1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-12-14 12:10:34 +00:00

Better VOLK usage. Memory alignment, using dispatcher instead of

aligned/unaligned versions. Code cleaning.
This commit is contained in:
Carles Fernandez 2014-09-10 03:15:01 +02:00
parent fd6a8e3cff
commit 9106f147ef
11 changed files with 753 additions and 922 deletions

View File

@ -107,35 +107,27 @@ galileo_e5a_noncoherentIQ_acquisition_caf_cc::galileo_e5a_noncoherentIQ_acquisit
d_both_signal_components = both_signal_components_;
d_CAF_window_hz = CAF_window_hz_;
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&d_inbuffer, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_fft_code_I_A, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitudeIA, 16, d_fft_size * sizeof(float)) == 0){};
d_inbuffer = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_fft_code_I_A = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_magnitudeIA = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
if (d_both_signal_components == true)
{
if (posix_memalign((void**)&d_fft_code_Q_A, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitudeQA, 16, d_fft_size * sizeof(float)) == 0){};
d_fft_code_Q_A = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_magnitudeQA = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
}
// IF COHERENT INTEGRATION TIME > 1
if (d_sampled_ms > 1)
{
if (posix_memalign((void**)&d_fft_code_I_B, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitudeIB, 16, d_fft_size * sizeof(float)) == 0){};
d_fft_code_I_B = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_magnitudeIB = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
if (d_both_signal_components == true)
{
if (posix_memalign((void**)&d_fft_code_Q_B, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitudeQB, 16, d_fft_size * sizeof(float)) == 0){};
d_fft_code_Q_B = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_magnitudeQB = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
}
}
// if (posix_memalign((void**)&d_fft_code_Q_A, 16, d_fft_size * sizeof(gr_complex)) == 0){};
// if (posix_memalign((void**)&d_magnitudeQA, 16, d_fft_size * sizeof(float)) == 0){};
// if (posix_memalign((void**)&d_fft_code_I_B, 16, d_fft_size * sizeof(gr_complex)) == 0){};
// if (posix_memalign((void**)&d_magnitudeIB, 16, d_fft_size * sizeof(float)) == 0){};
// if (posix_memalign((void**)&d_fft_code_Q_B, 16, d_fft_size * sizeof(gr_complex)) == 0){};
// if (posix_memalign((void**)&d_magnitudeQB, 16, d_fft_size * sizeof(float)) == 0){};
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
@ -153,34 +145,43 @@ galileo_e5a_noncoherentIQ_acquisition_caf_cc::~galileo_e5a_noncoherentIQ_acquisi
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
free(d_grid_doppler_wipeoffs[i]);
volk_free(d_grid_doppler_wipeoffs[i]);
}
delete[] d_grid_doppler_wipeoffs;
}
free(d_fft_code_I_A);
free(d_magnitudeIA);
volk_free(d_inbuffer);
volk_free(d_fft_code_I_A);
volk_free(d_magnitudeIA);
if (d_both_signal_components == true)
{
free(d_fft_code_Q_A);
free(d_magnitudeQA);
volk_free(d_fft_code_Q_A);
volk_free(d_magnitudeQA);
}
// IF INTEGRATION TIME > 1
if (d_sampled_ms > 1)
{
free(d_fft_code_I_B);
free(d_magnitudeIB);
volk_free(d_fft_code_I_B);
volk_free(d_magnitudeIB);
if (d_both_signal_components == true)
{
free(d_fft_code_Q_B);
free(d_magnitudeQB);
volk_free(d_fft_code_Q_B);
volk_free(d_magnitudeQB);
}
}
if (d_CAF_window_hz > 0)
{
volk_free(d_CAF_vector);
volk_free(d_CAF_vector_I);
if (d_both_signal_components == true)
{
volk_free(d_CAF_vector_Q);
}
}
delete d_fft_if;
delete d_ifft;
if (d_dump)
{
d_dump_file.close();
@ -197,14 +198,8 @@ void galileo_e5a_noncoherentIQ_acquisition_caf_cc::set_local_code(std::complex<f
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
if (is_unaligned())
{
volk_32fc_conjugate_32fc_u(d_fft_code_I_A,d_fft_if->get_outbuf(),d_fft_size);
}
else
{
volk_32fc_conjugate_32fc_a(d_fft_code_I_A,d_fft_if->get_outbuf(),d_fft_size);
}
volk_32fc_conjugate_32fc(d_fft_code_I_A,d_fft_if->get_outbuf(),d_fft_size);
// SAME FOR PILOT SIGNAL
if (d_both_signal_components == true)
{
@ -214,51 +209,32 @@ void galileo_e5a_noncoherentIQ_acquisition_caf_cc::set_local_code(std::complex<f
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
if (is_unaligned())
{
volk_32fc_conjugate_32fc_u(d_fft_code_Q_A,d_fft_if->get_outbuf(),d_fft_size);
}
else
{
volk_32fc_conjugate_32fc_a(d_fft_code_Q_A,d_fft_if->get_outbuf(),d_fft_size);
}
volk_32fc_conjugate_32fc(d_fft_code_Q_A,d_fft_if->get_outbuf(),d_fft_size);
}
// IF INTEGRATION TIME > 1 code, we need to evaluate the other possible combination
// Note: max integration time allowed = 3ms (dealt in adapter)
if (d_sampled_ms > 1)
{
// DATA CODE B: First replica is inverted (0,1,1)
volk_32fc_s32fc_multiply_32fc_a(&(d_fft_if->get_inbuf())[0],
volk_32fc_s32fc_multiply_32fc(&(d_fft_if->get_inbuf())[0],
&codeI[0], gr_complex(-1,0),
d_samples_per_code);
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
if (is_unaligned())
{
volk_32fc_conjugate_32fc_u(d_fft_code_I_B,d_fft_if->get_outbuf(),d_fft_size);
}
else
{
volk_32fc_conjugate_32fc_a(d_fft_code_I_B,d_fft_if->get_outbuf(),d_fft_size);
}
volk_32fc_conjugate_32fc(d_fft_code_I_B,d_fft_if->get_outbuf(),d_fft_size);
if (d_both_signal_components == true)
{
// PILOT CODE B: First replica is inverted (0,1,1)
volk_32fc_s32fc_multiply_32fc_a(&(d_fft_if->get_inbuf())[0],
volk_32fc_s32fc_multiply_32fc(&(d_fft_if->get_inbuf())[0],
&codeQ[0], gr_complex(-1,0),
d_samples_per_code);
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
if (is_unaligned())
{
volk_32fc_conjugate_32fc_u(d_fft_code_Q_B,d_fft_if->get_outbuf(),d_fft_size);
}
else
{
volk_32fc_conjugate_32fc_a(d_fft_code_Q_B,d_fft_if->get_outbuf(),d_fft_size);
}
volk_32fc_conjugate_32fc(d_fft_code_Q_B,d_fft_if->get_outbuf(),d_fft_size);
}
}
}
@ -284,9 +260,7 @@ void galileo_e5a_noncoherentIQ_acquisition_caf_cc::init()
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
d_fft_size * sizeof(gr_complex)) == 0){};
d_grid_doppler_wipeoffs[doppler_index] = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
int doppler = -(int)d_doppler_max + d_doppler_step*doppler_index;
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
d_freq + doppler, d_fs_in, d_fft_size);
@ -297,11 +271,11 @@ void galileo_e5a_noncoherentIQ_acquisition_caf_cc::init()
// if (d_CAF_filter)
if (d_CAF_window_hz > 0)
{
if (posix_memalign((void**)&d_CAF_vector, 16, d_num_doppler_bins * sizeof(float)) == 0){};
if (posix_memalign((void**)&d_CAF_vector_I, 16, d_num_doppler_bins * sizeof(float)) == 0){};
d_CAF_vector = (float*)volk_malloc(d_num_doppler_bins * sizeof(float), volk_get_alignment());
d_CAF_vector_I = (float*)volk_malloc(d_num_doppler_bins * sizeof(float), volk_get_alignment());
if (d_both_signal_components == true)
{
if (posix_memalign((void**)&d_CAF_vector_Q, 16, d_num_doppler_bins * sizeof(float)) == 0){};
d_CAF_vector_Q = (float*)volk_malloc(d_num_doppler_bins * sizeof(float), volk_get_alignment());
}
}
}
@ -408,18 +382,18 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
<< ", doppler_step: " << d_doppler_step;
// 1- Compute the input signal power estimation
volk_32fc_magnitude_squared_32f_a(d_magnitudeIA, d_inbuffer, d_fft_size);
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitudeIA, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitudeIA, d_inbuffer, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitudeIA, d_fft_size);
d_input_power /= (float)d_fft_size;
// 2- Doppler frequency search loop
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
// doppler search steps
doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
doppler = -(int)d_doppler_max + d_doppler_step * doppler_index;
volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), d_inbuffer,
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), d_inbuffer,
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
@ -429,46 +403,46 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
// CODE IA
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_I_A, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Search maximum
volk_32fc_magnitude_squared_32f_a(d_magnitudeIA, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u_a(&indext_IA, d_magnitudeIA, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitudeIA, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u(&indext_IA, d_magnitudeIA, d_fft_size);
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt_IA = d_magnitudeIA[indext_IA] / (fft_normalization_factor * fft_normalization_factor);
if (d_both_signal_components == true)
{
// REPEAT FOR ALL CODES. CODE_QA
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_Q_A, d_fft_size);
d_ifft->execute();
volk_32fc_magnitude_squared_32f_a(d_magnitudeQA, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u_a(&indext_QA, d_magnitudeQA, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitudeQA, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u(&indext_QA, d_magnitudeQA, d_fft_size);
