diff --git a/src/algorithms/tracking/gnuradio_blocks/CMakeLists.txt b/src/algorithms/tracking/gnuradio_blocks/CMakeLists.txt index 05da2619b..97e609a5f 100644 --- a/src/algorithms/tracking/gnuradio_blocks/CMakeLists.txt +++ b/src/algorithms/tracking/gnuradio_blocks/CMakeLists.txt @@ -36,6 +36,8 @@ set(TRACKING_GR_BLOCKS_SOURCES gps_l1_ca_dll_pll_c_aid_tracking_cc.cc gps_l1_ca_dll_pll_c_aid_tracking_sc.cc glonass_l1_ca_dll_pll_tracking_cc.cc + glonass_l1_ca_dll_pll_c_aid_tracking_cc.cc + glonass_l1_ca_dll_pll_c_aid_tracking_sc.cc ${OPT_TRACKING_BLOCKS} ) diff --git a/src/algorithms/tracking/gnuradio_blocks/glonass_l1_ca_dll_pll_c_aid_tracking_cc.cc b/src/algorithms/tracking/gnuradio_blocks/glonass_l1_ca_dll_pll_c_aid_tracking_cc.cc new file mode 100644 index 000000000..231058ec8 --- /dev/null +++ b/src/algorithms/tracking/gnuradio_blocks/glonass_l1_ca_dll_pll_c_aid_tracking_cc.cc @@ -0,0 +1,646 @@ +#include "glonass_l1_ca_dll_pll_c_aid_tracking_cc.h" +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "glonass_l1_signal_processing.h" +#include "tracking_discriminators.h" +#include "lock_detectors.h" +#include "Glonass_L1_CA.h" +#include "control_message_factory.h" + + +/*! + * \todo Include in definition header file + */ +#define CN0_ESTIMATION_SAMPLES 20 +#define MINIMUM_VALID_CN0 25 +#define MAXIMUM_LOCK_FAIL_COUNTER 50 +#define CARRIER_LOCK_THRESHOLD 0.85 + + +using google::LogMessage; + +glonass_l1_ca_dll_pll_c_aid_tracking_cc_sptr +glonass_l1_ca_dll_pll_c_aid_make_tracking_cc( + long if_freq, + long fs_in, + unsigned int vector_length, + bool dump, + std::string dump_filename, + float pll_bw_hz, + float dll_bw_hz, + float pll_bw_narrow_hz, + float dll_bw_narrow_hz, + int extend_correlation_ms, + float early_late_space_chips) +{ + return glonass_l1_ca_dll_pll_c_aid_tracking_cc_sptr(new glonass_l1_ca_dll_pll_c_aid_tracking_cc(if_freq, + fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz,pll_bw_narrow_hz, dll_bw_narrow_hz, extend_correlation_ms, early_late_space_chips)); +} + + +void glonass_l1_ca_dll_pll_c_aid_tracking_cc::forecast (int noutput_items, + gr_vector_int &ninput_items_required) +{ + if (noutput_items != 0) + { + ninput_items_required[0] = static_cast(d_vector_length) * 2; //set the required available samples in each call + } +} + + +void glonass_l1_ca_dll_pll_c_aid_tracking_cc::msg_handler_preamble_index(pmt::pmt_t msg) +{ + //pmt::print(msg); + DLOG(INFO) << "Extended correlation enabled for Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN); + if (d_enable_extended_integration == false) //avoid re-setting preamble indicator + { + d_preamble_timestamp_s = pmt::to_double(msg); + d_enable_extended_integration = true; + d_preamble_synchronized = false; + } +} + + +glonass_l1_ca_dll_pll_c_aid_tracking_cc::glonass_l1_ca_dll_pll_c_aid_tracking_cc( + long if_freq, + long fs_in, + unsigned int vector_length, + bool dump, + std::string dump_filename, + float pll_bw_hz, + float dll_bw_hz, + float pll_bw_narrow_hz, + float dll_bw_narrow_hz, + int extend_correlation_ms, + float early_late_space_chips) : + gr::block("glonass_l1_ca_dll_pll_c_aid_tracking_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)), + gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) +{ + // Telemetry bit synchronization message port input + this->message_port_register_in(pmt::mp("preamble_timestamp_s")); + + this->set_msg_handler(pmt::mp("preamble_timestamp_s"), + boost::bind(&glonass_l1_ca_dll_pll_c_aid_tracking_cc::msg_handler_preamble_index, this, _1)); + + this->message_port_register_out(pmt::mp("events")); + // initialize internal vars + d_dump = dump; + d_if_freq = if_freq; + d_fs_in = fs_in; + d_vector_length = vector_length; + d_dump_filename = dump_filename; + d_correlation_length_samples = static_cast(d_vector_length); + + // Initialize tracking ========================================== + d_pll_bw_hz = pll_bw_hz; + d_dll_bw_hz = dll_bw_hz; + d_pll_bw_narrow_hz = pll_bw_narrow_hz; + d_dll_bw_narrow_hz = dll_bw_narrow_hz; + d_extend_correlation_ms = extend_correlation_ms; + d_code_loop_filter.set_DLL_BW(d_dll_bw_hz); + d_carrier_loop_filter.set_params(10.0, d_pll_bw_hz, 2); + + // --- DLL variables -------------------------------------------------------- + d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips) + + // Initialization of local code replica + // Get space for a vector with the C/A code replica sampled 1x/chip + d_ca_code = static_cast(volk_gnsssdr_malloc(static_cast(GLONASS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment())); + + // correlator outputs (scalar) + d_n_correlator_taps = 3; // Early, Prompt, and Late + d_correlator_outs = static_cast(volk_gnsssdr_malloc(d_n_correlator_taps*sizeof(gr_complex), volk_gnsssdr_get_alignment())); + for (int n = 0; n < d_n_correlator_taps; n++) + { + d_correlator_outs[n] = gr_complex(0,0); + } + d_local_code_shift_chips = static_cast(volk_gnsssdr_malloc(d_n_correlator_taps*sizeof(float), volk_gnsssdr_get_alignment())); + // Set TAPs delay values [chips] + d_local_code_shift_chips[0] = - d_early_late_spc_chips; + d_local_code_shift_chips[1] = 0.0; + d_local_code_shift_chips[2] = d_early_late_spc_chips; + + multicorrelator_cpu.init(2 * d_correlation_length_samples, d_n_correlator_taps); + + //--- Perform initializations ------------------------------ + // define initial code frequency basis of NCO + d_code_freq_chips = GLONASS_L1_CA_CODE_RATE_HZ; + // define residual code phase (in chips) + d_rem_code_phase_samples = 0.0; + // define residual carrier phase + d_rem_carrier_phase_rad = 0.0; + + // sample synchronization + d_sample_counter = 0; //(from trk to tlm) + d_acq_sample_stamp = 0; + d_enable_tracking = false; + d_pull_in = false; + + // CN0 estimation and lock detector buffers + d_cn0_estimation_counter = 0; + d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES]; + d_carrier_lock_test = 1; + d_CN0_SNV_dB_Hz = 0; + d_carrier_lock_fail_counter = 0; + d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD; + + systemName["R"] = std::string("Glonass"); + + set_relative_rate(1.0 / static_cast(d_vector_length)); + + d_acquisition_gnss_synchro = 0; + d_channel = 0; + d_acq_code_phase_samples = 0.0; + d_acq_carrier_doppler_hz = 0.0; + d_carrier_doppler_hz = 0.0; + d_code_error_filt_chips_Ti = 0.0; + d_acc_carrier_phase_cycles = 0.0; + d_code_phase_samples = 0.0; + + d_pll_to_dll_assist_secs_Ti = 0.0; + d_rem_code_phase_chips = 0.0; + d_code_phase_step_chips = 0.0; + d_carrier_phase_step_rad = 0.0; + d_enable_extended_integration = false; + d_preamble_synchronized = false; + d_rem_code_phase_integer_samples = 0; + d_code_error_chips_Ti = 0.0; + d_code_error_filt_chips_s = 0.0; + d_carr_phase_error_secs_Ti = 0.0; + d_preamble_timestamp_s = 0.0; + //set_min_output_buffer((long int)300); +} + + +void glonass_l1_ca_dll_pll_c_aid_tracking_cc::start_tracking() +{ + /* + * correct the code phase according to the delay between acq and trk + */ + d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; + d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; + d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; + + long int acq_trk_diff_samples; + double acq_trk_diff_seconds; + acq_trk_diff_samples = static_cast(d_sample_counter) - static_cast(d_acq_sample_stamp);//-d_vector_length; + DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples; + acq_trk_diff_seconds = static_cast(acq_trk_diff_samples) / static_cast(d_fs_in); + // Doppler effect + // Fd=(C/(C+Vr))*F + d_glonass_freq_ch = GLONASS_L1_FREQ_HZ + (GLONASS_L1_FREQ_HZ * GLONASS_PRN.at(d_acquisition_gnss_synchro->PRN)); + double radial_velocity = (d_glonass_freq_ch + d_acq_carrier_doppler_hz) / d_glonass_freq_ch; + // new chip and prn sequence periods based on acq Doppler + double T_chip_mod_seconds; + double T_prn_mod_seconds; + double