_HZ + (DFRQ2_GLO * static_cast<double>(GLONASS_PRN.at(d_acquisition_gnss_synchro->PRN)));
double radial_velocity = (d_glonass_freq_ch + d_acq_carrier_doppler_hz) / d_glonass_freq_ch;
// new chip and prn sequence periods based on acq Doppler
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * GLONASS_L2_CA_CODE_RATE_HZ;
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
T_chip_mod_seconds = 1.0 / d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * GLONASS_L2_CA_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
d_correlation_length_samples = round(T_prn_mod_samples);
double T_prn_true_seconds = GLONASS_L2_CA_CODE_LENGTH_CHIPS / GLONASS_L2_CA_CODE_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
// d_carrier_doppler_hz = d_acq_carrier_doppler_hz + d_if_freq + (DFRQ2_GLO * GLONASS_PRN.at(d_acquisition_gnss_synchro->PRN));
// d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
// d_carrier_phase_step_rad = GLONASS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
d_carrier_frequency_hz = d_acq_carrier_doppler_hz + d_if_freq + (DFRQ2_GLO * static_cast<double>(GLONASS_PRN.at(d_acquisition_gnss_synchro->PRN)));
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_carrier_phase_step_rad = GLONASS_TWO_PI * d_carrier_frequency_hz / static_cast<double>(d_fs_in);
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(d_carrier_frequency_hz); // The carrier loop filter implements the Doppler accumulator
d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
glonass_l2_ca_code_gen_complex(d_ca_code, 0);
multicorrelator_cpu.set_local_code_and_taps(static_cast<int>(GLONASS_L2_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0.0;
d_rem_carrier_phase_rad = 0.0;
d_rem_code_phase_chips = 0.0;
d_acc_carrier_phase_cycles = 0.0;
d_pll_to_dll_assist_secs_Ti = 0.0;
d_code_phase_samples = d_acq_code_phase_samples;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0, 1);
// DEBUG OUTPUT
std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking
d_pull_in = true;
d_enable_tracking = true;
d_enable_extended_integration = false;
d_preamble_synchronized = false;
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
}
glonass_l2_ca_dll_pll_c_aid_tracking_cc::~glonass_l2_ca_dll_pll_c_aid_tracking_cc()
{
if (d_dump_file.is_open())
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
if (d_dump)
{
if (d_channel == 0)
{
std::cout << "Writing .mat files ...";
}
glonass_l2_ca_dll_pll_c_aid_tracking_cc::save_matfile();
if (d_channel == 0)
{
std::cout << " done." << std::endl;
}
}
try
{
volk_gnsssdr_free(d_local_code_shift_chips);
volk_gnsssdr_free(d_correlator_outs);
volk_gnsssdr_free(d_ca_code);
delete[] d_Prompt_buffer;
multicorrelator_cpu.free();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
int glonass_l2_ca_dll_pll_c_aid_tracking_cc::save_matfile()
{
// READ DUMP FILE
std::ifstream::pos_type size;
int number_of_double_vars = 11;
int number_of_float_vars = 5;
int epoch_size_bytes = sizeof(unsigned long int) + sizeof(double) * number_of_double_vars +
sizeof(float) * number_of_float_vars + sizeof(unsigned int);
std::ifstream dump_file;
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
return 1;
}
// count number of epochs and rewind
long int num_epoch = 0;
if (dump_file.is_open())
{
size = dump_file.tellg();
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
dump_file.seekg(0, std::ios::beg);
}
else
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
unsigned long int *PRN_start_sample_count = new unsigned long int[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
unsigned int *PRN = new unsigned int[num_epoch];
try
{
if (dump_file.is_open())
{
for (long int i = 0; i < num_epoch; i++)
{
dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(unsigned long int));
dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(unsigned int));
}
}
dump_file.close();
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 1;
}
// WRITE MAT FILE
mat_t *matfp;
matvar_t *matvar;
std::string filename = d_dump_filename;
filename.erase(filename.length() - 4, 4);
filename.append(".mat");
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if (reinterpret_cast<long *>(matfp) != NULL)
{
size_t dims[2] = {1, static_cast<size_t>(num_epoch)};
matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, acc_carrier_phase_rad, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_doppler_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_freq_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_filt_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_filt_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, CN0_SNV_dB_Hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_lock_test, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux1, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
Mat_Close(matfp);
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 0;
}
int glonass_l2_ca_dll_pll_c_aid_tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// Block input data and block output stream pointers
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); // PRN start block alignment
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
// process vars
double code_error_filt_secs_Ti = 0.0;
double CURRENT_INTEGRATION_TIME_S = 0.0;
double CORRECTED_INTEGRATION_TIME_S = 0.0;
if (d_enable_tracking == true)
{
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
// Receiver signal alignment
if (d_pull_in == true)
{
int samples_offset;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_correlation_length_samples - fmod(static_cast<double>(acq_to_trk_delay_samples), static_cast<double>(d_correlation_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
current_synchro_data.Tracking_sample_counter = d_sample_counter + samples_offset;
d_sample_counter += samples_offset; // count for the processed samples
d_pull_in = false;
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * samples_offset / GLONASS_TWO_PI;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_cycles * GLONASS_TWO_PI;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
consume_each(samples_offset); // shift input to perform alignment with local replica
return 1;
}
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// perform carrier wipe-off and compute Early, Prompt and Late correlation
multicorrelator_cpu.set_input_output_vectors(d_correlator_outs, in);
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad,
d_carrier_phase_step_rad,
d_rem_code_phase_chips,
d_code_phase_step_chips,
d_correlation_length_samples);
// ####### coherent integration extension
// keep the last symbols
d_E_history.push_back(d_correlator_outs[0]); // save early output
d_P_history.push_back(d_correlator_outs[1]); // save prompt output
d_L_history.push_back(d_correlator_outs[2]); // save late output
if (static_cast<int>(d_P_history.size()) > d_extend_correlation_ms)
{
d_E_history.pop_front();
d_P_history.pop_front();
d_L_history.pop_front();
}
bool enable_dll_pll;
if (d_enable_extended_integration == true)
{
long int symbol_diff = round(1000.0 * ((static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in) - d_preamble_timestamp_s));
if (symbol_diff > 0 and symbol_diff % d_extend_correlation_ms == 0)
{
// compute coherent integration and enable tracking loop
// perform coherent integration using correlator output history
// std::cout<<"##### RESET COHERENT INTEGRATION ####"<<std::endl;
d_correlator_outs[0] = gr_complex(0.0, 0.0);
d_correlator_outs[1] = gr_complex(0.0, 0.0);
d_correlator_outs[2] = gr_complex(0.0, 0.0);
for (int n = 0; n < d_extend_correlation_ms; n++)
{
d_correlator_outs[0] += d_E_history.at(n);
d_correlator_outs[1] += d_P_history.at(n);
d_correlator_outs[2] += d_L_history.at(n);
}
if (d_preamble_synchronized == false)
{
d_code_loop_filter.set_DLL_BW(d_dll_bw_narrow_hz);
d_carrier_loop_filter.set_params(10.0, d_pll_bw_narrow_hz, 2);
d_preamble_synchronized = true;
std::cout << "Enabled " << d_extend_correlation_ms << " [ms] extended correlator for CH " << d_channel << " : Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< " pll_bw = " << d_pll_bw_hz << " [Hz], pll_narrow_bw = " << d_pll_bw_narrow_hz << " [Hz]" << std::endl
<< " dll_bw = " << d_dll_bw_hz << " [Hz], dll_narrow_bw = " << d_dll_bw_narrow_hz << " [Hz]" << std::endl;
}
// UPDATE INTEGRATION TIME
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_extend_correlation_ms) * GLONASS_L2_CA_CODE_PERIOD;
d_code_loop_filter.set_pdi(CURRENT_INTEGRATION_TIME_S);
enable_dll_pll = true;
}
else
{
if (d_preamble_synchronized == true)
{
// continue extended coherent correlation
// Compute the next buffer length based on the period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips;
double T_prn_seconds = T_chip_seconds * GLONASS_L2_CA_CODE_LENGTH_CHIPS;
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
int K_prn_samples = round(T_prn_samples);
double K_T_prn_error_samples = K_prn_samples - T_prn_samples;
d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples;
d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples
d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples;
d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples;
// code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
// remnant code phase [chips]
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + d_carrier_phase_step_rad * static_cast<double>(d_correlation_length_samples), GLONASS_TWO_PI);
// UPDATE ACCUMULATED CARRIER PHASE
CORRECTED_INTEGRATION_TIME_S = (static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in));
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GLONASS_TWO_PI;
// disable tracking loop and inform telemetry decoder
enable_dll_pll = false;
}
else
{
// perform basic (1ms) correlation
// UPDATE INTEGRATION TIME
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
d_code_loop_filter.set_pdi(CURRENT_INTEGRATION_TIME_S);
enable_dll_pll = true;
}
}
}
else
{
// UPDATE INTEGRATION TIME
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
enable_dll_pll = true;
}
if (enable_dll_pll == true)
{
// ################## PLL ##########################################################
// Update PLL discriminator [rads/Ti -> Secs/Ti]
d_carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GLONASS_TWO_PI; // prompt output
d_carrier_doppler_old_hz = d_carrier_doppler_hz;
// Carrier discriminator filter
// NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
// Input [s/Ti] -> output [Hz]
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, d_carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
// PLL to DLL assistance [Secs/Ti]
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / d_glonass_freq_ch;
// code Doppler frequency update
d_code_freq_chips = GLONASS_L2_CA_CODE_RATE_HZ + (((d_carrier_doppler_hz - d_carrier_doppler_old_hz) * GLONASS_L2_CA_CODE_RATE_HZ) / d_glonass_freq_ch);
// ################## DLL ##########################################################
// DLL discriminator
d_code_error_chips_Ti = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); // [chips/Ti] //early and late
// Code discriminator filter
d_code_error_filt_chips_s = d_code_loop_filter.get_code_nco(d_code_error_chips_Ti); // input [chips/Ti] -> output [chips/second]
d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S;
code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti]
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT #######################
// keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips;
double T_prn_seconds = T_chip_seconds * GLONASS_L2_CA_CODE_LENGTH_CHIPS;
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
double K_prn_samples = round(T_prn_samples);
double K_T_prn_error_samples = K_prn_samples - T_prn_samples;
d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples + code_error_filt_secs_Ti * static_cast<double>(d_fs_in); //(code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti) * static_cast<double>(d_fs_in);
d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples
d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples;
d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples;
//################### PLL COMMANDS #################################################
//carrier phase step (NCO phase increment per sample) [rads/sample]
d_carrier_phase_step_rad = GLONASS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GLONASS_TWO_PI;
// UPDATE ACCUMULATED CARRIER PHASE
CORRECTED_INTEGRATION_TIME_S = (static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in));
//remnant carrier phase [rad]
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GLONASS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, GLONASS_TWO_PI);
//################### DLL COMMANDS #################################################
//code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
//remnant code phase [chips]
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
// ####### CN0 ESTIMATION AND LOCK DETECTORS #######################################
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; // prompt
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GLONASS_L2_CA_CODE_LENGTH_CHIPS);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
}
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); //3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
}
}
// ########### Output the tracking data to navigation and PVT ##########
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs[1]).real());
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs[1]).imag());
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = GLONASS_TWO_PI * d_acc_carrier_phase_cycles;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_symbol_output = true;
if (d_preamble_synchronized == true)
{
current_synchro_data.correlation_length_ms = d_extend_correlation_ms;
}
else
{
current_synchro_data.correlation_length_ms = 1;
}
}
else
{
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs[1]).real());
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs[1]).imag());
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = GLONASS_TWO_PI * d_acc_carrier_phase_cycles;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; // todo: project the carrier doppler
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
}
}
else
{
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
current_synchro_data.System = {'R'};
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples;
}
//assign the GNURadio block output data
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
if (d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
float tmp_E, tmp_P, tmp_L;
double tmp_double;
prompt_I = d_correlator_outs[1].real();
prompt_Q = d_correlator_outs[1].imag();
tmp_E = std::abs<float>(d_correlator_outs[0]);
tmp_P = std::abs<float>(d_correlator_outs[1]);
tmp_L = std::abs<float>(d_correlator_outs[2]);
try
{
// EPR
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
// PRN start sample stamp
//tmp_float=(float)d_sample_counter;
d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char *>(&d_acc_carrier_phase_cycles), sizeof(double));
// carrier and code frequency
double if_freq_carrier = d_carrier_doppler_hz + d_if_freq + (DFRQ2_GLO * static_cast<double>(GLONASS_PRN.at(d_acquisition_gnss_synchro->PRN)));
d_dump_file.write(reinterpret_cast<char *>(&if_freq_carrier), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_code_freq_chips), sizeof(double));
//PLL commands
d_dump_file.write(reinterpret_cast<char *>(&d_carr_phase_error_secs_Ti), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double));
//DLL commands
d_dump_file.write(reinterpret_cast<char *>(&d_code_error_chips_Ti), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_code_error_filt_chips_Ti), sizeof(double));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char *>(&d_CN0_SNV_dB_Hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_lock_test), sizeof(double));
// AUX vars (for debug purposes)
tmp_double = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
unsigned int prn_ = d_acquisition_gnss_synchro->PRN;
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(unsigned int));
}
catch (const std::ifstream::failure *e)
{
LOG(WARNING) << "Exception writing trk dump file " << e->what();
}
}
consume_each(d_correlation_length_samples); // this is necessary in gr::block derivates
d_sample_counter += d_correlation_length_samples; //count for the processed samples
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
}
void glonass_l2_ca_dll_pll_c_aid_tracking_cc::set_channel(unsigned int channel)
{
d_channel = channel;
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl;
}
catch (const std::ifstream::failure *e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e->what() << std::endl;
}
}
}
}
void glonass_l2_ca_dll_pll_c_aid_tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
}