magt_QA = d_magnitudeQA[indext_QA] / (fft_normalization_factor * fft_normalization_factor);
}
if (d_sampled_ms > 1) // If Integration time > 1 code
{
// REPEAT FOR ALL CODES. CODE_IB
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_I_B, d_fft_size);
d_ifft->execute();
volk_32fc_magnitude_squared_32f_a(d_magnitudeIB, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u_a(&indext_IB, d_magnitudeIB, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitudeIB, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u(&indext_IB, d_magnitudeIB, d_fft_size);
magt_IB = d_magnitudeIB[indext_IB] / (fft_normalization_factor * fft_normalization_factor);
if (d_both_signal_components == true)
{
// REPEAT FOR ALL CODES. CODE_QB
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_Q_B, d_fft_size);
d_ifft->execute();
volk_32fc_magnitude_squared_32f_a(d_magnitudeQB, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u_a(&indext_QB, d_magnitudeQB, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitudeQB, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u(&indext_QB, d_magnitudeQB, d_fft_size);
magt_QB = d_magnitudeIB[indext_QB] / (fft_normalization_factor * fft_normalization_factor);
}
}
@ -505,7 +479,7 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
}
}
}
volk_32f_index_max_16u_a(&indext, d_magnitudeIA, d_fft_size);
volk_32f_index_max_16u(&indext, d_magnitudeIA, d_fft_size);
magt = d_magnitudeIA[indext] / (fft_normalization_factor * fft_normalization_factor);
}
else
@ -534,7 +508,7 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
}
}
}
volk_32f_index_max_16u_a(&indext, d_magnitudeIB, d_fft_size);
volk_32f_index_max_16u(&indext, d_magnitudeIB, d_fft_size);
magt = d_magnitudeIB[indext] / (fft_normalization_factor * fft_normalization_factor);
}
}
@ -552,7 +526,7 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
d_magnitudeIA[i] += d_magnitudeQA[i];
}
}
volk_32f_index_max_16u_a(&indext, d_magnitudeIA, d_fft_size);
volk_32f_index_max_16u(&indext, d_magnitudeIA, d_fft_size);
magt = d_magnitudeIA[indext] / (fft_normalization_factor * fft_normalization_factor);
}
@ -610,34 +584,32 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
if (d_CAF_window_hz > 0)
{
int CAF_bins_half;
float* accum;
// double* accum;
if (posix_memalign((void**)&accum, 16, sizeof(float)) == 0){};
float* accum = (float*)volk_malloc(sizeof(float), volk_get_alignment());
CAF_bins_half = d_CAF_window_hz/(2*d_doppler_step);
float weighting_factor;
weighting_factor = 0.5/(float)CAF_bins_half;
// weighting_factor = 0;
// std::cout << "weighting_factor " << weighting_factor << std::endl;
// weighting_factor = 0;
// std::cout << "weighting_factor " << weighting_factor << std::endl;
// Initialize first iterations
for (int doppler_index=0;doppler_index<CAF_bins_half;doppler_index++)
{
d_CAF_vector[doppler_index] = 0;
// volk_32f_accumulator_s32f_a(&d_CAF_vector[doppler_index], d_CAF_vector_I, CAF_bins_half+doppler_index+1);
// volk_32f_accumulator_s32f_a(&d_CAF_vector[doppler_index], d_CAF_vector_I, CAF_bins_half+doppler_index+1);
for (int i = 0; i < CAF_bins_half+doppler_index+1; i++)
{
d_CAF_vector[doppler_index] += d_CAF_vector_I[i] * (1-weighting_factor*(unsigned int)(abs(doppler_index - i)));
}
// d_CAF_vector[doppler_index] /= CAF_bins_half+doppler_index+1;
// d_CAF_vector[doppler_index] /= CAF_bins_half+doppler_index+1;
d_CAF_vector[doppler_index] /= 1+CAF_bins_half+doppler_index - weighting_factor*CAF_bins_half*(CAF_bins_half+1)/2 - weighting_factor*doppler_index*(doppler_index+1)/2; // triangles = [n*(n+1)/2]
if (d_both_signal_components)
{
accum[0] = 0;
// volk_32f_accumulator_s32f_a(&accum[0], d_CAF_vector_Q, CAF_bins_half+doppler_index+1);
// volk_32f_accumulator_s32f_a(&accum[0], d_CAF_vector_Q, CAF_bins_half+doppler_index+1);
for (int i = 0; i < CAF_bins_half+doppler_index+1; i++)
{
accum[0] += d_CAF_vector_Q[i] * (1-weighting_factor*(unsigned int)(abs(doppler_index - i)));
}
// accum[0] /= CAF_bins_half+doppler_index+1;
// accum[0] /= CAF_bins_half+doppler_index+1;
accum[0] /= 1+CAF_bins_half+doppler_index - weighting_factor*CAF_bins_half*(CAF_bins_half+1)/2 - weighting_factor*doppler_index*(doppler_index+1)/2; // triangles = [n*(n+1)/2]
d_CAF_vector[doppler_index] += accum[0];
}
@ -646,22 +618,22 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
for (unsigned int doppler_index=CAF_bins_half;doppler_index<d_num_doppler_bins-CAF_bins_half;doppler_index++)
{
d_CAF_vector[doppler_index] = 0;
// volk_32f_accumulator_s32f_a(&d_CAF_vector[doppler_index], &d_CAF_vector_I[doppler_index-CAF_bins_half], 2*CAF_bins_half+1);
// volk_32f_accumulator_s32f_a(&d_CAF_vector[doppler_index], &d_CAF_vector_I[doppler_index-CAF_bins_half], 2*CAF_bins_half+1);
for (int i = doppler_index-CAF_bins_half; i < doppler_index+CAF_bins_half+1; i++)
{
d_CAF_vector[doppler_index] += d_CAF_vector_I[i] * (1-weighting_factor*(unsigned int)(abs(doppler_index - i)));
}
// d_CAF_vector[doppler_index] /= 2*CAF_bins_half+1;
// d_CAF_vector[doppler_index] /= 2*CAF_bins_half+1;
d_CAF_vector[doppler_index] /= 1+2*CAF_bins_half - 2*weighting_factor*CAF_bins_half*(CAF_bins_half+1)/2;
if (d_both_signal_components)
{
accum[0] = 0;
// volk_32f_accumulator_s32f_a(&accum[0], &d_CAF_vector_Q[doppler_index-CAF_bins_half], 2*CAF_bins_half);
// volk_32f_accumulator_s32f_a(&accum[0], &d_CAF_vector_Q[doppler_index-CAF_bins_half], 2*CAF_bins_half);
for (int i = doppler_index-CAF_bins_half; i < doppler_index+CAF_bins_half+1; i++)
{
accum[0] += d_CAF_vector_Q[i] * (1-weighting_factor*(unsigned int)(abs(doppler_index - i)));
}
// accum[0] /= 2*CAF_bins_half+1;
// accum[0] /= 2*CAF_bins_half+1;
accum[0] /= 1+2*CAF_bins_half - 2*weighting_factor*CAF_bins_half*(CAF_bins_half+1)/2;
d_CAF_vector[doppler_index] += accum[0];
}
@ -670,30 +642,30 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
for (unsigned int doppler_index=d_num_doppler_bins-CAF_bins_half;doppler_index<d_num_doppler_bins;doppler_index++)
{
d_CAF_vector[doppler_index] = 0;
// volk_32f_accumulator_s32f_a(&d_CAF_vector[doppler_index], &d_CAF_vector_I[doppler_index-CAF_bins_half], CAF_bins_half + (d_num_doppler_bins-doppler_index));
// volk_32f_accumulator_s32f_a(&d_CAF_vector[doppler_index], &d_CAF_vector_I[doppler_index-CAF_bins_half], CAF_bins_half + (d_num_doppler_bins-doppler_index));
for (int i = doppler_index-CAF_bins_half; i < d_num_doppler_bins; i++)
{
d_CAF_vector[doppler_index] += d_CAF_vector_I[i] * (1-weighting_factor*(abs(doppler_index - i)));
}
// d_CAF_vector[doppler_index] /= CAF_bins_half+(d_num_doppler_bins-doppler_index);
// d_CAF_vector[doppler_index] /= CAF_bins_half+(d_num_doppler_bins-doppler_index);
d_CAF_vector[doppler_index] /= 1+CAF_bins_half+(d_num_doppler_bins-doppler_index-1) -weighting_factor*CAF_bins_half*(CAF_bins_half+1)/2 -weighting_factor*(d_num_doppler_bins-doppler_index-1)*(d_num_doppler_bins-doppler_index)/2;
if (d_both_signal_components)
{
accum[0] = 0;
// volk_32f_accumulator_s32f_a(&accum[0], &d_CAF_vector_Q[doppler_index-CAF_bins_half], CAF_bins_half + (d_num_doppler_bins-doppler_index));
// volk_32f_accumulator_s32f_a(&accum[0], &d_CAF_vector_Q[doppler_index-CAF_bins_half], CAF_bins_half + (d_num_doppler_bins-doppler_index));
for (int i = doppler_index-CAF_bins_half; i < d_num_doppler_bins; i++)
{
accum[0] += d_CAF_vector_Q[i] * (1-weighting_factor*(abs(doppler_index - i)));
}
// accum[0] /= CAF_bins_half+(d_num_doppler_bins-doppler_index);
// accum[0] /= CAF_bins_half+(d_num_doppler_bins-doppler_index);
accum[0] /= 1+CAF_bins_half+(d_num_doppler_bins-doppler_index-1) -weighting_factor*CAF_bins_half*(CAF_bins_half+1)/2 -weighting_factor*(d_num_doppler_bins-doppler_index-1)*(d_num_doppler_bins-doppler_index)/2;
d_CAF_vector[doppler_index] += accum[0];
}
}
// Recompute the maximum doppler peak
volk_32f_index_max_16u_a(&indext, d_CAF_vector, d_num_doppler_bins);
doppler=-(int)d_doppler_max+d_doppler_step*indext;
volk_32f_index_max_16u(&indext, d_CAF_vector, d_num_doppler_bins);
doppler = -(int)d_doppler_max + d_doppler_step*indext;
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
// Dump if required, appended at the end of the file
if (d_dump)
@ -707,6 +679,7 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
d_dump_file.write((char*)d_CAF_vector, n);
d_dump_file.close();
}
volk_free(accum);
}
if (d_well_count == d_max_dwells)
@ -725,7 +698,7 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
d_state = 1;
}
consume_each(d_fft_size-d_buffer_count);
consume_each(d_fft_size - d_buffer_count);
d_buffer_count = 0;
break;
}
@ -745,7 +718,6 @@ int galileo_e5a_noncoherentIQ_acquisition_caf_cc::general_work(int noutput_items
d_active = false;
d_state = 0;
acquisition_message = 1;
d_channel_internal_queue->push(acquisition_message);
d_sample_counter += ninput_items[0]; // sample counter