T_prn_mod_samples; + d_code_freq_chips = radial_velocity * GLONASS_L1_CA_CODE_RATE_HZ; + d_code_phase_step_chips = static_cast(d_code_freq_chips) / static_cast(d_fs_in); + T_chip_mod_seconds = 1.0 / d_code_freq_chips; + T_prn_mod_seconds = T_chip_mod_seconds * GLONASS_L1_CA_CODE_LENGTH_CHIPS; + T_prn_mod_samples = T_prn_mod_seconds * static_cast(d_fs_in); + + d_correlation_length_samples = round(T_prn_mod_samples); + + double T_prn_true_seconds = GLONASS_L1_CA_CODE_LENGTH_CHIPS / GLONASS_L1_CA_CODE_RATE_HZ; + double T_prn_true_samples = T_prn_true_seconds * static_cast(d_fs_in); + double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds; + double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds; + double corrected_acq_phase_samples, delay_correction_samples; + corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast(d_fs_in)), T_prn_true_samples); + if (corrected_acq_phase_samples < 0) + { + corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples; + } + delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples; + + d_acq_code_phase_samples = corrected_acq_phase_samples; + + d_carrier_doppler_hz = d_acq_carrier_doppler_hz; + + d_carrier_phase_step_rad = GLONASS_TWO_PI * d_carrier_doppler_hz / static_cast(d_fs_in); + + // DLL/PLL filter initialization + d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz); // The carrier loop filter implements the Doppler accumulator + d_code_loop_filter.initialize(); // initialize the code filter + + // generate local reference ALWAYS starting at chip 1 (1 sample per chip) + glonass_l1_ca_code_gen_complex(d_ca_code, 0); + + multicorrelator_cpu.set_local_code_and_taps(static_cast(GLONASS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code, d_local_code_shift_chips); + for (int n = 0; n < d_n_correlator_taps; n++) + { + d_correlator_outs[n] = gr_complex(0,0); + } + + d_carrier_lock_fail_counter = 0; + d_rem_code_phase_samples = 0.0; + d_rem_carrier_phase_rad = 0.0; + d_rem_code_phase_chips = 0.0; + d_acc_carrier_phase_cycles = 0.0; + d_pll_to_dll_assist_secs_Ti = 0.0; + d_code_phase_samples = d_acq_code_phase_samples; + + std::string sys_ = &d_acquisition_gnss_synchro->System; + sys = sys_.substr(0,1); + + // DEBUG OUTPUT + std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl; + LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; + + // enable tracking + d_pull_in = true; + d_enable_tracking = true; + d_enable_extended_integration = true; + d_preamble_synchronized = true; + LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz + << " Code Phase correction [samples]=" << delay_correction_samples + << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples; +} + + +glonass_l1_ca_dll_pll_c_aid_tracking_cc::~glonass_l1_ca_dll_pll_c_aid_tracking_cc() +{ + d_dump_file.close(); + + volk_gnsssdr_free(d_local_code_shift_chips); + volk_gnsssdr_free(d_correlator_outs); + volk_gnsssdr_free(d_ca_code); + + delete[] d_Prompt_buffer; + multicorrelator_cpu.free(); +} + + + +int glonass_l1_ca_dll_pll_c_aid_tracking_cc::general_work (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), + gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) +{ + // Block input data and block output stream pointers + const gr_complex* in = (gr_complex*) input_items[0]; //PRN start block alignment + Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; + + // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder + Gnss_Synchro current_synchro_data = Gnss_Synchro(); + + // process vars + double code_error_filt_secs_Ti = 0.0; + double CURRENT_INTEGRATION_TIME_S = 0.0; + double CORRECTED_INTEGRATION_TIME_S = 0.0; + + if (d_enable_tracking == true) + { + // Fill the acquisition data + current_synchro_data = *d_acquisition_gnss_synchro; + // Receiver signal alignment + if (d_pull_in == true) + { + int samples_offset; + double acq_trk_shif_correction_samples; + int acq_to_trk_delay_samples; + acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp; + acq_trk_shif_correction_samples = d_correlation_length_samples - fmod(static_cast(acq_to_trk_delay_samples), static_cast(d_correlation_length_samples)); + samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); + current_synchro_data.Tracking_sample_counter = d_sample_counter + samples_offset; + d_sample_counter += samples_offset; // count for the processed samples + d_pull_in = false; + d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * samples_offset / GLONASS_TWO_PI; + current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_cycles * GLONASS_TWO_PI; + current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; + current_synchro_data.fs=d_fs_in; + *out[0] = current_synchro_data; + consume_each(samples_offset); // shift input to perform alignment with local replica + return 1; + } + + // ################# CARRIER WIPEOFF AND CORRELATORS ############################## + // perform carrier wipe-off and compute Early, Prompt and Late correlation + multicorrelator_cpu.set_input_output_vectors(d_correlator_outs,in); + multicorrelator_cpu.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad, + d_carrier_phase_step_rad, + d_rem_code_phase_chips, + d_code_phase_step_chips, + d_correlation_length_samples); + + // ####### coherent intergration extension + // keep the last symbols + d_E_history.push_back(d_correlator_outs[0]); // save early output + d_P_history.push_back(d_correlator_outs[1]); // save prompt output + d_L_history.push_back(d_correlator_outs[2]); // save late output + + if (static_cast(d_P_history.size()) > d_extend_correlation_ms) + { + d_E_history.pop_front(); + d_P_history.pop_front(); + d_L_history.pop_front(); + } + + bool enable_dll_pll; + if (d_enable_extended_integration == true) + { + long int symbol_diff = round(1000.0 * ((static_cast(d_sample_counter) + d_rem_code_phase_samples) / static_cast(d_fs_in) - d_preamble_timestamp_s)); + if (symbol_diff > 0 and symbol_diff % d_extend_correlation_ms == 0) + { + // compute coherent integration and enable tracking loop + // perform coherent integration using correlator output history + // std::cout<<"##### RESET COHERENT INTEGRATION ####"<PRN) + << " pll_bw = " << d_pll_bw_hz << " [Hz], pll_narrow_bw = " << d_pll_bw_narrow_hz << " [Hz]" << std::endl + << " dll_bw = " << d_dll_bw_hz << " [Hz], dll_narrow_bw = " << d_dll_bw_narrow_hz << " [Hz]" << std::endl; + } + // UPDATE INTEGRATION TIME + CURRENT_INTEGRATION_TIME_S = static_cast(d_extend_correlation_ms) * GLONASS_L1_CA_CODE_PERIOD; + d_code_loop_filter.set_pdi(CURRENT_INTEGRATION_TIME_S); + enable_dll_pll = true; + } + else + { + if(d_preamble_synchronized == true) + { + // continue extended coherent correlation + // Compute the next buffer length based on the period of the PRN sequence and the code phase error estimation + double T_chip_seconds = 1.0 / d_code_freq_chips; + double T_prn_seconds = T_chip_seconds * GLONASS_L1_CA_CODE_LENGTH_CHIPS; + double T_prn_samples = T_prn_seconds * static_cast(d_fs_in); + int K_prn_samples = round(T_prn_samples); + double K_T_prn_error_samples = K_prn_samples - T_prn_samples; + + d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples; + d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples + d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples; + d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples; + // code phase step (Code resampler phase increment per sample) [chips/sample] + d_code_phase_step_chips = d_code_freq_chips / static_cast(d_fs_in); + // remnant code phase [chips] + d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast(d_fs_in)); + d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + d_carrier_phase_step_rad * static_cast(d_correlation_length_samples), GLONASS_TWO_PI); + + // UPDATE ACCUMULATED CARRIER PHASE + CORRECTED_INTEGRATION_TIME_S = (static_cast(d_correlation_length_samples) / static_cast(d_fs_in)); + d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GLONASS_TWO_PI; + + // disable tracking loop and inform telemetry decoder + enable_dll_pll = false; + } + else + { + // perform basic (1ms) correlation + // UPDATE INTEGRATION TIME + CURRENT_INTEGRATION_TIME_S = static_cast(d_correlation_length_samples) / static_cast(d_fs_in); + d_code_loop_filter.set_pdi(CURRENT_INTEGRATION_TIME_S); + enable_dll_pll = true; + } + } + } + else + { + // UPDATE INTEGRATION TIME + CURRENT_INTEGRATION_TIME_S = static_cast(d_correlation_length_samples) / static_cast(d_fs_in); + enable_dll_pll = true; + } + + if (enable_dll_pll == true) + { + // ################## PLL ########################################################## + // Update PLL discriminator [rads/Ti -> Secs/Ti] + d_carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(d_correlator_outs[1]) / GLONASS_TWO_PI; // prompt output + // Carrier discriminator filter + // NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan + // Input [s/Ti] -> output [Hz] + d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, d_carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S); + // PLL to DLL assistance [Secs/Ti] + d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / d_glonass_freq_ch; + // code Doppler frequency update + d_code_freq_chips = GLONASS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GLONASS_L1_CA_CODE_RATE_HZ) / d_glonass_freq_ch); + + // ################## DLL ########################################################## + // DLL discriminator + d_code_error_chips_Ti = dll_nc_e_minus_l_normalized(d_correlator_outs[0], d_correlator_outs[2]); // [chips/Ti] //early and late + // Code discriminator filter + d_code_error_filt_chips_s = d_code_loop_filter.get_code_nco(d_code_error_chips_Ti); // input [chips/Ti] -> output [chips/second] + d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S; + code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti] + + // ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### + // keep alignment parameters for the next input buffer + // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation + double T_chip_seconds = 1.0 / d_code_freq_chips; + double T_prn_seconds = T_chip_seconds * GLONASS_L1_CA_CODE_LENGTH_CHIPS; + double T_prn_samples = T_prn_seconds * static_cast(d_fs_in); + double K_prn_samples = round(T_prn_samples); + double K_T_prn_error_samples = K_prn_samples - T_prn_samples; + + d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples + code_error_filt_secs_Ti * static_cast(d_fs_in); //(code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti) * static_cast(d_fs_in); + d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples + d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples; + d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples; + + //################### PLL COMMANDS ################################################# + //carrier phase step (NCO phase increment per sample) [rads/sample] + d_carrier_phase_step_rad = GLONASS_TWO_PI * d_carrier_doppler_hz / static_cast(d_fs_in); + d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GLONASS_TWO_PI; + // UPDATE ACCUMULATED CARRIER PHASE + CORRECTED_INTEGRATION_TIME_S = (static_cast(d_correlation_length_samples) / static_cast(d_fs_in)); + //remnant carrier phase [rad] + d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GLONASS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, GLONASS_TWO_PI); + + //################### DLL COMMANDS ################################################# + //code phase step (Code resampler phase increment per sample) [chips/sample] + d_code_phase_step_chips = d_code_freq_chips / static_cast(d_fs_in); + //remnant code phase [chips] + d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast(d_fs_in)); + + // ####### CN0 ESTIMATION AND LOCK DETECTORS ####################################### + if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES) + { + // fill buffer with prompt correlator output values + d_Prompt_buffer[d_cn0_estimation_counter] = d_correlator_outs[1]; // prompt + d_cn0_estimation_counter++; + } + else + { + d_cn0_estimation_counter = 0; + // Code lock indicator + d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GLONASS_L1_CA_CODE_LENGTH_CHIPS); + // Carrier lock indicator + d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES); + // Loss of lock detection + if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0) + { + d_carrier_lock_fail_counter++; + } + else + { + if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--; + } + if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER) + { + std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; + LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; + this->message_port_pub(pmt::mp("events"), pmt::from_long(3));//3 -> loss of lock + d_carrier_lock_fail_counter = 0; + d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine + } + } + // ########### Output the tracking data to navigation and PVT ########## + current_synchro_data.Prompt_I = static_cast((d_correlator_outs[1]).real()); + current_synchro_data.Prompt_Q = static_cast((d_correlator_outs[1]).imag()); + current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples; + current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; + current_synchro_data.Carrier_phase_rads = GLONASS_TWO_PI * d_acc_carrier_phase_cycles; + current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; + current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; + current_synchro_data.Flag_valid_symbol_output = true; + if (d_preamble_synchronized == true) + { + current_synchro_data.correlation_length_ms = d_extend_correlation_ms; + } + else + { + current_synchro_data.correlation_length_ms = 1; + } + } + else + { + current_synchro_data.Prompt_I = static_cast((d_correlator_outs[1]).real()); + current_synchro_data.Prompt_Q = static_cast((d_correlator_outs[1]).imag()); + current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples; + current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; + current_synchro_data.Carrier_phase_rads = GLONASS_TWO_PI * d_acc_carrier_phase_cycles; + current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;// todo: project the carrier doppler + current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; + } + } + else + { + for (int n = 0; n < d_n_correlator_taps; n++) + { + d_correlator_outs[n] = gr_complex(0,0); + } + + current_synchro_data.System = {'R'}; + current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples; + } + //assign the GNURadio block output data + current_synchro_data.fs=d_fs_in; + *out[0] = current_synchro_data; + if(d_dump) + { + // MULTIPLEXED FILE RECORDING - Record results to file + float prompt_I; + float prompt_Q; + float tmp_E, tmp_P, tmp_L; + double tmp_double; + prompt_I = d_correlator_outs[1].real(); + prompt_Q = d_correlator_outs[1].imag(); + tmp_E = std::abs(d_correlator_outs[0]); + tmp_P = std::abs(d_correlator_outs[1]); + tmp_L = std::abs(d_correlator_outs[2]); + try + { + // EPR + d_dump_file.write(reinterpret_cast(&tmp_E), sizeof(float)); + d_dump_file.write(reinterpret_cast(&tmp_P), sizeof(float)); + d_dump_file.write(reinterpret_cast(&tmp_L), sizeof(float)); + // PROMPT I and Q (to analyze navigation symbols) + d_dump_file.write(reinterpret_cast(&prompt_I), sizeof(float)); + d_dump_file.write(reinterpret_cast(&prompt_Q), sizeof(float)); + // PRN start sample stamp + //tmp_float=(float)d_sample_counter; + d_dump_file.write(reinterpret_cast(&d_sample_counter), sizeof(unsigned long int)); + // accumulated carrier phase + d_dump_file.write(reinterpret_cast(&d_acc_carrier_phase_cycles), sizeof(double)); + + // carrier and code frequency + d_dump_file.write(reinterpret_cast(&d_carrier_doppler_hz), sizeof(double)); + d_dump_file.write(reinterpret_cast(&d_code_freq_chips), sizeof(double)); + + //PLL