View File

@ -0,0 +1,203 @@
/*!
* \file glonass_l2_ca_dll_pll_c_aid_tracking_cc.h
* \brief Implementation of a code DLL + carrier PLL tracking block
* \author Damian Miralles, 2018. dmiralles2009(at)gmail.com
*
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GLONASS_L2_CA_DLL_PLL_C_AID_TRACKING_CC_H
#define GNSS_SDR_GLONASS_L2_CA_DLL_PLL_C_AID_TRACKING_CC_H
#include "gnss_synchro.h"
#include "tracking_2nd_DLL_filter.h"
#include "tracking_FLL_PLL_filter.h"
//#include "tracking_loop_filter.h"
#include "cpu_multicorrelator.h"
#include <gnuradio/block.h>
#include <pmt/pmt.h>
#include <fstream>
#include <map>
#include <deque>
#include <string>
class glonass_l2_ca_dll_pll_c_aid_tracking_cc;
typedef boost::shared_ptr<glonass_l2_ca_dll_pll_c_aid_tracking_cc>
glonass_l2_ca_dll_pll_c_aid_tracking_cc_sptr;
glonass_l2_ca_dll_pll_c_aid_tracking_cc_sptr
glonass_l2_ca_dll_pll_c_aid_make_tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int extend_correlation_ms,
float early_late_space_chips);
/*!
* \brief This class implements a DLL + PLL tracking loop block
*/
class glonass_l2_ca_dll_pll_c_aid_tracking_cc : public gr::block
{
public:
~glonass_l2_ca_dll_pll_c_aid_tracking_cc();
void set_channel(unsigned int channel);
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
void start_tracking();
int general_work(int noutput_items, gr_vector_int& ninput_items,
gr_vector_const_void_star& input_items, gr_vector_void_star& output_items);
void forecast(int noutput_items, gr_vector_int& ninput_items_required);
private:
friend glonass_l2_ca_dll_pll_c_aid_tracking_cc_sptr
glonass_l2_ca_dll_pll_c_aid_make_tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int extend_correlation_ms,
float early_late_space_chips);
glonass_l2_ca_dll_pll_c_aid_tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int extend_correlation_ms,
float early_late_space_chips);
// tracking configuration vars
unsigned int d_vector_length;
bool d_dump;
Gnss_Synchro* d_acquisition_gnss_synchro;
unsigned int d_channel;
long d_if_freq;
long d_fs_in;
double d_glonass_freq_ch;
double d_early_late_spc_chips;
int d_n_correlator_taps;
gr_complex* d_ca_code;
float* d_local_code_shift_chips;
gr_complex* d_correlator_outs;
cpu_multicorrelator multicorrelator_cpu;
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
double d_rem_code_phase_chips;
double d_rem_carrier_phase_rad;
int d_rem_code_phase_integer_samples;
// PLL and DLL filter library
//Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_FLL_PLL_filter d_carrier_loop_filter;
// acquisition
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// tracking vars
float d_dll_bw_hz;
float d_pll_bw_hz;
float d_dll_bw_narrow_hz;
float d_pll_bw_narrow_hz;
double d_code_freq_chips;
double d_code_phase_step_chips;
double d_carrier_doppler_hz;
double d_carrier_frequency_hz;
double d_carrier_doppler_old_hz;
double d_carrier_phase_step_rad;
double d_acc_carrier_phase_cycles;
double d_code_phase_samples;
double d_pll_to_dll_assist_secs_Ti;
double d_code_error_chips_Ti;
double d_code_error_filt_chips_s;
double d_code_error_filt_chips_Ti;
double d_carr_phase_error_secs_Ti;
// symbol history to detect bit transition
std::deque<gr_complex> d_E_history;
std::deque<gr_complex> d_P_history;
std::deque<gr_complex> d_L_history;
double d_preamble_timestamp_s;
int d_extend_correlation_ms;
bool d_enable_extended_integration;
bool d_preamble_synchronized;
void msg_handler_preamble_index(pmt::pmt_t msg);
//Integration period in samples
int d_correlation_length_samples;
//processing samples counters
unsigned long int d_sample_counter;
unsigned long int d_acq_sample_stamp;
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars
bool d_enable_tracking;
bool d_pull_in;
// file dump
std::string d_dump_filename;
std::ofstream d_dump_file;
std::map<std::string, std::string> systemName;
std::string sys;
int save_matfile();
};
#endif //GNSS_SDR_GLONASS_L1_CA_DLL_PLL_C_AID_TRACKING_CC_H