View File

@ -79,10 +79,9 @@ galileo_pcps_8ms_acquisition_cc::galileo_pcps_8ms_acquisition_cc(
d_input_power = 0.0;
d_num_doppler_bins = 0;
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&d_fft_code_A, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_fft_code_B, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
d_fft_code_A = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_fft_code_B = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_magnitude = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
@ -101,14 +100,14 @@ galileo_pcps_8ms_acquisition_cc::~galileo_pcps_8ms_acquisition_cc()
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
free(d_grid_doppler_wipeoffs[i]);
volk_free(d_grid_doppler_wipeoffs[i]);
}
delete[] d_grid_doppler_wipeoffs;
}
free(d_fft_code_A);
free(d_fft_code_B);
free(d_magnitude);
volk_free(d_fft_code_A);
volk_free(d_fft_code_B);
volk_free(d_magnitude);
delete d_ifft;
delete d_fft_if;
@ -127,31 +126,17 @@ void galileo_pcps_8ms_acquisition_cc::set_local_code(std::complex<float> * code)
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
if (is_unaligned())
{
volk_32fc_conjugate_32fc_u(d_fft_code_A,d_fft_if->get_outbuf(),d_fft_size);
}
else
{
volk_32fc_conjugate_32fc_a(d_fft_code_A,d_fft_if->get_outbuf(),d_fft_size);
}
volk_32fc_conjugate_32fc(d_fft_code_A, d_fft_if->get_outbuf(), d_fft_size);
// code B: two replicas of a primary code; the second replica is inverted.
volk_32fc_s32fc_multiply_32fc_a(&(d_fft_if->get_inbuf())[d_samples_per_code],
volk_32fc_s32fc_multiply_32fc(&(d_fft_if->get_inbuf())[d_samples_per_code],
&code[d_samples_per_code], gr_complex(-1,0),
d_samples_per_code);
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
if (is_unaligned())
{
volk_32fc_conjugate_32fc_u(d_fft_code_B,d_fft_if->get_outbuf(),d_fft_size);
}
else
{
volk_32fc_conjugate_32fc_a(d_fft_code_B,d_fft_if->get_outbuf(),d_fft_size);
}
volk_32fc_conjugate_32fc(d_fft_code_B, d_fft_if->get_outbuf(), d_fft_size);
}
void galileo_pcps_8ms_acquisition_cc::init()
@ -173,12 +158,10 @@ void galileo_pcps_8ms_acquisition_cc::init()
// Create the carrier Doppler wipeoff signals
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
for (unsigned int doppler_index=0; doppler_index < d_num_doppler_bins; doppler_index++)
{
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
d_fft_size * sizeof(gr_complex)) == 0){};
int doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
d_grid_doppler_wipeoffs[doppler_index] = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
int doppler = -(int)d_doppler_max + d_doppler_step*doppler_index;
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
d_freq + doppler, d_fs_in, d_fft_size);
}
@ -241,18 +224,18 @@ int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
<< ", doppler_step: " << d_doppler_step;
// 1- Compute the input signal power estimation
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= (float)d_fft_size;
// 2- Doppler frequency search loop
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
// doppler search steps
doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
doppler = -(int)d_doppler_max + d_doppler_step*doppler_index;
volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), in,
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in,
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
@ -262,15 +245,15 @@ int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code A reference using SIMD operations with
// VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_A, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Search maximum
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u_a(&indext_A, d_magnitude, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u(&indext_A, d_magnitude, d_fft_size);
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt_A = d_magnitude[indext_A] / (fft_normalization_factor * fft_normalization_factor);
@ -278,15 +261,15 @@ int galileo_pcps_8ms_acquisition_cc::general_work(int noutput_items,
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code B reference using SIMD operations with
// VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_B, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Search maximum
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u_a(&indext_B, d_magnitude, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u(&indext_B, d_magnitude, d_fft_size);
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt_B = d_magnitude[indext_B] / (fft_normalization_factor * fft_normalization_factor);

View File

@ -86,9 +86,8 @@ pcps_acquisition_cc::pcps_acquisition_cc(
d_num_doppler_bins = 0;
d_bit_transition_flag = bit_transition_flag;
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
d_fft_codes = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_magnitude = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
@ -107,13 +106,13 @@ pcps_acquisition_cc::~pcps_acquisition_cc()
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
free(d_grid_doppler_wipeoffs[i]);
volk_free(d_grid_doppler_wipeoffs[i]);
}
delete[] d_grid_doppler_wipeoffs;
}
free(d_fft_codes);
free(d_magnitude);
volk_free(d_fft_codes);
volk_free(d_magnitude);
delete d_ifft;
delete d_fft_if;
@ -126,19 +125,9 @@ pcps_acquisition_cc::~pcps_acquisition_cc()
void pcps_acquisition_cc::set_local_code(std::complex<float> * code)
{
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex)*d_fft_size);
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex) * d_fft_size);
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
if (is_unaligned())
{
volk_32fc_conjugate_32fc_u(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
}
else
{
volk_32fc_conjugate_32fc_a(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
}
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
void pcps_acquisition_cc::init()
@ -160,14 +149,12 @@ void pcps_acquisition_cc::init()
// Create the carrier Doppler wipeoff signals
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
d_fft_size * sizeof(gr_complex)) == 0){};
int doppler = -(int)d_doppler_max + d_doppler_step*doppler_index;
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
d_freq + doppler, d_fs_in, d_fft_size);
d_grid_doppler_wipeoffs[doppler_index] = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
int doppler = -(int)d_doppler_max + d_doppler_step * doppler_index;
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index], d_freq + doppler, d_fs_in, d_fft_size);
}
}
@ -234,18 +221,18 @@ int pcps_acquisition_cc::general_work(int noutput_items,
<< ", doppler_step: " << d_doppler_step;
// 1- Compute the input signal power estimation
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= (float)d_fft_size;
// 2- Doppler frequency search loop
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
for (unsigned int doppler_index=0; doppler_index < d_num_doppler_bins; doppler_index++)
{
// doppler search steps
doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
doppler = -(int)d_doppler_max + d_doppler_step * doppler_index;
volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), in,
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in,
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
@ -254,15 +241,15 @@ int pcps_acquisition_cc::general_work(int noutput_items,
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Search maximum
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u_a(&indext, d_magnitude, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u(&indext, d_magnitude, d_fft_size);
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);