commands + d_dump_file.write(reinterpret_cast(&d_carr_phase_error_secs_Ti), sizeof(double)); + d_dump_file.write(reinterpret_cast(&d_carrier_doppler_hz), sizeof(double)); + + //DLL commands + d_dump_file.write(reinterpret_cast(&d_code_error_chips_Ti), sizeof(double)); + d_dump_file.write(reinterpret_cast(&d_code_error_filt_chips_Ti), sizeof(double)); + + // CN0 and carrier lock test + d_dump_file.write(reinterpret_cast(&d_CN0_SNV_dB_Hz), sizeof(double)); + d_dump_file.write(reinterpret_cast(&d_carrier_lock_test), sizeof(double)); + + // AUX vars (for debug purposes) + tmp_double = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S; + d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double)); + tmp_double = static_cast(d_sample_counter + d_correlation_length_samples); + d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double)); + + // PRN + unsigned int prn_ = d_acquisition_gnss_synchro->PRN; + d_dump_file.write(reinterpret_cast(&prn_), sizeof(unsigned int)); + } + catch (const std::ifstream::failure* e) + { + LOG(WARNING) << "Exception writing trk dump file " << e->what(); + } + } + + consume_each(d_correlation_length_samples); // this is necessary in gr::block derivates + d_sample_counter += d_correlation_length_samples; //count for the processed samples + + return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false +} + + +void glonass_l1_ca_dll_pll_c_aid_tracking_cc::set_channel(unsigned int channel) +{ + d_channel = channel; + LOG(INFO) << "Tracking Channel set to " << d_channel; + // ############# ENABLE DATA FILE LOG ################# + if (d_dump == true) + { + if (d_dump_file.is_open() == false) + { + try + { + d_dump_filename.append(boost::lexical_cast(d_channel)); + d_dump_filename.append(".dat"); + d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit); + d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); + LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl; + } + catch (const std::ifstream::failure* e) + { + LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e->what() << std::endl; + } + } + } +} + + + +void glonass_l1_ca_dll_pll_c_aid_tracking_cc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) +{ + d_acquisition_gnss_synchro = p_gnss_synchro; +} diff --git a/src/algorithms/tracking/gnuradio_blocks/glonass_l1_ca_dll_pll_c_aid_tracking_cc.h b/src/algorithms/tracking/gnuradio_blocks/glonass_l1_ca_dll_pll_c_aid_tracking_cc.h new file mode 100644 index 000000000..280d590b1 --- /dev/null +++ b/src/algorithms/tracking/gnuradio_blocks/glonass_l1_ca_dll_pll_c_aid_tracking_cc.h @@ -0,0 +1,167 @@ +#ifndef GNSS_SDR_GLONASS_L1_CA_DLL_PLL_C_AID_TRACKING_CC_H +#define GNSS_SDR_GLONASS_L1_CA_DLL_PLL_C_AID_TRACKING_CC_H + +#include +#include +#include +#include +#include +#include +#include "gnss_synchro.h" +#include "tracking_2nd_DLL_filter.h" +#include "tracking_FLL_PLL_filter.h" +//#include "tracking_loop_filter.h" +#include "cpu_multicorrelator.h" + +class glonass_l1_ca_dll_pll_c_aid_tracking_cc; + +typedef boost::shared_ptr + glonass_l1_ca_dll_pll_c_aid_tracking_cc_sptr; + +glonass_l1_ca_dll_pll_c_aid_tracking_cc_sptr +glonass_l1_ca_dll_pll_c_aid_make_tracking_cc(long if_freq, + long fs_in, unsigned + int vector_length, + bool dump, + std::string dump_filename, + float pll_bw_hz, + float dll_bw_hz, + float pll_bw_narrow_hz, + float dll_bw_narrow_hz, + int extend_correlation_ms, + float early_late_space_chips); + + + +/*! + * \brief This class implements a DLL + PLL tracking loop block + */ +class glonass_l1_ca_dll_pll_c_aid_tracking_cc: public gr::block +{ +public: + ~glonass_l1_ca_dll_pll_c_aid_tracking_cc(); + + void set_channel(unsigned int channel); + void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro); + void start_tracking(); + + int general_work (int noutput_items, gr_vector_int &ninput_items, + gr_vector_const_void_star &input_items, gr_vector_void_star &output_items); + + void forecast (int noutput_items, gr_vector_int &ninput_items_required); + +private: + friend glonass_l1_ca_dll_pll_c_aid_tracking_cc_sptr + glonass_l1_ca_dll_pll_c_aid_make_tracking_cc(long if_freq, + long fs_in, unsigned + int vector_length, + bool dump, + std::string dump_filename, + float pll_bw_hz, + float dll_bw_hz, + float pll_bw_narrow_hz, + float dll_bw_narrow_hz, + int extend_correlation_ms, + float early_late_space_chips); + + glonass_l1_ca_dll_pll_c_aid_tracking_cc(long if_freq, + long fs_in, unsigned + int vector_length, + bool dump, + std::string dump_filename, + float pll_bw_hz, + float dll_bw_hz, + float pll_bw_narrow_hz, + float dll_bw_narrow_hz, + int extend_correlation_ms, + float early_late_space_chips); + + // tracking configuration vars + unsigned int d_vector_length; + bool d_dump; + + Gnss_Synchro* d_acquisition_gnss_synchro; + unsigned int d_channel; + + long d_if_freq; + long d_fs_in; + long d_glonass_freq_ch; + + double d_early_late_spc_chips; + int d_n_correlator_taps; + + gr_complex* d_ca_code; + float* d_local_code_shift_chips; + gr_complex* d_correlator_outs; + cpu_multicorrelator multicorrelator_cpu; + + // remaining code phase and carrier phase between tracking loops + double d_rem_code_phase_samples; + double d_rem_code_phase_chips; + double d_rem_carrier_phase_rad; + int d_rem_code_phase_integer_samples; + + // PLL and DLL filter library + //Tracking_2nd_DLL_filter d_code_loop_filter; + Tracking_2nd_DLL_filter d_code_loop_filter; + Tracking_FLL_PLL_filter d_carrier_loop_filter; + + // acquisition + double d_acq_code_phase_samples; + double d_acq_carrier_doppler_hz; + + // tracking vars + float d_dll_bw_hz; + float d_pll_bw_hz; + float d_dll_bw_narrow_hz; + float d_pll_bw_narrow_hz; + double d_code_freq_chips; + double d_code_phase_step_chips; + double d_carrier_doppler_hz; + double d_carrier_phase_step_rad; + double d_acc_carrier_phase_cycles; + double d_code_phase_samples; + double d_pll_to_dll_assist_secs_Ti; + double d_code_error_chips_Ti; + double d_code_error_filt_chips_s; + double d_code_error_filt_chips_Ti; + double d_carr_phase_error_secs_Ti; + + // symbol history to detect bit transition + std::deque d_E_history; + std::deque d_P_history; + std::deque d_L_history; + double d_preamble_timestamp_s; + int d_extend_correlation_ms; + bool d_enable_extended_integration; + bool d_preamble_synchronized; + void msg_handler_preamble_index(pmt::pmt_t msg); + + //Integration period in samples + int d_correlation_length_samples; + + //processing samples counters + unsigned long int d_sample_counter; + unsigned long int d_acq_sample_stamp; + + // CN0 estimation and lock detector + int d_cn0_estimation_counter; + gr_complex* d_Prompt_buffer; + double d_carrier_lock_test; + double d_CN0_SNV_dB_Hz; + double d_carrier_lock_threshold; + int d_carrier_lock_fail_counter; + + // control vars + bool d_enable_tracking; + bool d_pull_in; + + // file dump + std::string d_dump_filename; + std::ofstream d_dump_file; + + std::map systemName; + std::string sys; +}; + +#endif //GNSS_SDR_GLONASS_L1_CA_DLL_PLL_C_AID_TRACKING_CC_H diff --git a/src/algorithms/tracking/gnuradio_blocks/glonass_l1_ca_dll_pll_c_aid_tracking_sc.cc b/src/algorithms/tracking/gnuradio_blocks/glonass_l1_ca_dll_pll_c_aid_tracking_sc.cc new file mode 100644 index 000000000..f22bbc732 --- /dev/null +++ b/src/algorithms/tracking/gnuradio_blocks/glonass_l1_ca_dll_pll_c_aid_tracking_sc.cc @@ -0,0 +1,648 @@ +#include "glonass_l1_ca_dll_pll_c_aid_tracking_sc.h" +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "gnss_synchro.h" +#include "glonass_l1_signal_processing.h" +#include "tracking_discriminators.h" +#include "lock_detectors.h" +#include "Glonass_L1_CA.h" +#include "control_message_factory.h" + + +/*! + * \todo Include in definition header file + */ +#define CN0_ESTIMATION_SAMPLES 20 +#define MINIMUM_VALID_CN0 25 +#define