1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-14 20:20:35 +00:00

Merge branch 'next' of git+ssh://github.com/gnss-sdr/gnss-sdr into next

# Please enter a commit message to explain why this merge is necessary,
# especially if it merges an updated upstream into a topic branch.
#
# Lines starting with '#' will be ignored, and an empty message aborts
# the commit.
This commit is contained in:
Carles Fernandez 2015-03-04 20:54:15 +01:00
commit 944dd2c0d1
4 changed files with 102 additions and 16 deletions

View File

@ -7,7 +7,7 @@
;######### GLOBAL OPTIONS ##################
;internal_fs_hz: Internal signal sampling frequency after the signal conditioning stage [Hz].
GNSS-SDR.internal_fs_hz=4000000
GNSS-SDR.internal_fs_hz=2000000
;######### CONTROL_THREAD CONFIG ############
ControlThread.wait_for_flowgraph=false
@ -50,14 +50,21 @@ SignalSource.usb_packet_buffer=128
;######### SIGNAL_CONDITIONER 0 CONFIG ############
;## It holds blocks to change data type, filter and resample input data.
SignalConditioner0.implementation=Pass_Through
SignalConditioner0.implementation=Signal_Conditioner
;######### DATA_TYPE_ADAPTER 0 CONFIG ############
DataTypeAdapter0.implementation=Pass_Through
DataTypeAdapter0.item_type=gr_complex
;######### INPUT_FILTER 0 CONFIG ############
InputFilter0.implementation=Pass_Through
;## Filter the input data. Can be combined with frequency translation for IF signals
;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter]
;#[Pass_Through] disables this block
;#[Fir_Filter] enables a FIR Filter
;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz.
InputFilter0.implementation=Freq_Xlating_Fir_Filter
;#dump: Dump the filtered data to a file.
InputFilter0.dump=false
@ -65,12 +72,65 @@ InputFilter0.dump=false
;#dump_filename: Log path and filename.
InputFilter0.dump_filename=../data/input_filter.dat
;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation.
;#These options are based on parameters of gnuradio's function: gr_remez.
;#These function calculates the optimal (in the Chebyshev/minimax sense) FIR filter inpulse reponse given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands.
;#input_item_type: Type and resolution for input signal samples. Use only gr_complex in this version.
InputFilter0.input_item_type=gr_complex
;#outut_item_type: Type and resolution for output filtered signal samples. Use only gr_complex in this version.
InputFilter0.output_item_type=gr_complex
;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version.
InputFilter0.taps_item_type=float
;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time
InputFilter0.number_of_taps=5
;#number_of _bands: Number of frequency bands in the filter.
InputFilter0.number_of_bands=2
;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...].
;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2)
;#The number of band_begin and band_end elements must match the number of bands
InputFilter0.band1_begin=0.0
InputFilter0.band1_end=0.45
InputFilter0.band2_begin=0.55
InputFilter0.band2_end=1.0
;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...].
;#The number of ampl_begin and ampl_end elements must match the number of bands
InputFilter0.ampl1_begin=1.0
InputFilter0.ampl1_end=1.0
InputFilter0.ampl2_begin=0.0
InputFilter0.ampl2_end=0.0
;#band_error: weighting applied to each band (usually 1).
;#The number of band_error elements must match the number of bands
InputFilter0.band1_error=1.0
InputFilter0.band2_error=1.0
;#filter_type: one of "bandpass", "hilbert" or "differentiator"
InputFilter0.filter_type=bandpass
;#grid_density: determines how accurately the filter will be constructed.
;The minimum value is 16; higher values are slower to compute the filter.
InputFilter0.grid_density=16
;#The following options are used only in Freq_Xlating_Fir_Filter implementation.
;#InputFilter0.IF is the intermediate frequency (in Hz) shifted down to zero Hz
;FOR USE GNSS-SDR WITH RTLSDR DONGLES USER MUST SET THE CALIBRATED SAMPLE RATE HERE
; i.e. using front-end-cal as reported here:http://www.cttc.es/publication/turning-a-television-into-a-gnss-receiver/
InputFilter0.sampling_frequency=40000000
;# IF deviation due to front-end LO inaccuracies [HZ]
InputFilter0.IF=205000
;# Decimation factor after the frequency tranaslating block
InputFilter0.decimation_factor=20
;######### RESAMPLER CONFIG 0 ############
;## Resamples the input data.
Resampler0.implementation=Pass_Through
@ -131,7 +191,7 @@ Resampler2.implementation=Pass_Through
;######### CHANNELS GLOBAL CONFIG ############
;#count: Number of available GPS satellite channels.
Channels_GPS.count=2
Channels_GPS.count=1
;#count: Number of available Galileo satellite channels.
Channels_Galileo.count=0
;#in_acquisition: Number of channels simultaneously acquiring for the whole receiver
@ -143,6 +203,12 @@ Channel.system=GPS
;# CHANNEL CONNECTION
Channel0.RF_channel_ID=0
Channel1.RF_channel_ID=0
Channel2.RF_channel_ID=0
Channel3.RF_channel_ID=0
Channel4.RF_channel_ID=0
Channel5.RF_channel_ID=0
Channel6.RF_channel_ID=0
Channel7.RF_channel_ID=0
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
@ -167,11 +233,11 @@ Acquisition_GPS.coherent_integration_time_ms=1
;#implementation: Acquisition algorithm selection for this channel: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
Acquisition_GPS.implementation=GPS_L1_CA_PCPS_Acquisition
;#threshold: Acquisition threshold. It will be ignored if pfa is defined.
Acquisition_GPS.threshold=0.02
Acquisition_GPS.threshold=0.007
;#pfa: Acquisition false alarm probability. This option overrides the threshold option. Only use with implementations: [GPS_L1_CA_PCPS_Acquisition] or [Galileo_E1_PCPS_Ambiguous_Acquisition]
;Acquisition_GPS.pfa=0.0001
;#doppler_max: Maximum expected Doppler shift [Hz]
Acquisition_GPS.doppler_max=8000
Acquisition_GPS.doppler_max=10000
;#doppler_max: Doppler step in the grid search [Hz]
Acquisition_GPS.doppler_step=500
;#bit_transition_flag: Enable or disable a strategy to deal with bit transitions in GPS signals: process two dwells and take