View File

@ -74,17 +74,16 @@ pcps_acquisition_fine_doppler_cc::pcps_acquisition_fine_doppler_cc(
d_samples_per_ms = samples_per_ms;
d_sampled_ms = sampled_ms;
d_config_doppler_max = doppler_max;
d_config_doppler_min=doppler_min;
d_config_doppler_min = doppler_min;
d_fft_size = d_sampled_ms * d_samples_per_ms;
// HS Acquisition
d_max_dwells= max_dwells;
d_gnuradio_forecast_samples=d_fft_size;
d_max_dwells = max_dwells;
d_gnuradio_forecast_samples = d_fft_size;
d_input_power = 0.0;
d_state=0;
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&d_carrier, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
d_state = 0;
d_carrier = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_fft_codes = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_magnitude = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
@ -102,33 +101,32 @@ void pcps_acquisition_fine_doppler_cc::set_doppler_step(unsigned int doppler_ste
d_doppler_step = doppler_step;
// Create the search grid array
d_num_doppler_points=floor(std::abs(d_config_doppler_max-d_config_doppler_min)/d_doppler_step);
d_num_doppler_points = floor(std::abs(d_config_doppler_max - d_config_doppler_min) / d_doppler_step);
d_grid_data=new float*[d_num_doppler_points];
for (int i=0;i<d_num_doppler_points;i++)
d_grid_data = new float*[d_num_doppler_points];
for (int i = 0; i < d_num_doppler_points; i++)
{
if (posix_memalign((void**)&d_grid_data[i], 16, d_fft_size * sizeof(float)) == 0){};
d_grid_data[i] = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
}
update_carrier_wipeoff();
}
void pcps_acquisition_fine_doppler_cc::free_grid_memory()
{
for (int i=0;i<d_num_doppler_points;i++)
for (int i = 0; i < d_num_doppler_points; i++)
{
delete[] d_grid_data[i];
volk_free(d_grid_data[i]);
delete[] d_grid_doppler_wipeoffs[i];
}
delete d_grid_data;
delete d_grid_doppler_wipeoffs;
}
pcps_acquisition_fine_doppler_cc::~pcps_acquisition_fine_doppler_cc()
{
free(d_carrier);
free(d_fft_codes);
volk_free(d_carrier);
volk_free(d_fft_codes);
volk_free(d_magnitude);
delete d_ifft;
delete d_fft_if;
if (d_dump)
@ -143,11 +141,10 @@ pcps_acquisition_fine_doppler_cc::~pcps_acquisition_fine_doppler_cc()
void pcps_acquisition_fine_doppler_cc::set_local_code(std::complex<float> * code)
{
memcpy(d_fft_if->get_inbuf(),code,sizeof(gr_complex)*d_fft_size);
memcpy(d_fft_if->get_inbuf(), code, sizeof(gr_complex) * d_fft_size);
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
volk_32fc_conjugate_32fc_a(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
void pcps_acquisition_fine_doppler_cc::init()
@ -156,7 +153,7 @@ void pcps_acquisition_fine_doppler_cc::init()
d_gnss_synchro->Acq_doppler_hz = 0.0;
d_gnss_synchro->Acq_samplestamp_samples = 0;
d_input_power = 0.0;
d_state=0;
d_state = 0;
}
@ -169,12 +166,12 @@ void pcps_acquisition_fine_doppler_cc::forecast (int noutput_items,
void pcps_acquisition_fine_doppler_cc::reset_grid()
{
d_well_count=0;
for (int i=0;i<d_num_doppler_points;i++)
d_well_count = 0;
for (int i=0; i<d_num_doppler_points; i++)
{
for (unsigned int j=0;j<d_fft_size;j++)
for (unsigned int j=0; j < d_fft_size; j++)
{
d_grid_data[i][j]=0.0;
d_grid_data[i][j] = 0.0;
}
}
}
@ -183,16 +180,15 @@ void pcps_acquisition_fine_doppler_cc::update_carrier_wipeoff()
// create the carrier Doppler wipeoff signals
int doppler_hz;
float phase_step_rad;
d_grid_doppler_wipeoffs=new gr_complex*[d_num_doppler_points];
for (int doppler_index=0;doppler_index<d_num_doppler_points;doppler_index++)
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_points];
for (int doppler_index = 0; doppler_index < d_num_doppler_points; doppler_index++)
{
doppler_hz=d_config_doppler_min+d_doppler_step*doppler_index;
doppler_hz = d_config_doppler_min + d_doppler_step*doppler_index;
// doppler search steps
// compute the carrier doppler wipe-off signal and store it
phase_step_rad = (float)GPS_TWO_PI*doppler_hz / (float)d_fs_in;
d_grid_doppler_wipeoffs[doppler_index]=new gr_complex[d_fft_size];
d_grid_doppler_wipeoffs[doppler_index] = new gr_complex[d_fft_size];
fxp_nco(d_grid_doppler_wipeoffs[doppler_index], d_fft_size,0, phase_step_rad);
}
}
@ -207,7 +203,7 @@ double pcps_acquisition_fine_doppler_cc::search_maximum()
for (int i=0;i<d_num_doppler_points;i++)
{
volk_32f_index_max_16u_a(&tmp_intex_t,d_grid_data[i],d_fft_size);
volk_32f_index_max_16u(&tmp_intex_t, d_grid_data[i], d_fft_size);
if (d_grid_data[i][tmp_intex_t] > magt)
{
magt = d_grid_data[i][tmp_intex_t];
@ -226,7 +222,7 @@ double pcps_acquisition_fine_doppler_cc::search_maximum()
// 4- record the maximum peak and the associated synchronization parameters
d_gnss_synchro->Acq_delay_samples = (double)index_time;
d_gnss_synchro->Acq_doppler_hz = (double)(index_doppler*d_doppler_step+d_config_doppler_min);
d_gnss_synchro->Acq_doppler_hz = (double)(index_doppler * d_doppler_step + d_config_doppler_min);
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
// Record results to file if required
@ -250,22 +246,12 @@ double pcps_acquisition_fine_doppler_cc::search_maximum()
float pcps_acquisition_fine_doppler_cc::estimate_input_power(gr_vector_const_void_star &input_items)
{
const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer
// 1- Compute the input signal power estimation
float power;
power=0;
if (is_unaligned())
{
volk_32fc_magnitude_squared_32f_u(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f_a(&power, d_magnitude, d_fft_size);
}
else
{
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f_a(&power, d_magnitude, d_fft_size);
}
// Compute the input signal power estimation
float power = 0;
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f(&power, d_magnitude, d_fft_size);
power /= (float)d_fft_size;
return power;
}
int pcps_acquisition_fine_doppler_cc::compute_and_accumulate_grid(gr_vector_const_void_star &input_items)
@ -282,34 +268,33 @@ int pcps_acquisition_fine_doppler_cc::compute_and_accumulate_grid(gr_vector_cons
// 2- Doppler frequency search loop
float* p_tmp_vector;
if (posix_memalign((void**)&p_tmp_vector, 16, d_fft_size * sizeof(float)) == 0){};
float* p_tmp_vector = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
for (int doppler_index=0;doppler_index<d_num_doppler_points;doppler_index++)
for (int doppler_index = 0; doppler_index < d_num_doppler_points; doppler_index++)
{
// doppler search steps
// Perform the carrier wipe-off
volk_32fc_x2_multiply_32fc_u(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
d_fft_if->execute();
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// save the grid matrix delay file
volk_32fc_magnitude_squared_32f_a(p_tmp_vector, d_ifft->get_outbuf(), d_fft_size);
const float* old_vector=d_grid_data[doppler_index];
volk_32f_x2_add_32f_u(d_grid_data[doppler_index],old_vector,p_tmp_vector,d_fft_size);
volk_32fc_magnitude_squared_32f(p_tmp_vector, d_ifft->get_outbuf(), d_fft_size);
const float* old_vector = d_grid_data[doppler_index];
volk_32f_x2_add_32f(d_grid_data[doppler_index], old_vector, p_tmp_vector, d_fft_size);
}
free(p_tmp_vector);
volk_free(p_tmp_vector);
return d_fft_size;
}
@ -317,107 +302,110 @@ int pcps_acquisition_fine_doppler_cc::estimate_Doppler(gr_vector_const_void_star
{
// Direct FFT
int zero_padding_factor=16;
int fft_size_extended=d_fft_size*zero_padding_factor;
gr::fft::fft_complex *fft_operator=new gr::fft::fft_complex(fft_size_extended,true);
int zero_padding_factor = 16;
int fft_size_extended = d_fft_size * zero_padding_factor;
gr::fft::fft_complex *fft_operator = new gr::fft::fft_complex(fft_size_extended, true);
//zero padding the entire vector
memset(fft_operator->get_inbuf(),0,fft_size_extended*sizeof(gr_complex));
memset(fft_operator->get_inbuf(), 0, fft_size_extended * sizeof(gr_complex));
//1. generate local code aligned with the acquisition code phase estimation
gr_complex *code_replica;
if (posix_memalign((void**)&code_replica, 16, d_fft_size * sizeof(gr_complex)) == 0){};
gr_complex *code_replica = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
gps_l1_ca_code_gen_complex_sampled(code_replica, d_gnss_synchro->PRN, d_fs_in, 0);
int shift_index=(int)d_gnss_synchro->Acq_delay_samples;
int shift_index = (int)d_gnss_synchro->Acq_delay_samples;
//std::cout<<"shift_index="<<shift_index<<std::endl;
// Rotate to align the local code replica using acquisition time delay estimation
if (shift_index!=0)
if (shift_index != 0)
{
std::rotate(code_replica,code_replica+(d_fft_size-shift_index),code_replica+d_fft_size-1);
std::rotate(code_replica, code_replica + (d_fft_size - shift_index), code_replica + d_fft_size - 1);
}
//2. Perform code wipe-off
const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer
volk_32fc_x2_multiply_32fc_u(fft_operator->get_inbuf(), in, code_replica, d_fft_size);
volk_32fc_x2_multiply_32fc(fft_operator->get_inbuf(), in, code_replica, d_fft_size);
// 3. Perform the FFT (zero padded!)
fft_operator->execute();
// 4. Compute the magnitude and find the maximum
float* p_tmp_vector;
if (posix_memalign((void**)&p_tmp_vector, 16, fft_size_extended * sizeof(float)) == 0){};
float* p_tmp_vector = (float*)volk_malloc(fft_size_extended * sizeof(float), volk_get_alignment());
volk_32fc_magnitude_squared_32f_a(p_tmp_vector, fft_operator->get_outbuf(), fft_size_extended);
volk_32fc_magnitude_squared_32f(p_tmp_vector, fft_operator->get_outbuf(), fft_size_extended);
unsigned int tmp_index_freq=0;
volk_32f_index_max_16u_a(&tmp_index_freq,p_tmp_vector,fft_size_extended);
unsigned int tmp_index_freq = 0;
volk_32f_index_max_16u(&tmp_index_freq,p_tmp_vector,fft_size_extended);
//std::cout<<"FFT maximum index present at "<<tmp_index_freq<<std::endl;
//case even
int counter=0;
int counter = 0;
float fftFreqBins[fft_size_extended];
for (int k=0;k<(fft_size_extended/2);k++)
for (int k=0; k < (fft_size_extended / 2); k++)
{
fftFreqBins[counter]=(((float)d_fs_in/2.0)*(float)k)/((float)fft_size_extended/2.0);
fftFreqBins[counter] = (((float)d_fs_in / 2.0) * (float)k) / ((float)fft_size_extended / 2.0);
counter++;
}
for (int k=fft_size_extended/2;k>0;k--)
for (int k = fft_size_extended / 2; k > 0; k--)
{
fftFreqBins[counter]=((-(float)d_fs_in/2)*(float)k)/((float)fft_size_extended/2.0);
fftFreqBins[counter] = ((-(float)d_fs_in / 2) * (float)k) / ((float)fft_size_extended / 2.0);
counter++;
}
// 5. Update the Doppler estimation in Hz
if (abs(fftFreqBins[tmp_index_freq]-d_gnss_synchro->Acq_doppler_hz)<1000)
if (abs(fftFreqBins[tmp_index_freq] - d_gnss_synchro->Acq_doppler_hz) < 1000)
{
d_gnss_synchro->Acq_doppler_hz=(double)fftFreqBins[tmp_index_freq];
d_gnss_synchro->Acq_doppler_hz = (double)fftFreqBins[tmp_index_freq];
//std::cout<<"FFT maximum present at "<<fftFreqBins[tmp_index_freq]<<" [Hz]"<<std::endl;
}else{
DLOG(INFO)<<"Abs(Grid Doppler - FFT Doppler)="<<abs(fftFreqBins[tmp_index_freq]-d_gnss_synchro->Acq_doppler_hz)<<std::endl;
DLOG(INFO)<<std::endl<<"Error estimating fine frequency Doppler"<<std::endl;
}
else
{
DLOG(INFO) << "Abs(Grid Doppler - FFT Doppler)=" << abs(fftFreqBins[tmp_index_freq] - d_gnss_synchro->Acq_doppler_hz);
DLOG(INFO) << "Error estimating fine frequency Doppler";
//debug log
//
// std::cout<<"FFT maximum present at "<<fftFreqBins[tmp_index_freq]<<" [Hz]"<<std::endl;
// std::stringstream filename;
// std::streamsize n = sizeof(gr_complex) * (d_fft_size);
//
// filename.str("");
// filename << "../data/code_prn_" << d_gnss_synchro->PRN << ".dat";
// d_dump_file.open(filename.str().c_str(), std::ios::out
// | std::ios::binary);
// d_dump_file.write((char*)code_replica, n); //write directly |abs(x)|^2 in this Doppler bin?
// d_dump_file.close();
//
// filename.str("");
// filename << "../data/signal_prn_" << d_gnss_synchro->PRN << ".dat";
// d_dump_file.open(filename.str().c_str(), std::ios::out
// | std::ios::binary);
// d_dump_file.write((char*)in, n); //write directly |abs(x)|^2 in this Doppler bin?
// d_dump_file.close();
//
//
// n = sizeof(float) * (fft_size_extended);
// filename.str("");
// filename << "../data/fft_prn_" << d_gnss_synchro->PRN << ".dat";
// d_dump_file.open(filename.str().c_str(), std::ios::out
// | std::ios::binary);
// d_dump_file.write((char*)p_tmp_vector, n); //write directly |abs(x)|^2 in this Doppler bin?
// d_dump_file.close();
//
// std::cout<<"FFT maximum present at "<<fftFreqBins[tmp_index_freq]<<" [Hz]"<<std::endl;
// std::stringstream filename;
// std::streamsize n = sizeof(gr_complex) * (d_fft_size);
//
// filename.str("");
// filename << "../data/code_prn_" << d_gnss_synchro->PRN << ".dat";
// d_dump_file.open(filename.str().c_str(), std::ios::out
// | std::ios::binary);
// d_dump_file.write((char*)code_replica, n); //write directly |abs(x)|^2 in this Doppler bin?
// d_dump_file.close();
//
// filename.str("");
// filename << "../data/signal_prn_" << d_gnss_synchro->PRN << ".dat";
// d_dump_file.open(filename.str().c_str(), std::ios::out
// | std::ios::binary);
// d_dump_file.write((char*)in, n); //write directly |abs(x)|^2 in this Doppler bin?
// d_dump_file.close();
//
//
// n = sizeof(float) * (fft_size_extended);
// filename.str("");
// filename << "../data/fft_prn_" << d_gnss_synchro->PRN << ".dat";
// d_dump_file.open(filename.str().c_str(), std::ios::out
// | std::ios::binary);
// d_dump_file.write((char*)p_tmp_vector, n); //write directly |abs(x)|^2 in this Doppler bin?
// d_dump_file.close();
}
// free memory!!
delete fft_operator;
free(code_replica);
free(p_tmp_vector);
volk_free(code_replica);
volk_free(p_tmp_vector);
return d_fft_size;
}
int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
@ -441,30 +429,32 @@ int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
{
case 0: // S0. StandBy
//DLOG(INFO) <<"S0"<<std::endl;
if (d_active==true)
if (d_active == true)
{
reset_grid();
d_state=1;
d_state = 1;
}
break;
case 1: // S1. ComputeGrid
//DLOG(INFO) <<"S1"<<std::endl;
compute_and_accumulate_grid(input_items);
d_well_count++;
if (d_well_count>=d_max_dwells)
if (d_well_count >= d_max_dwells)
{
d_state=2;
d_state = 2;
}
break;
case 2: // Compute test statistics and decide
//DLOG(INFO) <<"S2"<<std::endl;
d_input_power=estimate_input_power(input_items);
d_test_statistics=search_maximum();
d_input_power = estimate_input_power(input_items);
d_test_statistics = search_maximum();
if (d_test_statistics > d_threshold)
{
d_state=3; //perform fine doppler estimation
}else{
d_state=5; //negative acquisition
d_state = 3; //perform fine doppler estimation
}
else
{
d_state = 5; //negative acquisition
}
break;
@ -474,7 +464,7 @@ int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
//DLOG(INFO) <<"S3"<<std::endl;
DLOG(INFO) << "Performing fine Doppler estimation";
estimate_Doppler(input_items, ninput_items[0]); //disabled in repo
d_state=4;
d_state = 4;
break;
case 4: // Positive_Acq
//DLOG(INFO) <<"S4"<<std::endl;
@ -490,7 +480,7 @@ int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
d_active = false;
// Send message to channel queue //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
d_channel_internal_queue->push(1); // 1-> positive acquisition
d_state=0;
d_state = 0;
break;
case 5: // Negative_Acq
//DLOG(INFO) <<"S5"<<std::endl;
@ -506,10 +496,10 @@ int pcps_acquisition_fine_doppler_cc::general_work(int noutput_items,
d_active = false;
// Send message to channel queue //0=STOP_CHANNEL 1=ACQ_SUCCEES 2=ACQ_FAIL
d_channel_internal_queue->push(2); // 2-> negative acquisition
d_state=0;
d_state = 0;
break;
default:
d_state=0;
d_state = 0;
break;
}