View File

@ -0,0 +1,912 @@
/*!
* \file glonass_l2_ca_dll_pll_c_aid_tracking_sc.cc
* \brief Implementation of a code DLL + carrier PLL tracking block
* \author Damian Miralles, 2018. dmiralles2009(at)gmail.com
*
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "glonass_l2_ca_dll_pll_c_aid_tracking_sc.h"
#include "gnss_synchro.h"
#include "glonass_l2_signal_processing.h"
#include "tracking_discriminators.h"
#include "lock_detectors.h"
#include "GLONASS_L1_L2_CA.h"
#include "gnss_sdr_flags.h"
#include "control_message_factory.h"
#include <boost/bind.hpp>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <matio.h>
#include <pmt/pmt.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <glog/logging.h>
#include <cmath>
#include <iostream>
#include <memory>
#include <sstream>
#define CN0_ESTIMATION_SAMPLES 10
using google::LogMessage;
glonass_l2_ca_dll_pll_c_aid_tracking_sc_sptr
glonass_l2_ca_dll_pll_c_aid_make_tracking_sc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int extend_correlation_ms,
float early_late_space_chips)
{
return glonass_l2_ca_dll_pll_c_aid_tracking_sc_sptr(new glonass_l2_ca_dll_pll_c_aid_tracking_sc(if_freq,
fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, pll_bw_narrow_hz, dll_bw_narrow_hz, extend_correlation_ms, early_late_space_chips));
}
void glonass_l2_ca_dll_pll_c_aid_tracking_sc::forecast(int noutput_items,
gr_vector_int &ninput_items_required)
{
if (noutput_items != 0)
{
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
}
}
void glonass_l2_ca_dll_pll_c_aid_tracking_sc::msg_handler_preamble_index(pmt::pmt_t msg)
{
//pmt::print(msg);
DLOG(INFO) << "Extended correlation enabled for Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN);
if (d_enable_extended_integration == false) //avoid re-setting preamble indicator
{
d_preamble_timestamp_s = pmt::to_double(msg);
d_enable_extended_integration = true;
d_preamble_synchronized = false;
}
}
glonass_l2_ca_dll_pll_c_aid_tracking_sc::glonass_l2_ca_dll_pll_c_aid_tracking_sc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int extend_correlation_ms,
float early_late_space_chips) : gr::block("glonass_l1_ca_dll_pll_c_aid_tracking_sc", gr::io_signature::make(1, 1, sizeof(lv_16sc_t)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->set_msg_handler(pmt::mp("preamble_timestamp_s"),
boost::bind(&glonass_l2_ca_dll_pll_c_aid_tracking_sc::msg_handler_preamble_index, this, _1));
this->message_port_register_out(pmt::mp("events"));
// initialize internal vars
d_dump = dump;
d_if_freq = if_freq;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
d_correlation_length_samples = static_cast<int>(d_vector_length);
// Initialize tracking ==========================================
d_pll_bw_hz = pll_bw_hz;
d_dll_bw_hz = dll_bw_hz;
d_pll_bw_narrow_hz = pll_bw_narrow_hz;
d_dll_bw_narrow_hz = dll_bw_narrow_hz;
d_code_loop_filter.set_DLL_BW(d_dll_bw_hz);
d_carrier_loop_filter.set_params(10.0, d_pll_bw_hz, 2);
d_extend_correlation_ms = extend_correlation_ms;
// --- DLL variables --------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(static_cast<int>(GLONASS_L2_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
d_ca_code_16sc = static_cast<lv_16sc_t *>(volk_gnsssdr_malloc(static_cast<int>(GLONASS_L2_CA_CODE_LENGTH_CHIPS) * sizeof(lv_16sc_t), volk_gnsssdr_get_alignment()));
// correlator outputs (scalar)
d_n_correlator_taps = 3; // Early, Prompt, and Late
d_correlator_outs_16sc = static_cast<lv_16sc_t *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(lv_16sc_t), volk_gnsssdr_get_alignment()));
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs_16sc[n] = lv_cmake(0, 0);
}
d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
// Set TAPs delay values [chips]
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = d_early_late_spc_chips;
multicorrelator_cpu_16sc.init(2 * d_correlation_length_samples, d_n_correlator_taps);
//--- Perform initializations ------------------------------
// define initial code frequency basis of NCO
d_code_freq_chips = GLONASS_L2_CA_CODE_RATE_HZ;
// define residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
d_rem_carrier_phase_rad = 0.0;
// sample synchronization
d_sample_counter = 0; //(from trk to tlm)
d_acq_sample_stamp = 0;
d_enable_tracking = false;
d_pull_in = false;
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[FLAGS_cn0_samples];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = FLAGS_carrier_lock_th;
systemName["R"] = std::string("Glonass");
set_relative_rate(1.0 / static_cast<double>(d_vector_length));
d_acquisition_gnss_synchro = 0;
d_channel = 0;
d_acq_code_phase_samples = 0.0;
d_acq_carrier_doppler_hz = 0.0;
d_carrier_doppler_hz = 0.0;
d_acc_carrier_phase_cycles = 0.0;
d_code_phase_samples = 0.0;
d_enable_extended_integration = false;
d_preamble_synchronized = false;
d_rem_code_phase_integer_samples = 0;
d_code_error_chips_Ti = 0.0;
d_pll_to_dll_assist_secs_Ti = 0.0;
d_rem_code_phase_chips = 0.0;
d_code_phase_step_chips = 0.0;
d_carrier_phase_step_rad = 0.0;
d_code_error_filt_chips_s = 0.0;
d_code_error_filt_chips_Ti = 0.0;
d_preamble_timestamp_s = 0.0;
d_carr_phase_error_secs_Ti = 0.0;
d_carrier_frequency_hz = 0.0;
d_carrier_doppler_old_hz = 0.0;
d_glonass_freq_ch = 0;
//set_min_output_buffer((long int)300);
}
void glonass_l2_ca_dll_pll_c_aid_tracking_sc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<double>(acq_trk_diff_samples) / static_cast<double>(d_fs_in);
// Doppler effect
// Fd=(C/(C+Vr))*F
d_glonass_freq_ch = GLONASS_L2_CA_FREQ_HZ + (GLONASS_L2_CA_FREQ_HZ * GLONASS_PRN.at(d_acquisition_gnss_synchro->PRN));
double radial_velocity = (d_glonass_freq_ch + d_acq_carrier_doppler_hz) / d_glonass_freq_ch;
// new chip and prn sequence periods based on acq Doppler
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * GLONASS_L2_CA_CODE_RATE_HZ;
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
T_chip_mod_seconds = 1.0 / d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * GLONASS_L2_CA_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
d_correlation_length_samples = round(T_prn_mod_samples);
double T_prn_true_seconds = GLONASS_L2_CA_CODE_LENGTH_CHIPS / GLONASS_L2_CA_CODE_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_frequency_hz = d_acq_carrier_doppler_hz + d_if_freq + (DFRQ2_GLO * static_cast<double>(GLONASS_PRN.at(d_acquisition_gnss_synchro->PRN)));
;
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_carrier_phase_step_rad = GLONASS_TWO_PI * d_carrier_frequency_hz / static_cast<double>(d_fs_in);
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(d_carrier_frequency_hz); // The carrier loop filter implements the Doppler accumulator
d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
glonass_l2_ca_code_gen_complex(d_ca_code, 0);
volk_gnsssdr_32fc_convert_16ic(d_ca_code_16sc, d_ca_code, static_cast<int>(GLONASS_L2_CA_CODE_LENGTH_CHIPS));
multicorrelator_cpu_16sc.set_local_code_and_taps(static_cast<int>(GLONASS_L2_CA_CODE_LENGTH_CHIPS), d_ca_code_16sc, d_local_code_shift_chips);
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs_16sc[n] = lv_16sc_t(0, 0);
}
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0.0;
d_rem_carrier_phase_rad = 0.0;
d_rem_code_phase_chips = 0.0;
d_acc_carrier_phase_cycles = 0.0;
d_pll_to_dll_assist_secs_Ti = 0.0;
d_code_phase_samples = d_acq_code_phase_samples;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0, 1);
// DEBUG OUTPUT
std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking
d_pull_in = true;
d_enable_tracking = true;
d_enable_extended_integration = true;
d_preamble_synchronized = true;
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
}
int glonass_l2_ca_dll_pll_c_aid_tracking_sc::save_matfile()
{
// READ DUMP FILE
std::ifstream::pos_type size;
int number_of_double_vars = 11;
int number_of_float_vars = 5;
int epoch_size_bytes = sizeof(unsigned long int) + sizeof(double) * number_of_double_vars +
sizeof(float) * number_of_float_vars + sizeof(unsigned int);
std::ifstream dump_file;
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
return 1;
}
// count number of epochs and rewind
long int num_epoch = 0;
if (dump_file.is_open())
{
size = dump_file.tellg();
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
dump_file.seekg(0, std::ios::beg);
}
else
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
unsigned long int *PRN_start_sample_count = new unsigned long int[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
unsigned int *PRN = new unsigned int[num_epoch];
try
{
if (dump_file.is_open())
{
for (long int i = 0; i < num_epoch; i++)
{
dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(unsigned long int));
dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(unsigned int));
}
}
dump_file.close();
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 1;
}
// WRITE MAT FILE
mat_t *matfp;
matvar_t *matvar;
std::string filename = d_dump_filename;
filename.erase(filename.length() - 4, 4);
filename.append(".mat");
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if (reinterpret_cast<long *>(matfp) != NULL)
{
size_t dims[2] = {1, static_cast<size_t>(num_epoch)};
matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, acc_carrier_phase_rad, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_doppler_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_freq_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_filt_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_filt_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, CN0_SNV_dB_Hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_lock_test, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux1, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
Mat_Close(matfp);
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 0;
}
glonass_l2_ca_dll_pll_c_aid_tracking_sc::~glonass_l2_ca_dll_pll_c_aid_tracking_sc()
{
if (d_dump_file.is_open())
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
if (d_dump)
{
if (d_channel == 0)
{
std::cout << "Writing .mat files ...";
}
glonass_l2_ca_dll_pll_c_aid_tracking_sc::save_matfile();
if (d_channel == 0)
{
std::cout << " done." << std::endl;
}
}
volk_gnsssdr_free(d_local_code_shift_chips);
volk_gnsssdr_free(d_ca_code);
volk_gnsssdr_free(d_ca_code_16sc);
volk_gnsssdr_free(d_correlator_outs_16sc);
delete[] d_Prompt_buffer;
multicorrelator_cpu_16sc.free();
}
int glonass_l2_ca_dll_pll_c_aid_tracking_sc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// Block input data and block output stream pointers
const lv_16sc_t *in = reinterpret_cast<const lv_16sc_t *>(input_items[0]); // PRN start block alignment
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
// process vars
double code_error_filt_secs_Ti = 0.0;
double CURRENT_INTEGRATION_TIME_S = 0.0;
double CORRECTED_INTEGRATION_TIME_S = 0.0;
if (d_enable_tracking == true)
{
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
// Receiver signal alignment
if (d_pull_in == true)
{
int samples_offset;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_correlation_length_samples - fmod(static_cast<double>(acq_to_trk_delay_samples), static_cast<double>(d_correlation_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
current_synchro_data.Tracking_sample_counter = d_sample_counter + samples_offset;
d_sample_counter += samples_offset; // count for the processed samples
d_pull_in = false;
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * samples_offset / GLONASS_TWO_PI;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_cycles * GLONASS_TWO_PI;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
consume_each(samples_offset); // shift input to perform alignment with local replica
return 1;
}
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// perform carrier wipe-off and compute Early, Prompt and Late correlation
multicorrelator_cpu_16sc.set_input_output_vectors(d_correlator_outs_16sc, in);
multicorrelator_cpu_16sc.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad,
d_carrier_phase_step_rad,
d_rem_code_phase_chips,
d_code_phase_step_chips,
d_correlation_length_samples);
// ####### coherent integration extension
// keep the last symbols
d_E_history.push_back(d_correlator_outs_16sc[0]); // save early output
d_P_history.push_back(d_correlator_outs_16sc[1]); // save prompt output
d_L_history.push_back(d_correlator_outs_16sc[2]); // save late output
if (static_cast<int>(d_P_history.size()) > d_extend_correlation_ms)
{
d_E_history.pop_front();
d_P_history.pop_front();
d_L_history.pop_front();
}
bool enable_dll_pll;
if (d_enable_extended_integration == true)
{
long int symbol_diff = round(1000.0 * ((static_cast<double>(d_sample_counter) + d_rem_code_phase_samples) / static_cast<double>(d_fs_in) - d_preamble_timestamp_s));
if (symbol_diff > 0 and symbol_diff % d_extend_correlation_ms == 0)
{
// compute coherent integration and enable tracking loop
// perform coherent integration using correlator output history
// std::cout<<"##### RESET COHERENT INTEGRATION ####"<<std::endl;
d_correlator_outs_16sc[0] = lv_cmake(0, 0);
d_correlator_outs_16sc[1] = lv_cmake(0, 0);
d_correlator_outs_16sc[2] = lv_cmake(0, 0);
for (int n = 0; n < d_extend_correlation_ms; n++)
{
d_correlator_outs_16sc[0] += d_E_history.at(n);
d_correlator_outs_16sc[1] += d_P_history.at(n);
d_correlator_outs_16sc[2] += d_L_history.at(n);
}
if (d_preamble_synchronized == false)
{
d_code_loop_filter.set_DLL_BW(d_dll_bw_narrow_hz);
d_carrier_loop_filter.set_params(10.0, d_pll_bw_narrow_hz, 2);
d_preamble_synchronized = true;
std::cout << "Enabled " << d_extend_correlation_ms << " [ms] extended correlator for CH " << d_channel << " : Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN)
<< " pll_bw = " << d_pll_bw_hz << " [Hz], pll_narrow_bw = " << d_pll_bw_narrow_hz << " [Hz]" << std::endl
<< " dll_bw = " << d_dll_bw_hz << " [Hz], dll_narrow_bw = " << d_dll_bw_narrow_hz << " [Hz]" << std::endl;
}
// UPDATE INTEGRATION TIME
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_extend_correlation_ms) * GLONASS_L2_CA_CODE_PERIOD;
enable_dll_pll = true;
}
else
{
if (d_preamble_synchronized == true)
{
// continue extended coherent correlation
// Compute the next buffer length based on the period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips;
double T_prn_seconds = T_chip_seconds * GLONASS_L2_CA_CODE_LENGTH_CHIPS;
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
int K_prn_samples = round(T_prn_samples);
double K_T_prn_error_samples = K_prn_samples - T_prn_samples;
d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples;
d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples
d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples;
d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples;
// code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
// remnant code phase [chips]
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + d_carrier_phase_step_rad * static_cast<double>(d_correlation_length_samples), GLONASS_TWO_PI);
// UPDATE ACCUMULATED CARRIER PHASE
CORRECTED_INTEGRATION_TIME_S = (static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in));
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GLONASS_TWO_PI;
// disable tracking loop and inform telemetry decoder
enable_dll_pll = false;
}
else
{
// perform basic (1ms) correlation
// UPDATE INTEGRATION TIME
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
enable_dll_pll = true;
}
}
}
else
{
// UPDATE INTEGRATION TIME
CURRENT_INTEGRATION_TIME_S = static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in);
enable_dll_pll = true;
}
if (enable_dll_pll == true)
{
// ################## PLL ##########################################################
// Update PLL discriminator [rads/Ti -> Secs/Ti]
d_carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(std::complex<float>(d_correlator_outs_16sc[1].real(), d_correlator_outs_16sc[1].imag())) / GLONASS_TWO_PI; //prompt output
d_carrier_doppler_old_hz = d_carrier_doppler_hz;
// Carrier discriminator filter
// NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan
// Input [s/Ti] -> output [Hz]
d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, d_carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S);
// PLL to DLL assistance [Secs/Ti]
d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / d_glonass_freq_ch;
// code Doppler frequency update
d_code_freq_chips = GLONASS_L2_CA_CODE_RATE_HZ + (((d_carrier_doppler_hz - d_carrier_doppler_old_hz) * GLONASS_L2_CA_CODE_RATE_HZ) / d_glonass_freq_ch);
// ################## DLL ##########################################################
// DLL discriminator
d_code_error_chips_Ti = dll_nc_e_minus_l_normalized(std::complex<float>(d_correlator_outs_16sc[0].real(), d_correlator_outs_16sc[0].imag()), std::complex<float>(d_correlator_outs_16sc[2].real(), d_correlator_outs_16sc[2].imag())); // [chips/Ti] //early and late
// Code discriminator filter
d_code_error_filt_chips_s = d_code_loop_filter.get_code_nco(d_code_error_chips_Ti); // input [chips/Ti] -> output [chips/second]
d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S;
code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti]
// ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips;
double T_prn_seconds = T_chip_seconds * GLONASS_L2_CA_CODE_LENGTH_CHIPS;
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
double K_prn_samples = round(T_prn_samples);
double K_T_prn_error_samples = K_prn_samples - T_prn_samples;
d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples + code_error_filt_secs_Ti * static_cast<double>(d_fs_in); //(code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti) * static_cast<double>(d_fs_in);
d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples
d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples;
d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples;
//################### PLL COMMANDS #################################################
//carrier phase step (NCO phase increment per sample) [rads/sample]
d_carrier_phase_step_rad = GLONASS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GLONASS_TWO_PI;
// UPDATE ACCUMULATED CARRIER PHASE
CORRECTED_INTEGRATION_TIME_S = (static_cast<double>(d_correlation_length_samples) / static_cast<double>(d_fs_in));
//remnant carrier phase [rad]
d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GLONASS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, GLONASS_TWO_PI);
//################### DLL COMMANDS #################################################
//code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
//remnant code phase [chips]
d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast<double>(d_fs_in));
// ####### CN0 ESTIMATION AND LOCK DETECTORS #######################################
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = lv_cmake(static_cast<float>(d_correlator_outs_16sc[1].real()), static_cast<float>(d_correlator_outs_16sc[1].imag())); // prompt
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GLONASS_L2_CA_CODE_LENGTH_CHIPS);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
}
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); //3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
}
}
// ########### Output the tracking data to navigation and PVT ##########
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs_16sc[1]).real());
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs_16sc[1]).imag());
// Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!)
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = GLONASS_TWO_PI * d_acc_carrier_phase_cycles;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_symbol_output = true;
if (d_preamble_synchronized == true)
{
current_synchro_data.correlation_length_ms = d_extend_correlation_ms;
}
else
{
current_synchro_data.correlation_length_ms = 1;
}
}
else
{
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs_16sc[1]).real());
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs_16sc[1]).imag());
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = GLONASS_TWO_PI * d_acc_carrier_phase_cycles;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; // todo: project the carrier doppler
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
}
}
else
{
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs_16sc[n] = lv_cmake(0, 0);
}
current_synchro_data.System = {'R'};
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples;
}
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
if (d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
float tmp_E, tmp_P, tmp_L;
double tmp_double;
prompt_I = d_correlator_outs_16sc[1].real();
prompt_Q = d_correlator_outs_16sc[1].imag();
tmp_E = std::abs<float>(std::complex<float>(d_correlator_outs_16sc[0].real(), d_correlator_outs_16sc[0].imag()));
tmp_P = std::abs<float>(std::complex<float>(d_correlator_outs_16sc[1].real(), d_correlator_outs_16sc[1].imag()));
tmp_L = std::abs<float>(std::complex<float>(d_correlator_outs_16sc[2].real(), d_correlator_outs_16sc[2].imag()));
try
{
// EPR
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
// PRN start sample stamp
//tmp_float=(float)d_sample_counter;
d_dump_file.write(reinterpret_cast<char *>(&d_sample_counter), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char *>(&d_acc_carrier_phase_cycles), sizeof(double));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_code_freq_chips), sizeof(double));
//PLL commands
d_dump_file.write(reinterpret_cast<char *>(&d_carr_phase_error_secs_Ti), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_doppler_hz), sizeof(double));
//DLL commands
d_dump_file.write(reinterpret_cast<char *>(&d_code_error_chips_Ti), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_code_error_filt_chips_Ti), sizeof(double));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char *>(&d_CN0_SNV_dB_Hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_lock_test), sizeof(double));
// AUX vars (for debug purposes)
tmp_double = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(d_sample_counter + d_correlation_length_samples);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
unsigned int prn_ = d_acquisition_gnss_synchro->PRN;
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(unsigned int));
}
catch (const std::ifstream::failure *e)
{
LOG(WARNING) << "Exception writing trk dump file " << e->what();
}
}
consume_each(d_correlation_length_samples); // this is necessary in gr::block derivates
d_sample_counter += d_correlation_length_samples; //count for the processed samples
return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false
}
void glonass_l2_ca_dll_pll_c_aid_tracking_sc::set_channel(unsigned int channel)
{
d_channel = channel;
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl;
}
catch (const std::ifstream::failure *e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e->what() << std::endl;
}
}
}
}
void glonass_l2_ca_dll_pll_c_aid_tracking_sc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
}