View File

@ -307,10 +307,10 @@ Channels.in_acquisition=1
Channel.system=GPS, Galileo
;# CHANNEL CONNECTION
Channel0.SignalSource_ID=0
Channel1.SignalSource_ID=0
Channel2.SignalSource_ID=1
Channel3.SignalSource_ID=1
Channel0.RF_channel_ID=0
Channel1.RF_channel_ID=0
Channel2.RF_channel_ID=1
Channel3.RF_channel_ID=1
;#signal:
;#if the option is disabled by default is assigned "1C" GPS L1 C/A
Channel.signal=1B

View File

@ -67,7 +67,6 @@ FlexibandSignalSource::FlexibandSignalSource(ConfigurationInterface* configurati
for (int n=0;n<(RF_channels_*2);n++)
{
char_to_float.push_back(gr::blocks::char_to_float::make());
float_to_complex_.push_back(gr::blocks::float_to_complex::make());
}
for (int n=0;n<(RF_channels_);n++)
@ -102,8 +101,8 @@ void FlexibandSignalSource::connect(gr::top_block_sptr top_block)
}
for (int n=0;n<RF_channels_;n++)
{
top_block->connect(char_to_float.at(n*2), 0, float_to_complex_.at(n*2), 0);
top_block->connect(char_to_float.at(n*2+1), 0, float_to_complex_.at(n*2+1), 0);
top_block->connect(char_to_float.at(n*2), 0, float_to_complex_.at(n), 0);
top_block->connect(char_to_float.at(n*2+1), 0, float_to_complex_.at(n), 1);
DLOG(INFO) << "connected char_to_float to float_to_complex_ CH"<<n;
}
@ -120,8 +119,8 @@ void FlexibandSignalSource::disconnect(gr::top_block_sptr top_block)
}
for (int n=0;n<RF_channels_;n++)
{
top_block->disconnect(char_to_float.at(n*2), 0, float_to_complex_.at(n*2), 0);
top_block->disconnect(char_to_float.at(n*2+1), 0, float_to_complex_.at(n*2+1), 0);
top_block->disconnect(char_to_float.at(n*2), 0, float_to_complex_.at(n), 0);
top_block->disconnect(char_to_float.at(n*2+1), 0, float_to_complex_.at(n), 1);
DLOG(INFO) << "disconnect char_to_float to float_to_complex_ CH"<<n;
}
}

View File

@ -227,7 +227,28 @@ void GNSSFlowgraph::connect()
for (int j = 0; j < RF_Channels; j++)
{
//Connect the multichannel signal source to multiple signal conditioners
top_block_->connect(sig_source_.at(i)->get_right_block(), j, sig_conditioner_.at(signal_conditioner_ID)->get_left_block(), 0);
// check number of signal source output ports todo!
if (sig_source_.at(i)->get_right_block()->input_signature()->max_streams() > 1)
{
top_block_->connect(sig_source_.at(i)->get_right_block(), j, sig_conditioner_.at(signal_conditioner_ID)->get_left_block(), 0);
//std::cout<<"connect sig_source_ "<<i<<" stream "<<j<<" to conditioner "<<j<<std::endl;
}
else
{
if (j == 0)
{
// RF_channel 0 backward compatibility with single channel sources
top_block_->connect(sig_source_.at(i)->get_right_block(), 0, sig_conditioner_.at(signal_conditioner_ID)->get_left_block(), 0);
//std::cout<<"connect sig_source_ "<<i<<" stream "<<0<<" to conditioner "<<j<<std::endl;
}
else
{
// Multiple channel sources using multiple output blocks of single channel (requires RF_channel selector in call)
top_block_->connect(sig_source_.at(i)->get_right_block(j), 0, sig_conditioner_.at(signal_conditioner_ID)->get_left_block(), 0);
//std::cout<<"connect sig_source_ "<<i<<" stream "<<j<<" to conditioner "<<j<<std::endl;
}
}
signal_conditioner_ID++;
}
}