View File

@ -82,9 +82,8 @@ pcps_assisted_acquisition_cc::pcps_assisted_acquisition_cc(
d_input_power = 0.0;
d_state = 0;
d_disable_assist = false;
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&d_carrier, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
d_fft_codes = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_carrier = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
@ -120,8 +119,8 @@ void pcps_assisted_acquisition_cc::free_grid_memory()
pcps_assisted_acquisition_cc::~pcps_assisted_acquisition_cc()
{
free(d_carrier);
free(d_fft_codes);
volk_free(d_carrier);
volk_free(d_fft_codes);
delete d_ifft;
delete d_fft_if;
if (d_dump)
@ -150,7 +149,7 @@ void pcps_assisted_acquisition_cc::init()
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
volk_32fc_conjugate_32fc_a(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
@ -214,7 +213,7 @@ void pcps_assisted_acquisition_cc::redefine_grid()
d_doppler_min = d_config_doppler_min;
}
// Create the search grid array
d_num_doppler_points = floor(std::abs(d_doppler_max-d_doppler_min)/d_doppler_step);
d_num_doppler_points = floor(std::abs(d_doppler_max - d_doppler_min) / d_doppler_step);
d_grid_data = new float*[d_num_doppler_points];
for (int i = 0; i < d_num_doppler_points; i++)
@ -293,14 +292,14 @@ float pcps_assisted_acquisition_cc::estimate_input_power(gr_vector_const_void_st
{
const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer
// 1- Compute the input signal power estimation
float* p_tmp_vector;
if (posix_memalign((void**)&p_tmp_vector, 16, d_fft_size * sizeof(float)) == 0){};
volk_32fc_magnitude_squared_32f_u(p_tmp_vector, in, d_fft_size);
float* p_tmp_vector = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
volk_32fc_magnitude_squared_32f(p_tmp_vector, in, d_fft_size);
const float* p_const_tmp_vector = p_tmp_vector;
float power;
volk_32f_accumulator_s32f_a(&power, p_const_tmp_vector, d_fft_size);
free(p_tmp_vector);
volk_32f_accumulator_s32f(&power, p_const_tmp_vector, d_fft_size);
volk_free(p_tmp_vector);
return ( power / (float)d_fft_size);
}
@ -319,33 +318,35 @@ int pcps_assisted_acquisition_cc::compute_and_accumulate_grid(gr_vector_const_vo
<< ", doppler_step: " << d_doppler_step;
// 2- Doppler frequency search loop
float* p_tmp_vector;
if (posix_memalign((void**)&p_tmp_vector, 16, d_fft_size * sizeof(float)) == 0){};
float* p_tmp_vector = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
for (int doppler_index = 0; doppler_index < d_num_doppler_points; doppler_index++)
{
// doppler search steps
// Perform the carrier wipe-off
volk_32fc_x2_multiply_32fc_u(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in, d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
// Compute the FFT of the carrier wiped--off incoming signal
d_fft_if->execute();
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(), d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// save the grid matrix delay file
volk_32fc_magnitude_squared_32f_a(p_tmp_vector, d_ifft->get_outbuf(), d_fft_size);
volk_32fc_magnitude_squared_32f(p_tmp_vector, d_ifft->get_outbuf(), d_fft_size);
const float* old_vector = d_grid_data[doppler_index];
volk_32f_x2_add_32f_a(d_grid_data[doppler_index], old_vector, p_tmp_vector, d_fft_size);
volk_32f_x2_add_32f(d_grid_data[doppler_index], old_vector, p_tmp_vector, d_fft_size);
}
free(p_tmp_vector);
volk_free(p_tmp_vector);
return d_fft_size;
}
int pcps_assisted_acquisition_cc::general_work(int noutput_items,
gr_vector_int &ninput_items, gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