View File

@ -0,0 +1,206 @@
/*!
* \file glonass_l2_ca_dll_pll_c_aid_tracking_sc.h
* \brief Implementation of a code DLL + carrier PLL tracking block
* \author Damian Miralles, 2018. dmiralles2009(at)gmail.com
*
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GLONASS_L2_CA_DLL_PLL_C_AID_TRACKING_SC_H
#define GNSS_SDR_GLONASS_L2_CA_DLL_PLL_C_AID_TRACKING_SC_H
#include "glonass_l2_signal_processing.h"
#include "gnss_synchro.h"
#include "tracking_2nd_DLL_filter.h"
#include "tracking_FLL_PLL_filter.h"
#include "cpu_multicorrelator_16sc.h"
#include <boost/thread/mutex.hpp>
#include <boost/thread/thread.hpp>
#include <gnuradio/block.h>
#include <volk/volk.h>
#include <fstream>
#include <map>
#include <string>
class glonass_l2_ca_dll_pll_c_aid_tracking_sc;
typedef boost::shared_ptr<glonass_l2_ca_dll_pll_c_aid_tracking_sc>
glonass_l2_ca_dll_pll_c_aid_tracking_sc_sptr;
glonass_l2_ca_dll_pll_c_aid_tracking_sc_sptr
glonass_l2_ca_dll_pll_c_aid_make_tracking_sc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int extend_correlation_ms,
float early_late_space_chips);
/*!
* \brief This class implements a DLL + PLL tracking loop block
*/
class glonass_l2_ca_dll_pll_c_aid_tracking_sc : public gr::block
{
public:
~glonass_l2_ca_dll_pll_c_aid_tracking_sc();
void set_channel(unsigned int channel);
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
void start_tracking();
int general_work(int noutput_items, gr_vector_int& ninput_items,
gr_vector_const_void_star& input_items, gr_vector_void_star& output_items);
void forecast(int noutput_items, gr_vector_int& ninput_items_required);
private:
friend glonass_l2_ca_dll_pll_c_aid_tracking_sc_sptr
glonass_l2_ca_dll_pll_c_aid_make_tracking_sc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int extend_correlation_ms,
float early_late_space_chips);
glonass_l2_ca_dll_pll_c_aid_tracking_sc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float pll_bw_narrow_hz,
float dll_bw_narrow_hz,
int extend_correlation_ms,
float early_late_space_chips);
// tracking configuration vars
unsigned int d_vector_length;
bool d_dump;
Gnss_Synchro* d_acquisition_gnss_synchro;
unsigned int d_channel;
long d_if_freq;
long d_fs_in;
long d_glonass_freq_ch;
double d_early_late_spc_chips;
int d_n_correlator_taps;
gr_complex* d_ca_code;
lv_16sc_t* d_ca_code_16sc;
float* d_local_code_shift_chips;
//gr_complex* d_correlator_outs;
lv_16sc_t* d_correlator_outs_16sc;
//cpu_multicorrelator multicorrelator_cpu;
cpu_multicorrelator_16sc multicorrelator_cpu_16sc;
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
double d_rem_code_phase_chips;
double d_rem_carrier_phase_rad;
int d_rem_code_phase_integer_samples;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_FLL_PLL_filter d_carrier_loop_filter;
// acquisition
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// tracking vars
float d_dll_bw_hz;
float d_pll_bw_hz;
float d_dll_bw_narrow_hz;
float d_pll_bw_narrow_hz;
double d_code_freq_chips;
double d_code_phase_step_chips;
double d_carrier_doppler_hz;
double d_carrier_frequency_hz;
double d_carrier_doppler_old_hz;
double d_carrier_phase_step_rad;
double d_acc_carrier_phase_cycles;
double d_code_phase_samples;
double d_pll_to_dll_assist_secs_Ti;
double d_carr_phase_error_secs_Ti;
double d_code_error_chips_Ti;
double d_preamble_timestamp_s;
int d_extend_correlation_ms;
bool d_enable_extended_integration;
bool d_preamble_synchronized;
double d_code_error_filt_chips_s;
double d_code_error_filt_chips_Ti;
void msg_handler_preamble_index(pmt::pmt_t msg);
// symbol history to detect bit transition
std::deque<lv_16sc_t> d_E_history;
std::deque<lv_16sc_t> d_P_history;
std::deque<lv_16sc_t> d_L_history;
//Integration period in samples
int d_correlation_length_samples;
//processing samples counters
unsigned long int d_sample_counter;
unsigned long int d_acq_sample_stamp;
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars
bool d_enable_tracking;
bool d_pull_in;
// file dump
std::string d_dump_filename;
std::ofstream d_dump_file;
std::map<std::string, std::string> systemName;
std::string sys;
int save_matfile();
};
#endif //GNSS_SDR_GLONASS_L2_CA_DLL_PLL_C_AID_TRACKING_SC_H