MAXIMUM_LOCK_FAIL_COUNTER 50 +#define CARRIER_LOCK_THRESHOLD 0.85 + + +using google::LogMessage; + +glonass_l1_ca_dll_pll_c_aid_tracking_sc_sptr +glonass_l1_ca_dll_pll_c_aid_make_tracking_sc( + long if_freq, + long fs_in, + unsigned int vector_length, + bool dump, + std::string dump_filename, + float pll_bw_hz, + float dll_bw_hz, + float pll_bw_narrow_hz, + float dll_bw_narrow_hz, + int extend_correlation_ms, + float early_late_space_chips) +{ + return glonass_l1_ca_dll_pll_c_aid_tracking_sc_sptr(new glonass_l1_ca_dll_pll_c_aid_tracking_sc(if_freq, + fs_in, vector_length, dump, dump_filename, pll_bw_hz, dll_bw_hz, pll_bw_narrow_hz, dll_bw_narrow_hz, extend_correlation_ms, early_late_space_chips)); +} + + + +void glonass_l1_ca_dll_pll_c_aid_tracking_sc::forecast (int noutput_items, + gr_vector_int &ninput_items_required) +{ + if (noutput_items != 0) + { + ninput_items_required[0] = static_cast(d_vector_length) * 2; //set the required available samples in each call + } +} + + +void glonass_l1_ca_dll_pll_c_aid_tracking_sc::msg_handler_preamble_index(pmt::pmt_t msg) +{ + //pmt::print(msg); + DLOG(INFO) << "Extended correlation enabled for Tracking CH " << d_channel << ": Satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN); + if (d_enable_extended_integration == false) //avoid re-setting preamble indicator + { + d_preamble_timestamp_s = pmt::to_double(msg); + d_enable_extended_integration = true; + d_preamble_synchronized = false; + } +} + +glonass_l1_ca_dll_pll_c_aid_tracking_sc::glonass_l1_ca_dll_pll_c_aid_tracking_sc( + long if_freq, + long fs_in, + unsigned int vector_length, + bool dump, + std::string dump_filename, + float pll_bw_hz, + float dll_bw_hz, + float pll_bw_narrow_hz, + float dll_bw_narrow_hz, + int extend_correlation_ms, + float early_late_space_chips) : + gr::block("glonass_l1_ca_dll_pll_c_aid_tracking_sc", gr::io_signature::make(1, 1, sizeof(lv_16sc_t)), + gr::io_signature::make(1, 1, sizeof(Gnss_Synchro))) +{ + // Telemetry bit synchronization message port input + this->message_port_register_in(pmt::mp("preamble_timestamp_s")); + this->set_msg_handler(pmt::mp("preamble_timestamp_s"), + boost::bind(&glonass_l1_ca_dll_pll_c_aid_tracking_sc::msg_handler_preamble_index, this, _1)); + this->message_port_register_out(pmt::mp("events")); + // initialize internal vars + d_dump = dump; + d_if_freq = if_freq; + d_fs_in = fs_in; + d_vector_length = vector_length; + d_dump_filename = dump_filename; + d_correlation_length_samples = static_cast(d_vector_length); + + // Initialize tracking ========================================== + d_pll_bw_hz = pll_bw_hz; + d_dll_bw_hz = dll_bw_hz; + d_pll_bw_narrow_hz = pll_bw_narrow_hz; + d_dll_bw_narrow_hz = dll_bw_narrow_hz; + d_code_loop_filter.set_DLL_BW(d_dll_bw_hz); + d_carrier_loop_filter.set_params(10.0, d_pll_bw_hz, 2); + d_extend_correlation_ms = extend_correlation_ms; + + // --- DLL variables -------------------------------------------------------- + d_early_late_spc_chips = early_late_space_chips; // Define early-late offset (in chips) + + // Initialization of local code replica + // Get space for a vector with the C/A code replica sampled 1x/chip + d_ca_code = static_cast(volk_gnsssdr_malloc(static_cast(GLONASS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(gr_complex), volk_gnsssdr_get_alignment())); + d_ca_code_16sc = static_cast(volk_gnsssdr_malloc(static_cast(GLONASS_L1_CA_CODE_LENGTH_CHIPS) * sizeof(lv_16sc_t), volk_gnsssdr_get_alignment())); + + // correlator outputs (scalar) + d_n_correlator_taps = 3; // Early, Prompt, and Late + + d_correlator_outs_16sc = static_cast(volk_gnsssdr_malloc(d_n_correlator_taps*sizeof(lv_16sc_t), volk_gnsssdr_get_alignment())); + for (int n = 0; n < d_n_correlator_taps; n++) + { + d_correlator_outs_16sc[n] = lv_cmake(0,0); + } + + d_local_code_shift_chips = static_cast(volk_gnsssdr_malloc(d_n_correlator_taps*sizeof(float), volk_gnsssdr_get_alignment())); + // Set TAPs delay values [chips] + d_local_code_shift_chips[0] = - d_early_late_spc_chips; + d_local_code_shift_chips[1] = 0.0; + d_local_code_shift_chips[2] = d_early_late_spc_chips; + + multicorrelator_cpu_16sc.init(2 * d_correlation_length_samples, d_n_correlator_taps); + + //--- Perform initializations ------------------------------ + // define initial code frequency basis of NCO + d_code_freq_chips = GLONASS_L1_CA_CODE_RATE_HZ; + // define residual code phase (in chips) + d_rem_code_phase_samples = 0.0; + // define residual carrier phase + d_rem_carrier_phase_rad = 0.0; + + // sample synchronization + d_sample_counter = 0; //(from trk to tlm) + d_acq_sample_stamp = 0; + d_enable_tracking = false; + d_pull_in = false; + + // CN0 estimation and lock detector buffers + d_cn0_estimation_counter = 0; + d_Prompt_buffer = new gr_complex[CN0_ESTIMATION_SAMPLES]; + d_carrier_lock_test = 1; + d_CN0_SNV_dB_Hz = 0; + d_carrier_lock_fail_counter = 0; + d_carrier_lock_threshold = CARRIER_LOCK_THRESHOLD; + + systemName["R"] = std::string("Glonass"); + + set_relative_rate(1.0 / static_cast(d_vector_length)); + + d_acquisition_gnss_synchro = 0; + d_channel = 0; + d_acq_code_phase_samples = 0.0; + d_acq_carrier_doppler_hz = 0.0; + d_carrier_doppler_hz = 0.0; + d_acc_carrier_phase_cycles = 0.0; + d_code_phase_samples = 0.0; + d_enable_extended_integration = false; + d_preamble_synchronized = false; + d_rem_code_phase_integer_samples = 0; + d_code_error_chips_Ti = 0.0; + d_pll_to_dll_assist_secs_Ti = 0.0; + d_rem_code_phase_chips = 0.0; + d_code_phase_step_chips = 0.0; + d_carrier_phase_step_rad = 0.0; + d_code_error_filt_chips_s = 0.0; + d_code_error_filt_chips_Ti = 0.0; + d_preamble_timestamp_s = 0.0; + d_carr_phase_error_secs_Ti = 0.0; + //set_min_output_buffer((long int)300); +} + + +void glonass_l1_ca_dll_pll_c_aid_tracking_sc::start_tracking() +{ + /* + * correct the code phase according to the delay between acq and trk + */ + d_acq_code_phase_samples = d_acquisition_gnss_synchro->Acq_delay_samples; + d_acq_carrier_doppler_hz = d_acquisition_gnss_synchro->Acq_doppler_hz; + d_acq_sample_stamp = d_acquisition_gnss_synchro->Acq_samplestamp_samples; + + long int acq_trk_diff_samples; + double acq_trk_diff_seconds; + acq_trk_diff_samples = static_cast(d_sample_counter) - static_cast(d_acq_sample_stamp);//-d_vector_length; + DLOG(INFO) << "Number of samples between Acquisition and Tracking =" << acq_trk_diff_samples; + acq_trk_diff_seconds = static_cast(acq_trk_diff_samples) / static_cast(d_fs_in); + // Doppler effect + // Fd=(C/(C+Vr))*F + d_glonass_freq_ch = GLONASS_L1_FREQ_HZ + (GLONASS_L1_FREQ_HZ * GLONASS_PRN.at(d_acquisition_gnss_synchro->PRN)); + double radial_velocity = (d_glonass_freq_ch + d_acq_carrier_doppler_hz) / d_glonass_freq_ch; + // new chip and prn sequence periods based on acq Doppler + double T_chip_mod_seconds; + double T_prn_mod_seconds; + double T_prn_mod_samples; + d_code_freq_chips = radial_velocity * GLONASS_L1_CA_CODE_RATE_HZ; + d_code_phase_step_chips = static_cast(d_code_freq_chips) / static_cast(d_fs_in); + T_chip_mod_seconds = 1.0 / d_code_freq_chips; + T_prn_mod_seconds = T_chip_mod_seconds * GLONASS_L1_CA_CODE_LENGTH_CHIPS; + T_prn_mod_samples = T_prn_mod_seconds * static_cast(d_fs_in); + + d_correlation_length_samples = round(T_prn_mod_samples); + + double T_prn_true_seconds = GLONASS_L1_CA_CODE_LENGTH_CHIPS / GLONASS_L1_CA_CODE_RATE_HZ; + double T_prn_true_samples = T_prn_true_seconds * static_cast(d_fs_in); + double T_prn_diff_seconds = T_prn_true_seconds - T_prn_mod_seconds; + double N_prn_diff = acq_trk_diff_seconds / T_prn_true_seconds; + double corrected_acq_phase_samples, delay_correction_samples; + corrected_acq_phase_samples = fmod((d_acq_code_phase_samples + T_prn_diff_seconds * N_prn_diff * static_cast(d_fs_in)), T_prn_true_samples); + if (corrected_acq_phase_samples < 0) + { + corrected_acq_phase_samples = T_prn_mod_samples + corrected_acq_phase_samples; + } + delay_correction_samples = d_acq_code_phase_samples - corrected_acq_phase_samples; + + d_acq_code_phase_samples = corrected_acq_phase_samples; + + d_carrier_doppler_hz = d_acq_carrier_doppler_hz; + + d_carrier_phase_step_rad = GLONASS_TWO_PI * d_carrier_doppler_hz / static_cast(d_fs_in); + + // DLL/PLL filter initialization + d_carrier_loop_filter.initialize(d_acq_carrier_doppler_hz); // The carrier loop filter implements the Doppler accumulator + d_code_loop_filter.initialize(); // initialize the code filter + + // generate local reference ALWAYS starting at chip 1 (1 sample per chip) + glonass_l1_ca_code_gen_complex(d_ca_code, 0); + volk_gnsssdr_32fc_convert_16ic(d_ca_code_16sc, d_ca_code, static_cast(GLONASS_L1_CA_CODE_LENGTH_CHIPS)); + + multicorrelator_cpu_16sc.set_local_code_and_taps(static_cast(GLONASS_L1_CA_CODE_LENGTH_CHIPS), d_ca_code_16sc, d_local_code_shift_chips); + for (int n = 0; n < d_n_correlator_taps; n++) + { + d_correlator_outs_16sc[n] = lv_16sc_t(0,0); + } + + d_carrier_lock_fail_counter = 0; + d_rem_code_phase_samples = 0.0; + d_rem_carrier_phase_rad = 0.0; + d_rem_code_phase_chips = 0.0; + d_acc_carrier_phase_cycles = 0.0; + d_pll_to_dll_assist_secs_Ti = 0.0; + d_code_phase_samples = d_acq_code_phase_samples; + + std::string sys_ = &d_acquisition_gnss_synchro->System; + sys = sys_.substr(0,1); + + // DEBUG OUTPUT + std::cout << "Tracking start on channel " << d_channel << " for satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << std::endl; + LOG(INFO) << "Starting tracking of satellite " << Gnss_Satellite(systemName[sys], d_acquisition_gnss_synchro->PRN) << " on channel " << d_channel; + + // enable tracking + d_pull_in = true; + d_enable_tracking = true; + d_enable_extended_integration = true; + d_preamble_synchronized = true; + + LOG(INFO) << "PULL-IN Doppler [Hz]=" << d_carrier_doppler_hz + << " Code Phase correction [samples]=" << delay_correction_samples + << " PULL-IN Code Phase [samples]=" << d_acq_code_phase_samples; +} + + +glonass_l1_ca_dll_pll_c_aid_tracking_sc::~glonass_l1_ca_dll_pll_c_aid_tracking_sc() +{ + d_dump_file.close(); + + volk_gnsssdr_free(d_local_code_shift_chips); + volk_gnsssdr_free(d_ca_code); + volk_gnsssdr_free(d_ca_code_16sc); + volk_gnsssdr_free(d_correlator_outs_16sc); + + delete[] d_Prompt_buffer; + multicorrelator_cpu_16sc.free(); +} + + + +int glonass_l1_ca_dll_pll_c_aid_tracking_sc::general_work (int noutput_items __attribute__((unused)), gr_vector_int &ninput_items __attribute__((unused)), + gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) +{ + // Block input data and block output stream pointers + const lv_16sc_t* in = (lv_16sc_t*) input_items[0]; //PRN start block alignment + Gnss_Synchro **out = (Gnss_Synchro **) &output_items[0]; + + // GNSS_SYNCHRO OBJECT to interchange data between tracking->telemetry_decoder + Gnss_Synchro current_synchro_data = Gnss_Synchro(); + + // process vars + double code_error_filt_secs_Ti = 0.0; + double CURRENT_INTEGRATION_TIME_S = 0.0; + double CORRECTED_INTEGRATION_TIME_S = 0.0; + + if (d_enable_tracking == true) + { + // Fill the acquisition data + current_synchro_data = *d_acquisition_gnss_synchro; + // Receiver signal alignment + if (d_pull_in == true) + { + int samples_offset; + double acq_trk_shif_correction_samples; + int acq_to_trk_delay_samples; + acq_to_trk_delay_samples = d_sample_counter - d_acq_sample_stamp; + acq_trk_shif_correction_samples = d_correlation_length_samples - fmod(static_cast(acq_to_trk_delay_samples), static_cast(d_correlation_length_samples)); + samples_offset = round(d_acq_code_phase_samples + acq_trk_shif_correction_samples); + current_synchro_data.Tracking_sample_counter = d_sample_counter + samples_offset; + d_sample_counter += samples_offset; // count for the processed samples + d_pull_in = false; + d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * samples_offset / GLONASS_TWO_PI; + current_synchro_data.Carrier_phase_rads = d_acc_carrier_phase_cycles * GLONASS_TWO_PI; + current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; + current_synchro_data.fs=d_fs_in; + *out[0] = current_synchro_data; + consume_each(samples_offset); // shift input to perform alignment with local replica + return 1; + } + + // ################# CARRIER WIPEOFF AND CORRELATORS ############################## + // perform carrier wipe-off and compute Early, Prompt and Late correlation + multicorrelator_cpu_16sc.set_input_output_vectors(d_correlator_outs_16sc, in); + multicorrelator_cpu_16sc.Carrier_wipeoff_multicorrelator_resampler(d_rem_carrier_phase_rad, + d_carrier_phase_step_rad, + d_rem_code_phase_chips, + d_code_phase_step_chips, + d_correlation_length_samples); + + // ####### coherent intergration extension + // keep the last symbols + d_E_history.push_back(d_correlator_outs_16sc[0]); // save early output + d_P_history.push_back(d_correlator_outs_16sc[1]); // save prompt output + d_L_history.push_back(d_correlator_outs_16sc[2]); // save late output + + if (static_cast(d_P_history.size()) > d_extend_correlation_ms) + { + d_E_history.pop_front(); + d_P_history.pop_front(); + d_L_history.pop_front(); + } + + bool enable_dll_pll; + if (d_enable_extended_integration == true) + { + long int symbol_diff = round(1000.0 * ((static_cast(d_sample_counter) + d_rem_code_phase_samples) / static_cast(d_fs_in) - d_preamble_timestamp_s)); + if (symbol_diff > 0 and symbol_diff % d_extend_correlation_ms == 0) + { + // compute coherent integration and enable tracking loop + // perform coherent integration using correlator output history + // std::cout<<"##### RESET COHERENT INTEGRATION ####"<PRN) + << " pll_bw = " << d_pll_bw_hz << " [Hz], pll_narrow_bw = " << d_pll_bw_narrow_hz << " [Hz]" << std::endl + << " dll_bw = " << d_dll_bw_hz << " [Hz], dll_narrow_bw = " << d_dll_bw_narrow_hz << " [Hz]" << std::endl; + } + // UPDATE INTEGRATION TIME + CURRENT_INTEGRATION_TIME_S = static_cast(d_extend_correlation_ms) * GLONASS_L1_CA_CODE_PERIOD; + enable_dll_pll = true; + } + else + { + if(d_preamble_synchronized == true) + { + // continue extended coherent correlation + // Compute the next buffer length based on the period of the PRN sequence and the code phase error estimation + double T_chip_seconds = 1.0 / d_code_freq_chips; + double T_prn_seconds = T_chip_seconds * GLONASS_L1_CA_CODE_LENGTH_CHIPS; + double T_prn_samples = T_prn_seconds * static_cast(d_fs_in); + int K_prn_samples = round(T_prn_samples); + double K_T_prn_error_samples = K_prn_samples - T_prn_samples; + + d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples; + d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples + d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples; + d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples; + // code phase step (Code resampler phase increment per sample) [chips/sample] + d_code_phase_step_chips = d_code_freq_chips / static_cast(d_fs_in); + // remnant code phase [chips] + d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast(d_fs_in)); + d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + d_carrier_phase_step_rad * static_cast(d_correlation_length_samples), GLONASS_TWO_PI); + + // UPDATE ACCUMULATED CARRIER PHASE + CORRECTED_INTEGRATION_TIME_S = (static_cast(d_correlation_length_samples) / static_cast(d_fs_in)); + d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GLONASS_TWO_PI; + + // disable tracking loop and inform telemetry decoder + enable_dll_pll = false; + } + else + { + // perform basic (1ms) correlation + // UPDATE INTEGRATION TIME + CURRENT_INTEGRATION_TIME_S = static_cast(d_correlation_length_samples) / static_cast(d_fs_in); + enable_dll_pll = true; + } + } + } + else + { + // UPDATE INTEGRATION TIME + CURRENT_INTEGRATION_TIME_S = static_cast(d_correlation_length_samples) / static_cast(d_fs_in); + enable_dll_pll = true; + } + + if (enable_dll_pll == true) + { + // ################## PLL ########################################################## + // Update PLL discriminator [rads/Ti -> Secs/Ti] + d_carr_phase_error_secs_Ti = pll_cloop_two_quadrant_atan(std::complex(d_correlator_outs_16sc[1].real(),d_correlator_outs_16sc[1].imag())) / GLONASS_TWO_PI; //prompt output + + // Carrier discriminator filter + // NOTICE: The carrier loop filter includes the Carrier Doppler accumulator, as described in Kaplan + // Input [s/Ti] -> output [Hz] + d_carrier_doppler_hz = d_carrier_loop_filter.get_carrier_error(0.0, d_carr_phase_error_secs_Ti, CURRENT_INTEGRATION_TIME_S); + // PLL to DLL assistance [Secs/Ti] + d_pll_to_dll_assist_secs_Ti = (d_carrier_doppler_hz * CURRENT_INTEGRATION_TIME_S) / d_glonass_freq_ch; + // code Doppler frequency update + d_code_freq_chips = GLONASS_L1_CA_CODE_RATE_HZ + ((d_carrier_doppler_hz * GLONASS_L1_CA_CODE_RATE_HZ) / d_glonass_freq_ch); + + // ################## DLL ########################################################## + // DLL discriminator + d_code_error_chips_Ti = dll_nc_e_minus_l_normalized(std::complex(d_correlator_outs_16sc[0].real(),d_correlator_outs_16sc[0].imag()), std::complex(d_correlator_outs_16sc[2].real(),d_correlator_outs_16sc[2].imag())); // [chips/Ti] //early and late + // Code discriminator filter + d_code_error_filt_chips_s = d_code_loop_filter.get_code_nco(d_code_error_chips_Ti); // input [chips/Ti] -> output [chips/second] + d_code_error_filt_chips_Ti = d_code_error_filt_chips_s * CURRENT_INTEGRATION_TIME_S; + code_error_filt_secs_Ti = d_code_error_filt_chips_Ti / d_code_freq_chips; // [s/Ti] + + // ################## CARRIER AND CODE NCO BUFFER ALIGNEMENT ####################### + // keep alignment parameters for the next input buffer + // Compute the next buffer length based in the new period of the PRN sequence and the code phase error estimation + double T_chip_seconds = 1.0 / d_code_freq_chips; + double T_prn_seconds = T_chip_seconds * GLONASS_L1_CA_CODE_LENGTH_CHIPS; + double T_prn_samples = T_prn_seconds * static_cast(d_fs_in); + double K_prn_samples = round(T_prn_samples); + double K_T_prn_error_samples = K_prn_samples - T_prn_samples; + + d_rem_code_phase_samples = d_rem_code_phase_samples - K_T_prn_error_samples + code_error_filt_secs_Ti * static_cast(d_fs_in); //(code_error_filt_secs_Ti + d_pll_to_dll_assist_secs_Ti) * static_cast(d_fs_in); + d_rem_code_phase_integer_samples = round(d_rem_code_phase_samples); // round to a discrete number of samples + d_correlation_length_samples = K_prn_samples + d_rem_code_phase_integer_samples; + d_rem_code_phase_samples = d_rem_code_phase_samples - d_rem_code_phase_integer_samples; + + //################### PLL COMMANDS ################################################# + //carrier phase step (NCO phase increment per sample) [rads/sample] + d_carrier_phase_step_rad = GLONASS_TWO_PI * d_carrier_doppler_hz / static_cast(d_fs_in); + d_acc_carrier_phase_cycles -= d_carrier_phase_step_rad * d_correlation_length_samples / GLONASS_TWO_PI; + // UPDATE ACCUMULATED CARRIER PHASE + CORRECTED_INTEGRATION_TIME_S = (static_cast(d_correlation_length_samples) / static_cast(d_fs_in)); + //remnant carrier phase [rad] + d_rem_carrier_phase_rad = fmod(d_rem_carrier_phase_rad + GLONASS_TWO_PI * d_carrier_doppler_hz * CORRECTED_INTEGRATION_TIME_S, GLONASS_TWO_PI); + + //################### DLL COMMANDS ################################################# + //code phase step (Code resampler phase increment per sample) [chips/sample] + d_code_phase_step_chips = d_code_freq_chips / static_cast(d_fs_in); + //remnant code phase [chips] + d_rem_code_phase_chips = d_rem_code_phase_samples * (d_code_freq_chips / static_cast(d_fs_in)); + + // ####### CN0 ESTIMATION AND LOCK DETECTORS ####################################### + if (d_cn0_estimation_counter < CN0_ESTIMATION_SAMPLES) + { + // fill buffer with prompt correlator output values + d_Prompt_buffer[d_cn0_estimation_counter] = lv_cmake(static_cast(d_correlator_outs_16sc[1].real()), static_cast(d_correlator_outs_16sc[1].imag()) ); // prompt + d_cn0_estimation_counter++; + } + else + { + d_cn0_estimation_counter = 0; + // Code lock indicator + d_CN0_SNV_dB_Hz = cn0_svn_estimator(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES, d_fs_in, GLONASS_L1_CA_CODE_LENGTH_CHIPS); + // Carrier lock indicator + d_carrier_lock_test = carrier_lock_detector(d_Prompt_buffer, CN0_ESTIMATION_SAMPLES); + // Loss of lock detection + if (d_carrier_lock_test < d_carrier_lock_threshold or d_CN0_SNV_dB_Hz < MINIMUM_VALID_CN0) + { + d_carrier_lock_fail_counter++; + } + else + { + if (d_carrier_lock_fail_counter > 0) d_carrier_lock_fail_counter--; + } + if (d_carrier_lock_fail_counter > MAXIMUM_LOCK_FAIL_COUNTER) + { + std::cout << "Loss of lock in channel " << d_channel << "!" << std::endl; + LOG(INFO) << "Loss of lock in channel " << d_channel << "!"; + this->message_port_pub(pmt::mp("events"), pmt::from_long(3));//3 -> loss of lock + d_carrier_lock_fail_counter = 0; + d_enable_tracking = false; // TODO: check if disabling tracking is consistent with the channel state machine + } + } + // ########### Output the tracking data to navigation and PVT ########## + current_synchro_data.Prompt_I = static_cast((d_correlator_outs_16sc[1]).real()); + current_synchro_data.Prompt_Q = static_cast((d_correlator_outs_16sc[1]).imag()); + // Tracking_timestamp_secs is aligned with the CURRENT PRN start sample (Hybridization OK!) + current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples; + current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; + current_synchro_data.Carrier_phase_rads = GLONASS_TWO_PI * d_acc_carrier_phase_cycles; + current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz; + current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; + current_synchro_data.Flag_valid_symbol_output = true; + if (d_preamble_synchronized == true) + { + current_synchro_data.correlation_length_ms = d_extend_correlation_ms; + } + else + { + current_synchro_data.correlation_length_ms = 1; + } + } + else + { + current_synchro_data.Prompt_I = static_cast((d_correlator_outs_16sc[1]).real()); + current_synchro_data.Prompt_Q = static_cast((d_correlator_outs_16sc[1]).imag()); + current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples; + current_synchro_data.Code_phase_samples = d_rem_code_phase_samples; + current_synchro_data.Carrier_phase_rads = GLONASS_TWO_PI * d_acc_carrier_phase_cycles; + current_synchro_data.Carrier_Doppler_hz = d_carrier_doppler_hz;// todo: project the carrier doppler + current_synchro_data.CN0_dB_hz = d_CN0_SNV_dB_Hz; + } + } + else + { + for (int n = 0; n < d_n_correlator_taps; n++) + { + d_correlator_outs_16sc[n] = lv_cmake(0,0); + } + + current_synchro_data.System = {'R'}; + current_synchro_data.Tracking_sample_counter = d_sample_counter + d_correlation_length_samples; + } + current_synchro_data.fs=d_fs_in; + *out[0] = current_synchro_data; + if(d_dump) + { + // MULTIPLEXED FILE RECORDING - Record results to file + float prompt_I; + float prompt_Q; + float tmp_E, tmp_P, tmp_L; + double tmp_double; + prompt_I = d_correlator_outs_16sc[1].real(); + prompt_Q = d_correlator_outs_16sc[1].imag(); + tmp_E = std::abs(std::complex(d_correlator_outs_16sc[0].real(),d_correlator_outs_16sc[0].imag())); + tmp_P = std::abs(std::complex(d_correlator_outs_16sc[1].real(),d_correlator_outs_16sc[1].imag())); + tmp_L = std::abs(std::complex(d_correlator_outs_16sc[2].real(),d_correlator_outs_16sc[2].imag())); + try + { + // EPR + d_dump_file.write(reinterpret_cast(&tmp_E), sizeof(float)); + d_dump_file.write(reinterpret_cast(&tmp_P), sizeof(float)); + d_dump_file.write(reinterpret_cast(&tmp_L), sizeof(float)); + // PROMPT I and Q (to analyze navigation