View File

@ -86,14 +86,13 @@ pcps_cccwsr_acquisition_cc::pcps_cccwsr_acquisition_cc(
d_input_power = 0.0;
d_num_doppler_bins = 0;
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&d_fft_code_data, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_fft_code_pilot, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_data_correlation, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_pilot_correlation, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_correlation_plus, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_correlation_minus, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
d_fft_code_data = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_fft_code_pilot = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_data_correlation = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_pilot_correlation = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_correlation_plus = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_correlation_minus = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_magnitude = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
@ -112,18 +111,18 @@ pcps_cccwsr_acquisition_cc::~pcps_cccwsr_acquisition_cc()
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
free(d_grid_doppler_wipeoffs[i]);
volk_free(d_grid_doppler_wipeoffs[i]);
}
delete[] d_grid_doppler_wipeoffs;
}
free(d_fft_code_data);
free(d_fft_code_pilot);
free(d_data_correlation);
free(d_pilot_correlation);
free(d_correlation_plus);
free(d_correlation_minus);
free(d_magnitude);
volk_free(d_fft_code_data);
volk_free(d_fft_code_pilot);
volk_free(d_data_correlation);
volk_free(d_pilot_correlation);
volk_free(d_correlation_plus);
volk_free(d_correlation_minus);
volk_free(d_magnitude);
delete d_ifft;
delete d_fft_if;
@ -134,8 +133,8 @@ pcps_cccwsr_acquisition_cc::~pcps_cccwsr_acquisition_cc()
}
}
void pcps_cccwsr_acquisition_cc::set_local_code(std::complex<float> * code_data,
std::complex<float> * code_pilot)
void pcps_cccwsr_acquisition_cc::set_local_code(std::complex<float>* code_data,
std::complex<float>* code_pilot)
{
// Data code (E1B)
memcpy(d_fft_if->get_inbuf(), code_data, sizeof(gr_complex)*d_fft_size);
@ -143,14 +142,7 @@ void pcps_cccwsr_acquisition_cc::set_local_code(std::complex<float> * code_data,
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
if (is_unaligned())
{
volk_32fc_conjugate_32fc_u(d_fft_code_data,d_fft_if->get_outbuf(),d_fft_size);
}
else
{
volk_32fc_conjugate_32fc_a(d_fft_code_data,d_fft_if->get_outbuf(),d_fft_size);
}
volk_32fc_conjugate_32fc(d_fft_code_data,d_fft_if->get_outbuf(),d_fft_size);
// Pilot code (E1C)
memcpy(d_fft_if->get_inbuf(), code_pilot, sizeof(gr_complex)*d_fft_size);
@ -158,14 +150,7 @@ void pcps_cccwsr_acquisition_cc::set_local_code(std::complex<float> * code_data,
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code,
if (is_unaligned())
{
volk_32fc_conjugate_32fc_u(d_fft_code_pilot,d_fft_if->get_outbuf(),d_fft_size);
}
else
{
volk_32fc_conjugate_32fc_a(d_fft_code_pilot,d_fft_if->get_outbuf(),d_fft_size);
}
volk_32fc_conjugate_32fc(d_fft_code_pilot,d_fft_if->get_outbuf(),d_fft_size);
}
void pcps_cccwsr_acquisition_cc::init()
@ -187,12 +172,11 @@ void pcps_cccwsr_acquisition_cc::init()
// Create the carrier Doppler wipeoff signals
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
d_fft_size * sizeof(gr_complex)) == 0){};
d_grid_doppler_wipeoffs[doppler_index] = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
int doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
int doppler = -(int)d_doppler_max + d_doppler_step*doppler_index;
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
d_freq + doppler, d_fs_in, d_fft_size);
}
@ -252,18 +236,18 @@ int pcps_cccwsr_acquisition_cc::general_work(int noutput_items,
<< ", doppler_step: " << d_doppler_step;
// 1- Compute the input signal power estimation
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= (float)d_fft_size;
// 2- Doppler frequency search loop
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
// doppler search steps
doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
doppler = -(int)d_doppler_max + d_doppler_step * doppler_index;
volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), in,
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in,
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
@ -273,7 +257,7 @@ int pcps_cccwsr_acquisition_cc::general_work(int noutput_items,
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd data code reference (E1B) using SIMD operations
// with VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_data, d_fft_size);
// compute the inverse FFT
@ -286,7 +270,7 @@ int pcps_cccwsr_acquisition_cc::general_work(int noutput_items,
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd pilot code reference (E1C) using SIMD operations
// with VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_code_pilot, d_fft_size);
// Compute the inverse FFT
@ -307,12 +291,12 @@ int pcps_cccwsr_acquisition_cc::general_work(int noutput_items,
d_data_correlation[i].imag() - d_pilot_correlation[i].real());
}
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_correlation_plus, d_fft_size);
volk_32f_index_max_16u_a(&indext_plus, d_magnitude, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitude, d_correlation_plus, d_fft_size);
volk_32f_index_max_16u(&indext_plus, d_magnitude, d_fft_size);
magt_plus = d_magnitude[indext_plus] / (fft_normalization_factor * fft_normalization_factor);
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_correlation_minus, d_fft_size);
volk_32f_index_max_16u_a(&indext_minus, d_magnitude, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitude, d_correlation_minus, d_fft_size);
volk_32f_index_max_16u(&indext_minus, d_magnitude, d_fft_size);
magt_minus = d_magnitude[indext_minus] / (fft_normalization_factor * fft_normalization_factor);
if (magt_plus >= magt_minus)

View File

@ -92,12 +92,10 @@ pcps_multithread_acquisition_cc::pcps_multithread_acquisition_cc(
//todo: do something if posix_memalign fails
for (unsigned int i = 0; i < d_max_dwells; i++)
{
if (posix_memalign((void**)&d_in_buffer[i], 16,
d_fft_size * sizeof(gr_complex)) == 0){};
d_in_buffer[i] = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
}
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
d_fft_codes = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_magnitude = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
@ -116,19 +114,19 @@ pcps_multithread_acquisition_cc::~pcps_multithread_acquisition_cc()
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
free(d_grid_doppler_wipeoffs[i]);
volk_free(d_grid_doppler_wipeoffs[i]);
}
delete[] d_grid_doppler_wipeoffs;
}
for (unsigned int i = 0; i < d_max_dwells; i++)
{
free(d_in_buffer[i]);
volk_free(d_in_buffer[i]);
}
delete[] d_in_buffer;
free(d_fft_codes);
free(d_magnitude);
volk_free(d_fft_codes);
volk_free(d_magnitude);
delete d_ifft;
delete d_fft_if;
@ -160,10 +158,9 @@ void pcps_multithread_acquisition_cc::init()
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
{
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
d_fft_size * sizeof(gr_complex)) == 0){};
d_grid_doppler_wipeoffs[doppler_index] = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
int doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
int doppler = -(int)d_doppler_max + d_doppler_step*doppler_index;
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
d_freq + doppler, d_fs_in, d_fft_size);
}
@ -176,14 +173,7 @@ void pcps_multithread_acquisition_cc::set_local_code(std::complex<float> * code)
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
if (is_unaligned())
{
volk_32fc_conjugate_32fc_u(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
}
else
{
volk_32fc_conjugate_32fc_a(d_fft_codes,d_fft_if->get_outbuf(),d_fft_size);
}
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
void pcps_multithread_acquisition_cc::acquisition_core()
@ -208,18 +198,18 @@ void pcps_multithread_acquisition_cc::acquisition_core()
<< ", doppler_step: " << d_doppler_step;
// 1- Compute the input signal power estimation
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= (float)d_fft_size;
// 2- Doppler frequency search loop
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
// doppler search steps
doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
doppler = -(int)d_doppler_max + d_doppler_step*doppler_index;
volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), in,
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in,
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
@ -228,15 +218,15 @@ void pcps_multithread_acquisition_cc::acquisition_core()
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Search maximum
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u_a(&indext, d_magnitude, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u(&indext, d_magnitude, d_fft_size);
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);

View File

@ -114,17 +114,13 @@ pcps_opencl_acquisition_cc::pcps_opencl_acquisition_cc(
d_cl_fft_batch_size = 1;
d_in_buffer = new gr_complex*[d_max_dwells];
//todo: do something if posix_memalign fails
for (unsigned int i = 0; i < d_max_dwells; i++)
{
if (posix_memalign((void**)&d_in_buffer[i], 16,
d_fft_size * sizeof(gr_complex)) == 0){};
d_in_buffer[i] = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
}
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size_pow2 * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_zero_vector, 16, (d_fft_size_pow2-d_fft_size) * sizeof(gr_complex)) == 0){};
d_magnitude = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
d_fft_codes = (gr_complex*)volk_malloc(d_fft_size_pow2 * sizeof(gr_complex), volk_get_alignment());
d_zero_vector = (gr_complex*)volk_malloc((d_fft_size_pow2 - d_fft_size) * sizeof(gr_complex), volk_get_alignment());
for (unsigned int i = 0; i < (d_fft_size_pow2-d_fft_size); i++)
{
@ -156,20 +152,20 @@ pcps_opencl_acquisition_cc::~pcps_opencl_acquisition_cc()
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
free(d_grid_doppler_wipeoffs[i]);
volk_free(d_grid_doppler_wipeoffs[i]);
}
delete[] d_grid_doppler_wipeoffs;
}
for (unsigned int i = 0; i < d_max_dwells; i++)
{
free(d_in_buffer[i]);
volk_free(d_in_buffer[i]);
}
delete[] d_in_buffer;
free(d_fft_codes);
free(d_magnitude);
free(d_zero_vector);
volk_free(d_fft_codes);
volk_free(d_magnitude);
volk_free(d_zero_vector);
if (d_opencl == 0)
{
@ -318,8 +314,7 @@ void pcps_opencl_acquisition_cc::init()
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
d_fft_size * sizeof(gr_complex)) == 0){};
d_grid_doppler_wipeoffs[doppler_index] = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
int doppler= -(int)d_doppler_max + d_doppler_step*doppler_index;
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
@ -376,14 +371,7 @@ void pcps_opencl_acquisition_cc::set_local_code(std::complex<float> * code)
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
if (is_unaligned())
{
volk_32fc_conjugate_32fc_u(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
else
{
volk_32fc_conjugate_32fc_a(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
}
@ -409,19 +397,17 @@ void pcps_opencl_acquisition_cc::acquisition_core_volk()
<< ", doppler_step: " << d_doppler_step;
// 1- Compute the input signal power estimation
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= (float)d_fft_size;
// 2- Doppler frequency search loop
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
// doppler search steps
doppler = -(int)d_doppler_max + d_doppler_step*doppler_index;
volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), in,
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in,
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
@ -430,15 +416,15 @@ void pcps_opencl_acquisition_cc::acquisition_core_volk()
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Search maximum
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u_a(&indext, d_magnitude, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
volk_32f_index_max_16u(&indext, d_magnitude, d_fft_size);
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);
@ -543,8 +529,8 @@ void pcps_opencl_acquisition_cc::acquisition_core_opencl()
<< ", doppler_step: " << d_doppler_step;
// 1- Compute the input signal power estimation
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= (float)d_fft_size;
cl::Kernel kernel;
@ -600,7 +586,7 @@ void pcps_opencl_acquisition_cc::acquisition_core_opencl()
// Search maximum
// @TODO: find an efficient way to search the maximum with OpenCL in the GPU.
volk_32f_index_max_16u_a(&indext, d_magnitude, d_fft_size);
volk_32f_index_max_16u(&indext, d_magnitude, d_fft_size);
// Normalize the maximum value to correct the scale factor introduced by FFTW
magt = d_magnitude[indext] / (fft_normalization_factor * fft_normalization_factor);