View File

@ -0,0 +1,767 @@
/*!
* \file glonass_l2_ca_dll_pll_tracking_cc.cc
* \brief Implementation of a code DLL + carrier PLL tracking block
* \author Gabriel Araujo, 2017. gabriel.araujo.5000(at)gmail.com
* \author Luis Esteve, 2017. luis(at)epsilon-formacion.com
* \author Damian Miralles, 2017. dmiralles2009(at)gmail.com
*
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#include "glonass_l2_ca_dll_pll_tracking_cc.h"
#include "glonass_l2_signal_processing.h"
#include "tracking_discriminators.h"
#include "lock_detectors.h"
#include "GLONASS_L1_L2_CA.h"
#include "gnss_sdr_flags.h"
#include "control_message_factory.h"
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <glog/logging.h>
#include <matio.h>
#include <volk_gnsssdr/volk_gnsssdr.h>
#include <cmath>
#include <iostream>
#include <memory>
#include <sstream>
#define CN0_ESTIMATION_SAMPLES 10
using google::LogMessage;
glonass_l2_ca_dll_pll_tracking_cc_sptr
glonass_l2_ca_dll_pll_make_tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips)
{
return glonass_l2_ca_dll_pll_tracking_cc_sptr(new Glonass_L2_Ca_Dll_Pll_Tracking_cc(if_freq,
fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, early_late_space_chips));
}
void Glonass_L2_Ca_Dll_Pll_Tracking_cc::forecast(int noutput_items,
gr_vector_int &ninput_items_required)
{
if (noutput_items != 0)
{
ninput_items_required[0] = static_cast<int>(d_vector_length) * 2; //set the required available samples in each call
}
}
Glonass_L2_Ca_Dll_Pll_Tracking_cc::Glonass_L2_Ca_Dll_Pll_Tracking_cc(
long if_freq,
long fs_in,
unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips) : gr::block("Glonass_L2_Ca_Dll_Pll_Tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(Gnss_Synchro)))
{
// Telemetry bit synchronization message port input
this->message_port_register_in(pmt::mp("preamble_timestamp_s"));
this->message_port_register_out(pmt::mp("events"));
// initialize internal vars
d_dump = dump;
d_if_freq = if_freq;
d_fs_in = fs_in;
d_vector_length = vector_length;
d_dump_filename = dump_filename;
d_current_prn_length_samples = static_cast<int>(d_vector_length);
// Initialize tracking ==========================================
d_code_loop_filter.set_DLL_BW(dll_bw_hz);
d_carrier_loop_filter.set_PLL_BW(pll_bw_hz);
//--- DLL variables --------------------------------------------------------
d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips)
// Initialization of local code replica
// Get space for a vector with the C/A code replica sampled 1x/chip
d_ca_code = static_cast<gr_complex *>(volk_gnsssdr_malloc(static_cast<int>(GLONASS_L2_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
// correlator outputs (scalar)
d_n_correlator_taps = 3; // Early, Prompt, and Late
d_correlator_outs = static_cast<gr_complex *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(gr_complex), volk_gnsssdr_get_alignment()));
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
d_local_code_shift_chips = static_cast<float *>(volk_gnsssdr_malloc(d_n_correlator_taps * sizeof(float), volk_gnsssdr_get_alignment()));
// Set TAPs delay values [chips]
d_local_code_shift_chips[0] = -d_early_late_spc_chips;
d_local_code_shift_chips[1] = 0.0;
d_local_code_shift_chips[2] = d_early_late_spc_chips;
multicorrelator_cpu.init(2 * d_current_prn_length_samples, d_n_correlator_taps);
//--- Perform initializations ------------------------------
// define initial code frequency basis of NCO
d_code_freq_chips = GLONASS_L2_CA_CODE_RATE_HZ;
// define residual code phase (in chips)
d_rem_code_phase_samples = 0.0;
// define residual carrier phase
d_rem_carr_phase_rad = 0.0;
// sample synchronization
d_sample_counter = 0;
//d_sample_counter_seconds = 0;
d_acq_sample_stamp = 0;
d_enable_tracking = false;
d_pull_in = false;
// CN0 estimation and lock detector buffers
d_cn0_estimation_counter = 0;
d_Prompt_buffer = new gr_complex[FLAGS_cn0_samples];
d_carrier_lock_test = 1;
d_CN0_SNV_dB_Hz = 0;
d_carrier_lock_fail_counter = 0;
d_carrier_lock_threshold = FLAGS_carrier_lock_th;
systemName["R"] = std::string("Glonass");
d_acquisition_gnss_synchro = 0;
d_channel = 0;
d_acq_code_phase_samples = 0.0;
d_acq_carrier_doppler_hz = 0.0;
d_carrier_doppler_hz = 0.0;
d_carrier_doppler_phase_step_rad = 0.0;
d_carrier_frequency_hz = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_code_phase_samples = 0.0;
d_rem_code_phase_chips = 0.0;
d_code_phase_step_chips = 0.0;
d_carrier_phase_step_rad = 0.0;
d_glonass_freq_ch = 0;
set_relative_rate(1.0 / static_cast<double>(d_vector_length));
}
void Glonass_L2_Ca_Dll_Pll_Tracking_cc::start_tracking()
{
/*
* correct the code phase according to the delay between acq and trk
*/
d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples;
d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz;
d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples;
long int acq_trk_diff_samples;
double acq_trk_diff_seconds;
acq_trk_diff_samples = static_cast<long int>(d_sample_counter) - static_cast<long int>(d_acq_sample_stamp); //-d_vector_length;
DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples;
acq_trk_diff_seconds = static_cast<float>(acq_trk_diff_samples) / static_cast<float>(d_fs_in);
// Doppler effect
// Fd=(C/(C+Vr))*F
d_glonass_freq_ch = GLONASS_L2_CA_FREQ_HZ + (DFRQ2_GLO * GLONASS_PRN.at(d_acquisition_gnss_synchro->PRN));
double radial_velocity = (d_glonass_freq_ch + d_acq_carrier_doppler_hz) / d_glonass_freq_ch;
// new chip and prn sequence periods based on acq Doppler
double T_chip_mod_seconds;
double T_prn_mod_seconds;
double T_prn_mod_samples;
d_code_freq_chips = radial_velocity * GLONASS_L2_CA_CODE_RATE_HZ;
d_code_phase_step_chips = static_cast<double>(d_code_freq_chips) / static_cast<double>(d_fs_in);
T_chip_mod_seconds = 1 / d_code_freq_chips;
T_prn_mod_seconds = T_chip_mod_seconds * GLONASS_L2_CA_CODE_LENGTH_CHIPS;
T_prn_mod_samples = T_prn_mod_seconds * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(T_prn_mod_samples);
double T_prn_true_seconds = GLONASS_L2_CA_CODE_LENGTH_CHIPS / GLONASS_L2_CA_CODE_RATE_HZ;
double T_prn_true_samples = T_prn_true_seconds * static_cast<double>(d_fs_in);
double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds;
double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds;
double corrected_acq_phase_samples, delay_correction_samples;
corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast<double>(d_fs_in)), T_prn_true_samples);
if (corrected_acq_phase_samples < 0)
{
corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples;
}
delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples;
d_acq_code_phase_samples = corrected_acq_phase_samples;
d_carrier_frequency_hz = d_acq_carrier_doppler_hz + d_if_freq + (DFRQ2_GLO * GLONASS_PRN.at(d_acquisition_gnss_synchro->PRN));
d_carrier_doppler_hz = d_acq_carrier_doppler_hz;
d_carrier_phase_step_rad = GLONASS_TWO_PI * d_carrier_frequency_hz / static_cast<double>(d_fs_in);
d_carrier_doppler_phase_step_rad = GLONASS_TWO_PI * (d_carrier_doppler_hz) / static_cast<double>(d_fs_in);
// DLL/PLL filter initialization
d_carrier_loop_filter.initialize(); // initialize the carrier filter
d_code_loop_filter.initialize(); // initialize the code filter
// generate local reference ALWAYS starting at chip 1 (1 sample per chip)
glonass_l2_ca_code_gen_complex(d_ca_code, 0);
multicorrelator_cpu.set_local_code_and_taps(static_cast<int>(GLONASS_L2_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips);
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
d_carrier_lock_fail_counter = 0;
d_rem_code_phase_samples = 0;
d_rem_carr_phase_rad = 0.0;
d_rem_code_phase_chips = 0.0;
d_acc_carrier_phase_rad = 0.0;
d_code_phase_samples = d_acq_code_phase_samples;
std::string sys_ = &d_acquisition_gnss_synchro->System;
sys = sys_.substr(0, 1);
// DEBUG OUTPUT
std::cout << "Tracking of GLONASS L2 C/A signal started on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl;
LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel;
// enable tracking
d_pull_in = true;
d_enable_tracking = true;
LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_frequency_hz
<< " Code Phase correction [samples]=" << delay_correction_samples
<< " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples;
}
Glonass_L2_Ca_Dll_Pll_Tracking_cc::~Glonass_L2_Ca_Dll_Pll_Tracking_cc()
{
if (d_dump_file.is_open())
{
try
{
d_dump_file.close();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
if (d_dump)
{
if (d_channel == 0)
{
std::cout << "Writing .mat files ...";
}
Glonass_L2_Ca_Dll_Pll_Tracking_cc::save_matfile();
if (d_channel == 0)
{
std::cout << " done." << std::endl;
}
}
try
{
volk_gnsssdr_free(d_local_code_shift_chips);
volk_gnsssdr_free(d_correlator_outs);
volk_gnsssdr_free(d_ca_code);
delete[] d_Prompt_buffer;
multicorrelator_cpu.free();
}
catch (const std::exception &ex)
{
LOG(WARNING) << "Exception in destructor " << ex.what();
}
}
int Glonass_L2_Ca_Dll_Pll_Tracking_cc::save_matfile()
{
// READ DUMP FILE
std::ifstream::pos_type size;
int number_of_double_vars = 11;
int number_of_float_vars = 5;
int epoch_size_bytes = sizeof(unsigned long int) + sizeof(double) * number_of_double_vars +
sizeof(float) * number_of_float_vars + sizeof(unsigned int);
std::ifstream dump_file;
dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
dump_file.open(d_dump_filename.c_str(), std::ios::binary | std::ios::ate);
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem opening dump file:" << e.what() << std::endl;
return 1;
}
// count number of epochs and rewind
long int num_epoch = 0;
if (dump_file.is_open())
{
size = dump_file.tellg();
num_epoch = static_cast<long int>(size) / static_cast<long int>(epoch_size_bytes);
dump_file.seekg(0, std::ios::beg);
}
else
{
return 1;
}
float *abs_E = new float[num_epoch];
float *abs_P = new float[num_epoch];
float *abs_L = new float[num_epoch];
float *Prompt_I = new float[num_epoch];
float *Prompt_Q = new float[num_epoch];
unsigned long int *PRN_start_sample_count = new unsigned long int[num_epoch];
double *acc_carrier_phase_rad = new double[num_epoch];
double *carrier_doppler_hz = new double[num_epoch];
double *code_freq_chips = new double[num_epoch];
double *carr_error_hz = new double[num_epoch];
double *carr_error_filt_hz = new double[num_epoch];
double *code_error_chips = new double[num_epoch];
double *code_error_filt_chips = new double[num_epoch];
double *CN0_SNV_dB_Hz = new double[num_epoch];
double *carrier_lock_test = new double[num_epoch];
double *aux1 = new double[num_epoch];
double *aux2 = new double[num_epoch];
unsigned int *PRN = new unsigned int[num_epoch];
try
{
if (dump_file.is_open())
{
for (long int i = 0; i < num_epoch; i++)
{
dump_file.read(reinterpret_cast<char *>(&abs_E[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_P[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&abs_L[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_I[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&Prompt_Q[i]), sizeof(float));
dump_file.read(reinterpret_cast<char *>(&PRN_start_sample_count[i]), sizeof(unsigned long int));
dump_file.read(reinterpret_cast<char *>(&acc_carrier_phase_rad[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_doppler_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_freq_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carr_error_filt_hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&code_error_filt_chips[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&CN0_SNV_dB_Hz[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&carrier_lock_test[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux1[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&aux2[i]), sizeof(double));
dump_file.read(reinterpret_cast<char *>(&PRN[i]), sizeof(unsigned int));
}
}
dump_file.close();
}
catch (const std::ifstream::failure &e)
{
std::cerr << "Problem reading dump file:" << e.what() << std::endl;
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 1;
}
// WRITE MAT FILE
mat_t *matfp;
matvar_t *matvar;
std::string filename = d_dump_filename;
filename.erase(filename.length() - 4, 4);
filename.append(".mat");
matfp = Mat_CreateVer(filename.c_str(), NULL, MAT_FT_MAT73);
if (reinterpret_cast<long *>(matfp) != NULL)
{
size_t dims[2] = {1, static_cast<size_t>(num_epoch)};
matvar = Mat_VarCreate("abs_E", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_E, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_P", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_P, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("abs_L", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, abs_L, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_I", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_I, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("Prompt_Q", MAT_C_SINGLE, MAT_T_SINGLE, 2, dims, Prompt_Q, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN_start_sample_count", MAT_C_UINT64, MAT_T_UINT64, 2, dims, PRN_start_sample_count, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("acc_carrier_phase_rad", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, acc_carrier_phase_rad, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_doppler_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_doppler_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_freq_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_freq_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carr_error_filt_hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carr_error_filt_hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("code_error_filt_chips", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, code_error_filt_chips, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("CN0_SNV_dB_Hz", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, CN0_SNV_dB_Hz, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("carrier_lock_test", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, carrier_lock_test, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux1", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux1, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("aux2", MAT_C_DOUBLE, MAT_T_DOUBLE, 2, dims, aux2, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
matvar = Mat_VarCreate("PRN", MAT_C_UINT32, MAT_T_UINT32, 2, dims, PRN, 0);
Mat_VarWrite(matfp, matvar, MAT_COMPRESSION_ZLIB); // or MAT_COMPRESSION_NONE
Mat_VarFree(matvar);
}
Mat_Close(matfp);
delete[] abs_E;
delete[] abs_P;
delete[] abs_L;
delete[] Prompt_I;
delete[] Prompt_Q;
delete[] PRN_start_sample_count;
delete[] acc_carrier_phase_rad;
delete[] carrier_doppler_hz;
delete[] code_freq_chips;
delete[] carr_error_hz;
delete[] carr_error_filt_hz;
delete[] code_error_chips;
delete[] code_error_filt_chips;
delete[] CN0_SNV_dB_Hz;
delete[] carrier_lock_test;
delete[] aux1;
delete[] aux2;
delete[] PRN;
return 0;
}
int Glonass_L2_Ca_Dll_Pll_Tracking_cc::general_work(int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)),
gr_vector_const_void_star &input_items, gr_vector_void_star &output_items)
{
// process vars
double carr_error_hz = 0.0;
double carr_error_filt_hz = 0.0;
double code_error_chips = 0.0;
double code_error_filt_chips = 0.0;
// Block input data and block output stream pointers
const gr_complex *in = reinterpret_cast<const gr_complex *>(input_items[0]); // PRN start block alignment
Gnss_Synchro **out = reinterpret_cast<Gnss_Synchro **>(&output_items[0]);
// GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder
Gnss_Synchro current_synchro_data = Gnss_Synchro();
if (d_enable_tracking == true)
{
// Fill the acquisition data
current_synchro_data = *d_acquisition_gnss_synchro;
// Receiver signal alignment
if (d_pull_in == true)
{
int samples_offset;
double acq_trk_shif_correction_samples;
int acq_to_trk_delay_samples;
acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp;
acq_trk_shif_correction_samples = d_current_prn_length_samples - fmod(static_cast<float>(acq_to_trk_delay_samples), static_cast<float>(d_current_prn_length_samples));
samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples);
current_synchro_data.Tracking_sample_counter = d_sample_counter + samples_offset;
d_sample_counter = d_sample_counter + samples_offset; // count for the processed samples
d_pull_in = false;
// take into account the carrier cycles accumulated in the pull in signal alignment
d_acc_carrier_phase_rad -= d_carrier_doppler_phase_step_rad * samples_offset;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.fs = d_fs_in;
current_synchro_data.correlation_length_ms = 1;
*out[0] = current_synchro_data;
consume_each(samples_offset); // shift input to perform alignment with local replica
return 1;
}
// ################# CARRIER WIPEOFF AND CORRELATORS ##############################
// perform carrier wipe-off and compute Early, Prompt and Late correlation
multicorrelator_cpu.set_input_output_vectors(d_correlator_outs, in);
multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carr_phase_rad,
d_carrier_phase_step_rad,
d_rem_code_phase_chips,
d_code_phase_step_chips,
d_current_prn_length_samples);
// ################## PLL ##########################################################
// PLL discriminator
// Update PLL discriminator [rads/Ti -> Secs/Ti]
carr_error_hz = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GLONASS_TWO_PI; // prompt output
// Carrier discriminator filter
carr_error_filt_hz = d_carrier_loop_filter.get_carrier_nco(carr_error_hz);
// New carrier Doppler frequency estimation
d_carrier_frequency_hz += carr_error_filt_hz;
d_carrier_doppler_hz += carr_error_filt_hz;
d_code_freq_chips = GLONASS_L2_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GLONASS_L2_CA_CODE_RATE_HZ) / d_glonass_freq_ch);
// ################## DLL ##########################################################
// DLL discriminator
code_error_chips = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); // [chips/Ti] //early and late
// Code discriminator filter
code_error_filt_chips = d_code_loop_filter.get_code_nco(code_error_chips); // [chips/second]
double T_chip_seconds = 1.0 / static_cast<double>(d_code_freq_chips);
double T_prn_seconds = T_chip_seconds * GLONASS_L2_CA_CODE_LENGTH_CHIPS;
double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); //[seconds]
//double code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GLONASS_L1_CA_CODE_RATE_HZ; // [seconds]
// ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
//double T_chip_seconds = 1.0 / static_cast<double>(d_code_freq_chips);
//double T_prn_seconds = T_chip_seconds * GLONASS_L1_CA_CODE_LENGTH_CHIPS;
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);
double K_blk_samples = T_prn_samples + d_rem_code_phase_samples + code_error_filt_secs * static_cast<double>(d_fs_in);
d_current_prn_length_samples = round(K_blk_samples); // round to a discrete number of samples
//################### PLL COMMANDS #################################################
// carrier phase step (NCO phase increment per sample) [rads/sample]
d_carrier_doppler_phase_step_rad = GLONASS_TWO_PI * d_carrier_doppler_hz / static_cast<double>(d_fs_in);
d_carrier_phase_step_rad = GLONASS_TWO_PI * d_carrier_frequency_hz / static_cast<double>(d_fs_in);
// remnant carrier phase to prevent overflow in the code NCO
d_rem_carr_phase_rad = d_rem_carr_phase_rad + d_carrier_phase_step_rad * d_current_prn_length_samples;
d_rem_carr_phase_rad = fmod(d_rem_carr_phase_rad, GLONASS_TWO_PI);
// carrier phase accumulator
d_acc_carrier_phase_rad -= d_carrier_doppler_phase_step_rad * d_current_prn_length_samples;
//################### DLL COMMANDS #################################################
// code phase step (Code resampler phase increment per sample) [chips/sample]
d_code_phase_step_chips = d_code_freq_chips / static_cast<double>(d_fs_in);
// remnant code phase [chips]
d_rem_code_phase_samples = K_blk_samples - d_current_prn_length_samples; // rounding error < 1 sample
d_rem_code_phase_chips = d_code_freq_chips * (d_rem_code_phase_samples / static_cast<double>(d_fs_in));
// ####### CN0 ESTIMATION AND LOCK DETECTORS ######
if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES)
{
// fill buffer with prompt correlator output values
d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; //prompt
d_cn0_estimation_counter++;
}
else
{
d_cn0_estimation_counter = 0;
// Code lock indicator
d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GLONASS_L2_CA_CODE_LENGTH_CHIPS);
// Carrier lock indicator
d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES);
// Loss of lock detection
if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < FLAGS_cn0_min)
{
d_carrier_lock_fail_counter++;
}
else
{
if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--;
}
if (d_carrier_lock_fail_counter > FLAGS_max_lock_fail)
{
std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl;
LOG(INFO) << "Loss of lock in channel " << d_channel << "!";
this->message_port_pub(pmt::mp("events"), pmt::from_long(3)); // 3 -> loss of lock
d_carrier_lock_fail_counter = 0;
d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine
}
}
// ########### Output the tracking data to navigation and PVT ##########
current_synchro_data.Prompt_I = static_cast<double>((d_correlator_outs[1]).real());
current_synchro_data.Prompt_Q = static_cast<double>((d_correlator_outs[1]).imag());
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples;
current_synchro_data.Code_phase_samples = d_rem_code_phase_samples;
current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_rad;
current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;
current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz;
current_synchro_data.Flag_valid_symbol_output = true;
current_synchro_data.correlation_length_ms = 1;
}
else
{
for (int n = 0; n < d_n_correlator_taps; n++)
{
d_correlator_outs[n] = gr_complex(0, 0);
}
current_synchro_data.Tracking_sample_counter = d_sample_counter + d_current_prn_length_samples;
current_synchro_data.System = {'R'};
current_synchro_data.correlation_length_ms = 1;
}
//assign the GNURadio block output data
current_synchro_data.fs = d_fs_in;
*out[0] = current_synchro_data;
if (d_dump)
{
// MULTIPLEXED FILE RECORDING - Record results to file
float prompt_I;
float prompt_Q;
float tmp_E, tmp_P, tmp_L;
double tmp_double;
unsigned long int tmp_long;
prompt_I = d_correlator_outs[1].real();
prompt_Q = d_correlator_outs[1].imag();
tmp_E = std::abs<float>(d_correlator_outs[0]);
tmp_P = std::abs<float>(d_correlator_outs[1]);
tmp_L = std::abs<float>(d_correlator_outs[2]);
try
{
// EPR
d_dump_file.write(reinterpret_cast<char *>(&tmp_E), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_P), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&tmp_L), sizeof(float));
// PROMPT I and Q (to analyze navigation symbols)
d_dump_file.write(reinterpret_cast<char *>(&prompt_I), sizeof(float));
d_dump_file.write(reinterpret_cast<char *>(&prompt_Q), sizeof(float));
// PRN start sample stamp
tmp_long = d_sample_counter + d_current_prn_length_samples;
d_dump_file.write(reinterpret_cast<char *>(&tmp_long), sizeof(unsigned long int));
// accumulated carrier phase
d_dump_file.write(reinterpret_cast<char *>(&d_acc_carrier_phase_rad), sizeof(double));
// carrier and code frequency
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_frequency_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_code_freq_chips), sizeof(double));
// PLL commands
d_dump_file.write(reinterpret_cast<char *>(&carr_error_hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&carr_error_filt_hz), sizeof(double));
// DLL commands
d_dump_file.write(reinterpret_cast<char *>(&code_error_chips), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&code_error_filt_chips), sizeof(double));
// CN0 and carrier lock test
d_dump_file.write(reinterpret_cast<char *>(&d_CN0_SNV_dB_Hz), sizeof(double));
d_dump_file.write(reinterpret_cast<char *>(&d_carrier_lock_test), sizeof(double));
// AUX vars (for debug purposes)
tmp_double = d_rem_code_phase_samples;
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
tmp_double = static_cast<double>(d_sample_counter);
d_dump_file.write(reinterpret_cast<char *>(&tmp_double), sizeof(double));
// PRN
unsigned int prn_ = d_acquisition_gnss_synchro->PRN;
d_dump_file.write(reinterpret_cast<char *>(&prn_), sizeof(unsigned int));
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "Exception writing trk dump file " << e.what();
}
}
consume_each(d_current_prn_length_samples); // this is necessary in gr::block derivates
d_sample_counter += d_current_prn_length_samples; // count for the processed samples
return 1; // output tracking result ALWAYS even in the case of d_enable_tracking==false
}
void Glonass_L2_Ca_Dll_Pll_Tracking_cc::set_channel(unsigned int channel)
{
d_channel = channel;
LOG(INFO) << "Tracking Channel set to " << d_channel;
// ############# ENABLE DATA FILE LOG #################
if (d_dump == true)
{
if (d_dump_file.is_open() == false)
{
try
{
d_dump_filename.append(boost::lexical_cast<std::string>(d_channel));
d_dump_filename.append(".dat");
d_dump_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary);
LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str();
}
catch (const std::ifstream::failure &e)
{
LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e.what();
}
}
}
}
void Glonass_L2_Ca_Dll_Pll_Tracking_cc::set_gnss_synchro(Gnss_Synchro *p_gnss_synchro)
{
d_acquisition_gnss_synchro = p_gnss_synchro;
}

