1
0
mirror of https://github.com/gnss-sdr/gnss-sdr synced 2024-11-15 22:34:58 +00:00

MOD: format in vtl_engine

This commit is contained in:
miguekf 2023-03-14 16:14:21 +01:00
parent 8445ed3cbb
commit 8f4866151d

View File

@ -69,20 +69,29 @@ bool Vtl_Engine::vtl_loop(Vtl_Data new_data)
kf_F = arma::eye(n_of_states, n_of_states); kf_F = arma::eye(n_of_states, n_of_states);
kf_F_fill(kf_F, kf_dt); kf_F_fill(kf_F, kf_dt);
//kf_H = arma::zeros(3 * new_data.sat_number, n_of_states);
kf_y = arma::zeros(3 * new_data.sat_number, 1); kf_y = arma::zeros(3 * new_data.sat_number, 1);
kf_yerr = arma::zeros(3 * new_data.sat_number, 1); kf_yerr = arma::zeros(3 * new_data.sat_number, 1);
kf_xerr = arma::zeros(n_of_states, 1); kf_xerr = arma::zeros(n_of_states, 1);
kf_S = arma::zeros(3 * new_data.sat_number, 3 * new_data.sat_number); // kf_P_y innovation covariance matrix kf_S = arma::zeros(3 * new_data.sat_number, 3 * new_data.sat_number); // kf_P_y innovation covariance matrix
kf_K = arma::zeros(n_of_states, 3 * new_data.sat_number); kf_K = arma::zeros(n_of_states, 3 * new_data.sat_number);
; d = arma::zeros(new_data.sat_number, 1);
rho_pri = arma::zeros(new_data.sat_number, 1);
rhoDot_pri = arma::zeros(new_data.sat_number, 1);
rhoDot2_pri = arma::zeros(new_data.sat_number, 1);
rho_pri_filt = arma::zeros(new_data.sat_number, 1);
rhoDot_pri_filt = arma::zeros(new_data.sat_number, 1);
doppler_hz_filt = arma::zeros(new_data.sat_number, 1);
a_x = arma::zeros(new_data.sat_number, 1);
a_y = arma::zeros(new_data.sat_number, 1);
a_z = arma::zeros(new_data.sat_number, 1);
// ################## Kalman Tracking ###################################### // ################## Kalman Tracking ######################################
counter++; //uint64_t counter++; //uint64_t
if (counter>2500){ if (counter>2500){
flag_time_cmd = true; flag_time_cmd = true;
} }
//new_data.kf_state.print("new_data kf initial");
uint32_t closure_point = 3; uint32_t closure_point = 3;
if (counter < closure_point) if (counter < closure_point)
@ -120,7 +129,6 @@ bool Vtl_Engine::vtl_loop(Vtl_Data new_data)
} }
// State error Covariance Matrix Q (PVT) // State error Covariance Matrix Q (PVT)
//careful, values for V and T could not be adecuate.
kf_Q(0, 0) = 100.0; kf_Q(0, 0) = 100.0;
kf_Q(1, 1) = 100.0; kf_Q(1, 1) = 100.0;
kf_Q(2, 2) = 100.0; kf_Q(2, 2) = 100.0;
@ -136,39 +144,15 @@ bool Vtl_Engine::vtl_loop(Vtl_Data new_data)
// Measurement error Covariance Matrix R assembling // Measurement error Covariance Matrix R assembling
for (int32_t i = 0; i < new_data.sat_number; i++) for (int32_t i = 0; i < new_data.sat_number; i++)
{ {
// It is diagonal 2*NSatellite x 2*NSatellite (NSat psudorange error;NSat pseudo range rate error) kf_R(i, i) = 80.0;
kf_R(i, i) = 80.0; //*50.0/new_data.sat_CN0_dB_hz(i); //TODO: fill with real values. kf_R(i + new_data.sat_number, i + new_data.sat_number) = 20.0;
kf_R(i + new_data.sat_number, i + new_data.sat_number) = 20.0; //*50.0/new_data.sat_CN0_dB_hz(i); kf_R(i + 2 * new_data.sat_number, i + 2 * new_data.sat_number) = 400.0;
kf_R(i + 2 * new_data.sat_number, i + 2 * new_data.sat_number) = 400.0; //*50.0/new_data.sat_CN0_dB_hz(i);