View File

@ -97,11 +97,9 @@ pcps_quicksync_acquisition_cc::pcps_quicksync_acquisition_cc(
//fft size is reduced.
d_fft_size = (d_samples_per_code) / d_folding_factor;
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitude, 16, d_samples_per_code * d_folding_factor * sizeof(float)) == 0){};
if (posix_memalign((void**)&d_magnitude_folded, 16, d_fft_size * sizeof(float)) == 0){};
d_fft_codes = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_magnitude = (float*)volk_malloc(d_samples_per_code * d_folding_factor * sizeof(float), volk_get_alignment());
d_magnitude_folded = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
d_possible_delay = new unsigned int[d_folding_factor];
d_corr_output_f = new float[d_folding_factor];
@ -110,7 +108,6 @@ pcps_quicksync_acquisition_cc::pcps_quicksync_acquisition_cc(
original form to perform later correlation in time domain*/
d_code = new gr_complex[d_samples_per_code]();
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
// Inverse FFT
@ -130,25 +127,20 @@ pcps_quicksync_acquisition_cc::~pcps_quicksync_acquisition_cc()
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
free(d_grid_doppler_wipeoffs[i]);
volk_free(d_grid_doppler_wipeoffs[i]);
}
delete[] d_grid_doppler_wipeoffs;
}
free(d_fft_codes);
free(d_magnitude);
free(d_magnitude_folded);
volk_free(d_fft_codes);
volk_free(d_magnitude);
volk_free(d_magnitude_folded);
delete d_ifft;
d_ifft = NULL;
delete d_fft_if;
d_fft_if = NULL;
delete d_code;
d_code = NULL;
delete d_possible_delay;
d_possible_delay = NULL;
delete d_corr_output_f;
d_corr_output_f = NULL;
if (d_dump)
{
d_dump_file.close();
@ -156,11 +148,9 @@ pcps_quicksync_acquisition_cc::~pcps_quicksync_acquisition_cc()
// DLOG(INFO) << "END DESTROYER";
}
void pcps_quicksync_acquisition_cc::set_local_code(std::complex<float> * code)
{
// DLOG(INFO) << "START LOCAL CODE";
/*save a local copy of the code without the folding process to perform corre-
lation in time in the final steps of the acquisition stage*/
memcpy(d_code, code, sizeof(gr_complex)*d_samples_per_code);
@ -182,16 +172,7 @@ void pcps_quicksync_acquisition_cc::set_local_code(std::complex<float> * code)
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
if (is_unaligned())
{
volk_32fc_conjugate_32fc_u(d_fft_codes,d_fft_if->get_outbuf(), d_fft_size);
}
else
{
volk_32fc_conjugate_32fc_a(d_fft_codes,d_fft_if->get_outbuf(), d_fft_size);
}
// DLOG(INFO) << "END LOCAL CODE";
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
void pcps_quicksync_acquisition_cc::init()
@ -216,10 +197,8 @@ void pcps_quicksync_acquisition_cc::init()
d_grid_doppler_wipeoffs = new gr_complex*[d_num_doppler_bins];
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
d_samples_per_code * d_folding_factor * sizeof(gr_complex)) == 0){};
int doppler = -(int)d_doppler_max + d_doppler_step*doppler_index;
d_grid_doppler_wipeoffs[doppler_index] = (gr_complex*)volk_malloc(d_samples_per_code * d_folding_factor * sizeof(gr_complex), volk_get_alignment());
int doppler = -(int)d_doppler_max + d_doppler_step * doppler_index;
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
d_freq + doppler, d_fs_in,
d_samples_per_code * d_folding_factor);
@ -278,22 +257,16 @@ int pcps_quicksync_acquisition_cc::general_work(int noutput_items,
float magt = 0.0;
const gr_complex *in = (const gr_complex *)input_items[0]; //Get the input samples pointer
gr_complex *in_temp;
if (posix_memalign((void**)&(in_temp), 16,d_samples_per_code * d_folding_factor * sizeof(gr_complex)) == 0){};
gr_complex *in_temp_folded;
if (posix_memalign((void**)&(in_temp_folded), 16,d_fft_size * sizeof(gr_complex)) == 0){};
gr_complex *in_temp = (gr_complex*)volk_malloc(d_samples_per_code * d_folding_factor * sizeof(gr_complex), volk_get_alignment());
gr_complex *in_temp_folded = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
/*Create a signal to store a signal of size 1ms, to perform correlation
in time. No folding on this data is required*/
gr_complex *in_1code;
if (posix_memalign((void**)&(in_1code), 16,d_samples_per_code * sizeof(gr_complex)) == 0){};
gr_complex *in_1code = (gr_complex*)volk_malloc(d_samples_per_code * sizeof(gr_complex), volk_get_alignment());
/*Stores the values of the correlation output between the local code
and the signal with doppler shift corrected */
gr_complex *corr_output;
if (posix_memalign((void**)&(corr_output), 16,d_samples_per_code * sizeof(gr_complex)) == 0){};
gr_complex *corr_output = (gr_complex*)volk_malloc(d_samples_per_code * sizeof(gr_complex), volk_get_alignment());
/*Stores a copy of the folded version of the signal.This is used for
the FFT operations in future steps of excecution*/
@ -322,30 +295,27 @@ int pcps_quicksync_acquisition_cc::general_work(int noutput_items,
/* 1- Compute the input signal power estimation. This operation is
being performed in a signal of size nxp */
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_samples_per_code * d_folding_factor);
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_samples_per_code * d_folding_factor);
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_samples_per_code * d_folding_factor);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_samples_per_code * d_folding_factor);
d_input_power /= (float)(d_samples_per_code * d_folding_factor);
for (unsigned int doppler_index=0;doppler_index<d_num_doppler_bins;doppler_index++)
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
/*Ensure that the signal is going to start with all samples
at zero. This is done to avoid over acumulation when performing
the folding process to be stored in d_fft_if->get_inbuf()*/
d_signal_folded = new gr_complex[d_fft_size]();
memcpy( d_fft_if->get_inbuf(),d_signal_folded,
sizeof(gr_complex)*(d_fft_size));
memcpy( d_fft_if->get_inbuf(), d_signal_folded, sizeof(gr_complex) * (d_fft_size));
/*Doppler search steps and then multiplication of the incoming
signal with the doppler wipeoffs to eliminate frequency offset
*/
doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
doppler = -(int)d_doppler_max + d_doppler_step*doppler_index;
/*Perform multiplication of the incoming signal with the
complex exponential vector. This removes the frequency doppler
shift offset*/
volk_32fc_x2_multiply_32fc_a(in_temp, in,
volk_32fc_x2_multiply_32fc(in_temp, in,
d_grid_doppler_wipeoffs[doppler_index],
d_samples_per_code * d_folding_factor);
@ -354,8 +324,8 @@ int pcps_quicksync_acquisition_cc::general_work(int noutput_items,
incoming raw data signal is of d_folding_factor^2*/
for ( int i = 0; i < (int)(d_folding_factor*d_folding_factor); i++)
{
std::transform ((in_temp+i*d_fft_size),
(in_temp+((i+1)*d_fft_size)) ,
std::transform ((in_temp + i * d_fft_size),
(in_temp + ((i + 1) * d_fft_size)) ,
d_fft_if->get_inbuf(),
d_fft_if->get_inbuf(),
std::plus<gr_complex>());
@ -368,7 +338,7 @@ int pcps_quicksync_acquisition_cc::general_work(int noutput_items,
/*Multiply carrier wiped--off, Fourier transformed incoming
signal with the local FFT'd code reference using SIMD
operations with VOLK library*/
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
/* compute the inverse FFT of the aliased signal*/
@ -376,14 +346,14 @@ int pcps_quicksync_acquisition_cc::general_work(int noutput_items,
/* Compute the magnitude and get the maximum value with its
index position*/
volk_32fc_magnitude_squared_32f_a(d_magnitude_folded,
volk_32fc_magnitude_squared_32f(d_magnitude_folded,
d_ifft->get_outbuf(), d_fft_size);
/* Normalize the maximum value to correct the scale factor
introduced by FFTW*/
//volk_32f_s32f_multiply_32f_a(d_magnitude_folded,d_magnitude_folded,
// (1 / (fft_normalization_factor * fft_normalization_factor)), d_fft_size);
volk_32f_index_max_16u_a(&indext, d_magnitude_folded, d_fft_size);
volk_32f_index_max_16u(&indext, d_magnitude_folded, d_fft_size);
magt = d_magnitude_folded[indext]/ (fft_normalization_factor * fft_normalization_factor);
@ -415,7 +385,7 @@ int pcps_quicksync_acquisition_cc::general_work(int noutput_items,
for (int i = 0; i < (int)d_folding_factor; i++)
{
d_possible_delay[i]= detected_delay_samples_folded+
d_possible_delay[i] = detected_delay_samples_folded +
(i)*d_fft_size;
}
@ -432,52 +402,33 @@ int pcps_quicksync_acquisition_cc::general_work(int noutput_items,
effect corrected and accumulates its value. This
is indeed correlation in time for an specific value
of a shift*/
volk_32fc_x2_multiply_32fc_a(corr_output, in_1code,
volk_32fc_x2_multiply_32fc(corr_output, in_1code,
d_code, d_samples_per_code);
for(int j=0; j < (d_samples_per_code); j++)
for(int j = 0; j < d_samples_per_code; j++)
{
complex_acumulator[i] += (corr_output[j]);
}
}
/*Obtain maximun value of correlation given the
possible delay selected */
volk_32fc_magnitude_squared_32f_a(d_corr_output_f,
complex_acumulator, d_folding_factor);
volk_32f_index_max_16u_a(&indext, d_corr_output_f,
d_folding_factor);
/*Obtain maximun value of correlation given the possible delay selected */
volk_32fc_magnitude_squared_32f(d_corr_output_f, complex_acumulator, d_folding_factor);
volk_32f_index_max_16u(&indext, d_corr_output_f, d_folding_factor);
/*Now save the real code phase in the gnss_syncro
block for use in other stages*/
d_gnss_synchro->Acq_delay_samples = (double)
(d_possible_delay[indext]);
/*Now save the real code phase in the gnss_syncro block for use in other stages*/
d_gnss_synchro->Acq_delay_samples = (double)(d_possible_delay[indext]);
d_gnss_synchro->Acq_doppler_hz = (double)doppler;
d_gnss_synchro->Acq_samplestamp_samples = d_sample_counter;
/* 5- Compute the test statistics and compare to the threshold
d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;*/
/* 5- Compute the test statistics and compare to the threshold d_test_statistics = 2 * d_fft_size * d_mag / d_input_power;*/
d_test_statistics = d_mag / d_input_power;
//delete complex_acumulator;
}
}
// Record results to file if required
if (d_dump)
{
/*
std::stringstream filename;
std::streamsize n = 2 * sizeof(float) * (d_fft_size); // complex file write
filename.str("");
filename << "../data/test_statistics_" << d_gnss_synchro->System
<<"_" << d_gnss_synchro->Signal << "_sat_"
<< d_gnss_synchro->PRN << "_doppler_" << doppler << ".dat";
d_dump_file.open(filename.str().c_str(), std::ios::out | std::ios::binary);
d_dump_file.write((char*)d_ifft->get_outbuf(), n); //write directly |abs(x)|^2 in this Doppler bin?
d_dump_file.close();
*/
/*Since QuickSYnc performs a folded correlation in frequency by means
of the FFT, it is esential to also keep the values obtained from the
possible delay to show how it is maximize*/
@ -524,11 +475,9 @@ int pcps_quicksync_acquisition_cc::general_work(int noutput_items,
consume_each(1);
delete d_code_folded;
d_code_folded = NULL;
free(in_temp);
free(in_1code);
free(corr_output);
volk_free(in_temp);
volk_free(in_1code);
volk_free(corr_output);
break;
}