View File

@ -0,0 +1,171 @@
/*!
* \file glonass_l2_ca_dll_pll_tracking_cc.h
* \brief Implementation of a code DLL + carrier PLL tracking block
* \author Damian Miralles, 2018. dmiralles2009(at)gmail.com
*
*
* Code DLL + carrier PLL according to the algorithms described in:
* K.Borre, D.M.Akos, N.Bertelsen, P.Rinder, and S.H.Jensen,
* A Software-Defined GPS and Galileo Receiver. A Single-Frequency
* Approach, Birkha user, 2007
*
* -------------------------------------------------------------------------
*
* Copyright (C) 2010-2017 (see AUTHORS file for a list of contributors)
*
* GNSS-SDR is a software defined Global Navigation
* Satellite Systems receiver
*
* This file is part of GNSS-SDR.
*
* GNSS-SDR is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GNSS-SDR is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNSS-SDR. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef GNSS_SDR_GLONASS_L2_CA_DLL_PLL_TRACKING_CC_H
#define GNSS_SDR_GLONASS_L2_CA_DLL_PLL_TRACKING_CC_H
#include "gnss_synchro.h"
#include "tracking_2nd_DLL_filter.h"
#include "tracking_2nd_PLL_filter.h"
#include "cpu_multicorrelator.h"
#include <gnuradio/block.h>
#include <fstream>
#include <map>
#include <string>
class Glonass_L2_Ca_Dll_Pll_Tracking_cc;
typedef boost::shared_ptr<Glonass_L2_Ca_Dll_Pll_Tracking_cc>
glonass_l2_ca_dll_pll_tracking_cc_sptr;
glonass_l2_ca_dll_pll_tracking_cc_sptr
glonass_l2_ca_dll_pll_make_tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
/*!
* \brief This class implements a DLL + PLL tracking loop block
*/
class Glonass_L2_Ca_Dll_Pll_Tracking_cc : public gr::block
{
public:
~Glonass_L2_Ca_Dll_Pll_Tracking_cc();
void set_channel(unsigned int channel);
void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro);
void start_tracking();
int general_work(int noutput_items, gr_vector_int& ninput_items,
gr_vector_const_void_star& input_items, gr_vector_void_star& output_items);
void forecast(int noutput_items, gr_vector_int& ninput_items_required);
private:
friend glonass_l2_ca_dll_pll_tracking_cc_sptr
glonass_l2_ca_dll_pll_make_tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
Glonass_L2_Ca_Dll_Pll_Tracking_cc(long if_freq,
long fs_in, unsigned int vector_length,
bool dump,
std::string dump_filename,
float pll_bw_hz,
float dll_bw_hz,
float early_late_space_chips);
// tracking configuration vars
unsigned int d_vector_length;
bool d_dump;
Gnss_Synchro* d_acquisition_gnss_synchro;
unsigned int d_channel;
long d_if_freq;
long d_fs_in;
long d_glonass_freq_ch;
double d_early_late_spc_chips;
// remaining code phase and carrier phase between tracking loops
double d_rem_code_phase_samples;
double d_rem_code_phase_chips;
double d_rem_carr_phase_rad;
// PLL and DLL filter library
Tracking_2nd_DLL_filter d_code_loop_filter;
Tracking_2nd_PLL_filter d_carrier_loop_filter;
// acquisition
double d_acq_code_phase_samples;
double d_acq_carrier_doppler_hz;
// correlator
int d_n_correlator_taps;
gr_complex* d_ca_code;
float* d_local_code_shift_chips;
gr_complex* d_correlator_outs;
cpu_multicorrelator multicorrelator_cpu;
// tracking vars
double d_code_freq_chips;
double d_code_phase_step_chips;
double d_carrier_doppler_hz;
double d_carrier_doppler_phase_step_rad;
double d_carrier_frequency_hz;
double d_carrier_phase_step_rad;
double d_acc_carrier_phase_rad;
double d_code_phase_samples;
//PRN period in samples
int d_current_prn_length_samples;
//processing samples counters
unsigned long int d_sample_counter;
unsigned long int d_acq_sample_stamp;
// CN0 estimation and lock detector
int d_cn0_estimation_counter;
gr_complex* d_Prompt_buffer;
double d_carrier_lock_test;
double d_CN0_SNV_dB_Hz;
double d_carrier_lock_threshold;
int d_carrier_lock_fail_counter;
// control vars
bool d_enable_tracking;
bool d_pull_in;
// file dump
std::string d_dump_filename;
std::ofstream d_dump_file;
std::map<std::string, std::string> systemName;
std::string sys;
int save_matfile();
};
#endif //GNSS_SDR_GLONASS_L2_CA_DLL_PLL_TRACKING_CC_H

View File

@ -587,7 +587,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work(int noutput_items __attrib
d_code_phase_step_chips, d_code_phase_step_chips,
d_correlation_length_samples); d_correlation_length_samples);
// ####### coherent intergration extension // ####### coherent integration extension
// keep the last symbols // keep the last symbols
d_E_history.push_back(d_correlator_outs[0]); // save early output d_E_history.push_back(d_correlator_outs[0]); // save early output
d_P_history.push_back(d_correlator_outs[1]); // save prompt output d_P_history.push_back(d_correlator_outs[1]); // save prompt output
@ -701,7 +701,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_cc::general_work(int noutput_items __attrib
d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S; d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S;
code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti] code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti]
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer // keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips; double T_chip_seconds = 1.0 / d_code_freq_chips;

View File

@ -387,7 +387,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
d_rem_code_phase_chips, d_code_phase_step_chips, d_rem_code_phase_chips, d_code_phase_step_chips,
d_correlation_length_samples); d_correlation_length_samples);
// ####### coherent intergration extension // ####### coherent integration extension
// keep the last symbols // keep the last symbols
d_E_history.push_back(d_correlator_outs_16sc[0]); // save early output d_E_history.push_back(d_correlator_outs_16sc[0]); // save early output
d_P_history.push_back(d_correlator_outs_16sc[1]); // save prompt output d_P_history.push_back(d_correlator_outs_16sc[1]); // save prompt output
@ -517,7 +517,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_fpga_sc::general_work(
d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S; d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S;
code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti] code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti]
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer // keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips; double T_chip_seconds = 1.0 / d_code_freq_chips;

View File

@ -590,7 +590,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_sc::general_work(int noutput_items __attrib
d_code_phase_step_chips, d_code_phase_step_chips,
d_correlation_length_samples); d_correlation_length_samples);
// ####### coherent intergration extension // ####### coherent integration extension
// keep the last symbols // keep the last symbols
d_E_history.push_back(d_correlator_outs_16sc[0]); // save early output d_E_history.push_back(d_correlator_outs_16sc[0]); // save early output
d_P_history.push_back(d_correlator_outs_16sc[1]); // save prompt output d_P_history.push_back(d_correlator_outs_16sc[1]); // save prompt output
@ -703,7 +703,7 @@ int gps_l1_ca_dll_pll_c_aid_tracking_sc::general_work(int noutput_items __attrib
d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S; d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S;
code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti] code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti]
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer // keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_chip_seconds = 1.0 / d_code_freq_chips; double T_chip_seconds = 1.0 / d_code_freq_chips;

View File

@ -579,7 +579,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_cc::general_work(int noutput_items __attribute__(
double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); //[seconds] double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); //[seconds]
//double code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GPS_L1_CA_CODE_RATE_HZ; // [seconds] //double code_error_filt_secs = (GPS_L1_CA_CODE_PERIOD * code_error_filt_chips) / GPS_L1_CA_CODE_RATE_HZ; // [seconds]
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer // keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
//double T_chip_seconds = 1.0 / static_cast<double>(d_code_freq_chips); //double T_chip_seconds = 1.0 / static_cast<double>(d_code_freq_chips);

View File

@ -368,7 +368,7 @@ int Gps_L1_Ca_Dll_Pll_Tracking_GPU_cc::general_work(int noutput_items __attribut
// TODO: PLL carrier aid to DLL is disabled. Re-enable it and measure performance // TODO: PLL carrier aid to DLL is disabled. Re-enable it and measure performance
dll_code_error_secs_Ti = -code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti; dll_code_error_secs_Ti = -code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti;
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer // keep alignment parameters for the next input buffer
double T_chip_seconds; double T_chip_seconds;
double T_prn_seconds; double T_prn_seconds;

View File

@ -333,7 +333,7 @@ int Gps_L1_Ca_Tcp_Connector_Tracking_cc::general_work(int noutput_items __attrib
d_sample_counter_seconds = d_sample_counter_seconds + (static_cast<double>(samples_offset) / static_cast<double>(d_fs_in)); d_sample_counter_seconds = d_sample_counter_seconds + (static_cast<double>(samples_offset) / static_cast<double>(d_fs_in));
d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples d_sample_counter = d_sample_counter + samples_offset; //count for the processed samples
d_pull_in = false; d_pull_in = false;
consume_each(samples_offset); //shift input to perform alignement with local replica consume_each(samples_offset); //shift input to perform alignment with local replica
return 1; return 1;
} }

View File

@ -579,7 +579,7 @@ int gps_l2_m_dll_pll_tracking_cc::general_work(int noutput_items __attribute__((
double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); //[seconds] double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); //[seconds]
//double code_error_filt_secs = (GPS_L2_M_PERIOD * code_error_filt_chips) / GPS_L2_M_CODE_RATE_HZ; //[seconds] //double code_error_filt_secs = (GPS_L2_M_PERIOD * code_error_filt_chips) / GPS_L2_M_CODE_RATE_HZ; //[seconds]
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer // keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in); double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);

View File

@ -580,7 +580,7 @@ int gps_l5i_dll_pll_tracking_cc::general_work(int noutput_items __attribute__((u
double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); //[seconds] double code_error_filt_secs = (T_prn_seconds * code_error_filt_chips * T_chip_seconds); //[seconds]
//double code_error_filt_secs = (GPS_L5i_PERIOD * code_error_filt_chips) / GPS_L5i_CODE_RATE_HZ; //[seconds] //double code_error_filt_secs = (GPS_L5i_PERIOD * code_error_filt_chips) / GPS_L5i_CODE_RATE_HZ; //[seconds]
// ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### // ################## CARRIER AND CODE NCO BUFFER ALIGNMENT #######################
// keep alignment parameters for the next input buffer // keep alignment parameters for the next input buffer
// Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation
double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in); double T_prn_samples = T_prn_seconds * static_cast<double>(d_fs_in);

View File

@ -136,7 +136,7 @@ bool fpga_multicorrelator_8sc::Carrier_wipeoff_multicorrelator_resampler(
nb = read(d_device_descriptor, &irq_count, sizeof(irq_count)); nb = read(d_device_descriptor, &irq_count, sizeof(irq_count));
if (nb != sizeof(irq_count)) if (nb != sizeof(irq_count))
{ {
printf("Tracking_module Read failed to retrive 4 bytes!\n"); printf("Tracking_module Read failed to retrieve 4 bytes!\n");
printf("Tracking_module Interrupt number %d\n", irq_count); printf("Tracking_module Interrupt number %d\n", irq_count);
} }