// if(80.0*50.0/new_data.sat_CN0_dB_hz(i)>90||20.0*50.0/new_data.sat_CN0_dB_hz(i)>25){
// kf_R(i, i) = 10e4;
// kf_R(i + new_data.sat_number, i + new_data.sat_number) = 10e4;
// kf_R(i + 2*new_data.sat_number, i + 2*new_data.sat_number) = 10e4;
// cout<<"channel: "<<i<<"discarded"<<endl;
// }
} }
//**************************************
// Kalman state prediction (time update) // Kalman state prediction (time update)
//new_data.kf_state=kf_x; //**************************************
//kf_x = kf_F * kf_x; // state prediction
//from error state variables to variables
// From state variables definition
// TODO: cast to type properly
d = arma::zeros(new_data.sat_number, 1);
rho_pri = arma::zeros(new_data.sat_number, 1);
rhoDot_pri = arma::zeros(new_data.sat_number, 1);
rhoDot2_pri = arma::zeros(new_data.sat_number, 1);
rho_pri_filt = arma::zeros(new_data.sat_number, 1);
rhoDot_pri_filt = arma::zeros(new_data.sat_number, 1);
doppler_hz_filt = arma::zeros(new_data.sat_number, 1);
a_x = arma::zeros(new_data.sat_number, 1);
a_y = arma::zeros(new_data.sat_number, 1);
a_z = arma::zeros(new_data.sat_number, 1);
// cout<<"llegado aqui tambien"<<endl;
obsv_calc(rho_pri, rhoDot_pri, a_x, a_y, a_z, new_data.sat_number, new_data.sat_p, new_data.sat_v, kf_x); obsv_calc(rho_pri, rhoDot_pri, a_x, a_y, a_z, new_data.sat_number, new_data.sat_p, new_data.sat_v, kf_x);
for (int32_t i = 0; i < new_data.sat_number; i++) //neccesary quantities for (int32_t i = 0; i < new_data.sat_number; i++) //neccesary quantities
{ {
@ -176,41 +160,37 @@ bool Vtl_Engine::vtl_loop(Vtl_Data new_data)
new_data.sat_LOS(i, 1) = a_y(i); new_data.sat_LOS(i, 1) = a_y(i);
new_data.sat_LOS(i, 2) = a_z(i); new_data.sat_LOS(i, 2) = a_z(i);
} }
kf_P_x = kf_F * kf_P_x * kf_F.t() + kf_Q; // state error covariance prediction
//**************************************
// Kalman estimation (measurement update)
//**************************************
kf_H = arma::zeros(3 * new_data.sat_number, n_of_states); kf_H = arma::zeros(3 * new_data.sat_number, n_of_states);
kf_H_fill(kf_H, new_data.sat_number, a_x, a_y, a_z, kf_dt); kf_H_fill(kf_H, new_data.sat_number, a_x, a_y, a_z, kf_dt);
for (int32_t i = 0; i < new_data.sat_number; i++) //neccesary quantities
{
// rhoDot2_pri(i)=(rhoDot_pri(i)-rhoDot_pri_old(i))/kf_dt;
}
// Kalman estimation (measurement update)
kf_measurements(kf_yerr, new_data.sat_number, rho_pri, rhoDot_pri, rhoDot_pri * 0, new_data.pr_m, new_data.doppler_hz, kf_x); kf_measurements(kf_yerr, new_data.sat_number, rho_pri, rhoDot_pri, rhoDot_pri * 0, new_data.pr_m, new_data.doppler_hz, kf_x);
kf_P_x = kf_F * kf_P_x * kf_F.t() + kf_Q; // state error covariance prediction //**************************************
// Kalman filter update step // Kalman filter update step
//**************************************
kf_S = kf_H * kf_P_x * kf_H.t() + kf_R; // innovation covariance matrix (S) kf_S = kf_H * kf_P_x * kf_H.t() + kf_R; // innovation covariance matrix (S)
arma::mat B = (kf_P_x * kf_H.t()); arma::mat B = (kf_P_x * kf_H.t());
kf_K = B * arma::inv(kf_S); // Kalman gain kf_K = B * arma::inv(kf_S); // Kalman gain