View File

@ -99,9 +99,8 @@ pcps_tong_acquisition_cc::pcps_tong_acquisition_cc(
d_input_power = 0.0;
d_num_doppler_bins = 0;
//todo: do something if posix_memalign fails
if (posix_memalign((void**)&d_fft_codes, 16, d_fft_size * sizeof(gr_complex)) == 0){};
if (posix_memalign((void**)&d_magnitude, 16, d_fft_size * sizeof(float)) == 0){};
d_fft_codes = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
d_magnitude = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
// Direct FFT
d_fft_if = new gr::fft::fft_complex(d_fft_size, true);
@ -120,15 +119,15 @@ pcps_tong_acquisition_cc::~pcps_tong_acquisition_cc()
{
for (unsigned int i = 0; i < d_num_doppler_bins; i++)
{
free(d_grid_doppler_wipeoffs[i]);
free(d_grid_data[i]);
volk_free(d_grid_doppler_wipeoffs[i]);
volk_free(d_grid_data[i]);
}
delete[] d_grid_doppler_wipeoffs;
delete[] d_grid_data;
}
free(d_fft_codes);
free(d_magnitude);
volk_free(d_fft_codes);
volk_free(d_magnitude);
delete d_ifft;
delete d_fft_if;
@ -146,14 +145,7 @@ void pcps_tong_acquisition_cc::set_local_code(std::complex<float> * code)
d_fft_if->execute(); // We need the FFT of local code
//Conjugate the local code
if (is_unaligned())
{
volk_32fc_conjugate_32fc_u(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
else
{
volk_32fc_conjugate_32fc_a(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
volk_32fc_conjugate_32fc(d_fft_codes, d_fft_if->get_outbuf(), d_fft_size);
}
void pcps_tong_acquisition_cc::init()
@ -178,16 +170,14 @@ void pcps_tong_acquisition_cc::init()
d_grid_data = new float*[d_num_doppler_bins];
for (unsigned int doppler_index = 0; doppler_index < d_num_doppler_bins; doppler_index++)
{
if (posix_memalign((void**)&(d_grid_doppler_wipeoffs[doppler_index]), 16,
d_fft_size * sizeof(gr_complex)) == 0){};
d_grid_doppler_wipeoffs[doppler_index] = (gr_complex*)volk_malloc(d_fft_size * sizeof(gr_complex), volk_get_alignment());
int doppler=-(int)d_doppler_max+d_doppler_step*doppler_index;
int doppler = -(int)d_doppler_max + d_doppler_step*doppler_index;
complex_exp_gen_conj(d_grid_doppler_wipeoffs[doppler_index],
d_freq + doppler, d_fs_in, d_fft_size);
if (posix_memalign((void**)&(d_grid_data[doppler_index]), 16,
d_fft_size * sizeof(float)) == 0){};
d_grid_data[doppler_index] = (float*)volk_malloc(d_fft_size * sizeof(float), volk_get_alignment());
for (unsigned int i = 0; i < d_fft_size; i++)
{
@ -257,8 +247,8 @@ int pcps_tong_acquisition_cc::general_work(int noutput_items,
<< ", doppler_step: " << d_doppler_step;
// 1- Compute the input signal power estimation
volk_32fc_magnitude_squared_32f_a(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f_a(&d_input_power, d_magnitude, d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitude, in, d_fft_size);
volk_32f_accumulator_s32f(&d_input_power, d_magnitude, d_fft_size);
d_input_power /= (float)d_fft_size;
// 2- Doppler frequency search loop
@ -268,7 +258,7 @@ int pcps_tong_acquisition_cc::general_work(int noutput_items,
doppler = -(int)d_doppler_max + d_doppler_step*doppler_index;
volk_32fc_x2_multiply_32fc_a(d_fft_if->get_inbuf(), in,
volk_32fc_x2_multiply_32fc(d_fft_if->get_inbuf(), in,
d_grid_doppler_wipeoffs[doppler_index], d_fft_size);
// 3- Perform the FFT-based convolution (parallel time search)
@ -277,25 +267,25 @@ int pcps_tong_acquisition_cc::general_work(int noutput_items,
// Multiply carrier wiped--off, Fourier transformed incoming signal
// with the local FFT'd code reference using SIMD operations with VOLK library
volk_32fc_x2_multiply_32fc_a(d_ifft->get_inbuf(),
volk_32fc_x2_multiply_32fc(d_ifft->get_inbuf(),
d_fft_if->get_outbuf(), d_fft_codes, d_fft_size);
// compute the inverse FFT
d_ifft->execute();
// Compute magnitude
volk_32fc_magnitude_squared_32f_a(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
volk_32fc_magnitude_squared_32f(d_magnitude, d_ifft->get_outbuf(), d_fft_size);
// Compute vector of test statistics corresponding to current doppler index.
volk_32f_s32f_multiply_32f_a(d_magnitude, d_magnitude,
volk_32f_s32f_multiply_32f(d_magnitude, d_magnitude,
1/(fft_normalization_factor*fft_normalization_factor*d_input_power),
d_fft_size);
// Accumulate test statistics in d_grid_data.
volk_32f_x2_add_32f_a(d_grid_data[doppler_index], d_magnitude, d_grid_data[doppler_index], d_fft_size);
volk_32f_x2_add_32f(d_grid_data[doppler_index], d_magnitude, d_grid_data[doppler_index], d_fft_size);
// Search maximum
volk_32f_index_max_16u_a(&indext, d_grid_data[doppler_index], d_fft_size);
volk_32f_index_max_16u(&indext, d_grid_data[doppler_index], d_fft_size);
magt = d_grid_data[doppler_index][indext];

View File

@ -191,7 +191,6 @@ Galileo_E5a_Dll_Pll_Tracking_cc::~Galileo_E5a_Dll_Pll_Tracking_cc ()
volk_free(d_Early);
volk_free(d_Prompt);
volk_free(d_Late);
volk_free(d_Prompt_data);
volk_free(d_codeQ);
volk_free(d_codeI);