View File

@ -79,6 +79,7 @@
#include "galileo_e5a_noncoherent_iq_acquisition_caf.h" #include "galileo_e5a_noncoherent_iq_acquisition_caf.h"
#include "galileo_e5a_pcps_acquisition.h" #include "galileo_e5a_pcps_acquisition.h"
#include "glonass_l1_ca_pcps_acquisition.h" #include "glonass_l1_ca_pcps_acquisition.h"
#include "glonass_l2_ca_pcps_acquisition.h"
#include "gps_l1_ca_dll_pll_tracking.h" #include "gps_l1_ca_dll_pll_tracking.h"
#include "gps_l1_ca_dll_pll_c_aid_tracking.h" #include "gps_l1_ca_dll_pll_c_aid_tracking.h"
#include "gps_l1_ca_tcp_connector_tracking.h" #include "gps_l1_ca_tcp_connector_tracking.h"
@ -88,6 +89,8 @@
#include "gps_l2_m_dll_pll_tracking.h" #include "gps_l2_m_dll_pll_tracking.h"
#include "glonass_l1_ca_dll_pll_tracking.h" #include "glonass_l1_ca_dll_pll_tracking.h"
#include "glonass_l1_ca_dll_pll_c_aid_tracking.h" #include "glonass_l1_ca_dll_pll_c_aid_tracking.h"
#include "glonass_l2_ca_dll_pll_tracking.h"
#include "glonass_l2_ca_dll_pll_c_aid_tracking.h"
#include "gps_l5i_dll_pll_tracking.h" #include "gps_l5i_dll_pll_tracking.h"
#include "gps_l1_ca_telemetry_decoder.h" #include "gps_l1_ca_telemetry_decoder.h"
#include "gps_l2c_telemetry_decoder.h" #include "gps_l2c_telemetry_decoder.h"
@ -95,6 +98,7 @@
#include "galileo_e1b_telemetry_decoder.h" #include "galileo_e1b_telemetry_decoder.h"
#include "galileo_e5a_telemetry_decoder.h" #include "galileo_e5a_telemetry_decoder.h"
#include "glonass_l1_ca_telemetry_decoder.h" #include "glonass_l1_ca_telemetry_decoder.h"
#include "glonass_l2_ca_telemetry_decoder.h"
#include "sbas_l1_telemetry_decoder.h" #include "sbas_l1_telemetry_decoder.h"
#include "hybrid_observables.h" #include "hybrid_observables.h"
#include "rtklib_pvt.h" #include "rtklib_pvt.h"
@ -246,6 +250,7 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetObservables(std::shared
GPS_channels += configuration->property("Channels_2S.count", 0); GPS_channels += configuration->property("Channels_2S.count", 0);
GPS_channels += configuration->property("Channels_L5.count", 0); GPS_channels += configuration->property("Channels_L5.count", 0);
unsigned int Glonass_channels = configuration->property("Channels_1G.count", 0); unsigned int Glonass_channels = configuration->property("Channels_1G.count", 0);
Glonass_channels += configuration->property("Channels_2G.count", 0);
return GetBlock(configuration, "Observables", implementation, Galileo_channels + GPS_channels + Glonass_channels, Galileo_channels + GPS_channels + Glonass_channels); return GetBlock(configuration, "Observables", implementation, Galileo_channels + GPS_channels + Glonass_channels, Galileo_channels + GPS_channels + Glonass_channels);
} }
@ -261,6 +266,7 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetPVT(std::shared_ptr<Con
GPS_channels += configuration->property("Channels_2S.count", 0); GPS_channels += configuration->property("Channels_2S.count", 0);
GPS_channels += configuration->property("Channels_L5.count", 0); GPS_channels += configuration->property("Channels_L5.count", 0);
unsigned int Glonass_channels = configuration->property("Channels_1G.count", 0); unsigned int Glonass_channels = configuration->property("Channels_1G.count", 0);
Glonass_channels += configuration->property("Channels_2G.count", 0);
return GetBlock(configuration, "PVT", implementation, Galileo_channels + GPS_channels + Glonass_channels, 0); return GetBlock(configuration, "PVT", implementation, Galileo_channels + GPS_channels + Glonass_channels, 0);
} }
@ -604,6 +610,77 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetChannel_1G(
} }
//********* GLONASS L2 C/A CHANNEL *****************
std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetChannel_2G(
std::shared_ptr<ConfigurationInterface> configuration,
std::string acq, std::string trk, std::string tlm, int channel,
boost::shared_ptr<gr::msg_queue> queue)
{
std::stringstream stream;
stream << channel;
std::string id = stream.str();
LOG(INFO) << "Instantiating Channel " << channel << " with Acquisition Implementation: "
<< acq << ", Tracking Implementation: " << trk << ", Telemetry Decoder Implementation: " << tlm;
std::string aux = configuration->property("Acquisition_2G" + boost::lexical_cast<std::string>(channel) + ".implementation", std::string("W"));
std::string appendix1;
if (aux.compare("W") != 0)
{
appendix1 = boost::lexical_cast<std::string>(channel);
}
else
{
appendix1 = "";
}
aux = configuration->property("Tracking_2G" + boost::lexical_cast<std::string>(channel) + ".implementation", std::string("W"));
std::string appendix2;
if (aux.compare("W") != 0)
{
appendix2 = boost::lexical_cast<std::string>(channel);
}
else
{
appendix2 = "";
}
aux = configuration->property("TelemetryDecoder_2G" + boost::lexical_cast<std::string>(channel) + ".implementation", std::string("W"));
std::string appendix3;
if (aux.compare("W") != 0)
{
appendix3 = boost::lexical_cast<std::string>(channel);
}
else
{
appendix3 = "";
}
// Automatically detect input data type
std::shared_ptr<InMemoryConfiguration> config;
config = std::make_shared<InMemoryConfiguration>();
std::string default_item_type = "gr_complex";
std::string acq_item_type = configuration->property("Acquisition_2G" + appendix1 + ".item_type", default_item_type);
std::string trk_item_type = configuration->property("Tracking_2G" + appendix2 + ".item_type", default_item_type);
if (acq_item_type.compare(trk_item_type))
{
LOG(ERROR) << "Acquisition and Tracking blocks must have the same input data type!";
}
config->set_property("Channel.item_type", acq_item_type);
std::unique_ptr<GNSSBlockInterface> pass_through_ = GetBlock(config, "Channel", "Pass_Through", 1, 1, queue);
std::unique_ptr<AcquisitionInterface> acq_ = GetAcqBlock(configuration, "Acquisition_2G" + appendix1, acq, 1, 0);
std::unique_ptr<TrackingInterface> trk_ = GetTrkBlock(configuration, "Tracking_2G" + appendix2, trk, 1, 1);
std::unique_ptr<TelemetryDecoderInterface> tlm_ = GetTlmBlock(configuration, "TelemetryDecoder_2G" + appendix3, tlm, 1, 1);
std::unique_ptr<GNSSBlockInterface> channel_(new Channel(configuration.get(), channel, std::move(pass_through_),
std::move(acq_),
std::move(trk_),
std::move(tlm_),
"Channel", "2G", queue));
return channel_;
}
//********* GPS L5 CHANNEL ***************** //********* GPS L5 CHANNEL *****************
std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetChannel_L5( std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetChannel_L5(
std::shared_ptr<ConfigurationInterface> configuration, std::shared_ptr<ConfigurationInterface> configuration,
@ -687,6 +764,7 @@ std::unique_ptr<std::vector<std::unique_ptr<GNSSBlockInterface>>> GNSSBlockFacto
unsigned int Channels_1B_count = configuration->property("Channels_1B.count", 0); unsigned int Channels_1B_count = configuration->property("Channels_1B.count", 0);
unsigned int Channels_5X_count = configuration->property("Channels_5X.count", 0); unsigned int Channels_5X_count = configuration->property("Channels_5X.count", 0);
unsigned int Channels_1G_count = configuration->property("Channels_1G.count", 0); unsigned int Channels_1G_count = configuration->property("Channels_1G.count", 0);
unsigned int Channels_2G_count = configuration->property("Channels_2G.count", 0);
unsigned int Channels_L5_count = configuration->property("Channels_L5.count", 0); unsigned int Channels_L5_count = configuration->property("Channels_L5.count", 0);
unsigned int total_channels = Channels_1C_count + unsigned int total_channels = Channels_1C_count +
@ -694,6 +772,7 @@ std::unique_ptr<std::vector<std::unique_ptr<GNSSBlockInterface>>> GNSSBlockFacto
Channels_1B_count + Channels_1B_count +
Channels_5X_count + Channels_5X_count +
Channels_1G_count + Channels_1G_count +
Channels_2G_count +
Channels_L5_count; Channels_L5_count;
std::unique_ptr<std::vector<std::unique_ptr<GNSSBlockInterface>>> channels(new std::vector<std::unique_ptr<GNSSBlockInterface>>(total_channels)); std::unique_ptr<std::vector<std::unique_ptr<GNSSBlockInterface>>> channels(new std::vector<std::unique_ptr<GNSSBlockInterface>>(total_channels));
@ -874,6 +953,36 @@ std::unique_ptr<std::vector<std::unique_ptr<GNSSBlockInterface>>> GNSSBlockFacto
channel_absolute_id++; channel_absolute_id++;
} }
//**************** GLONASS L2 C/A CHANNELS **********************
LOG(INFO) << "Getting " << Channels_2G_count << " GLONASS L2 C/A channels";
acquisition_implementation = configuration->property("Acquisition_2G.implementation", default_implementation);
tracking_implementation = configuration->property("Tracking_2G.implementation", default_implementation);
telemetry_decoder_implementation = configuration->property("TelemetryDecoder_2G.implementation", default_implementation);
for (unsigned int i = 0; i < Channels_2G_count; i++)
{
//(i.e. Acquisition_2G0.implementation=xxxx)
std::string acquisition_implementation_specific = configuration->property(
"Acquisition_2G" + boost::lexical_cast<std::string>(channel_absolute_id) + ".implementation",
acquisition_implementation);
//(i.e. Tracking_2G0.implementation=xxxx)
std::string tracking_implementation_specific = configuration->property(
"Tracking_2G" + boost::lexical_cast<std::string>(channel_absolute_id) + ".implementation",
tracking_implementation);
std::string telemetry_decoder_implementation_specific = configuration->property(
"TelemetryDecoder_2G" + boost::lexical_cast<std::string>(channel_absolute_id) + ".implementation",
telemetry_decoder_implementation);
// Push back the channel to the vector of channels
channels->at(channel_absolute_id) = std::move(GetChannel_2G(configuration,
acquisition_implementation_specific,
tracking_implementation_specific,
telemetry_decoder_implementation_specific,
channel_absolute_id,
queue));
channel_absolute_id++;
}
return channels; return channels;
} }
@ -1282,7 +1391,12 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetBlock(
out_streams)); out_streams));
block = std::move(block_); block = std::move(block_);
} }
else if (implementation.compare("GLONASS_L2_CA_PCPS_Acquisition") == 0)
{
std::unique_ptr<AcquisitionInterface> block_(new GlonassL2CaPcpsAcquisition(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
// TRACKING BLOCKS ------------------------------------------------------------- // TRACKING BLOCKS -------------------------------------------------------------
else if (implementation.compare("GPS_L1_CA_DLL_PLL_Tracking") == 0) else if (implementation.compare("GPS_L1_CA_DLL_PLL_Tracking") == 0)
{ {
@ -1360,7 +1474,18 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetBlock(
out_streams)); out_streams));
block = std::move(block_); block = std::move(block_);
} }
else if (implementation.compare("GLONASS_L2_CA_DLL_PLL_Tracking") == 0)
{
std::unique_ptr<GNSSBlockInterface> block_(new GlonassL2CaDllPllTracking(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
else if (implementation.compare("GLONASS_L2_CA_DLL_PLL_C_Aid_Tracking") == 0)
{
std::unique_ptr<GNSSBlockInterface> block_(new GlonassL2CaDllPllCAidTracking(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
// TELEMETRY DECODERS ---------------------------------------------------------- // TELEMETRY DECODERS ----------------------------------------------------------
else if (implementation.compare("GPS_L1_CA_Telemetry_Decoder") == 0) else if (implementation.compare("GPS_L1_CA_Telemetry_Decoder") == 0)
{ {
@ -1404,7 +1529,12 @@ std::unique_ptr<GNSSBlockInterface> GNSSBlockFactory::GetBlock(
out_streams)); out_streams));
block = std::move(block_); block = std::move(block_);
} }
else if (implementation.compare("GLONASS_L2_CA_Telemetry_Decoder") == 0)
{
std::unique_ptr<GNSSBlockInterface> block_(new GlonassL2CaTelemetryDecoder(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
// OBSERVABLES ----------------------------------------------------------------- // OBSERVABLES -----------------------------------------------------------------
else if ((implementation.compare("Hybrid_Observables") == 0) || (implementation.compare("GPS_L1_CA_Observables") == 0) || (implementation.compare("GPS_L2C_Observables") == 0) || else if ((implementation.compare("Hybrid_Observables") == 0) || (implementation.compare("GPS_L1_CA_Observables") == 0) || (implementation.compare("GPS_L2C_Observables") == 0) ||
(implementation.compare("Galileo_E5A_Observables") == 0)) (implementation.compare("Galileo_E5A_Observables") == 0))
@ -1555,6 +1685,12 @@ std::unique_ptr<AcquisitionInterface> GNSSBlockFactory::GetAcqBlock(
out_streams)); out_streams));
block = std::move(block_); block = std::move(block_);
} }
else if (implementation.compare("GLONASS_L2_CA_PCPS_Acquisition") == 0)
{
std::unique_ptr<AcquisitionInterface> block_(new GlonassL2CaPcpsAcquisition(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
else else
{ {
// Log fatal. This causes execution to stop. // Log fatal. This causes execution to stop.
@ -1649,6 +1785,18 @@ std::unique_ptr<TrackingInterface> GNSSBlockFactory::GetTrkBlock(
out_streams)); out_streams));
block = std::move(block_); block = std::move(block_);
} }
else if (implementation.compare("GLONASS_L2_CA_DLL_PLL_Tracking") == 0)
{
std::unique_ptr<TrackingInterface> block_(new GlonassL2CaDllPllTracking(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
else if (implementation.compare("GLONASS_L2_CA_DLL_PLL_C_Aid_Tracking") == 0)
{
std::unique_ptr<TrackingInterface> block_(new GlonassL2CaDllPllCAidTracking(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
else else
{ {
// Log fatal. This causes execution to stop. // Log fatal. This causes execution to stop.
@ -1703,6 +1851,12 @@ std::unique_ptr<TelemetryDecoderInterface> GNSSBlockFactory::GetTlmBlock(
out_streams)); out_streams));
block = std::move(block_); block = std::move(block_);
} }
else if (implementation.compare("GLONASS_L2_CA_Telemetry_Decoder") == 0)
{
std::unique_ptr<TelemetryDecoderInterface> block_(new GlonassL2CaTelemetryDecoder(configuration.get(), role, in_streams,
out_streams));
block = std::move(block_);
}
else if (implementation.compare("GPS_L5_Telemetry_Decoder") == 0) else if (implementation.compare("GPS_L5_Telemetry_Decoder") == 0)
{ {
std::unique_ptr<TelemetryDecoderInterface> block_(new GpsL5TelemetryDecoder(configuration.get(), role, in_streams, std::unique_ptr<TelemetryDecoderInterface> block_(new GpsL5TelemetryDecoder(configuration.get(), role, in_streams,

View File

@ -102,6 +102,10 @@ private:
std::string acq, std::string trk, std::string tlm, int channel, std::string acq, std::string trk, std::string tlm, int channel,
boost::shared_ptr<gr::msg_queue> queue); boost::shared_ptr<gr::msg_queue> queue);
std::unique_ptr<GNSSBlockInterface> GetChannel_2G(std::shared_ptr<ConfigurationInterface> configuration,
std::string acq, std::string trk, std::string tlm, int channel,
boost::shared_ptr<gr::msg_queue> queue);
std::unique_ptr<AcquisitionInterface> GetAcqBlock( std::unique_ptr<AcquisitionInterface> GetAcqBlock(
std::shared_ptr<ConfigurationInterface> configuration, std::shared_ptr<ConfigurationInterface> configuration,
std::string role, std::string role,