kf_xerr = kf_K * (kf_yerr); // Error state estimation kf_xerr = kf_K * (kf_yerr); // Error state estimation
//kf_xerr.row(5)=kf_K.row(5)*kf_yerr;
arma::mat A = (arma::eye(size(kf_P_x)) - kf_K * kf_H); arma::mat A = (arma::eye(size(kf_P_x)) - kf_K * kf_H);
kf_P_x = A * kf_P_x * A.t() + kf_K * kf_R * kf_K.t(); // update state estimation error covariance matrix kf_P_x = A * kf_P_x * A.t() + kf_K * kf_R * kf_K.t(); // update state estimation error covariance matrix
kf_dx = kf_x;
kf_x = kf_x - kf_xerr; // updated state estimation (a priori + error) kf_x = kf_x - kf_xerr; // updated state estimation (a priori + error)
// kf_x.print("state of kalman: "); kf_dx = kf_x;
// // ################## Geometric Transformation ######################################
//*************************
// Geometric Transformation
//*************************
obsv_calc(rho_pri, rhoDot_pri, a_x, a_y, a_z, new_data.sat_number, new_data.sat_p, new_data.sat_v, kf_x); obsv_calc(rho_pri, rhoDot_pri, a_x, a_y, a_z, new_data.sat_number, new_data.sat_p, new_data.sat_v, kf_x);
for (int32_t i = 0; i < new_data.sat_number; i++) //neccesary quantities
{
//acc_effect(i)=(a_x(i)*kf_state(7,t)+a_y(chan,t)*kf_state(8,t)+a_z(chan,t)*kf_state(9,t));
//rhoDot2_pri(chan,t)=(rhoDot_pri(chan,t)-rhoDot_pri(chan,t-1))/kf_dt;
//rhoDot2_pri(chan,t)=-acc_effect(chan,t);
}
kf_H_fill(kf_H, new_data.sat_number, a_x, a_y, a_z, kf_dt); kf_H_fill(kf_H, new_data.sat_number, a_x, a_y, a_z, kf_dt);
// Re-calculate error measurement vector with the most recent data available: kf_delta_y=kf_H*kf_delta_x // Re-calculate error measurement vector with the most recent data available: kf_delta_y=kf_H*kf_delta_x
kf_yerr = kf_H * kf_xerr; kf_yerr = kf_H * kf_xerr;
// Filtered pseudorange error measurement (in m) AND Filtered Doppler shift measurements (in Hz): // Filtered pseudorange error measurement (in m) AND Filtered Doppler shift measurements (in Hz):
@ -222,13 +202,9 @@ bool Vtl_Engine::vtl_loop(Vtl_Data new_data)
rho_pri_filt(channel) = new_data.pr_m(channel) + kf_yerr(channel); // now filtered rho_pri_filt(channel) = new_data.pr_m(channel) + kf_yerr(channel); // now filtered
rhoDot_pri_filt(channel) = (new_data.doppler_hz(channel) * Lambda_GPS_L1) + kf_yerr(channel + new_data.sat_number); // now filtered rhoDot_pri_filt(channel) = (new_data.doppler_hz(channel) * Lambda_GPS_L1) + kf_yerr(channel + new_data.sat_number); // now filtered
doppler_hz_filt(channel) = (rhoDot_pri_filt(channel)) / Lambda_GPS_L1; doppler_hz_filt(channel) = (rhoDot_pri_filt(channel)) / Lambda_GPS_L1;
//TODO: Fill the tracking commands outputs
// Notice: keep the same satellite order as in the Vtl_Data matrices
// sample code
trk_cmd.carrier_phase_rads = 0; // difficult of calculation trk_cmd.carrier_phase_rads = 0; // difficult of calculation
trk_cmd.carrier_freq_hz = doppler_hz_filt(channel); //+ kf_x(7)/Lambda_GPS_L1; // this is el doppler WITHOUTH sintony correction trk_cmd.carrier_freq_hz = doppler_hz_filt(channel); // this is el doppler WITHOUTH sintony correction