symbols) + d_dump_file.write(reinterpret_cast(&prompt_I), sizeof(float)); + d_dump_file.write(reinterpret_cast(&prompt_Q), sizeof(float)); + // PRN start sample stamp + //tmp_float=(float)d_sample_counter; + d_dump_file.write(reinterpret_cast(&d_sample_counter), sizeof(unsigned long int)); + // accumulated carrier phase + d_dump_file.write(reinterpret_cast(&d_acc_carrier_phase_cycles), sizeof(double)); + + // carrier and code frequency + d_dump_file.write(reinterpret_cast(&d_carrier_doppler_hz), sizeof(double)); + d_dump_file.write(reinterpret_cast(&d_code_freq_chips), sizeof(double)); + + //PLL commands + d_dump_file.write(reinterpret_cast(&d_carr_phase_error_secs_Ti), sizeof(double)); + d_dump_file.write(reinterpret_cast(&d_carrier_doppler_hz), sizeof(double)); + + //DLL commands + d_dump_file.write(reinterpret_cast(&d_code_error_chips_Ti), sizeof(double)); + d_dump_file.write(reinterpret_cast(&d_code_error_filt_chips_Ti), sizeof(double)); + + // CN0 and carrier lock test + d_dump_file.write(reinterpret_cast(&d_CN0_SNV_dB_Hz), sizeof(double)); + d_dump_file.write(reinterpret_cast(&d_carrier_lock_test), sizeof(double)); + + // AUX vars (for debug purposes) + tmp_double = d_code_error_chips_Ti * CURRENT_INTEGRATION_TIME_S; + d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double)); + tmp_double = static_cast(d_sample_counter + d_correlation_length_samples); + d_dump_file.write(reinterpret_cast(&tmp_double), sizeof(double)); + + // PRN + unsigned int prn_ = d_acquisition_gnss_synchro->PRN; + d_dump_file.write(reinterpret_cast(&prn_), sizeof(unsigned int)); + } + catch (const std::ifstream::failure* e) + { + LOG(WARNING) << "Exception writing trk dump file " << e->what(); + } + } + + consume_each(d_correlation_length_samples); // this is necessary in gr::block derivates + d_sample_counter += d_correlation_length_samples; //count for the processed samples + + return 1; //output tracking result ALWAYS even in the case of d_enable_tracking==false +} + + +void glonass_l1_ca_dll_pll_c_aid_tracking_sc::set_channel(unsigned int channel) +{ + d_channel = channel; + LOG(INFO) << "Tracking Channel set to " << d_channel; + // ############# ENABLE DATA FILE LOG ################# + if (d_dump == true) + { + if (d_dump_file.is_open() == false) + { + try + { + d_dump_filename.append(boost::lexical_cast(d_channel)); + d_dump_filename.append(".dat"); + d_dump_file.exceptions (std::ifstream::failbit | std::ifstream::badbit); + d_dump_file.open(d_dump_filename.c_str(), std::ios::out | std::ios::binary); + LOG(INFO) << "Tracking dump enabled on channel " << d_channel << " Log file: " << d_dump_filename.c_str() << std::endl; + } + catch (const std::ifstream::failure* e) + { + LOG(WARNING) << "channel " << d_channel << " Exception opening trk dump file " << e->what() << std::endl; + } + } + } +} + + +void glonass_l1_ca_dll_pll_c_aid_tracking_sc::set_gnss_synchro(Gnss_Synchro* p_gnss_synchro) +{ + d_acquisition_gnss_synchro = p_gnss_synchro; +} diff --git a/src/algorithms/tracking/gnuradio_blocks/glonass_l1_ca_dll_pll_c_aid_tracking_sc.h b/src/algorithms/tracking/gnuradio_blocks/glonass_l1_ca_dll_pll_c_aid_tracking_sc.h new file mode 100644 index 000000000..dbc0a084a --- /dev/null +++ b/src/algorithms/tracking/gnuradio_blocks/glonass_l1_ca_dll_pll_c_aid_tracking_sc.h @@ -0,0 +1,170 @@ +#ifndef GNSS_SDR_GLONASS_L1_CA_DLL_PLL_C_AID_TRACKING_SC_H +#define GNSS_SDR_GLONASS_L1_CA_DLL_PLL_C_AID_TRACKING_SC_H + +#include +#include +#include +#include +#include +#include +#include +#include "glonass_l1_signal_processing.h" +#include "gnss_synchro.h" +#include "tracking_2nd_DLL_filter.h" +#include "tracking_FLL_PLL_filter.h" +#include "cpu_multicorrelator_16sc.h" + +class glonass_l1_ca_dll_pll_c_aid_tracking_sc; + +typedef boost::shared_ptr + glonass_l1_ca_dll_pll_c_aid_tracking_sc_sptr; + +glonass_l1_ca_dll_pll_c_aid_tracking_sc_sptr +glonass_l1_ca_dll_pll_c_aid_make_tracking_sc(long if_freq, + long fs_in, unsigned + int vector_length, + bool dump, + std::string dump_filename, + float pll_bw_hz, + float dll_bw_hz, + float pll_bw_narrow_hz, + float dll_bw_narrow_hz, + int extend_correlation_ms, + float early_late_space_chips); + + + +/*! + * \brief This class implements a DLL + PLL tracking loop block + */ +class glonass_l1_ca_dll_pll_c_aid_tracking_sc: public gr::block +{ +public: + ~glonass_l1_ca_dll_pll_c_aid_tracking_sc(); + + void set_channel(unsigned int channel); + void set_gnss_synchro(Gnss_Synchro* p_gnss_synchro); + void start_tracking(); + + int general_work (int noutput_items, gr_vector_int &ninput_items, + gr_vector_const_void_star &input_items, gr_vector_void_star &output_items); + + void forecast (int noutput_items, gr_vector_int &ninput_items_required); + +private: + friend glonass_l1_ca_dll_pll_c_aid_tracking_sc_sptr + glonass_l1_ca_dll_pll_c_aid_make_tracking_sc(long if_freq, + long fs_in, unsigned + int vector_length, + bool dump, + std::string dump_filename, + float pll_bw_hz, + float dll_bw_hz, + float pll_bw_narrow_hz, + float dll_bw_narrow_hz, + int extend_correlation_ms, + float early_late_space_chips); + + glonass_l1_ca_dll_pll_c_aid_tracking_sc(long if_freq, + long fs_in, unsigned + int vector_length, + bool dump, + std::string dump_filename, + float pll_bw_hz, + float dll_bw_hz, + float pll_bw_narrow_hz, + float dll_bw_narrow_hz, + int extend_correlation_ms, + float early_late_space_chips); + + // tracking configuration vars + unsigned int d_vector_length; + bool d_dump; + + Gnss_Synchro* d_acquisition_gnss_synchro; + unsigned int d_channel; + + long d_if_freq; + long d_fs_in; + long d_glonass_freq_ch; + + double d_early_late_spc_chips; + int d_n_correlator_taps; + + gr_complex* d_ca_code; + lv_16sc_t* d_ca_code_16sc; + float* d_local_code_shift_chips; + //gr_complex* d_correlator_outs; + lv_16sc_t* d_correlator_outs_16sc; + //cpu_multicorrelator multicorrelator_cpu; + cpu_multicorrelator_16sc multicorrelator_cpu_16sc; + + // remaining code phase and carrier phase between tracking loops + double d_rem_code_phase_samples; + double d_rem_code_phase_chips; + double d_rem_carrier_phase_rad; + int d_rem_code_phase_integer_samples; + + // PLL and DLL filter library + Tracking_2nd_DLL_filter d_code_loop_filter; + Tracking_FLL_PLL_filter d_carrier_loop_filter; + + // acquisition + double d_acq_code_phase_samples; + double d_acq_carrier_doppler_hz; + + // tracking vars + float d_dll_bw_hz; + float d_pll_bw_hz; + float d_dll_bw_narrow_hz; + float d_pll_bw_narrow_hz; + double d_code_freq_chips; + double d_code_phase_step_chips; + double d_carrier_doppler_hz; + double d_carrier_phase_step_rad; + double d_acc_carrier_phase_cycles; + double d_code_phase_samples; + double d_pll_to_dll_assist_secs_Ti; + double d_carr_phase_error_secs_Ti; + double d_code_error_chips_Ti; + double d_preamble_timestamp_s; + int d_extend_correlation_ms; + bool d_enable_extended_integration; + bool d_preamble_synchronized; + double d_code_error_filt_chips_s; + double d_code_error_filt_chips_Ti; + void msg_handler_preamble_index(pmt::pmt_t msg); + + // symbol history to detect bit transition + std::deque d_E_history; + std::deque d_P_history; + std::deque d_L_history; + + //Integration period in samples + int d_correlation_length_samples; + + //processing samples counters + unsigned long int d_sample_counter; + unsigned long int d_acq_sample_stamp; + + // CN0 estimation and lock detector + int d_cn0_estimation_counter; + gr_complex* d_Prompt_buffer; + double d_carrier_lock_test; + double d_CN0_SNV_dB_Hz; + double d_carrier_lock_threshold; + int d_carrier_lock_fail_counter; + + // control vars + bool d_enable_tracking; + bool d_pull_in; + + // file dump + std::string d_dump_filename; + std::ofstream d_dump_file; + + std::map systemName; + std::string sys; +}; + +#endif //GNSS_SDR_GLONASS_L1_CA_DLL_PLL_C_AID_TRACKING_SC_H