View File

@ -544,6 +544,7 @@ void GNSSFlowgraph::set_signals_list()
configuration_->property("Channels_1B.count", 0) + configuration_->property("Channels_1B.count", 0) +
configuration_->property("Channels_5X.count", 0) + configuration_->property("Channels_5X.count", 0) +
configuration_->property("Channels_1G.count", 0) + configuration_->property("Channels_1G.count", 0) +
configuration_->property("Channels_2G.count", 0) +
configuration_->property("Channels_5X.count", 0) + configuration_->property("Channels_5X.count", 0) +
configuration_->property("Channels_L5.count", 0); configuration_->property("Channels_L5.count", 0);
@ -733,6 +734,21 @@ void GNSSFlowgraph::set_signals_list()
std::string("1G"))); std::string("1G")));
} }
} }
if (configuration_->property("Channels_2G.count", 0) > 0)
{
/*
* Loop to create the list of GLONASS L2 C/A signals
*/
for (available_gnss_prn_iter = available_glonass_prn.begin();
available_gnss_prn_iter != available_glonass_prn.end();
available_gnss_prn_iter++)
{
available_GNSS_signals_.push_back(Gnss_Signal(
Gnss_Satellite(std::string("Glonass"), *available_gnss_prn_iter),
std::string("2G")));
}
}
/* /*
* Ordering the list of signals from configuration file * Ordering the list of signals from configuration file
*/ */
@ -746,7 +762,7 @@ void GNSSFlowgraph::set_signals_list()
std::string gnss_system; std::string gnss_system;
if ((gnss_signal.compare("1C") == 0) or (gnss_signal.compare("2S") == 0) or (gnss_signal.compare("L5") == 0)) gnss_system = "GPS"; if ((gnss_signal.compare("1C") == 0) or (gnss_signal.compare("2S") == 0) or (gnss_signal.compare("L5") == 0)) gnss_system = "GPS";
if ((gnss_signal.compare("1B") == 0) or (gnss_signal.compare("5X") == 0)) gnss_system = "Galileo"; if ((gnss_signal.compare("1B") == 0) or (gnss_signal.compare("5X") == 0)) gnss_system = "Galileo";
if ((gnss_signal.compare("1G") == 0) /*or (gnss_signal.compare("") == 0)*/) gnss_system = "Glonass"; if ((gnss_signal.compare("1G") == 0) or (gnss_signal.compare("2G") == 0)) gnss_system = "Glonass";
unsigned int sat = configuration_->property("Channel" + boost::lexical_cast<std::string>(i) + ".satellite", 0); unsigned int sat = configuration_->property("Channel" + boost::lexical_cast<std::string>(i) + ".satellite", 0);
LOG(INFO) << "Channel " << i << " system " << gnss_system << ", signal " << gnss_signal << ", sat " << sat; LOG(INFO) << "Channel " << i << " system " << gnss_system << ", signal " << gnss_signal << ", sat " << sat;
if (sat == 0) // 0 = not PRN in configuration file if (sat == 0) // 0 = not PRN in configuration file

View File

@ -109,7 +109,7 @@ public:
return running_; return running_;
} }
/*! /*!
* \brief Sends a GNURadio asyncronous message from telemetry to PVT * \brief Sends a GNURadio asynchronous message from telemetry to PVT
* *
* It is used to assist the receiver with external ephemeris data * It is used to assist the receiver with external ephemeris data
*/ */

View File

@ -1,6 +1,7 @@
/*! /*!
* \file GLONASS_L1_CA.h * \file GLONASS_L1_L2_CA.h
* \brief Defines system parameters for GLONASS L1 C/A signal and NAV data * \brief Defines system parameters for GLONASS L1 C/A signal and NAV data
* \note File renamed from GLONASS_L1_CA.h to GLONASS_L1_L2_CA.h to accommodate GLO L2 addition
* \author Damian Miralles, 2017. dmiralles2009(at)gmail.com * \author Damian Miralles, 2017. dmiralles2009(at)gmail.com
* *
* ------------------------------------------------------------------------- * -------------------------------------------------------------------------
@ -29,8 +30,8 @@
*/ */
#ifndef GNSS_SDR_GLONASS_L1_CA_H_ #ifndef GNSS_SDR_GLONASS_L1_L2_CA_H_
#define GNSS_SDR_GLONASS_L1_CA_H_ #define GNSS_SDR_GLONASS_L1_L2_CA_H_
#include "gnss_frequencies.h" #include "gnss_frequencies.h"
#include "MATH_CONSTANTS.h" #include "MATH_CONSTANTS.h"
@ -79,8 +80,13 @@ const double GLONASS_SUN_GM = 0.1325263e12; //!< Solar gravitational
const double GLONASS_SUN_SEMI_MAJOR_AXIS = 1.49598e8; //!< Semi-major axis of solar orbit [km]; const double GLONASS_SUN_SEMI_MAJOR_AXIS = 1.49598e8; //!< Semi-major axis of solar orbit [km];
const double GLONASS_SUN_ECCENTRICITY = 0.016719; //!< Eccentricity of solar orbit const double GLONASS_SUN_ECCENTRICITY = 0.016719; //!< Eccentricity of solar orbit
// carrier and code frequencies const double GLONASS_L2_CA_FREQ_HZ = FREQ2_GLO; //!< L2 [Hz]
const double GLONASS_L2_FREQ_HZ = FREQ2_GLO; //!< L1 [Hz] const double GLONASS_L2_CA_DFREQ_HZ = DFRQ2_GLO; //!< Freq Bias for GLONASS L1 [Hz]
const double GLONASS_L2_CA_CODE_RATE_HZ = 0.511e6; //!< GLONASS L1 C/A code rate [chips/s]
const double GLONASS_L2_CA_CODE_LENGTH_CHIPS = 511.0; //!< GLONASS L1 C/A code length [chips]
const double GLONASS_L2_CA_CODE_PERIOD = 0.001; //!< GLONASS L1 C/A code period [seconds]
const double GLONASS_L2_CA_CHIP_PERIOD = 1.9569e-06; //!< GLONASS L1 C/A chip period [seconds]
const double GLONASS_L2_CA_SYMBOL_RATE_BPS = 1000;
const double GLONASS_L1_CA_FREQ_HZ = FREQ1_GLO; //!< L1 [Hz] const double GLONASS_L1_CA_FREQ_HZ = FREQ1_GLO; //!< L1 [Hz]
const double GLONASS_L1_CA_DFREQ_HZ = DFRQ1_GLO; //!< Freq Bias for GLONASS L1 [Hz] const double GLONASS_L1_CA_DFREQ_HZ = DFRQ1_GLO; //!< Freq Bias for GLONASS L1 [Hz]
@ -89,7 +95,8 @@ const double GLONASS_L1_CA_CODE_LENGTH_CHIPS = 511.0; //!< GLONASS L1 C/A code
const double GLONASS_L1_CA_CODE_PERIOD = 0.001; //!< GLONASS L1 C/A code period [seconds] const double GLONASS_L1_CA_CODE_PERIOD = 0.001; //!< GLONASS L1 C/A code period [seconds]
const double GLONASS_L1_CA_CHIP_PERIOD = 1.9569e-06; //!< GLONASS L1 C/A chip period [seconds] const double GLONASS_L1_CA_CHIP_PERIOD = 1.9569e-06; //!< GLONASS L1 C/A chip period [seconds]
const double GLONASS_L1_CA_SYMBOL_RATE_BPS = 1000; const double GLONASS_L1_CA_SYMBOL_RATE_BPS = 1000;
const int GLONASS_L1_CA_NBR_SATS = 24; // STRING DATA WITHOUT PREAMBLE
const int GLONASS_CA_NBR_SATS = 24; // STRING DATA WITHOUT PREAMBLE
/*! /*!
* \brief Record of leap seconds definition for GLOT to GPST conversion and vice versa * \brief Record of leap seconds definition for GLOT to GPST conversion and vice versa
@ -320,4 +327,4 @@ const std::vector<std::pair<int, int>> B1({{6, 11}});
const std::vector<std::pair<int, int>> B2({{17, 10}}); const std::vector<std::pair<int, int>> B2({{17, 10}});
#endif /* GNSS_SDR_GLONASS_L1_CA_H_ */ #endif /* GNSS_SDR_GLONASS_L1_L2_CA_H_ */

View File

@ -42,7 +42,7 @@ Galileo_Ephemeris::Galileo_Ephemeris()
M0_1 = 0; // Mean anomaly at reference time [semi-circles] M0_1 = 0; // Mean anomaly at reference time [semi-circles]
delta_n_3 = 0; // Mean motion difference from computed value [semi-circles/sec] delta_n_3 = 0; // Mean motion difference from computed value [semi-circles/sec]
e_1 = 0; // Eccentricity e_1 = 0; // Eccentricity
A_1 = 0; // Square root of the semi-major axis [metres^1/2] A_1 = 0; // Square root of the semi-major axis [meters^1/2]
OMEGA_0_2 = 0; // Longitude of ascending node of orbital plane at weekly epoch [semi-circles] OMEGA_0_2 = 0; // Longitude of ascending node of orbital plane at weekly epoch [semi-circles]
i_0_2 = 0; // Inclination angle at reference time [semi-circles] i_0_2 = 0; // Inclination angle at reference time [semi-circles]
omega_2 = 0; // Argument of perigee [semi-circles] omega_2 = 0; // Argument of perigee [semi-circles]

View File

@ -54,7 +54,7 @@ public:
double M0_1; //!< Mean anomaly at reference time [semi-circles] double M0_1; //!< Mean anomaly at reference time [semi-circles]
double delta_n_3; //!< Mean motion difference from computed value [semi-circles/sec] double delta_n_3; //!< Mean motion difference from computed value [semi-circles/sec]
double e_1; //!< Eccentricity double e_1; //!< Eccentricity
double A_1; //!< Square root of the semi-major axis [metres^1/2] double A_1; //!< Square root of the semi-major axis [meters^1/2]
double OMEGA_0_2; //!< Longitude of ascending node of orbital plane at weekly epoch [semi-circles] double OMEGA_0_2; //!< Longitude of ascending node of orbital plane at weekly epoch [semi-circles]
double i_0_2; //!< Inclination angle at reference time [semi-circles] double i_0_2; //!< Inclination angle at reference time [semi-circles]
double omega_2; //!< Argument of perigee [semi-circles] double omega_2; //!< Argument of perigee [semi-circles]

View File

@ -604,7 +604,7 @@ Galileo_Ephemeris Galileo_Fnav_Message::get_ephemeris()
ephemeris.M0_1 = FNAV_M0_2; // Mean anomaly at reference time [semi-circles] ephemeris.M0_1 = FNAV_M0_2; // Mean anomaly at reference time [semi-circles]
ephemeris.delta_n_3 = FNAV_deltan_3; // Mean motion difference from computed value [semi-circles/sec] ephemeris.delta_n_3 = FNAV_deltan_3; // Mean motion difference from computed value [semi-circles/sec]
ephemeris.e_1 = FNAV_e_2; // Eccentricity ephemeris.e_1 = FNAV_e_2; // Eccentricity
ephemeris.A_1 = FNAV_a12_2; // Square root of the semi-major axis [metres^1/2] ephemeris.A_1 = FNAV_a12_2; // Square root of the semi-major axis [meters^1/2]
ephemeris.OMEGA_0_2 = FNAV_omega0_2; // Longitude of ascending node of orbital plane at weekly epoch [semi-circles] ephemeris.OMEGA_0_2 = FNAV_omega0_2; // Longitude of ascending node of orbital plane at weekly epoch [semi-circles]
ephemeris.i_0_2 = FNAV_i0_3; // Inclination angle at reference time [semi-circles] ephemeris.i_0_2 = FNAV_i0_3; // Inclination angle at reference time [semi-circles]
ephemeris.omega_2 = FNAV_w_3; // Argument of perigee [semi-circles] ephemeris.omega_2 = FNAV_w_3; // Argument of perigee [semi-circles]

View File

@ -530,7 +530,7 @@ Galileo_Ephemeris Galileo_Navigation_Message::get_ephemeris()
ephemeris.M0_1 = M0_1; // Mean anomaly at reference time [semi-circles] ephemeris.M0_1 = M0_1; // Mean anomaly at reference time [semi-circles]
ephemeris.delta_n_3 = delta_n_3; // Mean motion difference from computed value [semi-circles/sec] ephemeris.delta_n_3 = delta_n_3; // Mean motion difference from computed value [semi-circles/sec]
ephemeris.e_1 = e_1; // Eccentricity ephemeris.e_1 = e_1; // Eccentricity
ephemeris.A_1 = A_1; // Square root of the semi-major axis [metres^1/2] ephemeris.A_1 = A_1; // Square root of the semi-major axis [meters^1/2]
ephemeris.OMEGA_0_2 = OMEGA_0_2; // Longitude of ascending node of orbital plane at weekly epoch [semi-circles] ephemeris.OMEGA_0_2 = OMEGA_0_2; // Longitude of ascending node of orbital plane at weekly epoch [semi-circles]
ephemeris.i_0_2 = i_0_2; // Inclination angle at reference time [semi-circles] ephemeris.i_0_2 = i_0_2; // Inclination angle at reference time [semi-circles]
ephemeris.omega_2 = omega_2; // Argument of perigee [semi-circles] ephemeris.omega_2 = omega_2; // Argument of perigee [semi-circles]

View File

@ -97,7 +97,7 @@ public:
double t0e_1; //!< Ephemeris reference time [s] double t0e_1; //!< Ephemeris reference time [s]
double M0_1; //!< Mean anomaly at reference time [semi-circles] double M0_1; //!< Mean anomaly at reference time [semi-circles]
double e_1; //!< Eccentricity double e_1; //!< Eccentricity
double A_1; //!< Square root of the semi-major axis [metres^1/2] double A_1; //!< Square root of the semi-major axis [meters^1/2]
/*Word type 2: Ephemeris (2/4)*/ /*Word type 2: Ephemeris (2/4)*/
int IOD_nav_2; //!< IOD_nav page 2 int IOD_nav_2; //!< IOD_nav page 2

Some files were not shown because too many files have changed in this diff Show More