trk_cmd.carrier_freq_rate_hz_s = -(a_x(channel) * kf_x(6) + a_y(channel) * kf_x(7) + a_z(channel) * kf_x(8)) / Lambda_GPS_L1; trk_cmd.carrier_freq_rate_hz_s = -(a_x(channel) * kf_x(6) + a_y(channel) * kf_x(7) + a_z(channel) * kf_x(8)) / Lambda_GPS_L1;
trk_cmd.code_phase_chips = 0; //kf_yerr(channel)/SPEED_OF_LIGHT_M_S*1023e3; trk_cmd.code_phase_chips = 0; //kf_yerr(channel)/SPEED_OF_LIGHT_M_S*1023e3;
@ -252,14 +228,8 @@ bool Vtl_Engine::vtl_loop(Vtl_Data new_data)
trk_cmd.sample_counter = new_data.sample_counter; trk_cmd.sample_counter = new_data.sample_counter;
trk_cmd.channel_id = channel; trk_cmd.channel_id = channel;
trk_cmd_outs.push_back(trk_cmd); trk_cmd_outs.push_back(trk_cmd);
// if (channel == 0)
// {
// std::cout << "[" << trk_cmd.sample_counter << "] CH " << channel
// << " Doppler vtl commanded: " << doppler_hz_filt(channel) << " [Hz]"
// << " \n";
// }
} }
fstream dump_vtl_file; fstream dump_vtl_file;
dump_vtl_file.open("dump_vtl_file.csv", ios::out | ios::app); dump_vtl_file.open("dump_vtl_file.csv", ios::out | ios::app);
dump_vtl_file.precision(15); dump_vtl_file.precision(15);
@ -354,13 +324,13 @@ void Vtl_Engine::obsv_calc(arma::mat &rho_pri, arma::mat &rhoDot_pri, arma::colv
d(i) = d(i) + (sat_p(i, 2) - kf_x(2)) * (sat_p(i, 2) - kf_x(2)); d(i) = d(i) + (sat_p(i, 2) - kf_x(2)) * (sat_p(i, 2) - kf_x(2));
d(i) = sqrt(d(i)); d(i) = sqrt(d(i));
//compute pseudorange estimation //compute pseudorange estimation OUTPUT
rho_pri(i) = d(i) + kf_x(9); rho_pri(i) = d(i) + kf_x(9);
//compute LOS sat-receiver vector componentsx //compute LOS sat-receiver vector componentsx
ax(i) = -(sat_p(i, 0) - kf_x(0)) / d(i); ax(i) = -(sat_p(i, 0) - kf_x(0)) / d(i);
ay(i) = -(sat_p(i, 1) - kf_x(1)) / d(i); ay(i) = -(sat_p(i, 1) - kf_x(1)) / d(i);
az(i) = -(sat_p(i, 2) - kf_x(2)) / d(i); az(i) = -(sat_p(i, 2) - kf_x(2)) / d(i);
//compute pseudorange rate estimation //compute pseudorange rate estimation OUTPUT
rhoDot_pri(i) = (sat_v(i, 0) - kf_x(3)) * a_x(i) + (sat_v(i, 1) - kf_x(4)) * a_y(i) + (sat_v(i, 2) - kf_x(5)) * a_z(i); rhoDot_pri(i) = (sat_v(i, 0) - kf_x(3)) * a_x(i) + (sat_v(i, 1) - kf_x(4)) * a_y(i) + (sat_v(i, 2) - kf_x(5)) * a_z(i);
//rhoDot_pri(i) = rhoDot_pri(i) + a_x(i)*xDot2_u*kf_dt+a_y(i)*yDot2_u*kf_dt+a_z(i)*zDot2_u*kf_dt; //rhoDot_pri(i) = rhoDot_pri(i) + a_x(i)*xDot2_u*kf_dt+a_y(i)*yDot2_u*kf_dt+a_z(i)*zDot2_u*kf_dt;
} }
@ -368,7 +338,7 @@ void Vtl_Engine::obsv_calc(arma::mat &rho_pri, arma::mat &rhoDot_pri, arma::colv
void Vtl_Engine::kf_measurements(arma::mat &kf_yerr, int sat_number, arma::mat rho_pri, arma::mat rhoDot_pri, arma::mat rhoDot2_pri, arma::colvec pr_m, arma::colvec doppler_hz, arma::mat kf_x) void Vtl_Engine::kf_measurements(arma::mat &kf_yerr, int sat_number, arma::mat rho_pri, arma::mat rhoDot_pri, arma::mat rhoDot2_pri, arma::colvec pr_m, arma::colvec doppler_hz, arma::mat kf_x)
{ {
for (int32_t i = 0; i < sat_number; i++) // Measurement vector for (int32_t i = 0; i < sat_number; i++) // Measurement vector OUTPUT
{ {
kf_yerr(i) = rho_pri(i) - pr_m(i); kf_yerr(i) = rho_pri(i) - pr_m(i);
kf_yerr(i + sat_number) = (doppler_hz(i) * Lambda_GPS_L1 + kf_x(10)) - rhoDot_pri(i); kf_yerr(i + sat_number) = (doppler_hz(i) * Lambda_GPS_L1 + kf_x(10)) - rhoDot_pri(i);